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Ideal deferred statistical convergence of multisequencesc

Maya Altinok?

?Department of Natural and Mathematical Sciences, Tarsus University, Turkey

Abstract. This paper introduces the concept of deferred statistical convergence of multisequences, ex-
tending classical statistical convergence methods to a framework that accommodates repeated elements in
multisets. Multisequences, which allow repeated elements within a set, are widely applicable in various
fields such as computer science, chemistry, and telecommunications.

The study revisits foundational concepts, including ideal convergence, deferred mean, and statistical
convergence, providing a thorough theoretical framework. Main definitions and properties of deferred
statistical convergence for multisequences are presented, followed by the introduction of ideal deferred
statistical limit superior and inferior, which extend the classical notions of limit points.

Furthermore, the paper establishes several inclusion theorems, demonstrating the relationships be-
tween ideal deferred statistical convergence and strong summability within the context of multisequences.
Special cases are analyzed under specific conditions, offering insights into the behavior of multisequences.
Moreover, the paper introduces original definitions and results regarding ideal deferred statistical cluster
and limit points, as well as ideal deferred statistical limit supremum and infimum.

By bridging the gap between classical convergence theories and multisequence analysis, this work

provides a new perspective on the study of multisequences and their convergence properties, encouraging
further research in this evolving field.

1. Introduction and background

In classical theory, each element in a set is listed only once, which does not reflect the real world. In
real life, an element may appear more than once in a set. For example, there are 4 Mondays, 4 Tuesdays,
5 Wednesdays, 5 Thursdays, 5 Fridays, 4 Saturdays and 4 Sundays in January 2025. Therefore, the set
{Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday} cannot represent January 2025. This
type of repetition is important in our daily lives and particularly prevalent in various contexts, such
as computer programming, where specific code elements may need to appear multiple times to ensure
functionality. Similarly, in chemical formulas, certain elements are repeated to represent the accurate
composition of compounds. Additionally, in phone numbers, digits are often repeated to complete the
sequence necessary for communication. If we use two bits to represent ‘a b ¢ d” the code can be ‘00 01
10 11’. Another illustrative example is given by Pachilangode and John in [21]: “ The prime factorizes n
completely, and let .%, be the sets of these factors, including 1. Then, % = {1}, % = {1,2}, %4 = {1,2,2},
f5 = {1,5}, 920 = {1,2,2,5} and c951()() = {1,2,2,5,5}."
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A multiset of real numbers is a collection where elements can appear multiple times. For example,

11
{1r 1/ \/Er Er Er ﬁl VE/ 1/1}

is a multiset of real numbers. In multisets, the order in which elements are written is not impor-
tant. However, the number of times each element is repeated in the set is highly significant. To sim-
plify notation, elements in a multiset are denoted as “elementjnumber of repetitions”. So, the multiset
{1,1, V2, %, %, V2, V2,1, 1} denoted by {1/4, \/§|3, %IZ}. Multiset of real numbers denoted by mR := {x;|m; :
x; € Rand m; € Z*}.

Pachilangode and John introduced the concept of multiset sequences and their convergence in the
Wijsman sense. They also provided impressive examples of multiset sequences in 2021 [21]. In the
same year, Debnath and Debnath defined the multisequences and provided the definition of statistical
convergence of multisequences [8]. They also generalized some results from Fridy [13] and Fridy and
Orhan [14]. Demir and Giimiis introduced the ideal convergence of multisequences in [9], considering
the definition of multisequences from [8]. Also they investigated some basic algebraic and topological
properties of multisequences. Glimdis et al. defined the lacunary statistical convergence of multisequences
and they investigated some related results in [15].

Statistical convergence has a considerable range of studies in the field of mathematical analysis [12],
[13], [22], [25]. Deferred statistical convergence provides a refined approach that extends Cesaro means
and statistical convergence [1], [2], [11], [19]. Sengtil et al. [23] extended the concept of ideal statistical
convergence by incorporating the notion of deferred mean, thereby introducing the idea of ideal deferred
statistical convergence. Furthermore, several subsequent studies have investigated various aspects of this
concept [4], [5], [7], [24].

Nowadays, the study of statistical convergence has expanded beyond traditional sequences to encom-
pass more complex structures such as multisequences and multisets [8], [9], [15], [21]. These developments
have sparked new avenues of exploration, particularly in extending classical convergence concepts to
accommodate the rich nature of multisets, where elements may repeat and possess additional structures.

This paper focuses on the concept of ideal deferred statistical convergence in the context of multise-
quences, providing a thorough examination of its definitions and exploring various inclusion theorems that
bridge the gap between strong summability and statistical convergence in this more generalized frame-
work. Building on the work of previous researchers in this field, we aim to contribute to the understanding
of multiset sequences and their convergence properties, establishing connections between different types
of ideal deferred statistical convergence and their implications.

2. Definitions and preliminaries

In this section, we first provide some fundamental definitions and results about ideal, ideal convergence,
deferred mean, deferred convergence etc. which are already in literature and useful for our study. Also
we mention some mathematical results about this concept. Then we recall the definitions and results about
multisequences.

2.1. Ideal convergence

Ideal convergence is one of the most popular generalized forms of convergence. Kostyroko et al. [16]
introduced this concept to the literature. Ideal statistical convergence was defined by Das et al. in [6].

The statistical limit superior and inferior concepts were studied by Fridy and Orhan [14]. Demirci
generalized statistical limit superior and inferior using ideals [10]. Mursaleen et al. defined ideal statistical
limit superior and limit inferior [20]. Also, Altinok and Kucukaslan gave an effectice result between ideal
limit supremum-infimum and ideal convergence in [3].

Now, let us recall some relevant definitions related to ideal convergence.
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Definition 2.1. A collection I ¢ 2N is called an ideal if the following conditions hold:
(i) o/, % € I implies that &/ U B € ],
(if) o7 € I,  C o implies that % € I.

I is non-trivial if N ¢ I and I is admissible if {n} € I for each IN.

Definition 2.2. A collection F c 2N is called a filter if the following conditions hold:
(i) o/, # € F implies that o/ N A € F,
(if) 7 € F, o/ C % C IN implies that % € F.

Definition 2.3. ([16]) Let x = (x;) be a real valued sequence. x = (x;) is ideal convergent to xy € R (denoted
by I = limx; = x) if and only if for every ¢ > 0 the set {n € IN : |x; — x¢| > ¢} belongs to ideal (I).

Definition 2.4. ([6]) Let x = (x;) be a real valued sequence. x = (x;) is ideal statistical convergent to xo € R
(denoted by I — Slimx; = xp) if for each ¢ > 0 and 6 > 0 the set {n € IN : %I{i <n:lx; — x| > €} > 6} belongs
to ideal (I).

The reason for the popularity of ideal convergence is that many convergences can be obtained with the
specially chosen ideals. Now we will give some examples for some special ideals (more examples are in
[17]).

Let I; be the set of all finite subsets of natural numbers. Then, I;-convergence is the usual convergence.

Let I; = {A ¢ IN : d(A) = 0}, where d is the natural density. Then, I;-convergence is statistical
convergence.

Definition 2.5. ([10]) Let x = (x;) be a real valued sequence and I be an ideal. Ideal limit superior and ideal
limit inferior of x = (x;) defined as follows:

supU,, U, #0,

I-1i P =
1m sup x {_Oo’ U, = 0.

and

I -liminfx; =

infL,, L, #0,
+00, L, =0.

where U, ={beR:{ielN:x;>b}¢I},[,={aeR:{ieN:x;<a} ¢lI}.

2.2. Deferred convergence

The concept of deferred statistical convergence was introduced by Kiigiikaslan and Yilmaztiirk [19] in
2016. They used deferred Cesaro mean which was given by Agnew [1] in 1932. There are several papers
about this concept such as [2, 11], etc.

Definition 2.6. ([1]) Deferred Cesaro mean of x = (xx) (real valued sequence) is

q

Dp, @ = @- 07" Y x n=12,.,
k=p+1

where p = {p(n)}en and g = {g(n)}en (for brevity p and g, respectively) are the sequences of positive
integers satisfying

0<p<gand qg— cowhenn — co. (1)
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A sequence x = (x¢) is deferred strongly summable to xy € R (denoted by D lim x,, = xo) if the following
ratio

q

@=»" Y Ke—x

k=p+1

tends to zero when n — oo.

Definition 2.7. ([19]) A sequence x = (x) is deferred statistical convergent to x( (denoted by DS lim x,, = xp)
if

lim (q = p) ik p <k < g b — x| > €)] = 0

holds.

2.3. Multisequences

In our daily lives, we frequently encounter situations where an element of a set must be repeated multi-
ple times within that set. This is particularly common in various contexts, such as computer programming,
where specific code elements may need to appear multiple times to ensure functionality. Similarly, in
chemical formulas, certain elements are repeated to accurately represent the composition of compounds.
Additionally, in phone numbers, digits are often repeated to complete the sequence necessary for commu-
nication. These examples illustrate the necessity and practicality of repeating elements in different settings.
For this reason, it is clear that this concept will be popular in mathematics.

Definition 2.8. ([8]) A sequence whose range is a set of mIR is called multisequence. A multisequence
mx = (x;lm;) is defined as mx := {x;lm; : x; € R and m; € Z*} such that x = (x;) is a real valued sequence.

Due to the repetition of elements in a multiset, it is necessary to define a new metric space. Let M be a
multiset and the metric dy; : M X M — [0, o) defined as

dna(mz, my) = dug el yib?) = (G = y)? + (! = mi2y?) "
for each i € N.

Definition 2.9. ([9]) A multisequence mx = (x;lm;) is convergent to xg|m (denoted by lim x;|m; = xq|m) if

1/2

lim ((x; = x0)* + (m; = m)*) " = 0

holds.

In this case, for any ¢ > 0, it is clear from definition that |x; — xo| < € and |m; — m| < € hold.

Definition 2.10. ([9]) A multisequence mx = (x;|m;) is ideal convergent to xo|m (denoted by I — lim x;|m;
Xo|m) if for each € > 0

i e N: (i —x0)? + o —mp) " = el el

If we consider I = I, then mx = (x;lm;) is called statistical convergent to xg|m (denoted by & — lim x;|m;
xolm) [8].
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3. Main results

In this section, the core contributions of the paper are presented, focusing on the definitions and proper-
ties of ideal deferred strongly summability for multisequences and ideal deferred statistical convergence for
multisequences. Main inclusion theorems are established, demonstrating the relationships between ideal
deferred statistical convergence and their implications. Additionally, the section explores special cases
obtained by specific choices of the deferred parameters p and g highlighting their influence on convergence
behavior. The properties of ideal deferred statistical limit and cluster points are thoroughly examined,
with theoretical insights supported by concrete examples. A significant focus is placed on the ideal de-
ferred statistical limit superior and limit inferior, where new definitions and propositions are introduced
to characterize the extremal behavior of multisequences under deferred statistical convergence. The rela-
tionships between these new concepts and their role in determining the boundedness and convergence of
multisequences are analyzed in detail.

Definition 3.1. A multisequence mx = (x;|m;) isideal statistical convergent to xo|m (denoted by I-G lim x;|m; =
xo|m) if for every e > 0and 6 > 0

{n : %Hi < ((x = x0)? + (m; — m)*)? > ¢}| > 6} el

Definition 3.2. A multisequence mx = (x;lm;) of mR is ideal Deferred strongly summable to xg|m of mR
(denoted by I — D lim x;|m; = xq|m) if for any € > 0

q
{n Ha-p) Z ((xi = x0)* + (m; = m)?)!/? > g} €l

i=p+1

Definition 3.3. A multisequence mx = (x;|m;) is ideal Deferred statistical convergent to xg|m (denoted by
I - DG lim x|m; = xo|m) if for every ¢ > 0and 6 > 0

{” Sa—p) e <i<q: (g —x0)?+ (m —m)) 2 2 el 2 5} el

3.1. Inclusion theorems

Theorem 3.4. Let mx = (xj|m;) be a multisequence. If I — D lim x;|m; = xo|m, then I — DS lim x;|m; = xo|m.

Proof. LetI— Dlim x;lm; = xo|m. So, for any arbitrary ¢ > 0, we have

q
(@=97 Y (= x0) + (m; = m)?) 2

i=p+1
q
> Y (G x0) o+ (my - m)) 2
i=p+1
((x;=x0)2+(m;—m)2)1/2>¢
> el{p<i<aq:((xi—x0)®+ (mi—m)?)/* > e

and it implies that following inequality

_ q
@ Z ((x; = x0)* + (m; — m)Z)l/Z
i=p+1

> (q-p) Up<i<q:((x—x0)*+ (m—m)? > el
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holds. Then, for any 0 > 0
fn:@=mp <i<a:((-x0)?+ (m—mP)2 > e)| > o)
q
c {n H(a-p)! Z ((x; = x0)* + (m; —m)*)'/? > 66} €l
i=p+1
So, I — DS lim x;|m; = xglm. O
Corollary 3.5. If lim x;|m; = xo|m then I — DS lim x;|m; = xo|m holds.

Let us note that the converse of Theorem 3.4 (or Corollary 3.5) is not true, in general. For this, let us take
account the sequences g(n) = n, p(n) = 0 and the multisequence mx = (x;|m;), as follows:

n, i=n?
Xi = .
0, i#n?

n, i=n’
m; =
"o, il
Then for every ¢ > 0, we get

B ] n1/2 + n1/3 _ n1/6
@= )7 <i < a: (=07 + 0m— 02 > e < T ——,

and for any 6 > 0
fn:@=-nTHp<i<a:(@)?+mH"? > el > o)

1/2 1/3 _ ,1/6

n +n n

c {n:—Zé}GI
n

holds because the last set has finitely many element. Hence I — D& lim x;|m; = 0|0.
On the other hand

q
(a-»7" Z V(i = 0)2 + (m; — 0)? %( V242224232 + .. +21%)

p+1
n(n+1)2n +1) S oo,
6n

\%

Then,

q
{n @ Y (i 30 + i - w2 > r} > fn: M) ek

i=p+1
for some A € R*. So, left-hand side set belongs to F, since I is admissible. Hence, I — D lim x;|m; # 0]0.

Definition 3.6. ([8]) A multisequence mx = (x;|m;) isbounded if there exists B > 0 such that (xi2+(m,-—1)2)1/ 2<
B.

Theorem 3.7. Let mx = (x;|m;) be a bounded multisequence. If I — DS lim x;{m; = xo|m, then I -0 lim x;|m; = xo|m.
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Proof. Let us assume that I — DSlimx;|m; = xolm and mx is bounded. There exists B > 0 such that
(2 + (m; = 1))/ < B for all i € N. Also, for m, m; € Ng and x; — xo, we have

((xi = x0)? + (i = mP)'2 < (& + (m; — 1) < B.

So,

q
(@=07" Y (= x0) + (m; = m)?) V2 =
i=p+1
q
@=»7 Y (%0 o —m))

i=p+1
((xj=x0)2+(m;—m)2)1/22¢/2

q

o@-nTY (G x) - m)) 2
i=p+1
((xi—xo)2+(mi—m)2)1/zﬁé‘/2
_ . & &
< B(a-p)Hp <i<q:((—x0) + (mi —m*)* > S=+3-

Hence, for any 0 > 0,

q
{” t(g-p) Z ((xi = x0)* + (m; — m)*)!/? > é‘}

i=p+1

26 —
c {ni@-w e <isa@-x0+ om-mP 2z el> =5 el
This gives that I — D lim x;m; = xp|m. O
Theorem 3.8. If the sequence {%} is bounded, then I — G lim x;|m; = xo|m implies I — DS lim x;|m; = xo|m.

Proof. Assume that I — Slim x;|m; = xo|m. Then, for every ¢ > 0 and ¢’ > 0, we have
Ale, o) = {n : %l{i < (= x0) + (i — D)2 > )] 5'} el @)
Let us show that for every ¢ > 0 and 6 > 0,
B(e,8) = {n: (a—p)MMp <i<a:((i—x0)?+(mi—mP?)? 2 el 26} €L
Since q — oo (for n — o), then for every ¢ > 0and &’ > 0
007 i < 0 (@i = x0)? + (mi = D) 2 )] 2 8} € Ale, &) ©

holds. From (2) and the hereditary property of ideal the left-hand side set in (3) is also belongs to ideal.
For each n, we clearly have

P <i<a:((—x0)°+ (mi—mP)? = e)l < |fi < (v = x0)° + (m; = m)*)!/? > e}
Multiplying both sides by (q — p)~! yields
(@=0)7"lp <i<a:(@i=x0)+ mi—m)*)'2 2 e}l < (=97 < qx (x5 = x0)> + (mi = )} = e

The right-hand side can be written as

(@=p) Ui < a: (= x0)2 + (mi —mPD)2 > )| = q%'pq-lni < q: ((xi = x0)2 + (m; —m)P)2 > ¢
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Since { } is bounded, there exists M > 0 such that =1+ q%p <1+ Mforalln € N. Thus
(@=p) i< gz (= x0) + (mi = m))'2 2 e}l < (L M)a'Ifi < a: (= x0)” + (mi — m)?)'? > e},

Let ¢’ = 6/(1 + M). Hence,

Ble,d) € s a7l < a3 (G =30 + Oy = )12 2 el > )

holds. From (3), the set on the right belongs to I, and thus B(¢, 6) € I. Therefore, for all ¢ > 0 and 6 > 0,
B(e,0) € I, which means that I — DS lim x;|m; = xg|lm. O

Corollary 3.9. Let us assume that q < n holds for all n € N and { £} is a bounded sequence. Then, | - S lim x;|m; =
xolm implies I — DS lim x;m; = xo|m.

Theorem 3.10. Let q = {n},en. Then, I — DS lim x|m; = xo|m if and only if I — S lim x;|m; = xo|m.
Proof. (=) Assume that I — DS lim x;|m; = xo|m. For any n € IN

. <n® =pm?) < n® = pnV) < nV = pn)
and we can write {i < 1 : ((x; — x0)? + (m; — m)?)V? > ¢} as

i< n: (= xo) + (mi = m?)? 2 e} =
i <n® (= x0) + (mi —m)?)'? > e

{i
{
U (W <i<n:((x—x0)+ mj —m)? > ¢},
and the set {i < n® : ((x; — x0)? + (m; — m)»)1/?2 > ¢} as
{i <n® (6 = x0)* + (my —m)*)'? > ¢} =
= {i <n®: ((xi —x0)* + (m; — m)*)'/? > ¢}
U (n® <i<n®:((x - x0)* + (m; — m)*)* > ¢},
and the set {i < n® : ((x; — x0)* + (m; — m)*)12 > ¢} as
{i <n® (i = x0)* + (m; —m)*)'? > ¢} =
= {i<n® (= x0) + (mi = m)H)'? > ¢)
U {n® <i<n®:((xj—x0)* + (m; — m)>)? > ¢}

if this process is carried on
{i <n0 ™V (v = x0)? + (m; — m)*)? > e} =
= (i <n" (i = x0)* + (m; — m)*)' > ¢}
U {n® <i<n (- x0)? + (mj — m)»)V2 > ¢},
is obtained for a certain positive integer y > 0 depending on 7 such that n) > 1 and n?*? = 0. From the

above process, for every n € IN following relation

fren i <ns (=200 + (i = m))' 2 )] 2 6}

4 (t) _ y(t+1)
n n .
= {n : Z —  _|n"Y <i<n® . ((x; = x0)? + (m; — m)z)l/2 >¢l|=0
t

() — p(t+1)
= n(n®) —nt*v)

holds. This gives that ideal statistical convergence of the multisequence x;[m; to xo|m can obtained from the
following sequence

1
{ 6] —|{n(t+1) <i< n® . ((x; _xo) + (m; — m)Z)l/z > €}|}
n

TEEY) teN



M. Altinok / Filomat 40:3 (2026), 1101-1115 1109

Let us consider the matrix

2O 4D

W™y 012,

b= n 7 10 =
0, t+0,1,2,..,y

Silverman Toeplitz theorem [18] is provided for the matrix (b, ;). So we have,
{n cn i< ns (g = xo)? + (m; — m)?)V? > e > 6} el

because of the assumption of

1 .
{n "D < i <n® (= x0)? + (m; — m)P)V? > €} > 6} el
n® — p+1)

(=) Since q(n) = n holds (1), then the inverse is simply from the Theorem 3.8. [J
Let we have following assumption for p, q, v’, ¢’

p<p <d <q (4)

forall n € IN. We take into account the assumption (4) in the following two results for to compare [ - DS(p, )
and I - DS(p'¢’).

Theorem 3.11. Let v, q, v, " be sequences of positive integers such that the sets
k:p<k<yplandik:q <k<q}
are finite subsets of IN for alln € IN also (4) holds. Then, [-DS(v’, o' )xi|m; — xolm implies |- DS(p, q)xi|m; — xo|m.
Proof. Let us consider I — DS(v’, ’)xi|m; = xo|m holds. For any ¢ > 0and 6 > 0
{ne@ =)0 <k < (o= x0)? + (m—mP)2 2 e} 2 6} €1
holds. Also from (4)

{p<k<q:((xi—x0)?+ (m;i —m)?)? > ¢}
p<k<p :((xi—x0)%+ (mj — m)*)? > ¢}
{
{

po<k<q:((x—x0) + (mi —m)P)V2 > ¢}
0 <k<aq:((xi—x0)?+ (mi—mA)Y2 > ¢

C C

and

@@= e <k <a:((—x0)? + (m; — mP)2 > ¢

@ =) Up <k <p (6 —x0)% + (mi —m)®)? > ¢}
(@ =) <k <q s (= x0) + (mi — m))2 > )]
(@ =)o <k <a:((—xo) + (i —m))'? 2 e

+ + IA

are hold. So from the hypothesis we obtain
fn:@=» M <k<a: (-2 +mi-mH)2 el >0 el

which gives that I — DS(p, q)xilm; — xolm. O
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Theorem 3.12. Let p,q, v, 9" be sequences of positive natural numbers satisfying (4) such that following limit is a
positive real number

lim a-b

n—co (' — p"

Then, I — DG(p, q)xi|m; — xo|lm implies [ — DS(p’, q")xi|m; — xolm.

Proof. From the hypothesis the inclusion

0 +1<k<q:((x—x0)+ (m—mP)V2 > ¢}
C Ap+1<k<a: (6 —x0) +(mi—m)?*)'? 2 )

and the inequality

(" +1 <k <o : (6 = x0) + (m; — m)?)'/2 > el
< M+ 1<k<a: (=) +0m—m)P)'? > el

are true. Thus, we have
frs@ =) + 1<k <a: (= x0)” + (m = m))2 2 e 2 6}
c {n : H(q' ) T <k <a: (= x0) + (my — D)2 > e} > 6} el

This proves our assertion. [

3.2. Ideal deferred statistical limit and cluster points of multisequences

Definition 3.13. The number I|m of mR is an ideal deferred statistical limit point of the multisequence
mx = (x;lm;) if thereisasetS = {s; < sy < ... <s; < ..} C Nsuch that S ¢ [ and DS lim x,|m;, = I|m.
DSAL, denotes the set of all ideal deferred statistical limit points of the multisequence.

Definition 3.14. The number c|m of mR is an ideal deferred statistical cluster point of the multisequence
mx = (x;|m;) if for any € > 0,

{neN:@-nle<i<a: (Go-of + om-m?) " > el <o) el
DI, denotes the set of all ideal deferred statistical cluster points of the multisequence mx = (x;|m;).
Theorem 3.15. For any multisequence mx = (x;lm;), DSAL . c DETL  holds.
Proof. Let us assume that I|m € DGSAL .. So, there exists aset S = {s; < sy < ..<s; <..} C NsuchthatS ¢

and [ — DS lim x,,|m;, = Ilm. From the Definition 3.3 for every ¢ > 0 there exists an 1y € IN such that for
n > np and for any 6 > 0

{n Sa-n) e <i< (G = D2+ Omg - m)z)”2 > ¢l > 6} el
holds. Also,

s @= o tp<i< s (=07 + (= mP) 2 el < 6f > S\lst 2,53,

1/2
and so {n (a-pYp<i<q: ((x,- D%+ (m; — m)z) ! >¢ef| < 6} ¢ I since I is admissible. Hence, Ijm €
DCrL,. O



M. Altinok / Filomat 40:3 (2026), 1101-1115 1111

3.3. Ideal deferred statistical limit superior, limit inferior of multisequences
Definition 3.16. For any multisequence mx = (x;|m;) let DSU!,, denotes the following multiset
-1 . 2 2\1/2 2 2\1/2
{blm:{nelN:(q—p) tp<i<a:(+0m—172)"> 0+ m-1?) }|>5}¢1}
and DSLL, . denotes the following multiset
1/2

{alm : {n eN:@-plp<i<a:(E+m-12)" <(@+m-12) "> 5} ¢ 1}

Let us note that xo|m is called supremum of DSU,, (or infimum of DSLL ), if m is the greatest (or
lowest) multiplicity in DSUL,, (or DSLL ) under the condition m < max{m;} (or m > max{m;}) in mx and
xo denotes the supremum (or infimum) of the unique sets of real numbers associated with the multiplicity
min DSUL,, (or DSLL), whenever it exists.

Definition 3.17. The ideal deferred statistical limit superior of the multisequence mx = (x;|m;) is given by

sup DSUL,, DSU., #0,

I-2Gli xilm; =
im sup x;|m; { o, DSUL, = 0.

The ideal deferred statistical limit inferior of the multisequence mx is given by

s ] 1
[— DS liminfx|m; = {mf DLy DSLyy %0,

+00, vSLL =0.

Proposition 3.18. Let mx = (x;|m;) be a multisequence of mIR. Let I — DS lim sup x;|m; = b|m (finite), then for any
e>0

fn:@=wp<i<as (e om-10)" > (0= +m-17) "> 0) 1

and

{n Sa-p M <i<az (@4 om-12)" > b+ 2+ m-172) ") > 5} el

hold.

Proposition 3.19. Let mx = (x;|m;) be a multisequence of mR. Let [ — DS liminf x;|m; = a|lm (finite), then for any
e>0

s @=w e <i<a: (@4 0m-12) " < (@ P+ n-17) > 0f 21

and

{n Ha-p) e <i<ar (o + (mi- 1)2)1/2

<(@=e?+m-12) "> 5} el
hold.
Theorem 3.20. Let mx = (x;lm;) be a multisequence of mIR.

I - DGliminfx;lm; < I - DS lim sup x|m;

holds.
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Proof. We will consider three cases for the proof. Firstly, let us consider I — DS lim sup x|m; = —o0. So,
DSU!,, = 0. Then, for every bjm € mR,

{n Sa-p e <i<a: (24 0m-17)" > (024 m-12) ) > 5} el
This implies that
fni@=w e <i<a: (@4 om-19)" < (P4 m-17) "> 0f<F
for any alf € mR,
{n Sa-p e <i<a: (@4 0m-17)" < (@ +-12) "> 5} c€F
Hence, I — DS liminf x;|m; = —oo.
In case I — DS lim sup x;|m; = +oo the proof is obvious. Let us take account third case.

Let us assume that I — DS lim sup x;lm; = f|m (finite), and let I — DS liminf x;|m; = a|m’. For given ¢ > 0
and 6 > 0 we show that (8 + ¢)lm € DSLL , so that

{n Ha-p) e <i<q:(a?+ ' - 1)2)1/2 <((+e)P+(m- 1)2)”2}| > 6} el

By Proposition 3.18,

{n cq-p) Yp<i<q: (xl2 + (m; — 1)2)1/2 S ((ﬁ + &)+ (m— 1)2)1/2}| . 6} cl

because flm = I — DS lim sup x;|m;. This implies that

{n (g - D)_ll{p <i<q: (xzz + (m; — 1)2)1/2 < ((ﬁ n 8)2 + (m - 1)2)1/2}| S (5} cE

So,
. 1/2 1/2
{n:(q—p)—1|{p<zs a: (24 0m - 12)" < (B + e+ m-12) ") >5}¢1.
Hence, (8 + €)lm € DSLL.. By definition a|m’ = I — DS lim inf x;|m;, so we conclude that

1/2 1/2
(@ + ' =12)" < (B + e+ m-17)".
. . . L ) 12 ) N2 .
Since ¢ is arbitrary this gives that (a +(m -1) ) < (ﬁ +(m-1) ) , e, I - DSliminfx;im; < I -
DSlimsup xlm;. O

Definition 3.21. A multisequence mx = (x;|m;) is ideal deferred statistical bounded if there exists a non-
negative real number K such that for every 6 > 0

fn:@=wtip<i<as (@4 om-19)" > Ki>ofel

Theorem 3.22. The ideal deferred statistical bounded multisequence mx = (x;|m;) of mR is ideal deferred statistical
convergent if and only if

I - DG liminfx;jm; = I — DS lim sup x;|m;.
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Proof. Let us assume that a|m; = [ - DS liminf x;m;, blmy = [ — DS lim sup x;|m; and [ — DS lim x;|m; = xo|m.
So for every ¢ > 0 and 6 > 0

s @=wle <i<as (G- xR+ om = mP) 2 el > 0 e
and
{n (q- p)‘ll{p <i<q: ((x,- - xo)2 + (m; — 111)2)1/2 > el < 6} eF

holds which implies that

_ . & & .
{n:(q—v) Np<i<q:lxi—xl>—==e¢, Imi—MI>—=€1}|<é}€P

V2 V2

So,{n a=-p) M <i<q:ly—xol > e, [mi—m|l> e} > (5} el ie,

{n:i@=-nTHp<i<a:h—xol> ey, Imi—ml> el >0} el
Therefore,
ni@=-pMr<i<aix>xo+e, m-1>m+e -1l >0) el

and so,
s @=w e <i<a: (@4 0m-12) "> (o4 e+ o+ er - 102) > 0} €1

which implies that (b2 + (my — 1)2)1/2 < ((xo +e)’+(m+e — 1)2)1/2, ie.,

(0 + om2 - 1?) < (4 m-12) "

Hence,

I - DGlimsup xijm; < I — DS lim x;|m;. (5)
Also we have

{n:(q—p)’1|{p<i3q:xi<xo—sl,mi—1<m—1—51}|>6}el

and so,

{n - <i<a: (@ m-17)" < (o - e)? + m-e1 - 12) ) > 5} el

which implies that ((xo —e1)?+(m—eg - 1)2)1/2 < (az + (my — 1)2)1/2, ie.,

(xé + (m— 1)2)1/2 < (a2 + (mg — 1)2)1/2 .

Hence,
I - DS limxj|m; <1 - DS liminf x;|m;. (6)
So, from (5) and (6) and Theorem 3.20 we obtained that

I - DG liminfx;jm; = [ — DS lim sup x;|m;.
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Now let us assume that a|m; = blmy and define xolm = alm; = blm,. Let I — DS lim sup x;lm; = xplm. So,
from Proposition 3.18 for given any ¢; > 0,

s @=w i <i<as (24 0m-19) "> (o + e0f + on-12) > et

We can find any positive number ¢’ that

/2

(6o e+ m=17) " = (F+ m-17) "+,

ie.,

{n a-p e <i<a: (@4 0m-17)" > (Z+m-12)" + ey > 5} el

Again from the hypothesis and Proposition 3.18 for given any ¢ > 0,

{n ta-n)Mp<i<q: (x? + (m; — 1)2)1/2 < ((xo — &)’ + (m - 1)2)1/2}| > 5} el

We can find a positive real number ¢” that

(o= eaP + on=17) " = (4 (m - 12) =,

ie.,

{n ta-p)Hp<i<aq: (xl2 + (m; — 1)2)1/2 < (xg +(m— 1)2)1/2 -’ > 6} el
Hence if we choose ¢ as max(¢’, €”’), then we have

{n ta-p)Hp<i<aq: (xl2 + (m; — 1)2)1/2 > (xg +(m— 1)2)1/2 +el > 5} el
and

s @=wtp<i<as(@eom-10)" < (F+ou-10)"-el> o} et

ie., I —DSlimx;|m; = xolm. O

4. Conclusion

In this paper, we have introduced and analyzed the concept of deferred statistical convergence of
multisequences, extending classical statistical convergence methods to accommodate the multisequences.
By incorporating ideal theory and deferred Cesaro means, we have provided a comprehensive framework
that bridges the gap between traditional and modern approaches to sequence convergence.

Main contributions of this study include the formal definitions of ideal deferred statistical convergence,
limit superior, and limit inferior for multisequences, along with several inclusion theorems that establish
relationships between various convergence types. Our results offer a deeper understanding of the structural
properties of multisequences and their behavior under ideal conditions.

The results presented in this paper not only extend existing literature but also provide a foundation for
further exploration. Future research could focus on generalizing the concept to more complex mathematical
structures, exploring applications in optimization problems, and investigating connections with other types
of generalized summability.

In conclusion, this study contributes to the knowledge in statistical convergence and multisequence
analysis, offering valuable insights and potential applications across various domains of mathematical
research.
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