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Available at: http://www.pmf.ni.ac.rs/filomat

On the spectral singularities of Klein-Gordon equation under interface
conditions
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Abstract. In this study, we begin by deriving the differential operator associated with the Klein-Gordon
equation under interface conditions. Next, we introduce the transfer matrix and the resolvent operator
for the Klein-Gordon operator with interface conditions, observing that the zeros of a component of the
transfer matrix coincide with the poles of the resolvent operator. Building on this observation, we use the
transfer matrix to characterize the eigenvalues and spectral singularities of mentioned operator through
an alternative approach. Finally, we establish the finiteness of eigenvalues and spectral singularities, with
finite multiplicities, under certain specific conditions.

1. Introduction

The study of the spectral properties of differential operators plays a crucial role in various branches of
mathematical physics, especially in the analysis of quantum fields and wave propagation. Spectral theory
provides a deeper understanding of the underlying structure of solutions of differential equations, which
model a wide range of physical and engineering phenomena. By examining the spectrum of a differential
operator—specifically, its eigenvalues and corresponding eigenfunctions—we can gain valuable insights
into the stability, dynamics, and asymptotic behavior of physical systems described by these equations.
This analysis is crucial for classifying solutions, understanding their long-term behavior, and predicting
phenomena such as resonance, wave propagation, and quantum states. In quantum mechanics, for example,
spectral theory helps describe the energy levels of particles while in wave theory, it aids in understanding
the propagation of waves.

In spectral theory, the pioneering work in the field of non-selfadjoint singular differential operators
on an infinite interval belongs to Naimark [17]. He studied the spectral theory of the non-selfadjoint
Sturm-Liouville operator in the space

L2[0,∞) :=

 f :

∞∫
0

| f (x)|2dx < ∞
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using the differential expression

ℓ(y) = −y′′ + q(x)y, x ∈ R+ := [0,∞)

and the boundary condition

y′(0) − ay(0) = 0,

where q is a complex valued function, a is a complex number. In this work, it was shown that the spectrum
of the operator consists of continuous and discrete spectrum, as well as spectral singularities. Moreover,
as is well-known in spectral theory, it was proven that a spectral singularity corresponds to a pole of the
resolvent operator’s kernel and lies on the continuous spectrum, although it is not an eigenvalue. It was
also shown that when the condition∫

∞

0
eϵx

∣∣∣q(x)
∣∣∣ dx < ∞, ϵ > 0

is satisfied, eigenvalues and spectral singularities of the operator are finite in number, each with finite
multiplicities. Then, Pavlov demonstrated how the structure of spectral singularities in differential oper-
ators is influenced by the potential function’s structure at infinity [21]. A key contribution to the spectral
theory of these operators came from Marchenko, who described the Jost solutions, which are of significant
importance in potential theory and especially in problems related to the Schrödinger equations [14]. This
framework enables the characterization of both the eigenvalues set and the set of spectral singularities
through the zeros of the Jost functions. It also provides insight into crucial aspects, such as the finiteness
and multiplicities of eigenvalues, as well as the occurrence of spectral singularities. Understanding these
singularities allows researchers to identify critical transitions in the system, such as the formation of bound
states, resonances, or changes in stability. For these reasons, a great many problems related to the spectral
analysis of Sturm-Liouville operators, as well as different types of operators exhibiting spectral singularities,
have been investigated so far [2, 5, 10, 13, 19, 24].

Among the operators encountered in these contexts, the Klein-Gordon operator stands out due to
its importance, especially in the study of relativistic quantum mechanics and field theory. The classical
Klein-Gordon equation models scalar fields and serves as the relativistic counterpart to the wave equation,
incorporating a mass term that introduces complex and non-trivial dynamics into the system. A thorough
literature review shows that many spectral properties related to differential operators are also applicable to
Klein-Gordon type operators, which will be examined under an impulsive effect in this manuscript. The
most necessary and useful properties and results related to the Klein-Gordon operators on both the entire
axis and the half-axis can be found in [4, 6, 11].

The notion of interface conditions appears in the literature under several equivalent formulations, com-
monly referred to as impulsive conditions, transmission conditions, jump conditions or point interactions,
depending on the mathematical or physical context. For simplicity of exposition, we shall adopt the frame-
work of impulsive operators in place of differential operators with interface conditions throughout this
work. Prior to presenting the so-called impulsive operator, let’s briefly review the existing literature on
impulsive equations. In any equation, the processes involved in mathematical modeling are not always
smooth and continuous. In physical or chemical processes, there may be moments when rapid and instan-
taneous changes occur. While the period of these sudden changes is usually negligible compared to the
overall process, these changes can still significantly affect the system’s overall behavior. These are called
as impulsive effects, and the problems arising from them are known as impulsive problems. Such problems
are studied in various scientific fields and engineering systems, and they present challenges that need to be
addressed. In biological systems, sudden changes can occur when a certain threshold value is surpassed.
For example, the response of cells to a signal or a biological system deviating from its equilibrium state is
associated with impulsive effects. Such changes can quickly impact the health or functions of the organism.
In medicine, rhythm disorders in biological systems, such as heart rhythms, are associated with impulsive
effects that cause sudden changes. For example, a sudden increase or decrease in heart rate can create a
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”burst” effect. Such changes can lead to health issues like heart attacks or epilepsy. In economic systems,
impulsive effects can be seen, especially in optimal control theory, as sudden changes in decisions or inter-
ventions. For example, policies suddenly implemented by the government during an economic crisis or
sudden changes in market conditions can lead to impulsive effects. With the advancement of technology,
attention in impulsive theory has increased, prompting both theoretical and experimental research in this
area. The theory has been greatly developed in the context of differential equations [1, 12, 22, 23]. In terms of
spectral theory, various papers can be highly instructive for readers, as they explore the spectral properties
of different forms of equations with impulsive conditions. [3, 7, 8, 15, 16, 20, 25–28].

Building on the insights from these papers and theoretical investigations, we will focus on Klein-Gordon
s-wave equation

y′′ +
[
η −Q(x)

]2 y = 0, x ∈ R+ \ {h} (1)

subject to the condition

y(0) = 0 (2)

and the interface condition[
y+ (h)
y′+ (h)

]
= T

[
y− (h)
y′
−

(h)

]
, T =

[
θ1 θ2
θ3 θ4

]
, (3)

where

y±(h) = lim
x→h±

y±(x),

Q is a complex valued function, θ1, θ2, θ3, θ4 are complex numbers such that det T , 0 and η is a spectral
parameter.

Firstly, let us present the operator L generated in the Hilbert space L2[0,∞) by the impulsive problem
(1)-(3).

The primary aim of this article is to explore the spectral analysis of the impulsive operator L.
Section 2 provides a concise overview of key concepts related to the Klein Gordon s-wave equations without
impulsive effects, which will be referenced throughout the study. In the subsequent sections, we will derive
the Jost solutions by the help of the transfer matrices, establish asymptotic equalities, and examine the
resolvent operator. Finally, we will discuss the finiteness and multiplicity of eigenvalues and spectral
singularities, under appropriate conditions.

2. Preliminaries

Define φ(x, η) be a solution of equation (1) that satisfies the initial conditions

φ(0, η) = 0, φ′(0, η) = 1

and is expressed as

φ(x, η) =
sin ηx
η
+

∫ x

0

sin η(x − t)
η

[−Q2(t) + 2ηQ(t)]φ(t, η)dt. (4)

It is clear from [11] that φ(x, η) exists, is unique, and is an entire function of η.
In a similar treatment, let us create a new solution of equation (1). Now, we present the following

theorem.
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Theorem 2.1. The solution ψ(x, η) of equation (1) fulfilling the conditions

ψ(0, η) = 1, ψ′(0, η) = 0

exists, is unique, is an entire function of η and can equivalently be characterized as the solution to the integral equation

ψ(x, η) = cosηx +
∫ x

0

sin η(x − t)
η

[−Q2(t) + 2ηQ(t)]ψ(t, η)dt. (5)

Proof. The solution ψ(x, η) which satisfies the integral representation (5), is obtained by using the method
of variation of parameters. Then, the existence and uniqueness of the solution ψ(x, η) are established using
the method of successive approximations. The final part of the theorem follows from Weierstrass Criteria
for convergence of series.

It is worthy of note that

W[φ,ψ](x, η) = −1, η ∈ C,

where W refers to the Wronskian of the solutions φ and ψ that is constant with respect to the variable x.
Consider that the function Q meets the given condition∫

∞

0
x {|Q(x)| + |Q′(x)|} dx < ∞. (6)

Under the condition (6), equation (1) has the solutions [11]

e+(x, η) = eiα(x)eiηx +

∫
∞

x
P+(x, t)eiηtdt (7)

for η ∈ C+ and

e−(x, η) = e−iα(x)e−iηx +

∫
∞

x
P−(x, t)e−iηtdt (8)

for η ∈ C−, where

α(x) =
∫
∞

x
Q(t)dt,

P± are solutions of Volterra type integral equations. In addition, P± and
∂
∂x

(P±) := P±x satisfy the inequalities

∣∣∣P±(x, t)
∣∣∣ ≤ cw

(x + t
2

)
exp

{
γ(x)

}
, (9)

∣∣∣P±x (x, t)
∣∣∣ ≤ c

[
w2

(x + t
2

)
+ β

(x + t
2

)]
(10)

with a positive constant number c, in which

w(x) =
∫
∞

x

{
|Q(t)|2 + |Q′(t)|

}
dt,

γ(x) =
∫
∞

x

{
t |Q(t)|2 + 2 |Q(t)|

}
dt,
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β(x) =
1
4

{
2 |Q(x)|2 + |Q′(x)|

}
.

Using inequality (9), it can be concluded that the solutions e+ and e− are analytic with respect to variable
η, in C+ and C−, respectively. They also exhibit continuity extending up to the real axis. Moreover, e±(x, η)
and e±x (x, η) satisfy the following asymptotics [6]:

e±(x, η) = e±iηx [1 + o(1)] , η ∈ C±, x→∞,

e±x (x, η) = e±iηx [
±iη + o(1)

]
, η ∈ C±, x→∞,

e±(x, η) = e±(iαx+iηx) + o(1), η ∈ C±, |η| → ∞. (11)

On the other side, equation (1) has an unbounded solution ê+
(
x, η

)
matching the asymptotic

lim
x→∞

ê+
(
x, η

)
eiηx = 1

for η ∈ C+. Similarly, (1) has an other unbounded solution ê−
(
x, η

)
that complies with the asymptotic

condition

lim
x→∞

ê−
(
x, η

)
e−iηx = 1,

for η ∈ C−. It is important to note that followings

W[e+, ê+](x, η) = −2iη,
W[e−, ê−](x, η) = 2iη (12)

hold for η ∈ C+ and η ∈ C−, repsectively.

3. Construction of the transfer matrices

Let us denote the solutions of equation (1) in the interval [0, h) and (h,∞)by y− and y+, respectively,
namely{

y− (x) := y (x) , 0 ≤ x < h
y+ (x) := y (x) , x > h.

By the help of linearly independent solutions of (1) in the intervals [0, h) and (h,∞), we can state the general
solution of (1) for η ∈ C+ as{

y−
(
x, η

)
= A−φ

(
x, η

)
+ B−ψ

(
x, η

)
, 0 ≤ x < h

y+
(
x, η

)
= A+e+

(
x, η

)
+ B+ê+

(
x, η

)
, x > h,

where A± and B± are η dependent constant coefficients. Using (4), (5), (7) and (12), we obtain y−
(
h, η

)
,

y+
(
h, η

)
, ∂y−
∂x

∣∣∣∣
x=h

and ∂y+
∂x

∣∣∣∣
x=h

. Then, with the help of the interface condition (3), we have the transfer matrix
M, that satisfies the relation[

A+
B+

]
=M

[
A−
B−

]
, (13)

where

M :=
[
M11 M12
M21 M22

]
= N−1TD
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such that

N :=
[
e+

(
h, η

)
ê+

(
h, η

)
e+x

(
h, η

)
ê+x

(
h, η

)]
and

D :=
[
φ

(
h, η

)
ψ

(
h, η

)
φx

(
h, η

)
ψx

(
h, η

)] .
As det N = −2iη, it is easy to reach

M11
(
η
)
=

i
2η

{
ê+x

(
h, η

) [
θ1φ

(
h, η

)
+ θ2φx

(
h, η

)]
− ê+

(
h, η

) [
θ3φ

(
h, η

)
+ θ4φx

(
h, η

)]}
,

M12
(
η
)
=

i
2η

{
ê+x

(
h, η

) [
θ1ψ

(
h, η

)
+ θ2ψx

(
h, η

)]
− ê+

(
h, η

) [
θ3ψ

(
h, η

)
+ θ4ψx

(
h, η

)]}
,

M21
(
η
)
=

i
2η

{
−e+x

(
h, η

) [
θ1φ

(
h, η

)
+ θ2φx

(
h, η

)]
+ e+

(
h, η

) [
θ3φ

(
h, η

)
+ θ4φx

(
h, η

)]}
, (14)

M22
(
η
)
=

i
2η

{
−e+x

(
h, η

) [
θ1ψ

(
h, η

)
+ θ2ψx

(
h, η

)]
+ e+

(
h, η

) [
θ3ψ

(
h, η

)
+ θ4ψx

(
h, η

)]}
.

Let us think about any two solutions of equation (1) which are stated as

E+
(
x, η

)
=

{
A+
−
φ

(
x, η

)
+ B+

−
ψ

(
x, η

)
, 0 ≤ x < h

A++e+
(
x, η

)
+ B++ê+

(
x, η

)
, h < x < ∞ (15)

and

F+
(
x, η

)
=

{
A−
−
φ

(
x, η

)
+ B−

−
ψ

(
x, η

)
, 0 ≤ x < h

A−+e+
(
x, η

)
+ B−+ê+

(
x, η

)
, h < x < ∞, (16)

where A±± and B±± are complex coefficients. If E+
(
x, η

)
and F+

(
x, η

)
are associated with the Jost solution of

impulsive boundary value problem (1)-(3) and the boundary condition (2), respectively, then we obtain

B++ = 0, A++ = 1, A−− = k1, B−− = 0, (17)

where k1 is a nonzero real constant. Additionally, by the interface condition (3) and (13), we have

A+− =
M22(η)
det M

, B+− = −
M21(η)
det M

, A−+ = k1M11(η), B−+ = k1M21(η) (18)

uniquely for the solutions E+
(
x, η

)
and F+

(
x, η

)
. Obviously, when these coefficients (17) and (18) are

substituted into (15) and (16), we obtain the new representations

E+
(
x, η

)
=

 M22
(
η
)

det M
φ

(
x, η

)
−

M21
(
η
)

det M
ψ

(
x, η

)
, 0 ≤ x < h

e+
(
x, η

)
, h < x < ∞

(19)

and

F+
(
x, η

)
=

{
k1φ

(
x, η

)
, 0 ≤ x < h

k1M11
(
η
)

e+
(
x, η

)
+ k1M21

(
η
)

ê+
(
x, η

)
, h < x < ∞ (20)

for η ∈ C+.
Now, using (19) and (20), we can present the next lemma.
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Lemma 3.1. The Wronskian of the solutions E+
(
x, η

)
and F+

(
x, η

)
fulfilles the subsequent equality for all η ∈ C+\ {0},

W[E+,F+]
(
x, η

)
=

 −
k1M21(η)

det M
, x ∈ [0, h)

−2iηk1M21(η), x ∈ (h,∞).

Besides, we shall denote the solutions of equation (1) in the interval [0, h) and (h,∞) by ỹ− and ỹ+,
respectively, that is{

ỹ− (x) := ỹ (x) , 0 ≤ x < h
ỹ+ (x) := ỹ (x) , x > h.

Employing linearly independent solutions of (1) in the intervals [0, h) and (h,∞), we can state the general
solution of (1) for η ∈ C− as{

ỹ−
(
x, η

)
= Ã−φ

(
x, η

)
+ B̃−ψ

(
x, η

)
, 0 ≤ x < h

ỹ+
(
x, η

)
= Ã+e−

(
x, η

)
+ B̃+ê−

(
x, η

)
, x > h,

where Ã± and B̃± are η dependent constant coefficients. By the help of (4), (5), (8) and (12), we get ỹ−
(
h, η

)
,

ỹ+
(
h, η

)
, ∂ỹ−

∂x

∣∣∣∣
x=h

and ∂ỹ+
∂x

∣∣∣∣
x=h

. Afterward, based on (3), we have the transfer matrix M̃, that satisfies the
relation[

Ã+
B̃+

]
= M̃

[
Ã−
B̃−

]
, (21)

where

M̃ :=
[
M̃11 M̃12
M̃21 M̃22

]
= Ñ−1TD

such that

Ñ :=
[
e−

(
h, η

)
ê−

(
h, η

)
e−x

(
h, η

)
ê−x

(
h, η

)] .
As det Ñ = 2iη, it is easy to obtain

M̃11
(
η
)
= −

i
2η

{
ê−x

(
h, η

) [
θ1φ

(
h, η

)
+ θ2φx

(
h, η

)]
− ê−

(
h, η

) [
θ3φ

(
h, η

)
+ θ4φx

(
h, η

)]}
,

M̃12
(
η
)
= −

i
2η

{
ê−x

(
h, η

) [
θ1ψ

(
h, η

)
+ θ2ψx

(
h, η

)]
− ê−

(
h, η

) [
θ3ψ

(
h, η

)
+ θ4ψx

(
h, η

)]}
,

M̃21
(
η
)
= −

i
2η

{
−e−x

(
h, η

) [
θ1φ

(
h, η

)
+ θ2φx

(
h, η

)]
+ e−

(
h, η

) [
θ3φ

(
h, η

)
+ θ4φx

(
h, η

)]}
, (22)

M̃22
(
η
)
= −

i
2η

{
−e−x

(
h, η

) [
θ1ψ

(
h, η

)
+ θ2ψx

(
h, η

)]
+ e−

(
h, η

) [
θ3ψ

(
h, η

)
+ θ4ψx

(
h, η

)]}
.

Let us present any two solutions of equation (1) which are stated as

E−
(
x, η

)
=

{
Ã+
−
φ

(
x, η

)
+ B̃+

−
ψ

(
x, η

)
, 0 ≤ x < h

Ã++e−
(
x, η

)
+ B̃++ê−

(
x, η

)
, h < x < ∞ (23)
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and

F−
(
x, η

)
=

{
Ã−−φ

(
x, η

)
+ B̃−

−
ψ

(
x, η

)
, 0 ≤ x < h

Ã−+e−
(
x, η

)
+ B̃−+ê−

(
x, η

)
, h < x < ∞, (24)

where Ã±
±

and B̃±
±

are complex coefficients. Assuming that E−
(
x, η

)
and F−

(
x, η

)
correspond to the Jost

solution of impulsive boundary value problem (1)-(3) and the boundary condition (2), respectively, then
we obtain

B̃++ = 0, Ã++ = 1, Ã−− = k2, B̃−− = 0. (25)

where k2 is a nonzero real constant. Additionally, by the interface condition (3) and (21), we have

Ã+− =
M̃22(η)

det M̃
, B̃+− = −

M̃21(η)

det M̃
, Ã−+ = k2M̃11(η), B̃−+ = k2M̃21(η) (26)

uniquely for the solutions E−
(
x, η

)
and F−

(
x, η

)
. Obviously, when these coefficients (25) and (26) are

substituted into (23) and (24), we obtain the new representations

E−
(
x, η

)
=


M̃22

(
η
)

det M̃
φ

(
x, η

)
−

M̃21
(
η
)

det M̃
ψ

(
x, η

)
0 ≤ x < h

e−
(
x, η

)
, h < x < ∞

(27)

and

F−
(
x, η

)
=

{
k2φ

(
x, η

)
, 0 ≤ x < h

k2M̃11
(
η
)

e−
(
x, η

)
+ k2M̃21

(
η
)

ê−
(
x, η

)
, h < x < ∞. (28)

for η ∈ C−.
Now, using (27) and (28), we can present the next lemma.

Lemma 3.2. For all η ∈ C−\ {0}, the following equality is satisfied:

W[E−,F−]
(
x, η

)
=

{
−

k2M̃21(η)
det M̃ , x ∈ [0, h)

2iηk2M̃21(η), x ∈ (h,∞).

4. Analysis of eigenvalues and spectral singularities

Let us present the resolvent sets of L as

ρ1(η) =
{
η : η ∈ C+,W[E+,F+](η) , 0

}
, ρ2(η) =

{
η : η ∈ C−,W[E−,F−](η) , 0

}
.

By applying standard methods [18], it is evident that

ρ(L
(
η
)
) = ρ1(η) ∪ ρ2(η).

Then, we can express the resolvent operator of L as stated in the next theorem.

Theorem 4.1. The resolvent operator of L is defined as

Rη(L)µ(x) =
∫
∞

0
G(x, t; η)µ(t)dt

for η ∈ ρ(L
(
η
)
) and µ ∈ L2[0,∞), where the Green’s function for L is provided by

G
(
x, t; η

)
=

{
G+(x, t; η), η ∈ ρ1(η)
G−(x, t; η), η ∈ ρ2(η),
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where

G+
(
x, t; η

)
=


−

F+(t, η)E+(x, η)
W[E+,F+](x, η)

, 0 ≤ t ≤ x, t, x , h

−
E+(t, η)F+(x, η)
W[E+,F+](x, η)

, x ≤ t < ∞, t, x , h

and

G−
(
x, t; η

)
=


−

F−(t, η)E−(x, η)
W[E−,F−](x, η)

, 0 ≤ t ≤ x, t, x , h

−
E−(t, η)F−(x, η)
W[E−,F−](x, η)

, x ≤ t < ∞, t, x , h.

Using conventional techniques [18], we can now define the sets of eigenvalues and spectral singularities
for the impulsive operator L as follows:

σd (L) =
{
η : η ∈ C+ and M21(η) = 0

}
∪

{
η : η ∈ C− and M̃21(η) = 0

}
,

σss (L) =
{
η : η ∈ R∗,M21(η) = 0

}
∪

{
η : η ∈ R∗, M̃21(η) = 0

}
,

whereR∗ := R \ {0}. It is worthy of note that by utilizing (14), (22), and W[e+, e−](x, η) = −2iη, for η ∈ R∗, we
can directly obtain that{

η : η ∈ R∗,M21(η) = 0
}
∩

{
η : η ∈ R∗, M̃21(η) = 0

}
= ∅.

In order to examine the quantitative characteristics of sets σss (L) and σd (L), it is essential to investigate the
quantitative features of the zeros of M21 and M̃21 in C+ and C−, respectively. To achieve this, some essential
sets may be defined as follows:

K1 =
{
η : η ∈ C+,M21(η) = 0

}
, K̃1 =

{
η : η ∈ C−, M̃21(η) = 0

}
,

K2 =
{
η : η ∈ R∗,M21(η) = 0

}
, K̃2 =

{
η : η ∈ R∗, M̃21(η) = 0

}
.

Consequently, the sets σd (L) and σss (L) can be redefined as follows:

σd (L) =
{
η : η ∈ C+ ∪ C−, η ∈ K1 ∪ K̃1

}
, σss (L) =

{
η : η ∈ R∗, η ∈ K2 ∪ K̃2

}
.

Theorem 4.2. Based on condition (6), the function M21 fulfills the following asymptotic equations.
(1) If θ2 , 0, then

ηM21(η) = −
iθ2

4
eiα(h) [iη +O(1)

]
, η ∈ C+, |η| → ∞.

(2) If θ2 = 0, then

ηM21(η) =
θ1

2
eiα(h)

[
1 +O(

1
η

)
]
, η ∈ C+, |η| → ∞.

Proof. The function M21 defined by equation (14) can be arranged as

ηM21(η) =
i
2

{
−θ1

[
e+x

(
h, η

)
e−iηh

] [
φ

(
h, η

)
eiηh

]
− θ2

[
e+x

(
h, η

)
e−iηh

] [
φx

(
h, η

)
eiηh

]
+θ3

[
e+

(
h, η

)
e−iηh

] [
φ

(
h, η

)
eiηh

]
+ θ4

[
e+

(
h, η

)
e−iηh

] [
φx

(
h, η

)
eiηh

]}
.
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Using the following asymptotic

e+x
(
x, η

)
= eiα(x)eiηx[iη +O(1)], x ∈ [0,∞), η ∈ C+,

∣∣∣η∣∣∣→∞
and (11), the last equation can be rewritten as

ηM21(η) =
ieiα(h)

2

{
−θ1

[
iη +O(1)

] 1
η

[
e2iηh

2i
−

1
2i
+ eiηh

∫ h

0
sin η(h − t)[−Q2(t) + 2ηQ(t)]φ(t, η)dt

]
−θ2

[
iη +O(1)

] [ e2iηh

2
+

1
2
+ eiηh

∫ h

0
cos η(h − t)[−Q2(t) + 2ηQ(t)]φ(t, η)dt

]
+θ3 [1 + o(1)]

[
e2iηh

2iη
−

1
2iη
+ eiηh

∫ h

0

sin η(h − t)
η

[−Q2(t) + 2ηQ(t)]φ(t, η)dt
]

+θ4 [1 + o(1)]
[

e2iηh

2
+

1
2
+ eiηh

∫ h

0
cos η(h − t)[−Q2(t) + 2ηQ(t)]φ(t, η)dt

]}

for η ∈ C+ and
∣∣∣η∣∣∣→∞. Hence, if θ2 , 0, the asymptotic form is obtained as

ηM21(η) = −
iθ2

4
eiα(h) [iη +O(1)

]
for η ∈ C+ and

∣∣∣η∣∣∣→∞. If θ2 = 0, it is obtained as

ηM21(η) =
θ1

2
eiα(h)

[
1 +O(

1
η

)
]

for η ∈ C+ and
∣∣∣η∣∣∣→∞.

Here, we would like to emphasize an important point: since det T , 0, the complex numbers θ1 and θ2
cannot be zero simultaneously. This completes the proof.

Theorem 4.3. Based on condition (6), the function M̃21 fulfills the following asymptotic equations.
(1) If θ2 , 0, then

ηM̃21(η) =
iθ2

4
e−iα(h) [

−iη +O(1)
]
, η ∈ C−, |η| → ∞.

(2) If θ2 = 0, then

ηM̃21(η) =
θ1

2
e−iα(h)

[
1 +O(

1
η

)
]
, η ∈ C−, |η| → ∞.

Proof. The proof is obtained similarly to the proof of the previous theorem, using the asymptotic equality

e−x
(
x, η

)
= e−iα(x)e−iηx[−iη +O(1)], x ∈ [0,∞), η ∈ C−,

∣∣∣η∣∣∣→∞.
Lemma 4.4. Based on condition (6),

i) the sets of K1 and K̃1 are bounded with at most countably many elements, and their limit points are restricted
to a bounded subinterval on the real axis,

ii) the sets of K2 and K̃2 are compact and their linear Lebesgue measure are zero.
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Proof. From Theorem 4.2, it can be concluded that for sufficiently large η ∈ C+, M21(η) , 0. Therefore, the
zeros of M21(η) in C+ are confined to a limited region, which establishes the boundedness of the sets K1 and
K2. With a similar perspective, Theorem 4.3 demonstrates that M̃21(η) cannot be zero for sufficiently large
η ∈ C−. Thus, the boundedness of sets K̃1 and K̃2 is a direct consequence of Theorem 4.3. Additionally,
since M21(η) and M̃21(η) are analytic in C+ and C−, respectively, the sets K1 and K̃1 consist of at most
countably many elements, with their limit points residing within a restricted subinterval of R. By utilizing
the uniqueness theorem for analytic functions, we also establish that K2 and K̃2 are closed sets and their
linear Lebesgue measure are zero.

Theorem 4.5. Based on condition (6),
i) the set of eigenvalues of L are bounded with at most countably many elements, and their limit points are

restricted to a bounded subinterval on the real axis,
ii) the set of spectral singularities of L are compact and their linear Lebesgue measure are zero.

In the rest of the paper, our focus will be solely on the zeros of M21(η) in C+. A similar approach can also
be applied to analyze the zeros of M̃21(η) in C−.

An additional condition must be placed on the functions Q and Q′ to guarantee that the sets σd(L) and
σss(L) contain a finite number of elements.

Theorem 4.6. If

lim
x→∞

Q(x) = 0, |Q′(x)| ≤ C exp(−ϵx), (29)

hold for all ϵ > 0 and arbitrary positive constant C, then the eigenvalues and spectral singularities of the operator L
are finite in number, with each having a finite multiplicity.

Proof. By the help of the conditions (29), we obtain that

|Q(x)| ≤ C exp(−ϵx). (30)

By applying inequalities (9), (10) and (30), it has been demonstrated that∣∣∣P+(h, t)
∣∣∣ ≤ c1 exp

(
−t
ϵ
4

)
,

∣∣∣P+x (h, t)
∣∣∣ ≤ c2 exp

(
−t
ϵ
4

)
which indicate that the function M21 can be analytically extended from the real axis to the region Imη > −ϵ/4
on the lower half-plane. Consequently, σd(L) and σss(L) do not have any limit points on the real axis.
Furthermore, utilizing Theorem 4.5, it is established that σd(L) and σss(L) are bounded sets containing a
finite number of elements. Finally, based on the properties of analytic functions [9], it is observed that the
zeros of M21 in the set C+ have finite multiplicities. In a similar manner, it can be demonstrated that if
condition (29) is satisfied, M̃21(η) in C− has a finite number of zeros, each with a finite multiplicity.

Now, let us define the set of all limit points of K1 as K3, all limit points of K2 as K4 and the set of all zeros
of M21 with infinite multiplicity in C+ as K5. Utilizing the existence and uniqueness principles for analytic
functions [9], we conclude that

K3 ⊂ K2, K4 ⊂ K2, K5 ⊂ K2.

Given the continuity of all orders derivatives of M21 extending to the real line, it is obtained that

K3 ⊂ K5, K4 ⊂ K5.

By applying a condition less restrictive than (29), the conclusion of Theorem 4.6 is fulfilled in the theorem
below.
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Theorem 4.7. Provided that

lim
x→∞

Q(x) = 0, |Q′(x)| ≤ C exp(−ϵxδ) (31)

hold for arbitrary constant C, some ϵ > 0 and
1
2
≤ δ < 1, then

K5 = ∅.

Proof. Since the function M21, which is analytic on the real axis under condition (31), does not have to
remain analytic in the lower half-plane , it is not possible to establish the finiteness of eigenvalues and
spectral singularities as done in Theorem 4.6. In another approach, based on (14), the equation

ηM21(η) =
i
2
[
−θ1R1(η)R2(η) − θ2R1(η)R3(η) + θ3R4(η)R2(η) + θ4R4(η)R3(η)

]
(32)

can be expressed, where

R1(η) =
[
iα′(h) + iη

]
eiα(h)

− P+(h, h) +
∫
∞

h
P+x (h, t)eiη(t−h)dt,

R2(η) = eiηh sin ηh
η
+ eiηh

∫ h

0

sin η(h − t)
η

[−Q2(t) + 2ηQ(t)]φ(t, η)dt,

R3(η) = eiηh cos ηh + eiηh
∫ h

0
cos η(h − t)[−Q2(t) + 2ηQ(t)]φ(t, η)dt,

R4(η) = eiα(h) +

∫
∞

h
P+(h, t)eiη(t−h)dt.

Given that the function M21 is analytic in the open upper half-plane and all of its derivatives are continuous
in the closed upper half-plane, the inequality∣∣∣∣∣ dm

dηm Ri(η)
∣∣∣∣∣ ≤ c3

∫
∞

h
tm exp

(
−
ϵ
2

( t
2

)δ)
dt, i = 1, 4, (33)

can be derived assuming (31), where η ∈ C+,
∣∣∣η∣∣∣ < S and m = 2, 3, 4, ....

Considering that R2 and R3 have continuous derivatives of all orders with respect to the variable η,∣∣∣∣∣ dm

dηm Ri(η)
∣∣∣∣∣ ≤ c4, i = 2, 3 (34)

can be obtained for η ∈ C+,
∣∣∣η∣∣∣ < S, m = 1, 2, 3, , ... and positive constant c4 using Granoul inequality. By the

help of (32)-(34), the inequality∣∣∣∣∣ dm

dηm (ηM21)
∣∣∣∣∣ ≤ (1

2

)m
 m∑

s=0

(
m
s

) ∣∣∣∣∣ dm−s

dηm−s R1(η)
∣∣∣∣∣ [|θ1|

m
∣∣∣∣∣ ds

dηs R2(η)
∣∣∣∣∣ + |θ2|

m
∣∣∣∣∣ ds

dηs R3(η)
∣∣∣∣∣]

+

m∑
s=0

(
m
s

) ∣∣∣∣∣ dm−s

dηm−s R4(η)
∣∣∣∣∣ [|θ3|

m
∣∣∣∣∣ ds

dηs R2(η)
∣∣∣∣∣ + |θ4|

m
∣∣∣∣∣ ds

dηs R3(η)
∣∣∣∣∣]


≤ c5γ

∞∫
0

tm exp
[
−
ϵ
2

( t
2

)δ]
dt (35)

can be found for γ :=
[
|θ1|

m + |θ2|
m + |θ3|

m + |θ4|
m]

and m = 2, 3, 4, ... .
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At this point, using (35), we can express∣∣∣∣∣ dm

dηm (ηM21)
∣∣∣∣∣ ≤ Um

for m = 2, 3, ... and η ∈ C+,
∣∣∣η∣∣∣ < S, where

Um = c5γ

∞∫
0

tm exp
[
−
ϵ
2

( t
2

)δ]
dt.

Given that M21 cannot be zero, Pavlov’s Theorem [21] leads to the conclusion that∫ z

0
ln J(t)dµ(K5, t) > −∞, (36)

where J(t) = inf
{Umtm

m!
: m = 2, 3, ...

}
andµ(K5, t) denotes the linear Lebesgue measure of the t−neighborhood

surrounding K5. On the other side, the inequality

Um ≤ c6γbmmm(1−δ)/δm!

is satisfied through the use of the Gamma function, where c6, b, c5, ϵ, δ are constants dependent on each
other. As a result, it follows that

J(t) ≤ c6γ exp
{
−

1 − δ
δ

e−1b−δ/(1−δ)t−δ/(1−δ)
}
. (37)

By applying equations (36) and (37), it can be deduced that∫ z

0
t−δ/(1−δ)dµ(K5, t) < ∞. (38)

Given that δ/(1 − δ) ≥ 1, it is concluded from inequality (38) that µ(K5, t) = 0, meaning K5 = ∅.

5. Conclusion

In this study, we have investigated the spectral properties of the impulsive Klein-Gordon s-wave
equation, particularly focusing on the associated impulsive differential operator. By employing the transfer
matrix and the resolvent operator, we demonstrated how the zeros of the transfer matrix components are
related to the poles of the resolvent operator, providing a novel approach to describe the sets of eigenvalues
and spectral singularities. Our analysis confirmed that, under specific conditions, the operator exhibits a
finite number of eigenvalues and spectral singularities with finite multiplicities.

This work not only contributes to the understanding of the spectral behavior of impulsive operators but
also offers new insights into the application of transfer matrix techniques in spectral theory. The results
presented here pave the way for future studies on the spectral analysis of more complex impulsive systems.
Further research could explore the broader implications of these results, extending the methodology first to
impulsive Klein-Gordon operators on the whole real axis, and then to other types of differential operators.
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