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Abstract. The main objective of this paper is to investigate convex fuzzifying bornological linear spaces
and their duality. First, we introduce the notions of convex fuzzifying bornological linear spaces and locally
convex fuzzifying topological linear spaces, along with several examples. Next, we study the relationship
between convex fuzzifying bornological linear spaces and locally convex fuzzifying topological linear
spaces, utilizing the mapping of fuzzifying bornivorous. Subsequently, we introduce the concepts of
fuzzifying bornological locally convex spaces and fuzzifying topological convex bornological linear spaces. We
demonstrate that the category of fuzzifying bornological locally convex spaces can be embedded as a reflective
subcategory in the category of convex fuzzifying bornological linear spaces, and the category of fuzzifying
topological convex bornological linear spaces can also be embedded as a reflective subcategory in the category
of locally convex fuzzifying topological linear spaces. Moreover, the category of fuzzifying topological convex
bornological linear spaces is topological over the category of linear spaces with respect to the expected forgetful
functor. Lastly, we provide several characterizations of the fuzzifying bornological topologies.

1. Introduction

It is well-known that boundedness is a very important concept in the theory of functional analysis.
However, the concept of bounded sets lacks clarity in topological spaces. In 1949, Hu [9, 10] first introduced
the concepts of bornology and bornological spaces, which were later developed in the context of bornological
vector spaces [8, 18]. In recent years, the theory of general bornological spaces has played a critical role in
researching convergence structures on hyperspaces [17], optimization theory [4], and topologies on function
spaces [6, 15].

It is worthy noting that Abel and Šostak [1] originally extended the theory of bornological spaces to
the context of fuzzy sets in 2011. They discussed bornologies over an infinitely distributive complete
lattice L and gave the concept of an L-bornology as an extension of that of crisp bornologies. Combing an
L-bornology and a vector space, Paseka et al. [19] introduced the notions of lattice-valued bornological
vector spaces and L-convex L-bornological vector spaces. Some categorical properties of L-bornological
vector spaces are also studied by them. Subsequently, Jin and Yan [11] proposed L-Mackey convergence and
separation in L-bornological vector spaces, and discussed an equivalent characterization of separation in
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terms of L-Mackey convergence. Just recently, Shen and Yan [23] studied the duality between L-bornologies
and L-topologies. It is shown that the category of L-bornological locally convex L-topological vector spaces
can be embedded in the category of L-convex L-bornological vector spaces as a subcategory, and the category
of L-topological convex L-bornological vector spaces can be embedded in the category of locally convex
L-topological vector spaces as a subcategory. Additionally, Liang et al. [16] introduced the concepts of
(L,M)-fuzzy bornological spaces and (L,M)-fuzzy bornological vector spaces.

On the other hand, Šostak and Uļjane [24] develop an alternative approach to the “ fuzzification” of the
concept of bornology. Namely there they defined an L-valued bornology (or called L-fuzzifying bornology)
on a set X. This L-fuzzifying bornology is a mapping B : 2X

→ L satisfying some certain L-valued axioms.
Also, this mapping in a certain sense determines the degree of boundednessB(A) ∈ L of a set A ⊆ X. In 2022, Jin
and Yan [13] introduced the concept of fuzzifying bornological linear spaces, inspired by the literature [24],
while considering the necessary and sufficient conditions for compatibility between fuzzifying bornologies
and linear structures. Recently, Shen and Yan [22] discussed the fuzzifying bornologies induced by fuzzy
pseudo-norms and proved that v. Neumann fuzzifying bornology is separated in fuzzy pseudo-normed
linear spaces if and only if the fuzzifying topology determined by a fuzzy pseudo-norm is Hausdorff. This
study is the first to explore the relationship between fuzzifying topological linear spaces and fuzzifying
bornological linear spaces in the frame of the semantical method of continuous-valued logic.

Locally convex spaces and convex bornological spaces are known to exhibit a duality relationship (ref-
erence [8]). Previous literature has only discussed the relationships between the properties of fuzzifying
bornologies and fuzzifying topologies in linear spaces [22]. However, no progress has been made in the
study of the theory of convex fuzzifying bornological linear spaces. Furthermore, the duality between
convex fuzzifying bornological spaces locally convex fuzzifying spaces has not been studied. The main
objective of this paper is to initiate research in this area. This study will establish the relationships between
fuzzifying topological structure and fuzzifying bornological structure in fuzzy functional analysis. Addi-
tionally, it will promote further research on fuzzifying bornological linear spaces, specifically contributing
to the establishment of the famous closed graph theorem. The focus of this study is to investigate the
elementary properties of the duality between convex fuzzifying bornologies and locally convex topologies.
This can be considered as the inaugural attempt to study this internal duality using the semantical method.

The introduction concludes with an outline of the subsequent sections of the paper. In section 2,
we recall some basic definitions and fundamental results. In section 3, we introduce the concept of L-
bornivorous sets and propose an approach to convex fuzzifying bornology that can generate a locally
convex fuzzifying topology. Furthermore, we demonstrate that the v. Neumann fuzzifying bornology is
the coarsest convex fuzzifying bornology that aligns with locally convex fuzzifying topology. In section
4, we introduce the concepts of fuzzifying topological bornologies and fuzzifying bornological topologies,
and explore their equivalent conditions. Additionally, we provide some characterizations of fuzzifying
bornological bornologies.

2. Preliminaries

In this section, we review some necessary notions and fundamental results which are used in the sequel.
Throughout this paper,K represents a field of real or complex numbers, X always denotes a linear space

over K. 2X and 2(X) denote the classes of all crisp and finite crisp subsets of X, respectively. The notation
N(X) denotes the set of all sequences in X.

According to the terminology [8], a subset A of X is a disk if A is both convex and circled. The notation
disk(X) denotes the set of all disks in X. For any subset A of X, the symbols co(A),Γ(A) denote the convex
hull of A and disk hull of A, respectively.

Definition 2.1. ([20, 24, 25]) An ([0, 1],∧)-valued bornology on a set X is a mapping B : 2X
→ [0, 1]

satisfying the following conditions:
(B1) for all x ∈ X, B({x}) = 1;
(B2) if U ⊆ V ⊆ X, then B(V) ≤ B(U);
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(B3) for all U,V ⊂ X, B(U ∪ V) ≥ B(U) ∧ B(V) holds. The pair (X,B) is called an ([0, 1],∧)-valued
bornological space and the value B(A) is interpreted as the degree of boundedness of a set A in the space
(X,B).

From now on, an ([0, 1],∧)-valued bornology on a set X is also called a fuzzifying bornology on a set X.

Remark 2.2. The axiom (B3) is stated that for a continuous t-norm ∗ instead of ∧ in the original paper [24].
As A. Šostak et al. [24] pointed out, in case of ∗ = ∧, the axiom (B2) is redundant since it follows from axiom
(B3). Hence the axioms (B2) and (B3) may be replaced by the following axiom (B3)

′

:
(B3)

′

: ∀U,V ⊆ X, B(U ∪ V) = B(U) ∧ B(V).

Let B(X, [0, 1],∧) stand for the family of all fuzzifying bornologies on X. A partial order relation ⪯ on
B(X, [0, 1],∧) by setting for B1,B2 ∈ B(X, [0, 1],∧):

B1 ⪯ B2 if and only if B1(A) ≥ B2(A), ∀A ∈ 2X,
and say in this case that B1 is coarser, or smaller than B2, and B2 is finer, or larger than B1.

Definition 2.3. ([24]) A mapping f : (X,BX)→ (Y,BY) of fuzzifying bornological spaces is called bounded
if BX(A) ≤ BY( f (A)) for all A ∈ 2X.

Definition 2.4. ([13]) Let X be a linear space over K. A fuzzifying bornology B on X is said to be a linear
fuzzifying bornology on X, if the following two mappings are bounded: f : X×X→ X, defined by (x, y)→
x + y; 1 : K ×X→ X, defined by (k, x)→ kx, where X ×X andK ×X are equipped with the corresponding
product fuzzifying bornologies B ×B and BK × B (here BK is the fuzzifying bornology determined by the
crisp bornology on K, i.e., BK(A) = 1 whenever A is a crisp bounded set in K, and BK(A) = 0 if A is not
bounded inK) which is defined as

(B × B) (A × B) = B (A) ∧ B (B) for all A,B ⊆ X.

We call any pair (X,B) consisting of a linear space and a linear fuzzifying bornology a fuzzifying
bornological linear space on X.

Theorem 2.5. ([13]) Let B be a fuzzifying bornology on X. Then B is a linear fuzzifying bornology if and only if
satisfies the following conditions: for all U,V ⊆ X

(B4) B (U + V) ≥ B (U) ∧ B (V);
(B5) B (λU) ≥ B (U), for all λ ∈ K;

(B6) B
( ⋃
|α|≤1
αU

)
≥ B (U).

According to the terminology adopted in [8], a crisp bornological linear space (X,B) is separated if {θ}
is the only bounded linear subspace of X. Naturally, one can generalize this property from the crisp case to
the fuzzy setting as follows.

Definition 2.6. ([13]) Let (X,B) be a fuzzifying bornological linear space. Then the degree to which (X,B)
is separated is defined by

[S (X,B)] =
∧

M,{θ}
M∈Svec(X)

(1 − B (M)),

where the notation Svec(X) denotes the set of all linear subspaces of X.

Definition 2.7. ([13]) Let (X,B) be a fuzzifying bornological linear space and {xn} ∈ N(X). The degree to
which {xn} is convergent to x bornologically is

[xn
M
→ x] =

∨
A∈Bal(X)
λn→0

{B (A) : ∀n ∈N, xn − x ∈ λnA},

where Bal(X) means the family of all balanced sets in X( A subset B ⊆ X is called balanced if λB ⊆ B
whenever λ ∈ K and |λ| ≤ 1).
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Definition 2.8. ([13]) Let (X,B) be a fuzzifying bornological linear space and A ⊆ X. Then the degree to
which A is bornologically closed is defined as follows:

[BC(A)] =
∧
{xn }⊆A

x<A

∧
B∈Bal(X)
λn→0

{1 − B (B) : ∀n ∈N, xn − x ∈ λnB}.

If [BC(A)] = 1, we also called A is bornologically closed.

Definition 2.9. ([26]) Let (X, τ) be a fuzzifying topological space. For any x ∈ X, Nx : 2X
→ [0, 1] is called a

fuzzifying neighborhood system of x which is defined as follows: for any A ∈ 2X, Nx(A) =
∨

x∈B⊆A
τ(B).

Definition 2.10. ([26]) Let (X, τ) be a fuzzifying topological space. Then the degree to which (X, τ) is T2
(Hausdorff) is defined as follows:

[T2(X, τ)] =
∧
x,y

∨
U

⋂
V=∅

(Nx(U) ∧Ny(V)).

Definition 2.11. ([2, 3, 5, 7]) Let X be a linear space over a field K. A fuzzy set N in X × [0,+∞) is said to
be a fuzzy pseudo-norm on X if the following conditions are satisfied:

(N1) N(x, 0) = 0, (∀)x ∈ X;
(N2) N(θ, t) = 1, (∀)t > 0;
(N3) N(kx, t) = N(x, t

|k| ), (∀)x ∈ X, k ∈ K, k , 0;
(N4) N(x + y, t + s) ≥ N(x, t) ∧N(y, s), (∀)x, y ∈ X;
(N5) ∀x ∈ X,N(x, ·) is left continuous and lim

t→∞
N(x, t) = 1.

The pair (X,N) is called a fuzzy pseudo-normed linear space.
If a fuzzy pseudo-norm N also satisfies the following condition

(N2
′

) N(x, t) = 1, (∀)t > 0 if and only if x = θ,
then it will be called a fuzzy norm on X.

By the axioms of (N2) and (N4) of fuzzy pseudo-norm N, it follows that N(x, ·) : [0,∞) → [0, 1] is
non-decreasing for all x ∈ X.

Remark 2.12. For any fuzzy pseudo-norm N, we will use the notation N(x, 0+) denotes the right limit of the
real function N(x, t) at 0. Since N(x, ·) is non-decreasing and left continuous, we have N(x, 0+) =

∧
t>0

N(x, t).

Theorem 2.13. ([21, 28]) Let (X, τ) be a fuzzifying topological linear space on K and Nθ (·) be its corresponding
fuzzifying neighborhood system of the neutral element. Then it has the following properties:

(P1) Nθ (X) = 1;
(P2) ∀U ⊆ X,Nθ (U) > 0⇒ θ ∈ U;
(P3) ∀U,V ⊆ X,Nθ (U ∩ V) = Nθ (U) ∧Nθ (V);
(P4) ∀W ⊆ X,Nθ (W) ≤

∨
U+V⊆W

Nθ (U) ∧Nθ (V);

(P5) ∀U ⊆ X, x ∈ X,Nθ (U) > 0⇒ ∃ε > 0 such that kx ∈ U for all |k| < ε;
(P6) ∀U ⊆ X,Nθ (U) > a implies there exists a circled set V ⊆ U such that Nθ (V) > a.
Conversely, let X be a linear space overK and consider a set-valued function Nθ (·) : 2X

→ [0, 1] which satisfies the
conditions (P1)-(P6). Then there exists a fuzzifying topology τN on X such that (X, τN ) be a fuzzifying topological
linear space and Nθ (·) is a fuzzifying neighborhood system of the neutral element.

Definition 2.14. ([21]) Let (X, τ) be a fuzzifying topological linear space. Then the unary fuzzy predicates
Bd ∈ F

(
2X

)
, called fuzzy boundedness, is defined as follows:

Bd (A) ∆=
(
∀V ∈ 2X

)
(V ∈ Nθ →L (∃λ ∈ K) (A ⊆ λV))

for any A ∈ 2X. Where the notation→L means the Łukasiewicz residuum.
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Intuitively, the degree to which A is bounded is

Bd(A) =
∧
U⊆X

{1 −Nθ (U) : A < Abs(U)}.

Where Abs(U) =de f {A : ∃δ > 0,∀λ ∈ K, |λ| ≥ δ,A ⊆ λU}.

Theorem 2.15. ([13]) Let (X, τ) be a fuzzifying topological linear space, then Bd given by Definition 2.13 is a linear
fuzzifying bornology.

In classical topological linear spaces, it is well recognized that the collection of all bounded sets consti-
tutes a linear bornology known as the von Neumann bornology [8]. Following the convention for ordinary
bornological linear spaces, we refer to Bd(·) as a fuzzifying von Neumann bornology, denoted as bτ.

Definition 2.16. ([14]) Let (X,B) be a fuzzifying bornological linear space. Then the mapping Bv : 2X
→

[0, 1] is called fuzzifying bornivorous if it defined as follows:

P ∈ Bv ≜ (∀A ⊆ X) (A ∈ B)→L (A ∈ Abs(P)) .

Moreover, the degree to which P is a bornivorous set is

Bv(P) =
∧
A⊆X

{1 − B (A) : A < Abs(P)}.

Theorem 2.17. ([14]) Let (X,B) be a fuzzifying bornological linear space. For all P,Q ⊆ X, the following statements
holds:

(1) ∀P ∈ 2X,Bv(P) > 0 =⇒ θ ∈ P;
(2) Bv(P

⋂
Q) ≥ Bv(P) ∧ Bv(Q);

(3) if P ⊆ Q, then Bv(P) ≤ Bv(Q);
(4) for all α ∈ K \ {0}, Bv(αP) = Bv(P);

(5) Bv
( ⋃
|α|≤1
αP

)
≥ Bv (P).

3. The relationships between convex fuzzifying bornological linear spaces and locally convex fuzzifying
topological linear spaces

In this section, we introduce the concepts of convex fuzzifying bornological linear spaces and locally
convex fuzzifying topological linear spaces, along with providing some examples. Next, we prove that
the v. Neumann fuzzifying bornology bτ induced by the locally convex fuzzifying topology τ is indeed
the coarsest convex fuzzifying bornology that is compatible with τ. Finally, we utilize the mapping of
fuzzifying bornivorous to deduce the finest locally convex fuzzifying topology, denoted as (X, τB), which
is compatible with the convex fuzzifying bornology B.

Definition 3.1. A fuzzifying bornological linear space (X,B) is called a convex fuzzifying bornological
linear space if it satisfies the following condition:

B(A) ≤ B(co(A)) for all A ∈ 2X.

Remark 3.2. By the condition (B6), for all A ∈ 2X, B(A) ≤ B(Γ(A)). Moreover, if we restrict B : 2X
→ {0, 1},

it follows that any crisp convex bornological linear space must be a convex fuzzifying bornological linear
space.
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Example 3.3. Let (X,N,∧) be a fuzzy pseudo-normed space, the mapping B(·) : 2X
→ [0, 1] be defined as

follows:
B (A) =

∨
t>0

∧
x∈A

N(x, t), ∀A ∈ 2X.

Then the pair (X,B) is a convex fuzzifying linear bornological space.
In fact, by [22, Theorem 3.1], the pair (X,B) is a fuzzifying linear bornological space. It suffices to prove

that B(A) ≤ B(co(A)) for all A ∈ 2X. At first, we may prove that
∧

p,q∈A
N(p − q, t) ≤

∧
x,y∈co(A)

N(x − y, (t) for all

t > 0. Otherwise, there is t0 > 0 such that∧
p,q∈A

N(p − q, t0) >
∧

x,y∈co(A)
N(x − y, t0).

Then there exist x1, x2 ∈ co(A) such that N(x1−x2, t0) <
∧

p,q∈A
N(p−q, t0). For x ∈ X, let Sx(

∧
p,q∈A

N(p−q, t0)) =

{y ∈ X : Nx−y(t0) ≥
∧

p,q∈A
N(p − q, t0)}.

Clearly, Sx(
∧

p,q∈A
N(p − q, t0)) , ∅. In addition, Sx(

∧
p,q∈A

N(p − q, t0)) is a convex set. Since for y1, y2 ∈

Sx(
∧

p,q∈A
N(p − q, t0)) and α ∈ [0, 1], we have

N(x − αy1 − (1 − α)y2, t0) ≥ min{N(α(x − y1), αt0),N((1 − α)(x − y2), (1 − α)t0)}
= min{Nx−y1 (t0),Nx−y2 (t0)}
≥ min{

∧
p,q∈A

N(p − q, t0),
∧

p,q∈A
N(p − q, t0)}

=
∧

p,q∈A
N(p − q, t0).

It follows that αy1 + (1 − α)y2 ∈ Sx(
∧

p,q∈A
N(p − q, t0)), i.e., Sx(

∧
p,q∈A

N(p − q, t0)) is a convex set. Assuming

that A ⊈ Sx1 (
∧

p,q∈A
N(p − q, t0)), which means that there exists q ∈ A \ Sx1 (

∧
p,q∈A

N(p − q, t0)). Thus for every

p ∈ A, N(q − p, t0) = N(p − q, t0) ≥
∧

p,q∈A
N(p − q, t0). we have A ⊆ Sq(

∧
p,q∈A

N(p − q, t0)). From the convexity

of Sq(
∧

p,q∈A
N(p − q, t0)), it deduces that co(A) ⊆ Sq(

∧
p,q∈A

N(p − q, t0)). Further, from q < Sx1 (
∧

p,q∈A
N(p − q, t0)),

we obtain that Nx1−q(t0) <
∧

p,q∈A
N(p − q, t0) and so x1 < Sq(

∧
p,q∈A

N(p − q, t0)), which is a contradiction since

x1 ∈ co(A).
If we suppose that A ⊆ Sx1 (

∧
p,q∈A

N(p − q, t0)), then co(A) ⊆ Sx1 (
∧

p,q∈A
N(p − q, t0)). But from Nx1−x2 (t0) <∧

p,q∈A
N(p − q, t0) it follows that x2 ∈ co(A) \ Sx1 (

∧
p,q∈A

N(p − q, t0)) and this is a contradiction.

Hence the conclusion
∧

p,q∈A
N(p − q, t) ≤

∧
x,y∈co(A)

N(x − y, t) for all t > 0 holds. So,

B(A) =
∨
t>0

∧
p,q∈A

N(p − q, t) ≤
∨
t>0

∧
x,y∈co(A)

N(x − y, t) = B(co(A)).

Theorem 3.4. Let X be a linear space, P = {N j} j∈J be a family of fuzzy pseudo-norms on X indexed by a non-empty
set J and the mapping B : 2X

→ [0, 1] be defined by B(A) =
∧
j∈J

Bd j(A) =
∧
j∈J

∨
t>0

∧
x,y∈A

N j(x − y, t). Then (X,B) is a

convex fuzzifying bornological linear space. Moreover, [S(X,B)] =
∧

x,θ

∨
j∈J

(1 −N j(x, 0+)).

Proof. First, it is easy to check that (X,B) is a fuzzifying bornological linear space. By Example 3.3, it is clear
B(A) =

∧
j∈J

Bd j(A) ≤
∧
j∈J

Bd j(co(A)) = B(co(A)). Thus (X,B) is a convex fuzzifying bornological linear space.

It is left to prove [S(X,B)] =
∧

x,θ

∨
j∈J

(1 −N j(x, 0+)). In fact, for any a > [S(X,B)] =
∧

M,{θ}
M∈Svec(X)

{1 − B (M)}, there

exists a linear subspace M of X with M , {θ} such that 1 −B(M) < a. Then B(M) =
∧
j∈J

∨
t>0

∧
x∈M

N j(x, t) > 1 − a,

it follows that there is t j > 0 such that N j(x, t j) > 1 − a for all x ∈ M and j ∈ J. Let x0 ∈ M, obviously,
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N j(x0, t j) > 1 − a. Since M is a linear subspace of X, it is clear nx0 ∈ M for all n ∈ N, thus N j(nx0, t j) > 1 − a.
Equivalently, N j(x0,

t j

n ) > 1 − a for all n ∈ N. Since N j(x0, t) is increasing in the variable t, it deduces that
N j(x0, 0+) ≥ 1 − a, i.e., a ≥ 1 −N j(x0, 0+). Hence [S(X,B)] ≥

∨
j∈J

(1 −N j(x0, 0+)) ≥
∧

x,θ

∨
j∈J

(1 −N j(x, 0+)).

On the other hand, for every a >
∧

x,θ

∨
j∈J

(1 − N j(x, 0+)), there is x0 , θ such that a >
∨
j∈J

1 − N j(x0, 0+) =∨
j∈J

∨
t>0

1 −N j(x0, t). This implies that N j(x0, t) > 1 − a for all j ∈ J and t > 0. Put M1 = {kx0 | k ∈ K} = Span{x0},

clearly, M1 , {θ} and M1 is a linear subspace of X. For any fixed t0 > 0, we have
∧

z∈M1

N j(z, t0) ≥ 1 − a.

Furthermore, we have
B(M1) =

∧
j∈J

∨
t>0

∧
z∈M1

N j(z, t) ≥
∧
j∈J

∧
z∈M1

N j(z, t0) ≥ 1 − a.

Thus [S(X,B)] =
∧

M,{θ}
M∈Svec(X)

{1 − B(M)} ≤ 1 − B(M1) ≤ a. By the arbitrariness of a, we have [S(X,B)] ≤∧
x,θ

∨
j∈J

(1 −N j(x, 0+)). So, the proof of the equality [S(X,B)] =
∧

x,θ

∨
j∈J

(1 −N j(x, 0+)) is completed.

Definition 3.5. Let (X, τ) be a fuzzifying topological linear space. We say that (X, τ) is a locally convex
fuzzifying topological linear space, if there is a mapping U : 2X

→ [0, 1] with U ⪯ N such that N (U) ≤∨
W⊆U

W∈disk(X)

U (W) for all U ∈ 2X.

Example 3.6. Let (X,N,∧) be a fuzzy pseudo-normed space. Then there is a fuzzifying topology τN such
that (X, τN) is a locally convex fuzzifying topological linear space.

In fact, let N (U) =
∨
ε>0

∧
z<U

(1−N(z, ε)), by Theorem 4.1 in [12], there exists a fuzzifying topology τN on X

such that N (·) is a fuzzifying neighborhood system of θ with respect to τN. Denote A = {B(θ, 1
n , r) : n ∈

N, r is a rational number in [0, 1]}, where B(θ, 1
n , r) = {x : N(x, 1

n ) ≥ 1 − r}. Clearly, B(θ, 1
n , r) is a absolute

convex set for any n ∈N and r. Put

U (W) =
{

N (W), W ∈ A ,
0, others .

By Theorem 4.5 in [29], it follows that N (U) ≤
∨

W⊆U
W∈disk(X)

U (W) for all U ∈ 2X. Hence (X, τN) is a locally

convex fuzzifying topological linear space.

Definition 3.7. Let (X, τ) be a fuzzifying topological linear space and B be a fuzzifying bornology on X.
We say that B and τ are compatible if B(A) ≤ bτ(A) for all A ∈ 2X, where bτ is v. Neumann fuzzifying
bornology determined by (X, τ).

Theorem 3.8. Let (X, τ) be a locally convex fuzzifying topological linear space and bτ be its v. Neumann fuzzifying
bornology. Then (X, bτ) is a convex fuzzifying bornological linear space and bτ is the coarsest convex fuzzifying
bornology compatible with τ.

Proof. First we will prove (X, bτ) is a convex fuzzifying bornological linear space. It only needs to prove
that bτ(B) ≤ bτ(co(B)) for all B ⊆ X. Since bτ(co(B)) =

∧
U⊆X
{1 − N (U) : co(B) < Abs(U)}, then for each

t > bτ(co(B)) =
∧

U⊆X
{1 −N (U) : co(B) < Abs(U)}, there is U ⊆ X with co(B) < Abs(U) such that 1 −N (U) < t,

i.e., N (U) > 1 − t. Because (X, τ) is a locally convex fuzzifying topological linear space, we have a W ⊆ X
with W ∈ disk(X) satisfying U (W) > 1− t. It implies N (W) ≥ U (W) > 1− t. At this moment, we may claim
that B < Abs(W). Or else, there is δ > 0 such that B ⊆ sW for all |s| ≥ δ. Then we have co(B) ⊆ sW ⊆ sU. This
contradicts with co(B) < Abs(U). Thus bτ(B) ≤ 1 −N (W) < t. Hence bτ(B) ≤ bτ(co(B)) holds.

On the other hand, clearly bτ is a convex fuzzifying bornology compatible with τ. Assume B1 is a
convex fuzzifying bornology compatible with τ. Then for each B ⊆ X, B1(B) ≤ bτ(B). Hence bτ is the
coarsest convex fuzzifying bornology compatible with τ.
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Theorem 3.9. Let (X,B) be a convex fuzzifying bornological linear space and the mapping Bv : 2X
→ [0, 1] be

fuzzifying bornivorous. Then there exists the finest locally convex fuzzifying topology τ on X such that which is
compatible with the fuzzifying bornology B and Bv is a base of fuzzifying neighborhood of θ.

Proof. First we will prove that the mapping N (V) =
∨

W⊆V
W∈disk(X)

Bv(W) is fuzzifying neighborhood system of θ.

It suffices to prove the set mapping N (·) satisfies the all conditions in Theorem 2.13.
(1). If N (V) > 0, there exists W ⊆ V with W ∈ disk(X) such that Bv(W) > 0. It follows that θ ∈ W ⊆ V

by Theorem 2.17(1).
(2). N (X) =

∨
W⊆V

W∈disk(X)

Bv(W) ≥ Bv(X) = 1.

(3). For each a < N (U)
∨

N (V), there exist W1 ⊆ U,W2 ⊆ V with W1,W2 ∈ disk(X) such that
a < Bv(W1) and a < Bv(W2). By Theorem 2.17(2), it follows that a < Bv(W1) ∧ Bv(W2) ≤ Bv(W1 ∩W2) and
W1 ∩W2 ∈ disk(X). Then a ≤ N (U ∩ V). Thus N (U)

∨
N (V) ≤ N (U ∩ V). The converse is clear. So,

N (U)
∨

N (V) = N (U ∩ V).
(4). For each a < N (V), there exists a subset W ⊆ V that belongs to the disk of X, satisfying

a < Bv(W). Utilizing the fact that 1
2 W + 1

2 W ⊆ W ⊆ V and referring to Theorem 2.17(4), we can conclude
that N ( 1

2 W) ≥ Bv( 1
2 W) = Bv(W). Hence,

a ≤ Bv( 1
2 W) ≤

∨
V1+V2⊆V

(N (V1) ∧N (V2)).

Then N (V) ≤
∨

V1+V2⊆V
(N (V1) ∧N (V2)).

(5). For all x ∈ X,U ⊆ X, if N (V) > 0, there exists W ⊆ V with W ∈ disk(X) such that Bv(W) > 0. Since
B({x}) = 1, we have {x} ∈ Abs(W). Then there exists δ > 0 such that x ∈ sW ⊆ sU for all |s| ≥ δ.

(6). For each a < N (V), there exists W ⊆ V with W ∈ disk(X) such that a < Bv(W). Then N (W) ≥
Bv(W) > a.

Hence there exists a fuzzifying topology τ on X such that (X, τ) is a locally convex fuzzifying topological
linear space and Bv is a base of fuzzifying neighborhood of θ.

Secondly we will prove that the vector fuzzifying topology τ is compatible with the fuzzifying bornology
B. The v. Neumann fuzzifying bornology determined by τ is denoted by bτ. It needs to prove that
B(A) ≤ bτ(A) for all A ⊆ X. By the definition of V. Neumann fuzzifying bornology, bτ(A) =

∧
U⊆X
{1 −N (U) :

A < Abs(U)}. We only need to prove that 1 − N (U) ≥ B(A) for all U ∈ 2X satisfying A < Abs(U), i.e.,
N (U) ≤ 1 − B(A).

In fact, for each a < N (U), there exists W ⊆ V with W ∈ disk(X) such that a < Bv(W). Then for any
B < Abs(W), we have a < 1 − B(B). At this point, we assert that A < Abs(W). Otherwise, if A ∈ Abs(W), it
follows that A ∈ Abs(U) from the fact W ⊆ U. It deduces a contradiction. Thus A < Abs(W). So, a < 1−B(A).
Thus N (U) ≤ 1 − B(A). This means that τ is compatible with the fuzzifying bornology B.

Finally, we will prove that τ is the finest locally convex fuzzifying topology τ on X such that which
is compatible with the fuzzifying bornology B. Let τ1 is a locally convex fuzzifying topology which is
compatible with B, i.e. B(A) ≤ bτ1 (A) for all A ∈ 2X. Since τ(U) =

∧
x∈U

Nx(U) =
∧

x∈U
N (U − x), it is sufficient

to prove N 1(U) ≤ N (U) for all U ⊆ X, where N 1(·) is a fuzzifying neighborhood system of θwith respect
to fuzzifying topology τ1.

As a matter of fact, for each a < N 1(U), there is a W ∈ disk(X) with W ⊆ U such that a < U 1(W) ≤ N 1(W).
For all B ⊆ X with B < Abs(W), since

B(B) ≤ bτ1 (B) =
∧

U⊆X
{1 −N 1(V) : B < Abs(V)} ≤ 1 −N 1(W) < 1 − a.

Thus
Bv(W) =

∧
B⊆X
{1 −B (B) : B < Abs(W)} ≥ a.

It implies N (U) =
∨

W⊆U
W∈disk(X)

Bv(W) ≥ a. Furthermore, N 1(U) ≤ N (U). This completes the proof.
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Remark 3.10. The fuzzifying topologyτdefined in Theorem 3.9 is referred to as the locally convex fuzzifying
topology associated with the fuzzifying bornology B of X and is denoted by τB.

4. Relationships between categories of FT-CFBLS and LCFTLS, FB-LCFTLS and CFBLS

In this section, we will introduce the concepts of the fuzzifying topological bornology and the fuzzifying
bornological topology. Through this discussion, we aim to explore the relationship between the category
FT-CFBLS of fuzzifying topological convex bornological linear spaces and the category LCFTLS of locally
convex fuzzifying topological linear spaces, as well as the relationship between the category FB-LCFTLS
of fuzzifying bornological locally convex spaces and the category CFBLS of convex fuzzifying bornological
linear spaces. We will show that the category FT-CFBLS can be embedded in the the category LCFTLS as a
reflective subcategory, and the category FB-LCFTLS can also be embedded in the the category CFBLS as a
reflective subcategory. Meanwhile, the category FT-CFBLS is topological over the category of linear spaces
with respect to the expected forgetful functor.

At first, we will discuss the categorical relations between locally convex fuzzifying topological linear
spaces and convex fuzzifying bornological linear spaces.

Theorem 4.1. Let (X, τX), (Y, τY) be two fuzzifying topological linear spaces and f be a linear map from X to Y.
Then [C( f )] ≤ [Bd( f )], where [Bd( f )] is corresponding to the v. Neumann fuzzifying bornologies bτX and bτY .

Proof. For each 0 < t < [C( f )] and for every A ⊆ X. If t1 < t−bτY ( f→(A)), we have 1+ t1− t < 1−bτY ( f→(A)) =∨
W⊆Y
{NY(W) : f→(A) < Abs(W)}. Then there exist W ⊆ Y with f→(A) < Abs(W) such that 1 + t1 − t < NY(W).

On the other hand, form the hypothesis t < [C( f )], we have t < 1 −NY(W) +NX( f←(W)). That is to say
NY(W) < 1 − t +NX( f←(W)). So t1 < NX( f←(W)). In this case, we have A < Abs( f←(W)). Otherwise, there
exists δ > 0 such that A ⊆ s f←(W) for all |s| ≥ δ. It follows that f→(A) = f→(s f←(W)) = s f→( f←(W)) ⊆ sW
for all |s| ≥ δ. It means that f→(A) ∈ Abs(W). This contradicts to the fact f→(A) < Abs(W). This implies
t1 < 1−bτX (A). By the arbitrariness of t1, we have t−bτY ( f→(A)) ≤ 1−bτX (A). Hence t ≤ 1−bτX (A)+bτY ( f→(A))
for all A ⊆ X. Furthermore t ≤ [Bd( f )]. Therefore the conclusion holds.

Corollary 4.2. Let (X, τX), (Y, τY) be two fuzzifying topological linear spaces and f be a continuous linear map.
Then f : (X, bτX )→ (Y, bτY ) is bounded.

Theorem 4.3. Let (X,B) and (Y,B1) be two convex fuzzifying bornological linear spaces, and let f : (X,B)→ (Y,B1)
be a bounded linear mapping. Then f : (X, τB)→ (Y, τB1 ) is continuous, where τB is defined as Remark 3.10.

Proof. It suffices to prove that f : (X, τB) → (Y, τB1 ) is continuous at θX. Let W be a subset of Y and
0 < NθY (W), then for every a < NθY (W), by Theorem 3.9, there exists U ⊆ W with U ∈ disk(Y) such that
a < Bv(U). It follows that a < 1 − B1(A) for all A < Abs(U). Clearly, f←(U) ∈ disk(X) and f←(U) ⊆ f←(W).
For any B < Abs( f←(U)), we have f→(B) < Abs(U). Otherwise, there exists δ > 0 such that f→(B) ⊆ λU
for all |λ| ≥ δ. Then B ⊆ f←(λU) = λ f←(U), this contradicts to the fact B < Abs( f←(U)). Since f is
bounded, we have B(B) ≤ B1( f→(B)) < 1 − a. So, Bv( f←(U)) =

∧
B⊆X
{1 −B (B) : B < Abs( f←(U))} ≥ a. Hence

NθX ( f←(W)) =
∨

V⊆ f← (W)
V∈disk(X)

Bv(V) ≥ Bv( f←(U)) ≥ a. It deduces that NθY (W) ≤ NθX ( f←(W)) by the arbitrariness of

a. This means that f : (X, τB)→ (Y, τB1 ) is continuous.

Remark 4.4. The category of convex fuzzifying bornological linear spaces and its bounded linear mappings
is denoted by CFBLS. Similarly, the category of locally convex fuzzifying topological linear spaces and its
continuous linear mappings is denoted by LCFTLS. By Theorem 3.9 and Corollary 4.2, we can establish
the existence of a functor B from LCFTLS to CFBLS. Here B is defined as B : LCFTLS→ CFBLS. For any
(X, τ) ∈ |LCFTLS|, the value B((X, τ)) is given by (X, bτ), and for any linear mapping f : (X, τX) → (Y, τY),
we have B( f ) = f . The notation |LCFTLS| represents the set of all objects in the category LCFTLS.
Meanwhile, by Theorem 3.9 and Theorem 4.3, there exists a functor T from CFBLS to LCFTLS, denoted as
T : CFBLS → LCFTLS. For any (X,B) ∈ |CFBLS|, we have T((X,B)) = (X, τB) and for all linear mapping
f : (X,B)→ (Y,B1),T( f ) = f .
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Lemma 4.5. Let (X, τ) be a locally convex fuzzifying topological linear space. Then bτ = bτbτ
.

Proof. For each B ⊆ X and any t < bτ(B), since bτbτ
(B) =

∧
U⊆X
{1 −N τbτ (U) : B < Abs(U)}. If there is U ⊆ X

with B < Abs(U) satisfying 1 −N τbτ (U) < t, we get W ⊆ U,W ∈ disk(X) satisfying (Bv)bτ (W) > 1 − t. This
implies that 1 − bτ(V) > 1 − t whenever V < Abs(W). We claim B < Abs(W), if not, B ∈ Abs(W), this deduces
B ∈ Abs(U). It is in conflict. Thus we have bτ(B) < t. This contradicts with the hypothesis t < bτ(B) again.
Hence t < bτbτ

(B). It follow that bτ(B) ≤ bτbτ
(B).

Conversely, we will prove the identity mapping i : (X, τbτ ) → (X, τ) is fuzzifying continuous. For
each U ⊆ X and any t < N (U), there exists W ⊆ U with W ∈ disk(X) such that t < U (W). Since
(Bv)bτ (W) =

∧
{1 − bτ(V) : W < Abs(V)} and bτ(V) =

∧
{1 −N (C) : C < Abs(V)}, then for all W < Abs(V),

bτ(V) ≤ 1 − N (W) ≤ 1 − U (W) < 1 − t. Thus (Bv)bτ (W) ≥ t. Furthermore, N τbτ (U) =
∨
G⊆U

G∈disk(X)

(Bv)bτ (G) ≥

(Bv)bτ (W) ≥ t. This means that the identity mapping i : (X, τbτ ) → (X, τ) is fuzzifying continuous, then the
identity mapping i : (X, τbτ )→ (X, τ) is also fuzzifying bounded. It follow that bτbτ

(B) ≤ bτ(B) for all B ∈ 2X.
The proof is completed.

Theorem 4.6. Let (X,B) be a convex fuzzifying bornological linear space. ThenB = bτB if and only if the fuzzifying
bornology B is the v. Newnann fuzzifying bornology of a locally convex fuzzifying topology on X.

Proof. The necessity is obvious, since then the fuzzifying bornology B is the v. Neumann fuzzifying
bornology of τB. For the sufficiency , let B be the v. Newnann fuzzifying bornology of a locally convex
fuzzifying topology τ on X, i.e., B = bτ. By Lemma 4.5, we have B = bτ = bτbτ

= bτB .

Definition 4.7. Let (X,B) be a convex fuzzifying bornological linear space. We say that the fuzzifying
bornologyB of X is a fuzzifying topological bornology, or that (X,B) is a fuzzifying topological convex bornological
space, if the following fuzzifying bornological identity holds: B = bτB .

Lemma 4.8. Let (X,B) be a convex fuzzifying bornological linear space. Then τB = τbτ
B

.

Proof. We prove the identity mapping i : (X,B)→ (X, bτB ) is fuzzifying bounded at first. It needs to prove
B(B) ≤ bτB (B) for all B ⊆ X. For each t < B(B),if there is U ⊆ X with B < Abs(U) satisfying 1 −N τB (U) < t,
then we have W ⊆ X with W ∈ disk(X) satisfying Bv(W) > 1− t. Since Bv(W) =

∧
V⊆X
{1−B (V) : V < Abs(W)},

it follows that 1 −B (V) > 1 − t whenever V < Abs(W), i.e., B(V) < t. In this case, we have B < Abs(W),
otherwise, it may deduce B ∈ Abs(U). This contradicts with B < Abs(U). This implies B(B) < t. This
also contradicts to the hypothesis of t < B(B). Hence t ≤ 1 − N τB (U) for all B < Abs(U). From the fact
bτB (B) =

∧
{1 −N τB (U) : B < Abs(U)}, we get t ≤ bτB (B). So the identity mapping i : (X,B) → (X, bτB )

is fuzzifying bounded. It follows that i : (X, τB) → (X, τbτ
B

) is fuzzifying continuous. In fact, for each
s < N τbτ

B (U), there exists V ⊆ X,V ∈ disk(X) such that s < (Bv)bτ
B (V). Then for all B < Abs(V), we have

s < 1 − bτB (B) ≤ 1 − B(B). This implies s ≤ (Bv)(V) ≤ N τB(U). Therefore i : (X, τB)→ (X, τbτ
B

) is fuzzifying
continuous, i.e., τB ≥ τbτ

B
.

On the other hand, for any t < N τB (W), there ia W1 ∈ disk(X) with W1 ⊆ W such that t < Bv(W1). If
(Bv)bτ

B (W1) < t, we get B ⊆ X,B < Abs(W1) satisfying 1 − bτB (B) < t. Then 1 − t < bτB (B) =
∧
{1 −N τB (V) :

B < Abs(V)}. This deduces 1 −N τB (W1) > 1 − t. Thus we obtain t < Bv(W1) ≤ N τB (W1) < t. It is in conflict.
Hence N τbτ

B (W) ≥ (Bv)bτ
B (W1) ≥ t. This means that i : (X, τbτ

B
) → (X, τB) is fuzzifying continuous, i.e.,

τB ≤ τbτ
B

. The proof is completed.

Theorem 4.9. Let (X, τ) be a locally convex fuzzifying topological linear space. Then τ = τbτ if and only if the
fuzzifying topology τ is the locally convex fuzzfying topology associated with a convex fuzzifying bornology on X.

Proof. The necessity is obvious, since then the fuzzifying topology τ is determined by convex fuzzifying
bornology bτ. As for the sufficiency, let B be a convex fuzzifying bornology which τ is determined by B,
i.e., τ = τB. By Lemma 4.8, τ = τB = τbτ

B
= τbτ .
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Definition 4.10. Let (X, τ) be a fuzzifying locally convex space. We say that the fuzzifying topology τ on X
is a fuzzifying bornological topology, or that (X, τ) is a fuzzifying bornological locally convex space, if the following
fuzzifying topological identity holds: τ = τbτ .

If we denote the category of fuzzifying topological convex bornological spaces as FT-CFBLS, we can
conclude from Remark 4.4, Definition 4.7, and the proof process of Lemma 4.5 that B ◦ T((X,B)) = (X,B)
and T ◦ B((X, τ)) ≥ (X, τ). To sum up, we get the following Theorem.

Theorem 4.11. The category FT-CFBLS can be embedded in the category LCFTLS as a reflective subcategory.

Similarly, if we denote the category of fuzzifying bornological locally convex spaces as FB-LCFTLS, we can
conclude from Remark 4.4, Definition 4.10, and the proof process of Lemma 4.8 that T ◦ B((X, τ)) = (X, τ)
and B ◦ T((X,B)) ≥ (X,B). To sum up, we get the following Theorem.

Theorem 4.12. The category FB-LCFTLS can be embedded in the category CFBLS as a reflective subcategory.

Let LIS denote the category of linear spaces with linear mappings. Then we have the following theorem.

Theorem 4.13. The category FT-CFBLS is topological over LIS with respect to the expected forgetful functor.

Proof. Let U : FT − CFBLS → LIS be the forgetful functor, and let { fi : X → (Yi,Bi)}i∈I be a U-source, i.e.,
X is a linear space over K, (Yi,Bi) is a family of a fuzzifying topological convex bornological spaces, and for all
i ∈ I, fi : X→ Yi is a linear mapping. Define the mapping

BX(A) =
∧
i∈I
Bi( f→i (A)), ∀A ⊆ X.

Refer to the proof of Theorem 6.15 in [16] or the proof of Theorem 3.7 in [13], (X,BX) is a fuzzifying
bornological linear space. For all A ∈ 2X, we have

BX(A) =
∧
i∈I
Bi( f→i (A)) ≤

∧
i∈I
Bi(co( f→i (A))) =

∧
i∈I
Bi( f→i (co(A))) = BX(co(A)).

This means that (X,BX) is a convex fuzzifying bornological linear space. It can be easily verified thatBX
is the weakest linear fuzzifying bornology in which each fi is bounded. The remaining task is to prove that
(X,BX) is a fuzzifying topological convex bornological space, i.e., BX = bτBX

. By utilizing the proof Lemma 4.8,
we can establish that BX(A) ≤ bτBX

(A) for all A ∈ 2X. On the other hand, for all t > BX(A) =
∧
i∈I
Bi( f→i (A)),

there exists i0 ∈ I such that t > Bi0 ( f→i0 (A)). Since (Yi0 ,Bi0 ) is a fuzzifying topological convex bornological space,
we have t > Bi0 ( f→i0 (A)) = bτBi0

( f→i0 (A)). Consequently, there exists Vi0 ⊆ Yi0 such that Vi0 < Abs( f→i0 (A)) and

1 −N i0 (Vi0 ) < t. Moreover, there exists Wi0 ⊆ Vi0 belonging to the disk of Yi0 , such that 1 − Bvi0 (Wi0 ) < t.
It follows that Bi0 (Ci0 ) < t for all Ci0 < Abs(Wi0 ). For any B < Abs( f←i0 (Wi0 )), we have f→i0 (B) < (Wi0 ), which
implies Bi0 ( f→i0 (B)) < t. Consequently, we deduce that BX(B) =

∧
i∈I
Bi( f→i (B)) ≤ Bi0 ( f→i0 (B)) < t. Referring to

the fact hat A < Abs( f←i0 (Vi0 )), f←i0 (Wi0 ) ∈ disk(X) and Bv( f←i0 (Wi0 )) ≤ Bv( f←i0 (Vi0 )), we have
bτBX

(A) =
∧
{1 −N (V) : A < Abs(V)}
≤ 1 −N ( f←i0 (Vi0 )) =

∧
C⊆ f←i0

(Vi0
)

C∈disk(X)

1 − Bv(C)

≤ 1 − Bv( f←i0 (Wi0 )) =
∨
{BX(B) : B < Abs( f←i0 (Wi0 ))} ≤ t.

Hence, bτBX
(A) ≤ BX(A) for all A ⊆ X. Therefore bτBX

= BX. Consequently, (X,BX) is a fuzzifying
topological convex bornological space. Thus, the proof is complete.

5. Characterization of fuzzifying bornological topologies

This section presents characterizations of fuzzifying bornological topologies based on the concepts of
boundedness and continuity of linear mappings. It is asserted that the fuzzifying bornological topologies
on X that ensure every bounded linear map of X into any locally convex fuzzifying space is continuous.
Furthermore, additional characterizations of the fuzzifying bornological topologies are examined.
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Definition 5.1. ([27] ) Let (X, τ) be a fuzzifying topological space. The value CI(X, τ) =
∧

x∈X

∨
Ux⊢Nx

FC(Ux) is

called the degree to which (X, τ) is first countable, where Ux ⊢ Nx means that Ux is a mapping from 2X
→

[0, 1] satisfying Nx(U) =
∨

V⊆U
Ux(V), and FC(Ux) = 1 −

∧
{r : C((Ux)r)}, where (Ux)r = {A ⊆ X : Ux(A) > r}

and the notation C((Ux)r) means that the set (Ux)r is at most countable.

Definition 5.2. ([26]) Let (X, τ) be a fuzzifying topological space. Then for any x ∈ X and any S ∈ N(X), we
define S→ x := (∀V ∈ 2X)((V ∈ Nx)→L S ⊑ V).
Where the notation S ⊑ V means S almost in V, that is, there is n0 ∈N such that S(n) ∈ V for all n ∈Nwith
n0 ≤ n.

Intuitively, the value of S converges to x, that is [S→ x] is

[S→ x] =
∧
S@V

(1 −Nx (V)) .

Theorem 5.3. Let (X, τ) be a locally convex fuzzifying topological linear space and CI(X, τ) = 1. Then (X, τ) is a
fuzzifying bornological locally convex space.

Proof. According to the proof of Lemma 4.5, the identity mapping id : (X, τbτ ) → (X, τ) is fuzzifying
continuous. It follows that τ(A) ≤ τbτ (A) for all A ∈ 2X. It suffices to prove the identity mapping id : (X, τ)→
(X, τbτ ) is fuzzifying continuous. For all V ⊆ X and every t > N τ(V) =

∨
W⊆V

W∈disk(X)

U (W), it follows that U (W) ≥ t

whenever W ⊈ V. Since CI(X, τ) = 1, the set {W : U (W) > t} is countable. Denote {W : U (W) > t} =
{W1,W2, · · · ,Wn, · · · } and we may assume that {Wn}n∈N is decreasing. For each n ∈N, U ( 1

n Wn) = U (Wn) > t,
it follows 1

n Wn ⊈ V. Thus there is a sequence {xn} of X with xn ∈ Wn such that xn < nV for all n ∈ N. This
means that {xn} < Abs(V). Moreover, since N τbτ (V) =

∨
W⊆V

W∈disk(X)

Bv(W) =
∨

W⊆V
W∈disk(X)

∧
A⊆X
{1 − bτ(A) : A < Abs(W)}.

Noting that {xn} < Abs(W) for all absolute convex set W ⊆ V, we have N τbτ (V) ≤ 1− bτ({xn}) ≤ 1− [xn → θ].
In addition, it comes to the conclusion 1 − [xn → θ] =

∨
{xn}@U

N τ(U) ≤ t. Otherwise, if there is U ⊆ X such

that N τ(U) > t, there must be Wn0 ⊆ U such that U (Wn0 ) > t. It is easy to find {xn} ⊑ Wn0 ⊆ U. That
is to say N τ(U) ≤ t for all {xn} @ U. So, N τbτ (V) ≤ 1 − [xn → θ] ≤ t. Hence N τbτ (V) ≤ N τ(V) for all
V ⊆ X. It follows that the identity mapping id : (X, τ) → (X, τbτ ) is fuzzifying continuous. Therefore (X, τ)
is a fuzzifying bornological locally convex space.

Proposition 5.4. Let (X, τ) be a locally convex fuzzifying topological linear space. The following assertions are
equivalent:

(i). (X, τ) is a fuzzifying bornological locally convex space;
(ii). For every linear map f from X into an arbitrary locally convex fuzzifying topological linear space (Y, τY),

the inequality [Bd( f )] ≤ [C( f )] holds.

Proof. (i) ⇒ (ii). For any t > [C( f )] =
∧

U⊆Y
1 −N Y +N X( f←(U)), there is U ⊆ Y such that 1 −N Y(U) +

N X( f←(U)) < t, i.e., 1 − t +N X( f←(U)) < N Y(U). Assume that U Y is a fuzzifying neighborhood base
of θY, then there is a absolute convex set W ⊆ U such that 1 − t +N X( f←(U)) < U Y(W). It implies the
following:

1 − t +N X( f←(W)) ≤ 1 − t +N X( f←(U)) < U Y(W).
Since τ = τbτ , it follows that N X( f←(W)) =

∨
D⊆ f← (W)
D∈disk(X)

Bv(D). By f is linear map, we have f←(W) ∈ disk(X).

Thus 1−t+Bv( f←(W)) < U Y(W) ≤ N Y(W). So, there is A < Abs( f←(W)) such that 1−t+1−bτ(A) < N Y(W).
At this case, it is easy to check that f→(A) < Abs(W). Hence

1 − bτ(A) + BdY( f→(A)) ≤ 1 − bτ(A) + 1 −N Y(W) < t.



C. H. Yan / Filomat 40:3 (2026), 1117–1131 1129

So, [Bd( f )] =
∧

V⊆X
1 − bτ(V) + Bd( f→(V)) ≤ 1 − bτ(A) + BdY( f→(A)) < t. By the arbitrariness of t, it follows

that [Bd( f )] ≤ [C( f )].
(ii)⇒ (i). According to the proof of Lemma 4.5, the identity mapping id : (X, τbτ )→ (X, τ) is fuzzifying

continuous. It follows that τ(A) ≤ τbτ (A) for all A ∈ 2X. On the other hand, by the proof of Lemma 4.5, we
have bτ(B) ≤ bτbτ

(B) for all B ∈ 2X. Then for the identity mapping id : (X, τ) → (X, τbτ ), [Bd(id)] = 1. By the
condition of (ii), clearly, [C(id)] = 1. So, τ(A) ≥ τbτ (A) for all A ∈ 2X. Thus τbτ = τ. This means that (X, τ) is a
fuzzifying bornological locally convex space.

Definition 5.5. Let (X,B) be a fuzzifying bornological space. We say that a mapping B0 : 2X
→ I is a base

of a fuzzifying bornology B if B0 ⪰ B and B(U) =
∨

U⊆V
B0(V) for all U ∈ 2X.

Lemma 5.6. A mapping B0 : 2X
→ I is a base for a fuzzifying bornology of X if and only if

∨
V∈ẋ
B0(V) = 1 for all

x ∈ X and
∨

U∪V⊆W
B0(W) ≥ B0(U) ∧ B0(V),∀U,V ∈ 2X.

Proof. Necessity. Suppose that B0 : 2X
→ I is a base for a fuzzifying bornology B of X. For each x ∈ X, it is

clear
∨

V∈ẋ
B0(V) = B({x}) = 1.

Moreover, for all U,V ∈ 2X and any t < B0(U) ∧ B0(V) ≤ B(U) ∧ B(V) = B(U
⋃

V). Then there is
W ⊇ U

⋃
V such that B0(W) > t. So,

∨
U∪V⊆W

B0(W) ≥ B0(U) ∧ B0(V).

Sufficiency. Let B(U) =
∨

U⊆V
B0(V) for all U ⊆ X. For all x ∈ X and each n ∈ N, there is Vn ∈ ẋ such

that B0(Vn) > 1 − 1
n . Then B({x}) ≥ B(Vn) ≥ B0(Vn) > 1 − 1

n . It follows that B({x}) = 1. In addition, for any
U1,U2 ∈ 2X with U1 ⊆ U2, then for each t < B(U2), there exists W ⊇ U2 ⊇ U1 such that B0(W) > t. It follows
that t < B(U1). So, we have B(U2) ≤ B(U1).

Furthermore, for all U1,U2 ∈ 2X and every t < B(U1)∧B(U2). There are V1,V2 ∈ 2X with U1 ⊆ V1,U2 ⊆ V2
such that t < B0(V1) and t < B0(V2). By the hypothesis of Sufficiency, there is W ⊇ V1

⋃
V2 ⊇ U1

⋃
U2 such

that t < B0(W). It follows that B(U1
⋃

U2) ≥ B0(W) > t. Thus B(U1) ∧ B(U2) ≤ B(U1
⋃

U2). Hence B0 is a
base for a fuzzifying bornology of X.

Definition 5.7. Let (X,B) be a fuzzifying bornological space. The value C(X,B) =
∨
B0⊢B

FC(B0) is called the

degree to which B has a countable base, where B0 ⊢ B means B0 is a mapping from 2X to [0, 1] satisfying
B(U) =

∨
U⊆V
B0(V) for all U ∈ 2X. If C(X,B) = 1, we say that (X,B) has a countable base.

It is easy to check the following Lemma holds.

Lemma 5.8. Let (X,B) be a fuzzifying bornological space. Then C(X,B) = 1 if and only if for all a ∈ [0, 1], the set
{U : B0(U) > a} is countable.

Theorem 5.9. Let (X,BX) and (Y,BY) be fuzzifying bornological linear spaces and suppose that one of the following
conditions is satisfied:

(i). The fuzzifying bornology BY has a countable base, i.e., C(Y,BY) = 1;
(ii). The fuzzifying bornology BY is the von Neumann bornology of a linear fuzzifying topology of Y.

If f satisfies the following relation: [xn
M
→θ] ≤ BY( f ({xn})) for all {xn} ⊆ X. Then f is bounded.

Proof. (i). Let C(Y,BY) = 1, and if f is unbounded, then there exists a subset A ⊆ X such that BY( f→(A)) =∨
f→(A)⊆W

B0(W) < BX(A). If
∨

f→(A)⊆W
B0(W) < t < BX(A), then it can be concluded that B0(W) ≥ t whenever

f→(A) ⊈ W. Since C(Y,BY) = 1, by Lemma 5.8, the set {B0(W) > t} is countable. By Lemma 5.6, we can
assume that {B0(W) > 1 − t1 = t} = {Wn : n ∈ N} and {Wn} is a increasing sequence. For each n ∈ N,
B0(Wn) = B0(nWn) > t, which implies that f→(A) ⊈ nWn. Consequently, there exists a sequence {an} in A
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such that f ( 1
n an) < Wn. It is evident taht [ 1

n an
M
→θ] > t. Additionally, it is possible that BY( f ({ 1

n an}) ≤ t, if
not, assuming BY( f ({ 1

n an}) =
∨

f ({ 1
n an}⊆W

B0(W) > t, there exists n0 ∈N such that f ({ 1
n an} ⊆ Wn0 . However, this

contradicts the fact that f ( 1
n0

) <Wn0 . Hence, we have a sequence { 1
n an} of X such thatBY( f ({ 1

n an}) < [ 1
n an

M
→θ].

It conflicts with the condition. Hence f is bounded.
(ii). If the fuzzifying bornology BY is the von Neumann bornology of a linear fuzzifying topology of

Y, i.e., there is a linear fuzzifying topology τ on Y such that BY = bτ. Assuming taht f is unbounded, there
must be a set A ⊆ X such that BY( f→(A)) = bτ( f→(A)) < BX(A). Let bτ( f→(A)) < t < BX(A), then there is
W ⊆ Y with f→(A) < Abs(W) such that N τ(W) > 1 − t. It follows that f→(A) ⊈ n2W for all n ∈ N, where

W may be balanced. Thus A contains a sequence {an} such that f (an) < n2W. So we have [ 1
n an

M
→θ] > t.

On the other hand, we claim that f ({ 1
n an}) < Abs(W). Otherwise, if f ({ 1

n an}) ∈ Abs(W), there is t0 > 0 such
that f ({ 1

n an}) ⊆ t0W. Then we have n0 ∈ N such that f ({ 1
n an}) ⊆ t0W ⊆ n0W. This contradicts the fact

f (an0 ) < n2
0W. Hence BY( f ({ 1

n an}) ≤ 1−N τ(W) < t. It follows that BY( f ({ 1
n an}) < [ 1

n an
M
→θ]. This contradicts

the condition [xn
M
→θ] ≤ BY( f ({xn})) for all {xn} ⊆ X. Therefore f is bounded.

Theorem 5.10. Let (X, τX) be a locally convex fuzzifying topological linear space. The following assertions are
equivalent:

(i). (X, τX) is a fuzzifying bornological locally convex space;
(ii). For every linear map f from (X, τX) to an arbitrary locally convex fuzzifying topological linear space (Y, τY),

the implication of [Bd( f )] = 1 is that [C( f )] = 1;
(iii). Every linear map f of (X, τX) into a locally convex fuzzifying topological linear space (Y, τY), if [xn → θ] ≤

BY( f ({xn})) for all {xn} ⊆ X. Then f is continuous.

(iv). Every linear map f of (X, τX) into a locally convex fuzzifying topological linear space (Y, τY), if [xn
bτX
→ θ] ≤

BY( f ({xn})) for all {xn} ⊆ X. Then f is continuous.

Proof. By Proposition 5.4, the statements (i) and (ii) are equivalent. In fact, by the proof of Proposition 5.4,
the relationship [Bd( f )] ≤ [C( f )] may be replaced by [Bd( f )] = 1 implies [C( f )] = 1.

(iii)⇒ (ii). For every linear map f from (X, τX) to an arbitrary locally convex fuzzifying topological linear
space (Y, τY) and [Bd( f )] = 1. For any U ∈ 2X with {xn} < Abs(U) and N τX (U) , 0, it follows that {xn} @ U.
Otherwise, if {xn} ⊑ U, there exists n0 ∈ N such that xn ∈ U for all n ≥ n0. In addition, there is k0 > 0 such
that {x1, x2, · · · , xn0−1} ⊆ k0U by Theorem 2.13(P5). This deduces that {xn} ∈ Abs(U). Contradicting to the fact
{xn} < Abs(U). Thus

[xn → θ] =
∧
{xn}@U

{1 −N τX (U)} ≤
∧

{xn}<Abs(U)
{1 −N τX (U)} = bτX ({xn}).

Since [Bd( f )] = 1, we have [xn → θ] ≤ bτX ({xn}) ≤ BY( f ({xn})). Thus [C( f )] = 1.

(ii)⇒(iv). Suppose that [xn
bτX
→ θ] ≤ BY( f ({xn})) for all {xn} ⊆ X, by Theorem 5.9 (ii), [Bd( f )] = 1.

Furthermore, [C( f )] = 1.

(iv)⇒ (iii). For all {xn} ⊆ X with [xn → θ] ≤ BY( f ({xn})), by Theorem 4.7 in [13], [xn
bτX
→ θ] ≤ [xn → θ] ≤

BY( f ({xn})). Then by the hypothesis of (iv), [C( f )] = 1.

6. Conclusions and future work

In this article, we introduce two concepts: convex fuzzifying bornological linear spaces and locally con-
vex fuzzifying topological linear spaces. Based on the mapping of fuzzifying bornivorous, we demonstrate
that any convex fuzzifying bornological linear space can determine the finest locally convex fuzzifying topol-
ogy that is compatible with the fuzzifying bornology. Similarly, each locally convex fuzzifying topological
linear space can derive the coarsest convex fuzzifying bornology that is compatible with the fuzzifying
topology. Furthermore, the relationships between some categories are studied. We show that the category
FT-CFBLS can be embedded in the the category LCFTLS as a reflective subcategory, and the category
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FB-LCFTLS can also be embedded in the the category CFBLS as a reflective subcategory. Meanwhile, the
category FT-CFBLS is topological over the category of linear spaces with respect to the expected forgetful
functor. Lastly, we discuss several characterizations of fuzzifying bornological topologies and present some
equivalent conditions.

An interesting direction for future research is to study the theory of convex fuzzifying bornological linear
spaces and locally convex fuzzifying topological linear spaces. It would also be worthwhile to generalize
these concepts to the case of convex L-fuzzy bornological linear spaces.
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