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Convex fuzzifying bornologies and its duality
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Abstract. The main objective of this paper is to investigate convex fuzzifying bornological linear spaces
and their duality. First, we introduce the notions of convex fuzzifying bornological linear spaces and locally
convex fuzzifying topological linear spaces, along with several examples. Next, we study the relationship
between convex fuzzifying bornological linear spaces and locally convex fuzzifying topological linear
spaces, utilizing the mapping of fuzzifying bornivorous. Subsequently, we introduce the concepts of
fuzzifying bornological locally convex spaces and fuzzifying topological convex bornological linear spaces. We
demonstrate that the category of fuzzifying bornological locally convex spaces can be embedded as a reflective
subcategory in the category of convex fuzzifying bornological linear spaces, and the category of fuzzifying
topological convex bornological linear spaces can also be embedded as a reflective subcategory in the category
of locally convex fuzzifying topological linear spaces. Moreover, the category of fuzzifying topological convex
bornological linear spaces is topological over the category of linear spaces with respect to the expected forgetful
functor. Lastly, we provide several characterizations of the fuzzifying bornological topologies.

1. Introduction

It is well-known that boundedness is a very important concept in the theory of functional analysis.
However, the concept of bounded sets lacks clarity in topological spaces. In 1949, Hu [9, 10] first introduced
the concepts of bornology and bornological spaces, which were later developed in the context of bornological
vector spaces [8, 18]. In recent years, the theory of general bornological spaces has played a critical role in
researching convergence structures on hyperspaces [17], optimization theory [4], and topologies on function
spaces [6, 15].

It is worthy noting that Abel and Sostak [1] originally extended the theory of bornological spaces to
the context of fuzzy sets in 2011. They discussed bornologies over an infinitely distributive complete
lattice L and gave the concept of an L-bornology as an extension of that of crisp bornologies. Combing an
L-bornology and a vector space, Paseka et al. [19] introduced the notions of lattice-valued bornological
vector spaces and L-convex L-bornological vector spaces. Some categorical properties of L-bornological
vector spaces are also studied by them. Subsequently, Jin and Yan [11] proposed L-Mackey convergence and
separation in L-bornological vector spaces, and discussed an equivalent characterization of separation in
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terms of L-Mackey convergence. Just recently, Shen and Yan [23] studied the duality between L-bornologies
and L-topologies. It is shown that the category of L-bornological locally convex L-topological vector spaces
can be embedded in the category of L-convex L-bornological vector spaces as a subcategory, and the category
of L-topological convex L-bornological vector spaces can be embedded in the category of locally convex
L-topological vector spaces as a subcategory. Additionally, Liang et al. [16] introduced the concepts of
(L, M)-fuzzy bornological spaces and (L, M)-fuzzy bornological vector spaces.

On the other hand, Sostak and Uljane [24] develop an alternative approach to the “ fuzzification” of the
concept of bornology. Namely there they defined an L-valued bornology (or called L-fuzzifying bornology)
on a set X. This L-fuzzifying bornology is a mapping B : 2X — L satisfying some certain L-valued axioms.
Also, this mapping in a certain sense determines the degree of boundedness B(A) € Lofaset A C X. In2022, Jin
and Yan [13] introduced the concept of fuzzifying bornological linear spaces, inspired by the literature [24],
while considering the necessary and sufficient conditions for compatibility between fuzzifying bornologies
and linear structures. Recently, Shen and Yan [22] discussed the fuzzifying bornologies induced by fuzzy
pseudo-norms and proved that v. Neumann fuzzifying bornology is separated in fuzzy pseudo-normed
linear spaces if and only if the fuzzifying topology determined by a fuzzy pseudo-norm is Hausdorff. This
study is the first to explore the relationship between fuzzifying topological linear spaces and fuzzifying
bornological linear spaces in the frame of the semantical method of continuous-valued logic.

Locally convex spaces and convex bornological spaces are known to exhibit a duality relationship (ref-
erence [8]). Previous literature has only discussed the relationships between the properties of fuzzifying
bornologies and fuzzifying topologies in linear spaces [22]. However, no progress has been made in the
study of the theory of convex fuzzifying bornological linear spaces. Furthermore, the duality between
convex fuzzifying bornological spaces locally convex fuzzifying spaces has not been studied. The main
objective of this paper is to initiate research in this area. This study will establish the relationships between
fuzzifying topological structure and fuzzifying bornological structure in fuzzy functional analysis. Addi-
tionally, it will promote further research on fuzzifying bornological linear spaces, specifically contributing
to the establishment of the famous closed graph theorem. The focus of this study is to investigate the
elementary properties of the duality between convex fuzzifying bornologies and locally convex topologies.
This can be considered as the inaugural attempt to study this internal duality using the semantical method.

The introduction concludes with an outline of the subsequent sections of the paper. In section 2,
we recall some basic definitions and fundamental results. In section 3, we introduce the concept of L-
bornivorous sets and propose an approach to convex fuzzifying bornology that can generate a locally
convex fuzzifying topology. Furthermore, we demonstrate that the v. Neumann fuzzifying bornology is
the coarsest convex fuzzifying bornology that aligns with locally convex fuzzifying topology. In section
4, we introduce the concepts of fuzzifying topological bornologies and fuzzifying bornological topologies,
and explore their equivalent conditions. Additionally, we provide some characterizations of fuzzifying
bornological bornologies.

2. Preliminaries

In this section, we review some necessary notions and fundamental results which are used in the sequel.

Throughout this paper, K represents a field of real or complex numbers, X always denotes a linear space
over K. 2X and 2% denote the classes of all crisp and finite crisp subsets of X, respectively. The notation
N(X) denotes the set of all sequences in X.

According to the terminology [8], a subset A of X is a disk if A is both convex and circled. The notation
disk(X) denotes the set of all disks in X. For any subset A of X, the symbols co(A),I'(A) denote the convex
hull of A and disk hull of A, respectively.

Definition 2.1. ([20, 24, 25]) An ([0, 1], A)-valued bornology on a set X is a mapping B : 2X — [0,1]
satisfying the following conditions:

(Bl) forallx e X, B({x}) = 1;

(B2)if U C V C X, then B(V) < B(U);
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(B3) forall LV c X, BUU V) = B(U) A B(V) holds. The pair (X, B) is called an ([0, 1], A)-valued
bornological space and the value B(A) is interpreted as the degree of boundedness of a set A in the space
(X, B).

From now on, an ([0, 1], A)-valued bornology on a set X is also called a fuzzifying bornology on a set X.

Remark 2.2. The axiom (B3) is stated that for a continuous {-norm = instead of A in the original paper [24].
As A. Sostak et al. [24] pointed out, in case of * = A, the axiom (B2) is redundant since it follows from axiom
(B3). Hence the axioms (B2) and (B3) may be replaced by the following axiom (B3) :

(B3): YU,V C X, BUU V) =BU) A BYV).

Let B(X, [0,1], A) stand for the family of all fuzzifying bornologies on X. A partial order relation < on
B(X,[0,1], A) by setting for By, B, € B(X, [0, 1], A):
B1 < B, if and only if B1(A) > Br(A), VA €2,
and say in this case that B; is coarser, or smaller than B;, and $; is finer, or larger than 5;.

Definition 2.3. ([24]) A mapping f : (X, Bx) — (Y, By) of fuzzifying bornological spaces is called bounded
if Bx(A) < By(f(A)) for all A € 2X.

Definition 2.4. ([13]) Let X be a linear space over K. A fuzzifying bornology 8 on X is said to be a linear
fuzzifying bornology on X, if the following two mappings are bounded: f : XX X — X, defined by (x, y) —
x+y,9: KxX — X, defined by (k, x) — kx, where X x X and K X X are equipped with the corresponding
product fuzzifying bornologies 8 x B and Bk X B (here Bk is the fuzzifying bornology determined by the
crisp bornology on K, i.e., Bx(A) = 1 whenever A is a crisp bounded set in K, and Bx(A) = 0 if A is not
bounded in K) which is defined as

(BxB)(AxB)=8B(A)AB(B) forall A,BC X.

We call any pair (X, B) consisting of a linear space and a linear fuzzifying bornology a fuzzifying
bornological linear space on X.

Theorem 2.5. ([13]) Let B be a fuzzifying bornology on X. Then B is a linear fuzzifying bornology if and only if
satisfies the following conditions: for all U,V € X

(B4) B(U+V)>8BU)AB(V);

(B5) B(AU) = B(U), forall A e K;

(B6) B( U all) > B(U).

la|<1
According to the terminology adopted in [8], a crisp bornological linear space (X, 8B) is separated if {0}

is the only bounded linear subspace of X. Naturally, one can generalize this property from the crisp case to
the fuzzy setting as follows.

Definition 2.6. ([13]) Let (X, 8) be a fuzzifying bornological linear space. Then the degree to which (X, 8)

is separated is defined by
SXBl= A 1-BM)),

M#{0)
MeSuvec(X)

where the notation Svec(X) denotes the set of all linear subspaces of X.

Definition 2.7. ([13]) Let (X, 8) be a fuzzifying bornological linear space and {x,} € N(X). The degree to
which {x,} is convergent to x bornologically is

[x, 5 x] = \/ (B(4):¥neN,x, —x€ 1,4},

AeBal(X)
An—0

where Bal(X) means the family of all balanced sets in X( A subset B C X is called balanced if AB C B
whenever A € K and |A| < 1).
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Definition 2.8. ([13]) Let (X, B) be a fuzzifying bornological linear space and A € X. Then the degree to
which A is bornologically closed is defined as follows:
[BCA)]I= AN A {1-8(B):YneNN,x,—x¢€ A,B}.

{xn)CA BeBal(X)
X¢A An—0

If [BC(A)] = 1, we also called A is bornologically closed.

Definition 2.9. ([26]) Let (X, 7) be a fuzzifying topological space. For any x € X, 4; : 2X — [0, 1] is called a

fuzzifying neighborhood system of x which is defined as follows: for any A € 2X, #;(A) = \/ 1(B).
XeBCA

Definition 2.10. ([26]) Let (X, 1) be a fuzzifying topological space. Then the degree to which (X, 7) is T»
(Hausdorff) is defined as follows:

Lxol= A\ \/ (s A5 w).

x#y UM V=0

Definition 2.11. ([2, 3,5, 7]) Let X be a linear space over a field K. A fuzzy set N in X X [0, +o0) is said to
be a fuzzy pseudo-norm on X if the following conditions are satisfied:

(N1) N(x,0) =0,(V)x € X;

(N2) NB,H) =1,(¥)t > 0;

(N3) N(kx,t) = N(x, th), MxeXkeKk+#0;

(N4) N(x+y,t+s) > N(x,t) AN(y,s), ¥V)x,y € X;

(N5) Vx € X, N(x, -) is left continuous and tll}rg N(x,t) =1.

The pair (X, N) is called a fuzzy pseudo-normed linear space.

If a fuzzy pseudo-norm N also satisfies the following condition
(N2') N(x,t) = 1, (¥)t > 0 if and only if x = 6,

then it will be called a fuzzy norm on X.

By the axioms of (N2) and (N4) of fuzzy pseudo-norm N, it follows that N(x,-) : [0,00) — [0,1] is
non-decreasing for all x € X.

Remark 2.12. For any fuzzy pseudo-norm N, we will use the notation N(x, 0+) denotes the right limit of the

real function N(x, t) at 0. Since N(x, -) is non-decreasing and left continuous, we have N(x,0+) = A N(x, t).
t>0

Theorem 2.13. ([21, 28]) Let (X, 1) be a fuzzifying topological linear space on K and g () be its corresponding
fuzzifying neighborhood system of the neutral element. Then it has the following properties:

(P1) M (X) =1;

(P)VUCX, M U)>0=>0cU;

(PIVUV C X, Sp(UNV) = A (U) A Mg (V);

(PHOVW C X, fo(W) < VA (U) A A (V),
U+VCW
(PS)VU C X, x € X, M5 (U) > 0= Je > 0such that kx € U for all |k| < ¢;

(P6) VU C X, A (U) > a implies there exists a circled set V C U such that A5 (V) > a.

Conversely, let X be a linear space over K and consider a set-valued function A () : 2X — [0, 1] which satisfies the
conditions (P1)-(P6). Then there exists a fuzzifying topology T_y on X such that (X, T_s) be a fuzzifying topological
linear space and Np (+) is a fuzzifying neighborhood system of the neutral element.

Definition 2.14. ([21]) Let (X, 7) be a fuzzifying topological linear space. Then the unary fuzzy predicates
Bd e &# (ZX), called fuzzy boundedness, is defined as follows:

Bd(A) = (YV € 2X)(V € A -1 (AN € K) (A C AV))

for any A € 2X. Where the notation —; means the Lukasiewicz residuum.
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Intuitively, the degree to which A is bounded is

Bd(A) = A 1- 4 U): A ¢ Abs(UI)).
ucx

Where Abs(ll)djf {A: 6>0,VAeK A =6,AcC AU}

Theorem 2.15. ([13]) Let (X, ) be a fuzzifying topological linear space, then Bd given by Definition 2.13 is a linear
fuzzifying bornology.

In classical topological linear spaces, it is well recognized that the collection of all bounded sets consti-
tutes a linear bornology known as the von Neumann bornology [8]. Following the convention for ordinary
bornological linear spaces, we refer to Bd(:) as a fuzzifying von Neumann bornology, denoted as b;.

Definition 2.16. ([14]) Let (X, B) be a fuzzifying bornological linear space. Then the mapping Bv : 2X —
[0,1] is called fuzzifying bornivorous if it defined as follows:

PeBu2 (YAC X)(A € B) -1 (A€ Abs(P)).

Moreover, the degree to which P is a bornivorous set is

Bu(P) = /\{1 — B(A): A ¢ Abs(P)}.

AcX

Theorem 2.17. ([14]) Let (X, %) be a fuzzifying bornological linear space. For all P, Q C X, the following statements
holds:

(1) VP € 2X,Bu(P) >0 = O € P;

(2) Bo(P (1 Q) = Bu(P) A Bu(Q);

(3) if P € Q, then Bu(P) < Bu(Q);

(4) for all « € K\ {0}, Bu(aP) = Bu(P);

(5) Bv( U aP) > Bo (P).

lal<1

3. Therelationships between convex fuzzifying bornological linear spaces and locally convex fuzzifying
topological linear spaces

In this section, we introduce the concepts of convex fuzzifying bornological linear spaces and locally
convex fuzzifying topological linear spaces, along with providing some examples. Next, we prove that
the v. Neumann fuzzifying bornology b, induced by the locally convex fuzzifying topology 7 is indeed
the coarsest convex fuzzifying bornology that is compatible with 7. Finally, we utilize the mapping of
fuzzifying bornivorous to deduce the finest locally convex fuzzifying topology, denoted as (X, tg), which
is compatible with the convex fuzzifying bornology 8.

Definition 3.1. A fuzzifying bornological linear space (X, B) is called a convex fuzzifying bornological
linear space if it satisfies the following condition:
B(A) < B(co(A)) for all A € 2%,

Remark 3.2. By the condition (B6), for all A € 2%, B(A) < B(I'(A)). Moreover, if we restrict 8 : 2X — {0,1},
it follows that any crisp convex bornological linear space must be a convex fuzzifying bornological linear
space.
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Example 3.3. Let (X, N, A) be a fuzzy pseudo-normed space, the mapping B(-) : 2X — [0, 1] be defined as
follows:

B(A) = v J\ NG, b, VA e 2X,

>0 xeA

Then the pair (X, 8) is a convex fuzzifying linear bornological space.
In fact, by [22, Theorem 3.1], the pair (X, 8B) is a fuzzifying linear bornological space. It suffices to prove

that B(A) < B(co(A)) for all A € 2X. At first, we may prove that A N(p—q,t) < A N(x—y,(¢t) forall
pYeA x,y€co(A)
t > 0. Otherwise, there is t; > 0 such that
A Nip—-q,t)> AN N(x-y,to).
pgEA x,y€co(A)
Then there exist x1, x, € co(A) such that N(x; —xp, t) < N(p—q,tp). Forx e X,letS,( A N(p—q,t0) =
A

2 pgEA
lyeX: Nx—y(tO) 2 /\A N(p — g, to)}.
pae
Clearly, Sx( A N(p —q,t9)) # 0. In addition, Sx( A\ N(p — g, o)) is a convex set. Since for y;,y, €
paeA p.aeA
Sx( A N(p—g,t0)) and a € [0, 1], we have
pgEA
N(x —ayr — (1 = a)yz, to) =2 min{N(a(x — y1), aty), N(1 — a)(x — y2), (1 — a)to)}
= min{Nx—y1(tO)/ Nx—yz (tO)}
>min{ A\ N(p—q,t), A N(p—q,to)}
paEA pgEA
= A\ N(p—q,to).
pgeEA
It follows that ay; + (1 — @)y € Sx( A N(p —g,t)), i-e,, Sx( A N(p — g,t)) is a convex set. Assuming
pPgEA pgEA
that A € S,,( A N(p — g, 1)), which means that there exists g € A\ S5,,( A N(p — g, t0)). Thus for every
paeA PYEA
peA N@g-pt)=Np-qt)=> A N{p-qt) wehave A C S,( A\ N(p—g,ty)). From the convexity
pgeA pgeA
of S;( A N(p —q,to)), it deduces that co(A) € S,( A\ N(p — g,t)). Further, from q ¢ S,,( A N(p — q,t0)),
pgeA pAEA pAcA
we obtain that Ny, 4(t)) < /A N(p —g,t) and so x; ¢ S;( A\ N(p — g,t0)), which is a contradiction since
paeA p.aeA
X1 € co(A).
If we suppose that A € S,,( A N(p — g, o)), then co(A) € Sy,( A N(p —g,tp)). But from Ny, _,(f0) <
pgeEA pPgEA
A N(p —q,t) it follows that x, € co(A) \ S, ( A N(p — g, tp)) and this is a contradiction.
pgeEA pgEA
Hence the conclusion A N(p—g,t)< A N(x—-y,t)forall f > 0holds. So,
paEA x,y€co(A)
BA) =V A Np-qt)<V A N@x-yt)=B(co(A)).
t>0p,geA >0 x,y€co(A)

Theorem 3.4. Let X be a linear space, & = {N}j¢j be a family of fuzzy pseudo-norms on X indexed by a non-empty
set | and the mapping B : 2% — [0,1] be defined by B(A) = A Bdj(A) = AV A Nj(x—y,t). Then (X,B)isa
j€J jeJ t>0 x,yeA

convex fuzzifying bornological linear space. Moreover, [S(X, B)] = A V(1 — Nj(x,0+)).
x#0 jeJ

Proof. First, it is easy to check that (X, 8B) is a fuzzifying bornological linear space. By Example 3.3, it is clear
B(A) = A\ Bdj(A) < A\ Bdj(co(A)) = B(co(A)). Thus (X, B) is a convex fuzzifying bornological linear space.
j€l il

It is left to prove [S(X, B)] = A V(1 — Nj(x,0+)). Infact, forany a > [S(X,B)] = A {1 - B(M)}, there

*#0 j¢] MeSutel)
exists a linear subspace M of X with M # {0} such that 1 - B(M) <a. Then B(M) = A \V A Nj(x,t)>1~-a,
jeJ t>0 xeM

it follows that there is t; > 0 such that Nj(x,t;) > 1 —a forallx € M and j € |]. Let xo € M, obviously,
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Nj(xo,tj) > 1 —a. Since M is a linear subspace of X, it is clear nxy € M for all n € IN, thus Nj(nxo, t;) > 1 —a.

Equivalently, Nj(xo, %) > 1—aforall n € N. Since Nj(xo,t) is increasing in the variable ¢, it deduces that
Nj(x0,0+) 21 —a,ie,a > 1~ N;j(xo,0+). Hence [S(X, B)] > \/(1 Nj(xo,0+)) = A V(1 - Nj(x,0+)).
x#0 jeJ
On the other hand, for every a > A V(1 - Nj(x,0+)), there is xo # 0 such thata > \/ 1 — N;(xo,0+) =
x#0 jeJ j€l
\V V1= Nj(xo,t). This implies that N;(xo,t) > 1 —aforall j € Jand t > 0. Put M; = {kxo | k € K} = Span{xo},
jejt>0
clearly, M; # {0} and M is a linear subspace of X. For any fixed t; > 0, we have /\ Nj(z,t)) > 1 —a.
zeMy
Furthermore, we have
BMi1)= AV A Njzt)= A\ A Njzto) >21-a.
jeJ t>0zeM; j€J zeM;
Thus [S(X,8)] = A {1-8M)} < 1-8B(M;) < a. By the arbitrariness of 2, we have [S(X, B)] <

M#{0}
MeSvec(X)

A V(1 = Nj(x,0+)). So, the proof of the equality [S(X, B)] = A V(1 - Nj(x,0+)) is completed. [
x£0 jeJ x#0 je]

Definition 3.5. Let (X, 1) be a fuzzifying topological linear space. We say that (X, 7) is a locally convex
fuzzifying topological linear space, if there is a mapping % : 2X — [0,1] with % < .4 such that .4 (U) <
\/ % (W) forall U € 2%,

Wedik(0
Example 3.6. Let (X, N, A) be a fuzzy pseudo-normed space. Then there is a fuzzifying topology 7n such
that (X, Ty) is a locally convex fuzzifying topological linear space.

In fact, let 4 (U) = \V A (1 -N(z,¢€)), by Theorem 4.1 in [12], there exists a fuzzifying topology ™ on X
e>0z¢U

such that .#'(-) is a fuzzifying neighborhood system of 6 with respect to 7. Denote & = {B(0,1,r): n €
IN, ris a rational number in [0, 1]}, where B(6, n,r) = {x : N(x, %) > 1-r}. Clearly, B(9,1,7) is a absolute
convex set for any n € N and r. Put
W), We o,
w(W) = 0, others
By Theorem 4.5 in [29], it follows that A4 (U) < \/ % (W) for all U € 2X. Hence (X, Tv) is a locally

wel
Wedisk(X)

’Yl'

convex fuzzifying topological linear space.

Definition 3.7. Let (X, 7) be a fuzzifying topological linear space and 8 be a fuzzifying bornology on X.
We say that B and 7 are compatible if B(A) < b.(A) for all A € 2%, where b, is v. Neumann fuzzifying
bornology determined by (X, 7).

Theorem 3.8. Let (X, T) be a locally convex fuzzifying topological linear space and b, be its v. Neumann fuzzifying
bornology. Then (X, by) is a convex fuzzifying bornological linear space and b, is the coarsest convex fuzzifying
bornology compatible with .

Proof. First we will prove (X, b;) is a convex fuzzifying bornological linear space. It only needs to prove
that b;(B) < b.(co(B)) for all B € X. Since b.(co(B)) = /\ {1 - AU : coB) ¢ Abs(U)}, then for each

t>b(co(B)) = A {1-A4(U) : coB) ¢ Abs(L)}, there is U C X with co(B) ¢ Abs(U) such that 1 — A4 (U) < ¢,
ucX

ie, A (U) > 1-t. Because (X, 1) is a locally convex fuzzifying topological linear space, we havea W C X
with W € disk(X) satisfying % (W) > 1 —t. It implies A4 (W) > % (W) > 1 —t. At this moment, we may claim
that B ¢ Abs(W). Or else, there is 6 > 0 such that B C sW for all |s| > 6. Then we have co(B) C sW C sU. This
contradicts with co(B) ¢ Abs(U). Thus b.(B) <1 — A4 (W) < t. Hence b.(B) < b;(co(B)) holds.

On the other hand, clearly b; is a convex fuzzifying bornology compatible with 7. Assume $; is a
convex fuzzifying bornology compatible with 7. Then for each B C X, B1(B) < b;(B). Hence b, is the
coarsest convex fuzzifying bornology compatible with 7. O
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Theorem 3.9. Let (X, B) be a convex fuzzifying bornological linear space and the mapping Bo : 2X — [0,1] be
fuzzifying bornivorous. Then there exists the finest locally convex fuzzifying topology t on X such that which is
compatible with the fuzzifying bornology B and Bv is a base of fuzzifying neighborhood of 6.

Proof. First we will prove that the mapping A4 (V) = \/ Bou(W) is fuzzifying neighborhood system of 6.
wev
Wedisk(X)

It suffices to prove the set mapping .#'(-) satisfies the all conditions in Theorem 2.13.

(1). If #(V) > 0, there exists W C V with W € disk(X) such that Bu(W) > 0. It follows that 0 e W C V
by Theorem 2.17(1).

2. #(X)= V Bou(W)=Bu(X)=1.

Wedisk(X)

(3). For each a < A4 (U)V A (V), there exist W3 € U W, C V with Wy, W, € disk(X) such that
a < Bu(W1) and a < Bu(W,). By Theorem 2.17(2), it follows that a < Bu(W1) A Bu(W,) < Bo(W; N W;) and
W1 N W, € disk(X). Thena < A/ (UNV). Thus &/ (U)\ A (V) < A4 (UNV). The converse is clear. So,
AN A V)y=A4UNV).

(4). For each a < A (V), there exists a subset W C V that belongs to the disk of X, satisfying
a < Bo(W). Utilizing the fact that %W + %W C W C V and referring to Theorem 2.17(4), we can conclude
that JV(%W) > Bv(%W) = Bu(W). Hence,

a<BoAW)< V(A (Vi) AN (V2)).

Vi+Vocv

Then /' (V)< /(A (V1) AN (V2)).

Vi+Vacv

(5). Forallx € X, U C X, if #(V) > 0, there exists W C V with W € disk(X) such that Bu(W) > 0. Since
B({x}) = 1, we have {x} € Abs(W). Then there exists 6 > 0 such that x € sW C sU for all |s| > 0.

(6). For each a < A#(V), there exists W C V with W € disk(X) such that a < Bo(W). Then A4 (W) >
Bu(W) > a.

Hence there exists a fuzzifying topology 7 on X such that (X, 7) is a locally convex fuzzifying topological
linear space and Bv is a base of fuzzifying neighborhood of 6.

Secondly we will prove that the vector fuzzifying topology 7 is compatible with the fuzzifying bornology
8. The v. Neumann fuzzifying bornology determined by 7 is denoted by b;. It needs to prove that

B(A) < b.(A) for all A C X. By the definition of V. Neumann fuzzifying bornology, b(4) = A {1 -4 (U) :
ucx

A ¢ Abs(U)}. We only need to prove that 1 — 4 (U) > B(A) for all U € 2% satisfying A ¢ Abs(U), i.e.,
A (U) £1-B(A).

In fact, for each a < A7(U), there exists W C V with W € disk(X) such that a < Bv(W). Then for any
B ¢ Abs(W), we have a < 1 — B(B). At this point, we assert that A ¢ Abs(W). Otherwise, if A € Abs(W), it
follows that A € Abs(U) from the fact W C U. It deduces a contradiction. Thus A ¢ Abs(W). So,a < 1—-B(A).
Thus .4 (U) < 1 - B(A). This means that 7 is compatible with the fuzzifying bornology 8.

Finally, we will prove that 7 is the finest locally convex fuzzifying topology 7 on X such that which
is compatible with the fuzzifying bornology 8. Let 717 is a locally convex fuzzifying topology which is
compatible with B, i.e. B(A) < b,,(A) for all A € 2X. Since t(U) = A A (U) = A A (U - x), it is sufficient

xel xel
to prove A4 1(U) < A (U) for all U € X, where #1(") is a fuzzifying neighborhood system of 6 with respect
to fuzzifying topology 7.

As amatter of fact, for eacha < .#1(U), thereisa W € disk(X) with W € U such thata < (W) < A4 1Y(W).

For all B C X with B ¢ Abs(W), since
BB)<b,B)= N{1-A4Y V) : BgAbs(V)} <1- 4 (W)<1—-a.

ucx
Thus
Bo(W)= A {1—-%B(B):B¢Abs(W)} > a.
BcX
It implies 4/ (U) = \/ Bo(W) > a. Furthermore, .#1(U) < .4/ (U). This completes the proof. [

wel
Wedisk(X)
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Remark 3.10. The fuzzifying topology 7 defined in Theorem 3.9 is referred to as the locally convex fuzzifying
topology associated with the fuzzifying bornology 8 of X and is denoted by tg.

4. Relationships between categories of FT-CFBLS and LCFTLS, FB-LCFTLS and CFBLS

In this section, we will introduce the concepts of the fuzzifying topological bornology and the fuzzifying
bornological topology. Through this discussion, we aim to explore the relationship between the category
FT-CFBLS of fuzzifying topological convex bornological linear spaces and the category LCFTLS of locally
convex fuzzifying topological linear spaces, as well as the relationship between the category FB-LCFTLS
of fuzzifying bornological locally convex spaces and the category CFBLS of convex fuzzifying bornological
linear spaces. We will show that the category FT-CFBLS can be embedded in the the category LCFTLS as a
reflective subcategory, and the category FB-LCFTLS can also be embedded in the the category CFBLS as a
reflective subcategory. Meanwhile, the category FT-CFBLS is topological over the category of linear spaces
with respect to the expected forgetful functor.

At first, we will discuss the categorical relations between locally convex fuzzifying topological linear
spaces and convex fuzzifying bornological linear spaces.

Theorem 4.1. Let (X, tx), (Y, Ty) be two fuzzifying topological linear spaces and f be a linear map from X to Y.
Then [C(f)] < [Bd(f)], where [BA(f)] is corresponding to the v. Neumann fuzzifying bornologies b, and b.,.

Proof. ForeachO <t < [C(f)]and forevery A C X. Ift; < t—b;,(f~(A)), wehavel+t;—t <1-b; (f(A)) =

V A (W) = f7(A) € Abs(W)}. Then there exist W C Y with f7(A) ¢ Abs(W) such that 1 + f; — t < A3(W).
wcy
On the other hand, form the hypothesis t < [C(f)], we have t < 1 — A5(W) + A%(f(W)). That is to say

M(W) <1 =t + A5(f(W)). So t; < Ax(f~(W)). In this case, we have A ¢ Abs(f—(W)). Otherwise, there
exists 6 > 0 such that A C sf—(W) for all |s| > 0. It follows that f~(A) = f~(sf~(W)) = sf~(f~(W)) CsW
for all |[s| > 6. It means that f~(A) € Abs(W). This contradicts to the fact f~(A) ¢ Abs(W). This implies
t; < 1-b7(A). By the arbitrariness of t;, we have t —b.,(f~(A)) < 1-b, (A). Hencet < 1-b;, (A)+b,(f(A))
for all A € X. Furthermore t < [Bd(f)]. Therefore the conclusion holds. [

Corollary 4.2. Let (X, 7x), (Y, Tv) be two fuzzifying topological linear spaces and f be a continuous linear map.
Then f : (X, br,) = (Y, by,) is bounded.

Theorem 4.3. Let (X, B)and (Y, B1) be two convex fuzzifying bornological linear spaces, and let f : (X, B) — (Y, B1)
be a bounded linear mapping. Then f : (X, 18) — (Y, Tg,) is continuous, where tg is defined as Remark 3.10.

Proof. 1t suffices to prove that f : (X,7g) — (Y, 1g,) is continuous at 6X. Let W be a subset of Y and

0 < Apr(W), then for every a < Ayr(W), by Theorem 3.9, there exists U C W with U € disk(Y) such that

a < Bo(U). It follows thata < 1 — B4(A) for all A ¢ Abs(U). Clearly, f—(U) € disk(X) and f—(U) € f—(W).

For any B ¢ Abs(f—(U)), we have f~(B) ¢ Abs(U). Otherwise, there exists 0 > 0 such that f~(B) € AU

for all [A] = 6. Then B € f<(AU) = Af(U), this contradicts to the fact B ¢ Abs(f—(U)). Since f is

bounded, we have B(B) < B1(f(B)) <1 —a. So, Bu(f<(U)) = A{l1—-%(B):B ¢ Abs(f(U))} = a. Hence
BCX

Nox(fT(W)) = VC}Z(W) Bu(V) = Bo(f—(U)) = a. It deduces that %;(W) < Npx(f(W)) by the arbitrariness of

Vedisk(X)
a. This means that f : (X, t8) = (Y, 7g,) is continuous. [J

Remark 4.4. The category of convex fuzzifying bornological linear spaces and its bounded linear mappings
is denoted by CFBLS. Similarly, the category of locally convex fuzzifying topological linear spaces and its
continuous linear mappings is denoted by LCFTLS. By Theorem 3.9 and Corollary 4.2, we can establish
the existence of a functor B from LCFTLS to CFBLS. Here B is defined as B : LCFTLS — CFBLS. For any
(X, 7) € |LCFTLS], the value B((X, 7)) is given by (X, b;), and for any linear mapping f : (X, tx) = (Y, tv),
we have B(f) = f. The notation |[LCFTLS| represents the set of all objects in the category LCFTLS.
Meanwhile, by Theorem 3.9 and Theorem 4.3, there exists a functor T from CFBLS to LCFTLS, denoted as
T : CFBLS — LCFTLS. For any (X, 8) € |CFBLS|, we have T((X, 8)) = (X, tg) and for all linear mapping
f:(X8) = (Y,81),T(f) = f.
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Lemma 4.5. Let (X, 7) be a locally convex fuzzifying topological linear space. Then b, = b, .

Proof. For each B C X and any t < b.(B), since by, (B) = A {1 —A"=(U) : B & Abs(U)}. If thereis U C X

ucx
with B ¢ Abs(U) satisfying 1 — 4% (U) < t, we get W C U, W € disk(X) satisfying (Bv)’*(W) > 1 — t. This
implies that 1 — b,(V) > 1 — t whenever V ¢ Abs(W). We claim B ¢ Abs(W), if not, B € Abs(W), this deduces
B € Abs(U). It is in conflict. Thus we have b;(B) < t. This contradicts with the hypothesis t < b,(B) again.
Hence t < by, (B). It follow that b.(B) < by, (B).

Conversely, we will prove the identity mapping i : (X, 7p,) — (X, 7) is fuzzifying continuous. For
each U C X and any t < A(U), there exists W C U with W € disk(X) such that ¢t < % (W). Since
(Bo)!s(W) = A{1 —b.(V) : W ¢ Abs(V)} and b.(V) = A{l = #(C) : C ¢ Abs(V)}, then for all W ¢ Abs(V),
b(V) <1—A#(W) <1-%(W) < 1-t. Thus (Bv)’<(W) > t. Furthermore, 4% (U) = \/ (Bv)’*(G) >

Geu
Gedisk(X)
(Bv)’ (W) > t. This means that the identity mapping i : (X, 74,) — (X, 7) is fuzzifying continuous, then the
identity mapping i : (X, 15,) — (X, 1) is also fuzzifying bounded. It follow that b, (B) < b.(B) for all B € 2%.
The proof is completed. [

Theorem 4.6. Let (X, B) be a convex fuzzifying bornological linear space. Then B = by, if and only if the fuzzifying
bornology B is the v. Newnann fuzzifying bornology of a locally convex fuzzifying topology on X.

Proof. The necessity is obvious, since then the fuzzifying bornology 8 is the v. Neumann fuzzifying
bornology of tg. For the sufficiency , let 8 be the v. Newnann fuzzifying bornology of a locally convex
fuzzitying topology 7 on X, i.e., 8 = b;. By Lemma 4.5, we have 8 = b; = by, =b,,. O

Definition 4.7. Let (X, 8) be a convex fuzzifying bornological linear space. We say that the fuzzifying
bornology B of X is a fuzzifying topological bornology, or that (X, B) is a fuzzifying topological convex bornological
space, if the following fuzzifying bornological identity holds: 8 = b,,.

Lemma 4.8. Let (X, B) be a convex fuzzifying bornological linear space. Then tg = 1y, .

Proof. We prove the identity mapping i : (X, 8) — (X, by,) is fuzzifying bounded at first. It needs to prove

B(B) < b, (B) for all B C X. For each t < B(B),if there is U C X with B ¢ Abs(U) satisfying 1 — .4"3(U) < ¢,

then we have W € X with W e disk(X) satisfying Buv(W) > 1 —t. Since Bu(W) = A {1 -2 (V) :V ¢ Abs(W)},
X

ve

it follows that 1 — Z (V) > 1 — t whenever V ¢ Abs(W), i.e., B(V) < t. In this case, we have B ¢ Abs(W),
otherwise, it may deduce B € Abs(U). This contradicts with B ¢ Abs(U). This implies 8(B) < t. This
also contradicts to the hypothesis of t < B(B). Hence t < 1 — A4"(U) for all B ¢ Abs(U). From the fact
by (B) = N1 - A4"™(U) : B ¢ Abs(Ul)}, we get t < b (B). So the identity mapping i : (X,8B) — (X, br,)
is fuzzifying bounded. It follows that i : (X,78) — (X, 7y,,) is fuzzifying continuous. In fact, for each
s < A ™= (U), there exists V C X, V € disk(X) such that s < (Bv)'s(V). Then for all B ¢ Abs(V), we have
5§ <1=b,(B) £1-B(B). This implies s < (Bv)(V) < A tg(U). Thereforei: (X,t5) = (X, ThTB) is fuzzifying
continuous, i.e., Tg > Tp, .

On the other hand, for any t < A4"(W), there ia W; € disk(X) with W; € W such that t < Bo(W;). If
(Bo)'s (W) < t, we get B C X, B ¢ Abs(W) satisfying 1 — b;,(B) < t. Then1 —t < b, (B) = A{1 - A#"3(V):
B ¢ Abs(V)}. This deduces 1 — A4"8(W1) > 1 —t. Thus we obtain t < Bu(W;) < A4"8(W;) < t. Itis in conflict.
Hence 4 ™= (W) > (Bo)’s(W;) > t. This means that i : (X, TbTB) — (X, tg) is fuzzifying continuous, i.e.,
T8 < Ty, . The proof is completed. [J

Theorem 4.9. Let (X, 7) be a locally convex fuzzifying topological linear space. Then © = 7y, if and only if the
fuzzifying topology T is the locally convex fuzzfying topology associated with a convex fuzzifying bornology on X.

Proof. The necessity is obvious, since then the fuzzifying topology 7 is determined by convex fuzzifying
bornology b;. As for the sufficiency, let 8 be a convex fuzzifying bornology which 7 is determined by 8,
ie,7=1g8 ByLemma438,t=18= Tb, = To,- O

T
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Definition 4.10. Let (X, 7) be a fuzzifying locally convex space. We say that the fuzzifying topology t on X
is a fuzzifying bornological topology, or that (X, 7) is a fuzzifying bornological locally convex space, if the following
fuzzifying topological identity holds: 7 = 13, .

If we denote the category of fuzzifying topological convex bornological spaces as FI-CFBLS, we can
conclude from Remark 4.4, Definition 4.7, and the proof process of Lemma 4.5 that B o T((X, B)) = (X, B)
and T o B((X, 7)) > (X, 7). To sum up, we get the following Theorem.

Theorem 4.11. The category FI-CFBLS can be embedded in the category LCFTLS as a reflective subcategory.

Similarly, if we denote the category of fuzzifying bornological locally convex spaces as FB-LCFTLS, we can
conclude from Remark 4.4, Definition 4.10, and the proof process of Lemma 4.8 that T o B((X, 7)) = (X, 1)
and B o T((X, B)) = (X, B). To sum up, we get the following Theorem.

Theorem 4.12. The category FB-LCFTLS can be embedded in the category CFBLS as a reflective subcategory.
Let LIS denote the category of linear spaces with linear mappings. Then we have the following theorem.
Theorem 4.13. The category FI-CFBLS is topological over LIS with respect to the expected forgetful functor.

Proof. Let U : FT — CFBLS — LIS be the forgetful functor, and let {f; : X — (Y}, B;)}icr be a U-source, i.e.,
X is a linear space over K, (Y;, B;) is a family of a fuzzifying topological convex bornological spaces, and for all
i€l fi: X — Yiisalinear mapping. Define the mapping
Bx(A) = '/\IBi(fi(A))’ VA CX.
1€

Refer to the proof of Theorem 6.15 in [16] or the proof of Theorem 3.7 in [13], (X, Bx) is a fuzzifying
bornological linear space. For all A € 2%, we have

Bx(A) = /\ Bi(f~(A) < /\ Bi(co(f;~(A) = /\ Bi(f;” (co(A))) = Bx(co(A)).

This means that (X Bx)isa convex fuzzifying bornolog1cal linear space. It can be easily verified that 8x
is the weakest linear fuzzifying bornology in which each f; is bounded. The remaining task is to prove that
(X, Bx) is a fuzzifying topological convex bornological space, i.e., Bx = b, . By utilizing the proof Lemma 4.8,
we can establish that Bx(A) < b, (A) forall A € 2X. On the other hand, for all t > Bx(A) = A Bi( 17 (A)),

i€l

there exists iy € I such that £ > B;,(f;(A)). Since (Y}, Bi,) is a fuzzifying topological convex bornological space,
we have t > B; ( f ~(A) = bTB ( f - (A ). Consequently, there exists Vj, C Y, such that V;, ¢ Abs( flo_’ (A)) and

1— A4"(V;) < t. Moreover, there exists W;, C V;, belonging to the disk of Y;,, such that 1 — Bo®(W;,) < t.
It follows that B;,(C;,) < t for all C;, ¢ Abs(Wj,). For any B ¢ Abs(f“(W,o) we have f”(B) ¢ (W;,), which
implies B;,( f”(B)) <t Consequently, we deduce that Bx(B) = A B i(f.7(B)) < Bi( f”(B)) < t. Referring to

the fact hat A ¢ Abs(f‘_(V,O)) f*(WlO) € disk(X) and Bv(f*(WZO)) < Bo( *(Vzo)) we have
b, (A) = /\ {1- JV(V) A ¢ Abs(V)}
S1-AGOVD= A, 1-B00)
eelix k()’()
< 1-Bo(f;m(Wi)) = V{Bx(B) : B ¢ Abs(f~ (W)} < t.
Hence, by, (A) < Bx(A) for all A € X. Therefore b, = Bx. Consequently, (X,8Bx) is a fuzzifying
topological convex bornological space. Thus, the proof is Complete. O

5. Characterization of fuzzifying bornological topologies

This section presents characterizations of fuzzifying bornological topologies based on the concepts of
boundedness and continuity of linear mappings. It is asserted that the fuzzifying bornological topologies
on X that ensure every bounded linear map of X into any locally convex fuzzifying space is continuous.
Furthermore, additional characterizations of the fuzzifying bornological topologies are examined.
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Definition 5.1. ([27]) Let (X, 7) be a fuzzifying topological space. The value Ci(X,7) = A V FC(%) is
xeX Uik Ny

called the degree to which (X, 7) is first countable, where 02/,( F ¥ means that %, is a mapping from 2X -
[0, 1] satisfying A5 (U) = \/ U:(V), and FC(%,) =1 - AN{r : C((%),)}, where (%), ={A C X : U(A) > 1}

and the notation C((% )r) means that the set (%), is at most countable.

Definition 5.2. ([26]) Let (X, 7) be a fuzzifying topological space. Then for any x € X and any S € N(X), we
define S—x:=(Ve2X)(Ve) =L SCV).

Where the notation S C V means S almost in V, that is, there is 1y € IN such that S(n) € V for all n € IN with
np < n.

Intuitively, the value of S converges to x, that is [S — x] is

[S—xl= /\ (1= (V).

Szv

Theorem 5.3. Let (X, t) be a locally convex fuzzifying topological linear space and Cy(X,t) = 1. Then (X, 1) isa
fuzzifying bornological locally convex space.

Proof. According to the proof of Lemma 4.5, the identity mapping id : (X,75,) — (X, 7) is fuzzifying
continuous. It follows that 7(A) < 7, (A) for all A € 2X. Tt suffices to prove the identity mapping id : (X, 7) —
(X, 1p,) is fuzzifying continuous. Forall V € Xandeveryt > A4 (V) = \/ % (W), itfollows that Z (W) > ¢
wcv
Wedisk(X)
whenever W € V. Since C;(X,7) = 1, the set {W : Z (W) > t} is countable. Denote {W : Z (W) > t} =
{Wi, W, .-+, W,,---}and we may assume that {W,},en is decreasing. Foreachn € IN, %(%Wn) =UW,) >t,
it follows %Wn ¢ V. Thus there is a sequence {x,} of X with x,, € W, such that x,, ¢ nV for all n € N. This
means that {x,} ¢ Abs(V). Moreover, since A4 (V) = \/ Bo(W)= /\ {1 -0b.(A): A ¢ Abs(W)}.
wcv

c Wcv
Wedisk(X) Wedisk( X)

Noting that {x,} ¢ Abs(W) for all absolute convex set W C V, we have A4 (V) <1 -b,({x,}) <1-[x, — O].

In addition, it comes to the conclusion 1 — [x, —» 0] = \/ A7(U) < t. Otherwise, if there is U C X such
{xa)ZU
that A#*(U) > t, there must be W,, € U such that Z(W,,) > t. It is easy to find {x,} E W,, € U. That

is to say A4"(U) < t for all {x,} £ U. So, /™ (V) <1-[x, — 0] <t. Hence 4™ (V) < A7(V) for all
V € X. It follows that the identity mapping id : (X, ) — (X, 7p,) is fuzzifying continuous. Therefore (X, 1)
is a fuzzifying bornological locally convex space. [

Proposition 5.4. Let (X, 1) be a locally convex fuzzifying topological linear space. The following assertions are
equivalent:

(i). (X, 7) is a fuzzifying bornological locally convex space;

(ii). For every linear map f from X into an arbitrary locally convex fuzzifying topological linear space (Y, Ty),
the inequality [Bd(f)] < [C(f)] holds.

Proof. (i) = (ii). Porany t > [C()] = A 1—A4Y + #X(f(U)), there is U C Y such that 1 — #Y(U) +
Uucy

JVX(f‘_(U)) <t ie,1—t+ /X(F(U) < #/Y(U). Assume that % is a fuzzifying neighborhood base

of 6Y, then there is a absolute convex set W C U such that 1 — t + #/X(f~(U)) < ZY(W). It implies the

following:

1—t+ A/ X(fW) <1 —t+ A X(FU) < %Y (W).
Since T = 1y, it follows that /' X(f~(W)) = \/ Bou(D). By f is linear map, we have f~(W) € disk(X).

DEf=(W)
Dedisk(X)

Thus 1—t+Bo(f~(W)) < ZY(W) < A/ Y(W). So, thereis A ¢ Abs(f(W)) such that 1—t+1-b.(A) < A Y (W).

At this case, it is easy to check that f~(A) ¢ Abs(W). Hence

1-b.(A) +Bd'(f(A) <1-b(A)+1- /Y (W) <t
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So, [Bd()] = A 1-0b.(V)+Bd(f~(V)) <1-0b.(A) + Bd¥(f~(A)) < t. By the arbitrariness of ¢, it follows
vex

that [Bd(f)] < [C(f)].

(ii) = (i). According to the proof of Lemma 4.5, the identity mapping id : (X, 7,) — (X, 7) is fuzzifying
continuous. It follows that 7(A) < 1, (A) for all A € 2%. On the other hand, by the proof of Lemma 4.5, we
have b.(B) < b, (B) for all B € 2X. Then for the identity mapping id : (X, 7) — (X, 7p,), [Bd(id)] = 1. By the
condition of (ii), clearly, [C(id)] = 1. So, T(A) > 15 (A) for all A € 2X. Thus 7, = 7. This means that (X, 7) is a
fuzzifying bornological locally convex space. [

Definition 5.5. Let (X, B) be a fuzzifying bornological space. We say that a mapping By : 2% — I is a base
of a fuzzifying bornology B if By > Band B(U) = \/ By(V) for all U € 2X.
ucv

Lemma 5.6. A mapping By : 2% — [ is a base for a fuzzifying bornology of X if and only if \/ Bo(V) = 1 for all
Vex

xeXand \  Bo(W) = Bo(U) A By(V), YU, V € 2.
UuUVCcWw

Proof. Necessity. Suppose that By : 2X — [ is a base for a fuzzifying bornology B of X. For each x € X, it is
clear \/ By(V) = B({x}) = 1.
Vex

Moreover, for all U,V € 2% and any t < Bo(U) A By(V) < BU) A B(V) = BUJV). Then there is

W 2 UV such that Boy(W) > £. So, \  Bo(W) = Bo(U) A Bo(V).
Uuvcw

Sufficiency. Let B(U) = V By(V) for all U € X. For all x € X and each n € NN, there is V,, € % such
ucv

that By(V,,) > 1 - % Then B({x}) > B(V,,) = Bo(Vy,) > 1 - % It follows that B({x}) = 1. In addition, for any
Uy, U, € 2X with Uy € Uy, then for each t < B(U), there exists W 2 U, 2 U such that By(W) > t. It follows
that t < B(U,). So, we have B(U,) < B(U,).

Furthermore, forall Uj, U, € 2X and everyt < B(U1)AB(U,). Thereare Vi, V,; € 2XwithU; € Vi, U, €V,
such that t < By(V1) and t < By(V>). By the hypothesis of Sufficiency, thereis W 2 V1 |J V> 2 Uy |J U; such
that t < By(W). It follows that B(U; U Uz) = By(W) > t. Thus B(Uy) A B(Uy) < B(U; |J Up). Hence By is a
base for a fuzzifying bornology of X. [

Definition 5.7. Let (X, 8) be a fuzzifying bornological space. The value C(X,8) = \/ FC(B)) is called the
Bo+B
degree to which B has a countable base, where B; + B means By is a mapping from 2% to [0, 1] satisfying
BU) =V By(V) forall U € 2X. If C(X, B) = 1, we say that (X, B) has a countable base.
ucv

It is easy to check the following Lemma holds.

Lemma 5.8. Let (X, B) be a fuzzifying bornological space. Then C(X, B) = 1 if and only if for all a € [0, 1], the set
{U : By(U) > a} is countable.

Theorem 5.9. Let (X, Bx) and (Y, By) be fuzzifying bornological linear spaces and suppose that one of the following
conditions is satisfied:

(i). The fuzzifying bornology By has a countable base, i.e., C(Y, By) = 1;

(ii). The fuzzifying bornology By is the von Neumann bornology of a linear fuzzifying topology of Y.

If f satisfies the following relation: [x, e 0] < By(f({xn))) for all {x,} € X. Then f is bounded.

Proof. (i). Let C(Y,By) =1, and if f is unbounded, then there exists a subset A C X such that By(f~(A)) =
V  B(W) < Bx(A). If 'V  By(W) <t < Bx(A), then it can be concluded that By(W) >  whenever

f7AEW (AW

f7(A) € W. Since C(Y,By) = 1, by Lemma 5.8, the set {By(W) > t} is countable. By Lemma 5.6, we can

assume that {Bo(W) > 1 -t; =t} = {W,, : n € N} and {W,} is a increasing sequence. For each n € N,

Bo(W,) = Bo(nW,) > t, which implies that f~(A) € nW,. Consequently, there exists a sequence {a,} in A
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such that f (%an) ¢ W,. Itis evident taht [%an LA 0] > t. Additionally, it is possible that By(f ({%an}) <t if

not, assuming By( f({%an}) = \V  By(W) > t, there exists ng € IN such that f({%a,,} € W,,. However, this
f({ %ﬂn}gw

contradicts the fact that f (nlo) ¢ W,,. Hence, we have a sequence {%an} of X such that By (f ({%an}) < [;1111,1 M o].
It conflicts with the condition. Hence f is bounded.

(ii). If the fuzzifying bornology By is the von Neumann bornology of a linear fuzzifying topology of
Y, i.e., there is a linear fuzzifying topology 7 on Y such that By = b;. Assuming taht f is unbounded, there
must be a set A C X such that By(f~(A4)) = b:(f(A)) < Bx(A). Let b.(f~(A)) <t < Bx(A), then there is
W C Y with f~(A) ¢ Abs(W) such that #*(W) > 1 —¢t. It follows that f~(A) ¢ n?W for all n € IN, where

W may be balanced. Thus A contains a sequence {a,} such that f(a,) ¢ n?W. So we have [%an ut 0] > t.
On the other hand, we claim that f ({%an}) ¢ Abs(W). Otherwise, if f ({%an}) € Abs(W), there is ty > 0 such
that f({%an}) C toW. Then we have ny € IN such that f({%an}) C toW < ngW. This contradicts the fact

f(ay,) ¢ n3W. Hence By(f({%an}) <1-A4"(W) < t. It follows that By(f({%an}) < [%an i 0]. This contradicts
the condition [x;, i 0] < By(f({x,))) for all {x,} € X. Therefore f is bounded. [

Theorem 5.10. Let (X, 7x) be a locally convex fuzzifying topological linear space. The following assertions are
equivalent:

(i). (X, tx) is a fuzzifying bornological locally convex space;

(ii). For every linear map f from (X, tx) to an arbitrary locally convex fuzzifying topological linear space (Y, ty),
the implication of [Bd(f)] = 1 is that [C(f)] = 1,

(iii). Every linear map f of (X, tx) into a locally convex fuzzifying topological linear space (Y, ty), if [x, — 0] <
By(f({xn))) for all {x,} € X. Then f is continuous.

by
(iv). Every linear map f of (X, tx) into a locally convex fuzzifying topological linear space (Y, ty), if [x, = 0] <
By(f({xn))) for all {x,} € X. Then f is continuous.

Proof. By Proposition 5.4, the statements (i) and (ii) are equivalent. In fact, by the proof of Proposition 5.4,
the relationship [Bd(f)] < [C(f)] may be replaced by [Bd(f)] = 1 implies [C(f)] = 1.

(iii)= (ii). Forevery linear map f from (X, 7x) to an arbitrary locally convex fuzzifying topological linear
space (Y, ty) and [Bd(f)] = 1. For any U € 2X with {x,} ¢ Abs(U) and .# ™ (U) # 0, it follows that {x,} Z U.
Otherwise, if {x,} C U, there exists 119 € IN such that x,, € U for all n > ny. In addition, there is kg > 0 such
that {x1,x2, -+, x4,-1} € koU by Theorem 2.13(P5). This deduces that {x,} € Abs(U). Contradicting to the fact
{x,} ¢ Abs(U). Thus

b= 0= A ! = bl
Since [BA(f)] = 1, we have [x, — 6] < by, ({xa]) < By(f({xx})). Thus [C(A)] = 1.

(ii)=(iv). Suppose that [xan—X> 0] < By(f({x,))) for all {x,} € X, by Theorem 5.9 (ii), [Bd(f)] = 1.
Furthermore, [C(f)] = 1.

(iv)= (iii). For all {x,} € X with [x, — 0] < By(f({x,})), by Theorem 4.7 in [13], [x, 13 0] <[x, —» 0] <
By (f({xn})). Then by the hypothesis of (iv), [C(f)] =1. O

6. Conclusions and future work

In this article, we introduce two concepts: convex fuzzifying bornological linear spaces and locally con-
vex fuzzifying topological linear spaces. Based on the mapping of fuzzifying bornivorous, we demonstrate
thatany convex fuzzifying bornological linear space can determine the finest locally convex fuzzifying topol-
ogy that is compatible with the fuzzifying bornology. Similarly, each locally convex fuzzifying topological
linear space can derive the coarsest convex fuzzifying bornology that is compatible with the fuzzifying
topology. Furthermore, the relationships between some categories are studied. We show that the category
FT-CFBLS can be embedded in the the category LCFTLS as a reflective subcategory, and the category
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FB-LCFTLS can also be embedded in the the category CFBLS as a reflective subcategory. Meanwhile, the
category FT-CFBLS is topological over the category of linear spaces with respect to the expected forgetful
functor. Lastly, we discuss several characterizations of fuzzifying bornological topologies and present some
equivalent conditions.

An interesting direction for future research is to study the theory of convex fuzzifying bornological linear
spaces and locally convex fuzzifying topological linear spaces. It would also be worthwhile to generalize
these concepts to the case of convex L-fuzzy bornological linear spaces.
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