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Abstract. A graph is said to be determined by its signless Laplacian spectrum (abbreviated as DQS) if no
other non-isomorphic graph shares the same signless Laplacian spectrum. In this paper, we establish the
following results:

(1) Every graph of the form K1 ∨ (Cs ∪ qK2), where q ≥ 1, s ≥ 3, and the number of vertices is at least
16, is DQS;

(2) Every graph of the form K1 ∨ (Cs1 ∪Cs2 ∪ · · · ∪Cst ∪ qK2), where t ≥ 2, q ≥ 1, si ≥ 3, and the number
of vertices is at least 52, is DQS.

Here, Kn and Cn denote the complete graph and the cycle of order n, respectively, while ∪ and ∨ represent
the disjoint union and the join of graphs. Moreover, the signless Laplacian spectrum of the graphs under
consideration is computed explicitly.

1. Introduction

Let G = (V,E) be a finite simple undirected graph. The number of vertices in G is called the order of G,
denoted by n(G) (or simply n). The number of edges is referred to as the size of G, denoted by m(G) (or m).

We use the notation Kn and Cn to denote, respectively, the complete graph and the cycle on n vertices.
For two graphs G and H, their disjoint union is denoted by G∪H. The disjoint union of q copies of a graph G
is denoted by qG. Furthermore, the join of G and H, denoted by G∨H, is the graph obtained from G∪H by
adding all edges between every vertex of G and every vertex of H.

Let D(G) and A(G) be the diagonal matrix of vertex degree sequence and the adjacency matrix of G,
respectively. The signless Laplacian matrix of G is Q(G) = A(G) + D(G). Its eigenvalues are called signless
Laplacian eigenvalues, and they form the signless Laplacian spectrum of G. For brevity, the foregoing notions
will be referred to as the Q-eigenvalues and the Q-spectrum, respectively. Two graphs are said to be Q-
cospectral if they share the same Q-spectrum. In this context, a graph G is said to be determined by its signless
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Laplacian spectrum (abbreviated as DQS) if no other non-isomorphic graph has the same Q-spectrum. When
the context is clear, the prefix Q- will be omitted.

Identifying graphs that are, or are not, determined by their spectrum is one of the oldest and most
extensively studied problems in spectral graph theory. Its origins can be traced back to the 1950s, when
Günthard and Primas first investigated the question in the context of chemical applications [10].

Based on a combination of theoretical insights, exhaustive searches of graphs of small order, and
comparisons of the spectra of the signless Laplacian, Laplacian, and adjacency matrices, Cvetković and Simić
concluded that cospectrality occurs least frequently with respect to the Q-spectrum [4, 5]. This observation
led them to the informal conclusion that spectral graph theory founded on the signless Laplacian may be
more effective than those based on the other two matrices, which have traditionally received much greater
attention in the literature.

Determining whether a graph is identified by its spectrum remains a challenge problem, even for graphs
with seemingly simple structures. For foundational results and general developments, we refer the reader
to [7, 8], while comprehensive treatments of DQS graphs can be found in [4, 5]. Specific families of DQS
graphs have been investigated in [6, 13, 19, 21, 22, 24] and references therein. For a thorough survey and
further discussion on spectral determination, see [3–5].

Motivated by the results of [6], which provide a complete classification of graphs whose components are
paths and cycles according to whether or not they are DQS, we have undertaken an ambitious project aimed
at investigating the determination by the Q-spectrum of cones over graphs whose components consist of
cycles, edges, and isolated vertices. It turns out that, in its general formulation, this problem is highly
non-trivial and demands a detailed and delicate spectral analysis. The case in which edge components
are excluded has already been resolved in [22], while in the present paper we advance this line of inquiry
by examining the complementary situation in which isolated vertices are omitted. Our broader goal is
to progressively identify structural features that determine when the Q-spectrum is a complete invariant
for cones over such decomposable graphs, thereby enriching the general understanding of spectral graph
determination.

A particularly interesting phenomenon arises in this context. Even seemingly minor alterations in the
configuration of the underlying graph can produce markedly different spectral behaviours. For example,
the absence of a specific component type or the restriction to cycles of certain lengths may significantly
affect the uniqueness of the Q-spectrum. Depending on these structural changes, the resulting cone
may either be uniquely determined by its Q-spectrum or, conversely, give rise to entire families of non-
isomorphic yet Q-cospectral graphs. This diversity of outcomes highlights the intricate relationship between
combinatorial composition and spectral properties, and further demonstrates that the interaction among
different component types within the base graph plays a decisive role in shaping the spectral identity of the
cone. In contrast, the results presented in this paper establish families of DQS graphs without exception.

We prove the following theorems.

Theorem 1.1. Every graph K1 ∨ (Cs ∪ qK2), with q ≥ 1, s ≥ 3, and at least 16 vertices, is DQS.

Theorem 1.2. Every graph K1 ∨ (Cs1 ∪ Cs2 ∪ · · · ∪ Cst ∪ qK2), with t ≥ 2, q ≥ 1, si ≥ 3 (1 ≤ i ≤ t), and at least 52
vertices, is DQS.

The class of cones described in the above two theorems is illustrated in Figure 1. It can be observed
that Theorem 1.2 constitutes a natural extension of the results established in [12, 23], which address the
DQS problem for joins between an isolated vertex and collections of vertex disjoint cycles (i.e., multiwheel
graphs). Moreover, it extends the findings on the Q-spectral determination of friendship graphs presented
in [19]. In addition, Theorems 1.1 and 1.2 are closely related to the results in [2, 8, 14, 16, 17, 20, 22, 24, 25],
which investigate similar graph joins or graph products. It should also be noted that Theorem 1.2 represents
only a partial generalization of Theorem 1.1, owing to the additional assumption on the order of the graph.
Last but not least, the threshold values constraining the number of vertices that appear in the formulations of
both statements stem from more sophisticated spectral conditions, which are established in the forthcoming
Lemma 2.6 (for n ≥ 16 in the former theorem) and Lemma 5.2 (for n ≥ 52 in the latter theorem).
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Figure 1: The graph K1 ∨ (Cs1 ∪ Cs2 ∪ · · · ∪ Cst ∪ qK2).

The proofs are carried out in a more general setting, wherein the Q-spectra of the graphs under consid-
eration are explicitly computed. In particular, several auxiliary results are established in a form that also
accommodates the case where the cycles degenerate into two parallel edges. In this way, the corresponding
results naturally extend to the setting of particular multigraphs.

The remainder of the paper is organized as follows. Section 2 introduces additional terminology and
notation, as well as several known results. In Section 3, we compute the Q-spectrum of the graphs under
consideration and present auxiliary results concerning relationships among Q-eigenvalues. The proofs of
Theorems 1.1 and 1.2 are provided in Sections 4 and 5, respectively.

2. Preliminaries

We write NG(v) and dG(v) to denote the set of neighbours of a vertex v and the degree of the same vertex
in a graph G, respectively. For a vertex subset X ⊂ V, G[X] denotes the subgraph induced by X. The graphs
obtained by deleting and edge e and a vertex v of G are denoted by G − e and G − v, respectively. The
Q-eigenvalues of graph G of order n are denoted by

κ1(G) ≥ κ2(G) ≥ · · · ≥ κn(G).

Since Q(G) is positive semidefinite, it holds κn(G) ≥ 0. Moreover, the equality occurs if and only if G
has a bipartite component [18, Theorem 1.18]. The Q-spectrum of G is denoted by SQ(G); of course, it is
considered as a multiset.

Henceforth, mulG(κ) denotes the multiplicity of an eigenvalue κ in SQ(G), while r(q) denotes either q
copies of a real number r or a vector of length q with all entries equal to r, depending on the context.

For convenience, we assume that the vertices of a graph under consideration are labelled in such a way
that the corresponding degrees are arranged non-increasingly, i.e., d1 ≥ d2 ≥ · · · ≥ dn and, correspondingly,
if the vertices of G are v1, v2, . . . , vn, then we always assume that the degree of vi is di, 1 ≤ i ≤ n. In this
context, nq(G) denotes the number of vertices of degree q (for short, q-vertices) in V(G) \ {v1}, that is,

nq(G) = |{u : u ∈ V(G) \ {v1} and dG(u) = q}|,

where v1 is a vertex attaining the maximum degree. Unless otherwise stated, the graph argument in the
preceding notations will be omitted when no ambiguity arises.

The discussion now continues with a selection of results from linear algebra, some of which are well
known. The first two results are drawn from [1, 9, 18]. Adapting the previous notation, let λi(B), 1 ≤ i ≤ n,
denote the ith largest eigenvalue of an n × n real symmetric matrix B. Under this notation, we have
κi(G) = λi(Q(G)).
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Lemma 2.1. Let B be an n × n real symmetric matrix. Then its largest eigenvalue satisfies

λ1(B) = max
∥x∥=1

x⊺Bx,

where x ∈ Rn and ∥ · ∥ denotes the Euclidean norm. If, in particular, x = (x(u1), x(u2), . . . , x(un))⊺ is a real unit vector
defined on the vertex set of a graph G, then

κ1(G) ≥ x⊺Q(G)x =
∑

uv∈E(G)

(x(u) + x(v))2,

with equality if and only if x is an eigenvector associated with κ1(G).

Suppose now that the columns of B are indexed by X = {1, 2, . . . ,n}. For a partition X1,X2, . . . ,Xk, we set

B =


B1,1 . . . B1,k
...

. . .
...

Bk,1 . . . Bk,k


where Bi, j denotes the block of B formed by the rows in Xi and the columns in X j. If qi, j denotes the average
row sum in Bi, j, then the matrix N = [qi, j] is a quotient matrix of B. If, for every i, j, Bi, j has a constant row
sum, then the partition is called equitable, and N is refined to equitable quotient matrix of B.

Lemma 2.2. Let B be a non-negative irreducible real symmetric matrix, and N an equitable quotient matrix of B. If
λ is an eigenvalue of N, then λ is also an eigenvalue of B. Moreover, the largest eigenvalues of B and N coincide.

The remainder of this section is devoted to specific results concerning Q-eigenvalues. We begin with a
particular lower bound on κi.

Lemma 2.3. [15] For a graph G, let X = {u1,u2, . . . ,uk} ⊂ V(G) and H � G[X]. If, for 1 ≤ j ≤ k, we have
0 ≤ q j ≤ dG(u j), then the inequality

κi(G) ≥ λi

(
diag(q1, q2, . . . , qk) + A(H)

)
holds for 1 ≤ i ≤ k.

We also need the following interlacing between the eigenvalues of G and an edge-deleted subgraph.
It is a ‘signless Laplacian’ counterpart to the standard Cauchy interlacing related to eigenvalues of the
adjacency matrix.

Lemma 2.4. [11] If G is a graph of order n (n ≥ 3) and e ∈ E(G), then

κ1(G) ≥ κ1(G − e) ≥ κ2(G) ≥ κ2(G − e) ≥ · · · ≥ κn(G) ≥ κn(G − e) ≥ 0.

The following lemmas describe the relationship between the Q-eigenvalues and the structure of a graph,
particularly in relation to its vertex degrees.

Lemma 2.5. [23] If G is a graph of order n ≥ 12 satisfying κ1 > n > 5 ≥ κ2 ≥ κn > 0, then G is necessarily
connected, along with d1 ≥ n − 3 and d2 ≤ 4.

The next result assumes almost the same chain of inequalities and establishes certain properties of a
putative cospectral mate.

Lemma 2.6. [21] Let G be a graph of order n ≥ 16 satisfying κ1(G) > n > 5 > κ2(G) ≥ κn(G) > 0. If H and G are
Q-cospectral, then H is necessarily connected, with d2(H) ≤ 4 and d1(H) = d1(G) ∈ {n − 1,n − 2}.
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We proceed with an interplay between κ1 and the largest vertex degree.

Lemma 2.7. [21] Let G be a connected graph of order n, with d2 ≤ 4. If either d1 ≥ 8 > dn ≥ 2 or d1 ≥ 11 > 1 = dn,
then κ1 ≤ d1 + 3.

Finally, we consider the spectral moments. For a non-negative integer q, the sum

Tq(G) =
n∑

i=1

κq
i (G)

is the qth spectral moment of the signless Laplacian, or, equivalently, the qth Q-spectral moment of G.
For a graph G, we write ςG(F) to denote the number of subgraphs isomorphic to a prescribed graph F.

Lemma 2.8. [3] If G is a graph of order n and size m, then

T1(G) =
n∑

i=1

di = 2m, T2(G) =
n∑

i=1

d2
i + 2m, and T3(G) = 6ςG(C3) +

n∑
i=1

d3
i + 3

n∑
i=1

d2
i .

All lemmas presented in this section constitute, to a greater or lesser extent, standard spectral tools
employed in the subsequent sections. Most of them are adapted to the context of the Q-spectrum. Lemma 2.1
including a particular case involving κ1 is applied only in the proof of Lemma 3.8 , while Lemma 2.3
regarding κ2 is also applied only once, in the proof of Lemma 4.2. The remaining results are referred to
more frequently throughout the paper.

3. Q-eigenvalues of certain cones

This section is concerned with the Q-eigenvalues of certain cones including, but not limited to, the
following cases:

K1 ∨ (Cs1 ∪ Cs2 ∪ · · · ∪ Cst ∪ qK2), K1 ∨ (P3 ∪ Cs1 ∪ Cs2 ∪ · · · ∪ Cst ∪ qK2), and K1 ∨ (Pl ∪ G1),

where Pl stands for the l-vertex path and G1 is an arbitrary graph.

3.1. Q-spectrum of K1 ∨ (Cs1 ∪ Cs2 ∪ · · · ∪ Cst ∪ qK2)
This subsection focuses on the spectrum of the specific family described in the title.

Lemma 3.1. Let n be the order of G � K1 ∨ (Cs1 ∪ Cs2 ∪ · · · ∪ Cst ∪ qK2), with t, q ≥ 1 and si ≥ 3 (1 ≤ i ≤ t). Then

SQ(G) =
{
r1, r2, r3, 1(q), 3(q−1), 5(t−1), 3 + 2 cos

2 jπ
si

: 1 ≤ j ≤ si − 1, 1 ≤ i ≤ t
}
,

where r1, r2 and r3 are the roots of x3
− (n + 7)x2 + (7n + 8)x − 12n + 4q + 12. Additionally, they satisfy r1 > n >

5 > r2 > 3 > r3 > 1.

Proof. We suppose that V(G) = {ui : 1 ≤ i ≤ n}, where dG(un) = n − 1, dG(ui) = 2 for 1 ≤ i ≤ 2q, and
u2 ju2 j−1 ∈ E(G) for 1 ≤ j ≤ q. In what follows, we construct the eigenvectors for certain eigenvalues.

We first deal with the eigenvalue 5. Let ψ j = (ψ j(u1), ψ j(u2), . . . , ψ j(un))⊺ for 1 ≤ j ≤ t − 1, where

ψ j(ui) =


−s j+1, for ui ∈ V(Cs1 ),

s1, for ui ∈ V(Cs j+1 ),
0, otherwise.

It is straightforward to verify that this collection forms a set of linearly independent eigenvectors
corresponding to the eigenvalue 5 of Q(G). Consequently, mulG(5) ≥ t − 1.
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Secondly, we deal with the eigenvalues 1 and 3. As before,

ξ1 =
(
1,−1, 0(n−2)

)⊺
, ξ2 =

(
0, 0, 1,−1, 0(n−4)

)⊺
, . . . , ξq =

(
0(2q−2), 1,−1, 0(n−2q)

)⊺
.

are linearly independent eigenvectors. Thus, mulG(1) ≥ q. Similarly

ζ1 = (1, 1,−1,−1, 0(n−4))⊺,ζ2 = (0(2), 1, 1,−1,−1, 0(n−6))⊺, . . . ,ζq−1 = (0(2q−4), 1, 1,−1,−1, 0(n−2q))⊺.

are associated with 3, when q ≥ 2. Thus, mulG(3) ≥ q − 1.
For convenience, we denote V(Csi ) = {vi1, vi2, . . . , visi }, 1 ≤ i ≤ t. Suppose that A(Csi )ω = ϱω (ω , 0), i.e.,ω

is a unit eigenvector for A(Csi ) corresponding to the eigenvalue ϱ. It is well known that ϱ = 2 cos(2kπ/si), 0 ≤
k ≤ si−1. Besides, it is easy to prove that if ϱ , 2 (i.e. k , 0), and thenω = (ω(vi1), ω(vi2), . . . , ω(visi ))

⊺ satisfies∑si
j=1 ω(vi j) = 0. Therefore, by excluding ϱ = 2, we construct an eigenvector ω̄ = (ω̄(u1), ω̄(u2), . . . , ω̄(un))⊺

for 3 + ϱ by setting

ω̄(u) =
{
ω(u), for u ∈ V(Csi ),

0, otherwise.

To verify this, one may observe that Isi + Q(Csi ) = 3Isi + A(Csi ) is a principal submatrix of Q(G). Therefore,
3 + 2 cos(2kπ/si), 1 ≤ k ≤ si − 1, are the eigenvalues of Q(G) for every i (1 ≤ i ≤ t).

It remains to deal with the Q-eigenvalues denoted by r1, r2 and r3 in the statement formulation. Suppose
Q(G)φ = κφ (φ , 0), where φ = (φ(u1), φ(u2), . . . , φ(un))⊺. Then for the vertex un with degree n − 1, we
have

(κ − n + 1)φ(un) =
n−1∑
i=1

φ(ui). (1)

For the 2q vertices u1,u2, . . . ,u2q of degree 2, the equalities{
(κ − 2)φ(u2i−1) = φ(u2i) + φ(un),
(κ − 2)φ(u2i) = φ(u2i−1) + φ(un)

hold for 1 ≤ i ≤ q. From the previous equalities, we deduce (κ − 1)φ(u2i−1) = (κ − 1)φ(u2i). Hence, if κ , 1,
then φ(u2i−1) = φ(u2i), 1 ≤ i ≤ q. Furthermore, if κ , 3, then we have

φ(u j) =
φ(un)
κ − 3

, 1 ≤ j ≤ 2q. (2)

For the vertices in V(Csi ) = {vi1, vi2, . . . , vi,si }, 1 ≤ i ≤ t, we have
(κ − 3)φ(vi1) = φ(un) + φ(vi,si ) + φ(vi2),
(κ − 3)φ(vi2) = φ(un) + φ(vi1) + φ(vi3),

...
(κ − 3)φ(vi,si ) = φ(un) + φ(vi,si−1) + φ(vi1).

By setting φ(vi1) = φ(vi2) = · · · = φ(vi,si ), for κ , 5, we obtain

φ(vi j) =
φ(un)
κ − 5

, 1 ≤ j ≤ si, 1 ≤ i ≤ t. (3)

Combining (1), (2) and (3), we find

(κ − n + 1)φ(un) = 2q
φ(un)
κ − 3

+ (n − 2q − 1)
φ(un)
κ − 5

.
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For φ(un) , 0, the latter equality implies

κ3
− (n + 7)κ2 + (7n + 8)κ − 12n + 4q + 12 = 0.

It is verified directly that the corresponding roots, r1, r2 and r3, satisfy r1 > n > 5 > r2 > 3 > r3 > 1.
Therefore,

φi =
(
(ri − 5)(2q), (ri − 3)(n−2q−1), (ri − 3)(ri − 5)

)⊺
is an eigenvector of Q(G) corresponding to the eigenvalue ri for 1 ≤ i ≤ 3.

An additional scenario must be considered: In certain cases, some of the computed eigenvalues may
coincide, raising the question of whether their corresponding eigenvectors remain linearly independent.
From the already proved chain of inequalities, we obtain that r1, r2 and r3 are mutually distinct and do not
belong to {1, 3, 5}. In addition, 1 ≤ 3 + 2 cos 2kπ

si
< 5, for 1 ≤ k ≤ si − 1 and 1 ≤ i ≤ t. In this context, if the

equality

3 + 2 cos
2kπ
si
= r j

holds for some choice of indices i, j and k, then the corresponding eigenvectors are linearly independent
by construction. The same conclusion applies if the left-hand side equals either 1 or 3. This completes the
argument and the entire proof.

Remark 3.2. Note that, in the previous lemma, 3 + 2 cos(2 jπ/si) = 1 occurs if and only if si is even and j = si/2.
Thus, mulG(1) = q + ce(C), where ce(C) denotes the number of even cycles among Csi . Besides, we also have

n < r1 = κ1(G) < n + 2, κn(G) = 1 < r3, κ2(G) < 5 (when t = 1), and κ2(G) = 5 (when t ≥ 2).

Finally, for any fixed order n, the largest eigenvalue κ1(G) depends on q but is independent of both the number of cycles
and their lengths. This conclusion follows from the preceding proof and will also be corroborated by Corollary 3.5 in
the next subsection.

We provide an illustration of the previous lemma.

Example 3.3. For the Q-spectrum of K1∨ (C3∪2K2), a direct algebraic computation leads to {8.56, 4.44, 3, 2(3), 1(2)
},

where 8.56, 4.44 and 2 are the roots of x3
− 15x2 + 64x − 76.

3.2. The largest and least Q-eigenvalue of certain related cones
Next we will prove some properties of the largest and the least Q-eigenvalue of some prescribed cones.

We first extend the context to include the possibility of cycles C2, which are regarded as digons consisting
of two parallel edges connecting the same pair of vertices. In this setting, the degree of a vertex is defined
as the number of edges incident to it, and the entries of the adjacency matrix represent the multiplicity of
the corresponding edges.

Lemma 3.4. Let G∗ � K1 ∨ (Cs1 ∪ Cs2 ∪ · · · ∪ Cst ∪ qK2), t, q ≥ 1 and si ≥ 2 (1 ≤ i ≤ t). If n is the order of G∗, then
κ1(G∗) is equal to the largest root of x3

− (n + 7)x2 + (7n + 8)x − 12n + 4q + 12.

Proof. The characteristic polynomial of the equitable quotient matrix

N =

n − 1 n − 1 − 2q 2q
1 5 0
1 0 3

 .
is x3

− (n + 7)x2 + (7n + 8)x − 12n + 4q + 12. By employing Lemma 2.2, we arrive at the desired result.

Combining this result with Lemma 3.1, Remark 3.2 and Lemma 3.4, we immediately obtain an interesting
corollary.
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Corollary 3.5. Given a graph G � K1 ∨ (Cs1 ∪Cs2 ∪ · · · ∪Cst ∪ qK2) and a multigraph G∗ � K1 ∨ (Cs′1 ∪Cs′2 ∪ · · · ∪

Cs′r ∪ qK2), where t, r, q ≥ 1, si ≥ 3 (1 ≤ i ≤ t) and s′i ≥ 2 (1 ≤ i ≤ r). If n(G) = n(G∗), then κ1(G) = κ1(G∗).

We now turn to the second join product, continuing within the broader context.

Lemma 3.6. Let G∗ � K1 ∨ (P3 ∪ Cs1 ∪ Cs1 ∪ · · · ∪ Cst ∪ qK2), where t, q ≥ 0 and si ≥ 2 (1 ≤ i ≤ t).Then the least
Q-eigenvalue κn(G∗) is less than 1.

Proof. For t, q ≥ 1, the characteristic polynomial of the equitable quotient matrix

N =


n − 1 n − 2q − 4 2 1 2q

1 5 0 0 0
1 0 2 1 0
1 0 2 3 0
1 0 0 0 3


is

1(x) = x5
− (n + 12)x4 + (12n + 47)x3 + (4q − 51n − 52)x2 + (88n − 20q − 48)x + 16q − 48n + 72.

It follows that 1(1) = 8 > 0 and 1(0) = 16q − 48n + 72 < −32n + 72 < 0. By the intermediate value theorem,
we therefore deduce the existence of an eigenvalue of N lying in the interval (0, 1). Consequently, by
Lemma 2.2, we obtain κn(G∗) < 1.

Cases q = 0 or t = 0 simplify the previous computation, and lead to the same conclusion.

In the remainder of this section, we present a lemma from [21] and establish an extension concerning
the largest Q-eigenvalue. A detailed explanation of their role in the subsequent sections is provided at the
end of this section. The following setting is used. Let

G � K1 ∨ (Pl ∪ G1) (4)

be a graph with V(G) = {u1,u2, . . . ,un}, where dG(un) = n−1. The vertices of Pl are denoted by u1,u2, . . . ,ul, in
the natural order. Also, G1 denotes any graph. Let α = (α1, α2, . . . , αn)⊺ be the Perron eigenvector (positive
unit eigenvector associated with the largest eigenvalue) of G such that αi corresponds to vertex ui, 1 ≤ i ≤ n.

Lemma 3.7. [21] Under the above notation, the following statements hold:

(i) If l ≥ 2, then αi = αl+1−i holds for 1 ≤ i ≤
⌊

l
2

⌋
;

(ii) If l ≥ 6, αi , αi−2 holds for 3 ≤ i ≤ ⌊ l
2 ⌋;

(iii) If l ≥ 4, αi , αi+1 holds for 1 ≤ i ≤ ⌊ l
2 ⌋ − 1;

(iv) If l ≥ 3, then α1 < α2.

Here is the announced extension.

Lemma 3.8. In addition to the previous lemma:

(i) If l ≥ 5, then
κ1(G) < κ1(K1 ∨ (Cs ∪ Pl−s ∪ G1))

holds for 3 ≤ s ≤ l − 2;

(ii) If l = 4, then
κ1(G) < κ1(K1 ∨ (C2 ∪ P2 ∪ G1)),

where C2 is the digon.
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Proof. We first prove (ii). Denote G∗ � K1∨(C2∪P2∪G1). It is easy to see that G∗ � G−u1u2−u3u4+u1u4+u2u3,
where G is given by (4). Note that κ1(G∗) ≥ α⊺Q(G∗)α by Lemma 2.1 and κ1(G) = α⊺Q(G)α by the same
result. Now, by employing Lemma 3.7 and performing a straightforward computation, we obtain

κ1(G∗) − κ1(G) ≥ α⊺Q(G∗)α − α⊺Q(G)α = 2(α3 − α1)(α2 − α4) = 2(α2 − α1)2 > 0,

as desired.
(i): Suppose that G̃ � K1 ∨ (Cs ∪ Pl−s ∪ G1). In this case, we restrict our attention to the subcase where l

is even, as the alternative can be proved by analogous arguments.
Suppose l = 2a with a ≥ 3. By Lemma 3.7, we have αa− j = αa+ j+1, 0 ≤ j ≤ a − 1. We next consider two

separate situations, according to whether s is odd or even.
If s = 2k + 1 (k ≥ 1), then a ≥ k + 2 follows from l − s ≥ 2. Obviously,

G̃ � G − ua−k+1ua−k − ua+k+1ua+k+2 + ua−k+1ua+k+1 + ua−kua+k+2.

Note that αa−k = αa+1+k, αa+1−k = αa+k and αa−k−1 = αa+k+2. As before, Lemma 2.1 leads to

κ1(G̃) − κ1(G) ≥ α⊺Q(G̃)α − α⊺Q(G)α
= 2αa+1+kαa−k+1 + 2αa+k+2αa−k − 2αa−kαa−k+1 − 2αa+k+1αa+k+2

= 2αa−kαa−k+1 + 2αa−k−1αa−k − 2αa−kαa−k+1 − 2αa−kαa−k−1

= 0.

If the equality holds, then α is the Perron eigenvector of κ1(G̃). Moreover,

3αa−k + αa−k−1 + αa+k+2 = 3αa−k + αa−k−1 + αa−k+1,

which yields αa−k+1 = αa+k+2 = αa−k−1. However, this contradicts the statement of Lemma 3.7(ii).
On the other hand, if s = 2k (k ≥ 2), then a ≥ k + 1 deduces from l − s ≥ 2. Moreover,

G̃ � G − ua−k+1ua−k − ua+kua+k+1 + ua−k+1ua+k + ua−kua+k+1.

This, in combination with Lemma 3.7, gives

κ1(G̃) − κ1(G) ≥ α⊺Q(G̃)α − α⊺Q(G)α
= 2αa+1−kαa+k + 2αa−kαa+k+1 − 2αa−kαa−k+1 − 2αa+kαa+k+1

= 2α2
a+1−k + 2α2

a−k − 4αa−kαa−k+1

= 2(αa+1−k − αa−k)2

> 0,

because αa+1−k , αa−k, and the proof is completed.

Remark 3.9. It is straightforward to verify that if G1 is a multigraph, then Lemmas 3.7 and 3.8 remain valid, since
the matrices Q(G), Q(G̃), and Q(G∗) continue to be non-negative, irreducible, real, and symmetric.

We briefly clarify the role of the above lemmas in the proofs of Theorems 1.1 and 1.2. Specifically,
Lemma 3.1 provides an explicit computation of the spectra of the graphs considered in this paper, which
is particularly useful for addressing their spectral determination. Moreover, the remaining lemmas serve
as intermediate tools for establishing inequalities involving the largest and least Q-eigenvalues, thereby
demonstrating that certain graphs cannot be Q-cospectral with the graph under consideration.
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4. Proof of Theorem 1.1

Let G be as in the formulation of Theorem 1.1. Let further H be a simple graph that is Q-cospectral
with G. So, n(H) = n(G) = n. For brevity, denote ni(H) and d j(H) by ñi and d̃ j, respectively, where 0 ≤ i ≤ n−1
and 1 ≤ j ≤ n.

Due to Lemma 3.1 and Remark 3.2, the following ordering of eigenvalues is deduced:

1 = κn(H) < 3 < κ2(H) < 5 < n < κ1(H).

We recall the reader that the parameter ς(F) is defined prior Lemma 2.8.

Lemma 4.1. If n ≥ 16, then G and H share the same vertex degrees and ςH(C3) = ςG(C3).

Proof. From Lemma 2.6, we know that H is connected with d̃1 = n− 1 and d̃2 ≤ 4 when n ≥ 16. By inserting
n3 = s, n2 = 2q, n1 = n4 = 0 and d1 = d̃1 = n − 1 in Lemma 2.8, we arrive at

ñ1 + ñ2 + ñ3 + ñ4 = 2q + s,
ñ1 + 2ñ2 + 3ñ3 + 4ñ4 = 4q + 3s,
ñ1 + 4ñ2 + 9ñ3 + 16ñ4 = 8q + 9s.

(5)

From the first two equalities, we have

−ñ1 + ñ3 + 2ñ4 = s. (6)

Besides, from the first and the last equality, we deduce

−3ñ1 + 5ñ3 + 12ñ4 = 5s. (7)

By combining equalities (6) and (7), we immediately obtain

ñ1 + ñ4 = 0.

Further by (6), we have ñ3 = s. Moreover, the first equality of (5) yields ñ2 = 2q. Therefore, G and H share
vertex degrees.

Now, by Lemma 2.8 (precisely, the identity T3(H) = T3(G)), we arrive at ςH(C3) = ςG(C3). Obviously, if
s ≥ 4, then ςH(C3) = ςG(C3) = s+q. Otherwise, that is, for s = 3, we have ςH(C3) = ςG(C3) = s+1+q = q+4.

We now eliminate all but two structural possibilities for H.

Lemma 4.2. For n ≥ 16, the only structural possibilities for H are

K1 ∨ (Ck ∪ Pl1 ∪ Pl2 ∪ · · · ∪ Plq ) and K1 ∨ (Pl1 ∪ Pl2 ∪ · · · ∪ Plq ),

where 3 ≤ k ≤ s and l1 ≥ l2 ≥ · · · ≥ lr ≥ 3 > lr+1 = · · · = lq = 2, with 0 ≤ r ≤ q in the former case and 1 ≤ r ≤ q in
the latter.

Proof. By Lemma 4.1, d̃1 = n − 1, so we may suppose dH(v1) = n − 1. Besides, d̃2 = 3 and ñ1 = 0. These
degree conditions lead to the conclusion that every component of H−v1 is isomorphic to either Ck (k ≥ 3) or
Pl (l ≥ 2). Moreover, from κ2(H) < 5, we find that H cannot contain K1∨ (Ck1 ∪Ck2 ) as a subgraph; otherwise,
Lemmas 2.4 and 2.3 imply

κ2(H) ≥ λ2(Ik1+k2 +Q(Ck1 ∪ Ck2 )) = 5.

Hence, at most one component of H−v1 is a cycle. Moreover, ñ2 = 2q implies that there are exactly q disjoint
paths of length at least 2 in H − v1. Therefore, the lemma holds because H and G share vertex degrees.
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It remains to eliminate the possibilities listed in the formulation of the previous lemma. For convenience,
we denote

H̃ � K1 ∨ (Ck ∪ Pl1 ∪ Pl2 ∪ · · · ∪ Plq ) and H∗ � K1 ∨ (Pl1 ∪ Pl2 ∪ · · · ∪ Plq ).

Proof of Theorem 1.1. We set n ≥ 16 (as in the statement of this theorem). We shall prove that the graph H,
introduced at the beginning of this section, is isomorphic to G. For a contradiction, we suppose H � G.
Then by Lemma 4.2, H � H̃ or H � H∗.

Case 1: H � H̃. By Lemma 4.2, we have 3 ≤ k < s and l1 ≥ l2 ≥ · · · ≥ lr ≥ 3 > lr+1 = · · · = lq = 2 (1 ≤ r ≤ q).

Subcase 1.1: lr ≥ 4. By Corollary 3.5, Lemma 3.8 and Remark 3.9, it follows that

κ1(H̃) < κ1

(
K1 ∨ (Ck ∪ Cl1−2 ∪ Cl2−2 ∪ · · · ∪ Clr−2 ∪ qK2)

)
= κ1(G),

which is a contradiction.

Subcase 1.2: lr = 3. Lemmas 2.4 and 3.6 imply

κn(H̃) ≤ κn

(
K1 ∨ (P3 ∪ Ck ∪ Cl1 ∪ · · ·Clr−1 ∪ (q − r)K2)

)
< 1 = κn(G),

violating the assumption on Q-cospectrality.

Case 2: H � H∗. Again, Lemma 4.2 gives l1 ≥ l2 ≥ · · · ≥ lr ≥ 3 > lr+1 = · · · = lq = 2 (1 ≤ r ≤ q). As before, two
subcases arise: lr ≥ 4 and lr = 3. In the former situation, a similar argument yields

κ1(H∗) < κ1

(
K1 ∨ (Cl1−2 ∪ Cl2−2 ∪ · · · ∪ Clr−2 ∪ qK2)

)
= κ1(G).

In the latter one, it follows that

κn(H∗) ≤ κn

(
K1 ∨ (P3 ∪ Cl1 ∪ · · · ∪ Clr−1 ∪ (q − r)K2)

)
< 1 = κn(G).

Both conclusions contradict the Q-cospectrality assumption, completing the proof.

5. Proof of Theorem 1.2

Let G be as in the formulation of Theorem 1.2. In addition, recall that q ≥ 1 and t ≥ 2. Let further H
be a simple graph that is Q-cospectral with G. By employing Lemma 3.1 and Remark 3.2, we deduce the
following setting:

1 = κn(H) < κ2(H) = 5 < n < κ1(H).

Here we adopt the same notation for ni(H) and d j(H) as the previous section. From Lemma 2.5, we know
that when n ≥ 12, H is connected with d̃2 ≤ 4.

Before presenting our proof, we introduce several necessary lemmas. The first one is a known result
concerning the multiplicity of 1 in the Q-spectrum of a graph containing vertices that share a common
neighbourhood.

Lemma 5.1. [22] Let F be a graph of order n (n ≥ 2) such that NF(u1) = NF(u2) = · · · = NF(us) = {us+1}, where
ui ∈ V(F) (1 ≤ i ≤ s + 1) and s ≥ 1. Then mulF(1) ≥ s − 1.

By applying Lemma 5.1, we shall prove that, under certain conditions, the maximum vertex degrees of
the graphs G and H must be equal.

Lemma 5.2. If n ≥ 52 or q ≥ 12, then d̃1 = d1 = n − 1.
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Proof. By Lemma 2.5, we have d̃1 ≥ n − 3 ≥ 11 when n ≥ 14. By Lemma 2.7, we have n < κ1(H) ≤ d̃1 + 3,
and thus d̃1 ≥ n − 2. For a contradiction, we suppose that d̃1 = n − 2.

Lemma 2.8 leads to the system:
2ñ1 + 2ñ4 = 2n1 + 2n4 + d1(d1 − 5) − d̃1(d̃1 − 5),
ñ2 − 3ñ4 = n2 − 3n4 − d1(d1 − 4) + d̃1(d̃1 − 4),
2ñ3 + 6ñ4 = 2n3 + 6n4 + d1(d1 − 3) − d̃1(d̃1 − 3).

(8)

Since d1 = n − 1, d̃1 = n − 2, n2 = 2q, n3 = n − 1 − 2q and n1 = n4 = 0, from (8) we have
ñ1 = n − 4 − ñ4,
ñ2 = 2q − 2n + 7 + 3ñ4,
ñ3 = 2n − 2q − 4 − 3ñ4.

(9)

Now, from (9) we find

ñ2 + ñ3 = 3.

Therefore, only four possible scenarios remain, each of which is considered separately.
Case 1: ñ2 = 0 and ñ3 = 3. Remark 3.2 implies mulG(1) ≤ q + (n − 1 − 2q)/4 = (n + 2q − 1)/4, while by (9), we
get ñ4 = (2n − 2q − 7)/3 and ñ1 = (n + 2q − 5)/3. Note that d̃1 = n − 2 and n ≥ 2q + 7, since t ≥ 2. If n ≥ 40 (or
q ≥ 9), Lemma 5.1 leads to the impossible scenario: mulH(1) ≥ ñ1 − 2 > (n + 2q − 1)/4 ≥ mulG(1).
Case 2: ñ2 = 1 and ñ3 = 2. Here, the system (9) yields ñ4 = (2n − 2q − 6)/3 and ñ1 = (n + 2q − 6)/3, whereas
Lemma 5.1 implies mulH(1) ≥ ñ1 − 2 > (n + 2q − 1)/4 ≥ mulG(1), whenever n ≥ 44 (or q ≥ 10).
Case 3: ñ2 = 2 and ñ3 = 1. From ñ4 = (2n − 2q − 5)/3 and ñ1 = (n + 2q − 7)/3, we arrive at mulH(1) ≥ ñ1 − 2 >
(n + 2q − 1)/4 ≥ mulG(1) for n ≥ 48 (or q ≥ 11).
Case 4: ñ2 = 3 and ñ3 = 0. Remark 3.2 gives mulG(1) ≤ (n + 2q − 1)/4, and (9) gives ñ4 = (2n − 2q − 4)/3 and
ñ1 = (n + 2q − 8)/3. Lemma 5.1 eliminates the possibility n ≥ 52 (or q ≥ 12).

In conclusion, if n ≥ 52 or q ≥ 12, then d̃1 = d1.

The next two lemmas are formulated on the basis of a straightforward logical reasoning. The reader
will recognize that they follow the line established in the previous section.

Lemma 5.3. If n ≥ 52 or q ≥ 12, then G and H share the same vertex degrees.

Proof. Lemma 5.2 ensures d̃1 = n−1, whenever n ≥ 52 or q ≥ 12. By inserting d1 = d̃1, n2 = 2q, n3 = n−1−2q
and n1 = n4 = 0 in (8), we arrive at

ñ1 = ñ4 = 0, ñ3 = n − 1 − 2q and ñ2 = 2q.

Therefore, G and H are as desired.

Lemma 5.4. For n ≥ 52, the only structural possibilities for H are:

K1 ∨ (Cs′1 ∪ Cs′2 ∪ · · · ∪ Cs′a ∪ Pl1 ∪ Pl2 ∪ · · · ∪ Plq ) and K1 ∨ (Pl1 ∪ Pl2 ∪ · · · ∪ Plq ),

where s′i ≥ 3, l1 ≥ l2 ≥ · · · ≥ lr ≥ 3 > lr+1 = · · · = lq = 2, with 0 ≤ r ≤ q in the former case and 1 ≤ r ≤ q in the latter.

Proof. Lemma 5.2 ensures d̃1 = n − 1 when n ≥ 52, and we denote the corresponding vertex by v1. In
addition, Lemma 5.3 implies d̃2 = 3 and ñ1 = 0. These degree conditions lead to the conclusion that every
component of H − v1 is isomorphic to either Cs (s ≥ 3) or Pl (l ≥ 2). Moreover, ñ2 = 2q implies that there are
exactly q disjoint paths of length at least 2 in H − v1. Therefore, the statement of the lemma holds because
H and G share vertex degrees.
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As before, we denote

H̃ � K1 ∨ (Cs′1 ∪ Cs′2 ∪ · · · ∪ Cs′a ∪ Pl1 ∪ Pl2 ∪ · · · ∪ Plq ) and H∗ � K1 ∨ (Pl1 ∪ Pl2 ∪ · · · ∪ Plq ).

Proof of Theorem 1.2. We assume that n ≥ 52 as in the statement of this theorem. Let H be as at the
beginning of this section. Suppose that H � G. Then by Lemma 5.4, H � H̃ or H � H∗.

Case 1: H � H̃. By Lemma 5.4, we have s′i ≥ 3 and l1 ≥ l2 ≥ · · · ≥ lr ≥ 3 > lr+1 = · · · = lq = 2 (0 ≤ r ≤ q).

Subcase 1.1: r = 0. Then
H � H̃ � K1 ∨ (Cs′1 ∪ Cs′2 ∪ · · · ∪ Cs′a ∪ qK2).

Firstly, a = t since mulH(5) = a − 1 = t − 1 = mulG(5) (by Lemma 3.1). Besides, we suppose s1 ≥ s2 ≥ · · · ≥

st ≥ 3, s′1 ≥ s′2 ≥ · · · ≥ s′t ≥ 3. Observing that max{3 + 2 cos 2 jπ
s1

: 1 ≤ j ≤ s1 − 1} = 3 + 2 cos 2π
s1

, we get

s1 = s′1. By excluding the Q-eigenvalues 3 + 2 cos 2 jπ
s1
, 1 ≤ j ≤ s1 − 1, from the common Q-spectrum given

in Lemma 3.1, we obtain s2 = s′2. By repeating this iterative procedure, we arrive at si = s′i , for all i, which
means that H is isomorphic to G.
Subcase 1.2: r ≥ 1 and lr ≥ 4. By employing Corollary 3.5, Lemma 3.8 and Remark 3.9, we obtain

κ1(H̃) < κ1

(
K1 ∨ (Cs′1 ∪ Cs′2 ∪ · · · ∪ Cs′a ∪ Cl1−2 ∪ Cl2−2 ∪ · · · ∪ Clr−2 ∪ qK2)

)
= κ1(G),

which contradicts the assumption on Q-cospectrality.
Subcase 1.3: r ≥ 1 and lr = 3. By Lemmas 2.4 and 3.6,

κn(H̃) ≤ κn

(
K1 ∨ (P3 ∪ Cs′1 ∪ Cs′2 ∪ · · · ∪ Cs′a ∪ Cl1 ∪ · · · ∪ Clr−1 ∪ (q − r)K2)

)
< 1 = κn(G),

contradicting the same assumption.
Case 2: H � H∗. By Lemma 5.4, we have l1 ≥ l2 ≥ · · · ≥ lr ≥ 3 > lr+1 = · · · = lq = 2 (1 ≤ r ≤ q), and there are
two subcases that correspond to Subcases 1.2 and 1.3 of the previous part.

For lr ≥ 4, the same arguments lead to the impossible scenario κ1(H∗) < κ1

(
K1 ∨ (Cl1−2 ∪ Cl2−2 ∪ · · · ∪

Clr−2 ∪ qK2)
)
= κ1(G).

Similarly, lr = 3 reveals κn(H∗) ≤ κn

(
K1∨(P3∪Cl1∪· · ·∪Clr−1∪(q−r)K2)

)
< 1 = κn(G),which is impossible.

The proof is completed.
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