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Abstract. New inequalities presented by investigating quadrature formulae with their error bounds for
twice differentiable convex functions. Being inspired by the central role of quadrature formulae for estimat-
ing definite integrals, this work proposes new Boole’s identity for twice differentiable functions. By using
the newly established identity, Boole’s type inequalities for second-times differentiable convex functions are
proved. By applying the power mean and Hölder’s inequalities, the present research improved the error
estimates for Boole’s formula. The theoretical advancements are validated through numerical examples
involving exponential and polynomial functions, demonstrating the efficacy of the proposed inequalities.
Additionally, applications to the q-digamma function and modified Bessel functions underscore the ver-
satility of the results. This work not only refines existing quadrature error analyses but also expands the
applicability of convex function theory in numerical integration, contributing to both inequality theory and
computational mathematics.

1. Introduction

Hermite and Hadamard established the first integral inequality for convex functions [1]. Hermite–
Hadamard inequality, also known as the Hermite–Hadamard integral inequality for convex functions, it is
stated as:

If Φ : I ⊂ R→ R be a convex function on the interval I on the real numbers z1, z2 ∈ I, then we have

Φ
(z1 + z2

2

)
≤

1
z2 − z1

∫ z2

z1

Φ (ξ) dξ ≤
Φ (z1) + Φ (z2)

2
. (1)

If inequality (1) holds in reverse, then Φ is concave.
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In 1915, the term “numerical integration” debuted in the publication titled “A Course in Interpolation
and Numerical Integration for the Mathematical Laboratory” by David Gibb [2]. Over recent decades, nu-
merical integration has evolved into a pivotal tool in scientific computing, engineering, and data analysis.
Advanced techniques such as adaptive quadrature algorithms, numerical integration with error estimation,
and high-dimensional integration methods have been developed to tackle increasingly intricate problems.
The term “quadrature”, rooted in historical mathematical terminology, denotes area computation in nu-
merical integration. A broad spectrum of quadrature rules can be derived using various interpolating
polynomials. Among these, one of the simplest methods involves using a constant interpolating function
(zero-degree polynomial). This is called the midpoint rule or rectangle rule. The interpolating function
may be a straight line (a linear polynomial). This is known as the trapezoidal rule. We get Simpson’s rule if
the interpolating polynomial is of second degree. It is named Simpson’s rule due to Mathematician Thomas
Simpson (1710-1761). The most basic of Simpson’s rule is Simpson’s 1/3 rule. Another Simpson rule is the
Second Simpson’s or Simpson’s 3/8 rule. It requires one more function evaluation with lower error bounds
but does not improve the order of the error. In numerical integration with lower error bounds, the Third
Simpson’s or Simpson’s 2/45 rule, also called Boole’s rule, is named after George Boole.

In 1998, Dragomir and Agarwal [3] extend the idea of inequalities and find some error bounds of
trapezoidal formula for differentiable convex functions. The principal findings of the paper summarized
as follows:

Lemma 1.1. [3] LetΦ : I ⊂ R→ R be a differentiable function on I◦ (the set of all interior points of I), and z1, z2 ∈ I◦

with z1 < z2, also Φ′ ∈ L1 [z1, z2] , then the following equality holds:

Φ (z2) + Φ (z1)
2

−
1

z2 − z1

∫ z2

z1

Φ (ξ) dξ =
(z2 − z1)

2

∫ 1

0
(1 − 2t)Φ′ (tz2 + (1 − t) z1) dt.

Theorem 1.2. [3] Let Φ : I ⊂ R → R be a differentiable function on I◦, and z1, z2 ∈ I◦ with z1 < z2, also |Φ′| is
convex on [z1, z2] , then the following inequality holds:∣∣∣∣∣∣Φ (z1) + Φ (z2)

2
−

1
z2 − z1

∫ z2

z1

Φ (ξ) dξ

∣∣∣∣∣∣ ≤ (z2 − z1)
8

[|Φ′ (z1)| + |Φ′ (z2)|] .

After studying Dragomir’s article, Kirmaci provided an error term of the midpoint rule in the same
pattern in 2004 [4]. In 2010, Sarikaya et al. proved Simpson-type inequalities for differentiable convex
functions and found their error bounds [5]. We need the convexity of first-time differentiable functions
to estimate the error term of the above-described methods, which is a more significant class of functions
than that of bounded two-times differentiable functions. That is why this is a considerable achievement in
inequality theory.

The study of classical inequalities applied to integral operators linked with different fractional integrals
has experienced a significant upsurge in recent years. Gronwall, Chebyshev, Hermite-Hadamard, Os-
trowski, Hardy, Jensen, Milne, and Hölder inequality are a few examples of these investigated inequalities
[6–8].

Kilbas et al. [10] give theory and applications of fractional differential equations. Sarikaya et al. proposed
a novel integral identity for fractional integrals and utilized it to establish new generalized inequalities of
Hermite-Hadamard’s type [10]. Budak et al. [11] have established two novel identities involving quantum
integrals. By utilizing these identities, they observed new inequalities related to Simpson’s 1/3 formula
for convex mappings. Hezenci et al. have proved a new identity for twice differentiable functions, they
derived several fractional Simpson type inequalities for functions whose second derivatives in absolute
value are convex [12]. By employing quantum differentiable (α,m)-convex functions, Soontharanon et al.
have provided a generalized formulation of quantum Simpson’s and quantum Newton’s formula type
inequalities [13]. In [14], Budak et al. have presented results for varied function classes; it explores Milne-
type inequalities for fractional integrals, offering theoretical insights supported by specific examples and
graphical representations. Ali et al. [15] have obtained error bounds for Milne’s formula in fractional and
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classical calculus, with particular applications to differentiable convex functions. Additionally, they pro-
vide mathematical examples to support the validity of the newly determined bounds for Milne’s formula.
Numerous inequalities via fractional integrals one may refer to [16–22] and the references therein.

Simpson’s quadrature formulas are among the widely recognized and extensively utilized methods in
this domain. This mathematical tool is particularly useful in estimating the error associated with quadrature
formulas.

Theorem 1.3. Let Φ : [z1, z2] → R be a four times differentiable and continuous function on (z1, z2) , and let∥∥∥Φ(4)
∥∥∥
∞

:= sup
ξ∈(z1,z2)

∣∣∣Φ(4)(ξ)
∣∣∣ < ∞. Then, the following inequality can be declared as follows:

∣∣∣∣∣∣16 [
Φ(z1) + 4Φ

(z1 + z2

2

)
+ Φ(z2)

]
−

1
z2 − z1

∫ z2

z1

Φ(ξ)dξ

∣∣∣∣∣∣ ≤ 1
2880

∥∥∥Φ(4)
∥∥∥
∞

(z2 − z1)4 .

Dragomir et al. [23] have found novel Simpson-type inequalities. Furthermore, they discuss their
applications to quadrature formulas. In 2013, Sarikaya et al. [24] reported H-H-type inequalities for the
first time via Riemann-Liouville fractional integrals. Budak and Karagözoǧlu have investigated Milne-type
inequalities in the term of Riemann-Liouville fractional integrals. Also, they discussed several function
classes [25]. In [26], Sarikaya et al. conducted the first study of Simpson-type inequalities through the lens of
convexity principles. Also, they discuss their applications in the context of special means for real numbers.
By leveraging fractional integrals and s-convexity, Chen and Huang have formulated generalized results,
which are obtained in [27]. In [28], authors have extended these inequalities by evolving k-fractional and
Riemann-Liouville fractional integrals.

The following inequality is well known in the literature as Boole’s rule inequality. This rule offers
a fifth-order (quartic) approximation, surpassing the accuracy of Simpson’s rule, by approximating the
integral over five points with a polynomial of degree four.

Theorem 1.4. Let suppose that Φ : [z1, z2] → R, is a six times continuously differentiable function on (z1, z2) and
||Φ(6)

|| := supξ∈(z1,z2)

∣∣∣Φ(6)(ξ)
∣∣∣ < ∞. Then the subsequently inequality holds:∣∣∣∣∣∣ 1

90

[
7Φ(z1) + 32Φ

(3z1 + z2

4

)
+ 12Φ

(z1 + z2

2

)
+ 32Φ

(z1 + 3z2

4

)
+ 7Φ(z2)

]
−

1
z2 − z1

∫ z2

z1

Φ(ξ)dξ

∣∣∣∣∣∣
≤

1
1935360

∥∥∥Φ(6)
∥∥∥
∞

(z2 − z1)6 .

Krukowski [29] has investigated a logical evolution of Simpson’s rule, which is Boole’s rule. By leverag-
ing computer software, novel error bounds for Boole’s rule have been demonstrated. For error bounds in
n-point Newton-Cotes quadrature, which often rely on the nth derivative of the integrand function, posing
challenges for highly differentiable functions, Jamei [30] has defined a specific linear kernel to tackle this
issue. By leveraging these kernels, he presented new error bounds for all closed and open type Newton-
Cotes quadrature rules. The advantage of these error bounds is that they do not rely on the norms of the
integrand function, ensuring broad applicability and coverage of existing literature. It is widely recognized
that inequalities have been instrumental in advancing nearly all areas of pure and applied sciences see
[31–33].

Studying twice differentiable convex functions allows for a detailed analysis of how errors behave as the
function changes or as the interval size changes. This can help in adaptive quadrature methods, where the
partition of the interval is adjusted based on the function’s behavior. Some important articles that inspired
me for twice differentiable convex functions [34–38]. Boole’s rule, a fifth-order quadrature formula, offers
superior accuracy by approximating integrals using quartic polynomials. Despite its potential, its error
analysis has historically required sixth-order derivatives, limiting its applicability. Recent studies, such
as those by Krukowski and Jamei, have sought to relax these constraints using kernel-based techniques.
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Building on these foundations, this paper introduces a new Boole-type identity for twice differentiable
functions for higher-order derivatives. By using the convexity of the second derivative, we derive sharper
error bounds through inequalities that integrate power mean and Hölder’s techniques. This approach not
only simplifies error estimation but also broadens the scope of Boole’s rule to a wider class of functions.

The remainder of this work is structured as follows: Section 2 presents the main results, including
the novel Boole-type identity and associated inequalities. In Section 3, numerical examples validate the
theoretical findings while Section 4, presents applications to special functions illustrate their practical utility.
The paper concludes with a discussion of future research directions in adaptive quadrature and generalized
convexity frameworks in the last Section 5.

2. Main Results

This section utilizes twice differentiable convex mappings to derive a sequence of Boole-type inequalities.
In order to accomplish this, we first provide proof of that specific identity. Consequently, we derive three
distinct inequalities by employing the modulus of this identity. This strategy not only presents new results
but also enhances the advancement of the field.

Lemma 2.1. Assume that Φ : [z1, z2] ⊂ R→ R is a twice differentiable function on (z1, z2) . If Φ′′ ∈ L [z1, z2] (the
set of all Lebesgue integrable functions on the closed interval [z1, z2]), then, we have the subsequent inequality:

1
90

[
(z2 − z1)

16

(
17Φ′ (z2) − 21Φ′

(z1 + 3z2

4

)
+ 21Φ′

(z1 + z2

2

)
− 17Φ′

(3z1 + z2

4

))
(2)

+7Φ (z2) + 32Φ
(z1 + 3z2

4

)
+ 12Φ

(z1 + z2

2

)
+ 32Φ

(3z1 + z2

4

)
+ 7Φ (z1)

]
−

1
z2 − z1

∫ z2

z1

Φ (ξ) dξ

=
(z2 − z1)2

64

3∑
j=0

S j,

where

S0 :=
∫ 1

0

t
2

(28
45
− t

)
Φ′′

(4 − t
4

z1 +
t
4

z2

)
dt,

S1 :=
∫ 1

0

t
2

(66
45
− t

)
Φ′′

(3 − t
4

z1 +
1 + t

4
z2

)
dt,

S2 :=
∫ 1

0

t
2

(24
45
− t

)
Φ′′

(2 − t
4

z1 +
2 + t

4
z2

)
dt,

S3 :=
∫ 1

0

t
2

(62
45
− t

)
Φ′′

(1 − t
4

z1 +
3 + t

4
z2

)
dt.

Proof. Taking right hand side of (2), we have

(z2 − z1)2

64

3∑
j=0

S j =
(z2 − z1)2

64
[S0 + S1 + S2 + S3] .

Using the integration by parts, it yields

S0 =
(z2 − z1)2

64

∫ 1

0

t
2

(28
45
− t

)
Φ′′

(4 − t
4

z1 +
t
4

z2

)
dt (3)

=
(z2 − z1)

16

(
28t
90
−

t2

2

)
Φ′

(4 − t
4

z1 +
t
4

z2

)∣∣∣∣∣∣1
0

−
(z2 − z1)

16

∫ 1

0

(28
90
− t

)
Φ′

(4 − t
4

z1 +
t
4

z2

)
dt



M. Toseef et al. / Filomat 40:3 (2026), 1161–1173 1165

=
(z2 − z1)

16

(
−

17
90

)
Φ′

(3z1 + z2

4

)
+

1
4

((62
90

)
Φ

(3z1 + z2

4

)
+

28
90
Φ (z1) −

∫ 1

0
Φ

(4 − t
4

z1 +
t
4

z2

)
dt

)
.

In a similar manner, we acquire

S1 =
(z2 − z1)2

64

∫ 1

0

t
2

(66
45
− t

)
Φ′′

(4 − t
4

z1 +
t
4

z2

)
dt (4)

=
(z2 − z1)

16

(21
90

)
Φ′

(z1 + z2

2

)
+

1
4

((24
90

)
Φ

(z1 + z2

2

)
+

66
90
Φ

(3z1 + z2

4

)
−

∫ 1

0
Φ

(3 − t
4

z1 +
1 + t

4
z2

)
dt

)
,

S2 =
(z2 − z1)2

64

∫ 1

0

t
2

(24
45
− t

)
Φ′′

(2 − t
4

z1 +
2 + t

4
z2

)
dt (5)

=
(z2 − z1)

16

(21
90

)
Φ′

(z1 + 3z2

4

)
+

1
4

((66
90

)
Φ

(z1 + 3z2

4

)
+

24
90
Φ

(z1 + z2

2

)
−

∫ 1

0
Φ

(2 − t
4

z1 +
2 + t

4
z2

)
dt

)
,

and

S3 =
(z2 − z1)2

64

∫ 1

0

t
2

(62
45
− t

)
Φ′′

(1 − t
4

z1 +
3 + t

4
z2

)
dt (6)

=
(z2 − z1)

16

(21
90

)
Φ′ (z2) +

1
4

((28
90

)
Φ (z2) +

62
90
Φ

(z1 + 3z2

4

)
−

∫ 1

0

(1 − t
4

z1 +
3 + t

4
z2

)
dt

)
.

Adding (3)-(6) and multiply (z2−z1)2

64 , then by change of variable we get desired result. Hence, proof of
Lemma 2.1 is completed.

Theorem 2.2. Assume that Φ : [z1, z2] ⊂ R → R is a twice differentiable function on (z1, z2) , such that Φ′′ ∈
L [z1, z2] . If |Φ′′| is convex on [z1, z2] , then the following inequality holds:∣∣∣∣∣∣ 1

90

[
(z2 − z1)

16

(
17Φ′ (z2) − 21Φ′

(z1 + 3z2

4

)
+ 21Φ′

(z1 + z2

2

)
− 17Φ′

(3z1 + z2

4

))
+7Φ (z2) + 32Φ

(z1 + 3z2

4

)
+ 12Φ

(z1 + z2

2

)
+ 32Φ

(3z1 + z2

4

)
+ 7Φ (z1)

]
−

1
z2 − z1

∫ z2

z1

Φ (ξ) dξ

∣∣∣∣∣∣
≤

(z2 − z1)2

64

[ 4916701
24603750

|Φ′′ (z1)| +
7081469
24603750

|Φ′′ (z2)|
]
.

Proof. Taking absolute property using Lemma 2.1, we have∣∣∣∣∣∣ 1
90

[
(z2 − z1)

16

(
17Φ′ (z2) − 21Φ′

(z1 + 3z2

4

)
+ 21Φ′

(z1 + z2

2

)
− 17Φ′

(3z1 + z2

4

))
(7)

+7Φ (z2) + 32Φ
(z1 + 3z2

4

)
+ 12Φ

(z1 + z2

2

)
+ 32Φ

(3z1 + z2

4

)
+ 7Φ (z1)

]
−

1
z2 − z1

∫ z2

z1

Φ (ξ) dξ

∣∣∣∣∣∣
≤

(z2 − z1)2

64

{∫ 1

0

∣∣∣∣∣ t
2

(28
45
− t

)∣∣∣∣∣ ∣∣∣∣∣Φ′′ (4 − t
4

z1 +
t
4

z2

)∣∣∣∣∣ dt +
∫ 1

0

∣∣∣∣∣ t
2

(66
45
− t

)∣∣∣∣∣ ∣∣∣∣∣Φ′′ (3 − t
4

z1 +
1 + t

4
z2

)∣∣∣∣∣ dt

+

∫ 1

0

∣∣∣∣∣ t
2

(24
45
− t

)∣∣∣∣∣ ∣∣∣∣∣Φ′′ (2 − t
4

z1 +
2 + t

4
z2

)∣∣∣∣∣ dt +
∫ 1

0

∣∣∣∣∣ t
2

(62
45
− t

)∣∣∣∣∣ ∣∣∣∣∣Φ′′ (1 − t
4

z1 +
3 + t

4
z2

)∣∣∣∣∣ dt
}
.

By using convexity of |Φ′′|, we attain∣∣∣∣∣∣ 1
90

[
(z2 − z1)

16

(
17Φ′ (z2) − 21Φ′

(z1 + 3z2

4

)
+ 21Φ′

(z1 + z2

2

)
− 17Φ′

(3z1 + z2

4

))
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+7Φ (z2) + 32Φ
(z1 + 3z2

4

)
+ 12Φ

(z1 + z2

2

)
+ 32Φ

(3z1 + z2

4

)
+ 7Φ (z1)

]
−

1
z2 − z1

∫ z2

z1

Φ (ξ) dξ

∣∣∣∣∣∣
≤

(z2 − z1)2

64

{∫ 1

0

∣∣∣∣∣ t
2

(28
45
− t

)∣∣∣∣∣ [(4 − t
4

)
|Φ′′ (z1)| +

t
4
|Φ′′ (z2)|

]
dt

+

∫ 1

0

∣∣∣∣∣ t
2

(66
45
− t

)∣∣∣∣∣ [(3 − t
4

)
|Φ′′ (z1)| +

(1 + t
4

)
|Φ′′ (z2)|

]
dt

+

∫ 1

0

∣∣∣∣∣ t
2

(24
45
− t

)∣∣∣∣∣ [(2 − t
4

)
|Φ′′ (z1)| +

(2 + t
4

)
|Φ′′ (z2)|

]
dt

+

∫ 1

0

∣∣∣∣∣ t
2

(62
45
− t

)∣∣∣∣∣ [(1 − t
4

)
|Φ′′ (z1)| +

(3 + t
4

)
|Φ′′ (z2)|

]
dt

}
=

(z2 − z1)2

64

{
|Φ′′ (z1)|

(∫ 1

0

∣∣∣∣∣ t
2

(28
45
− t

)∣∣∣∣∣ (4 − t
4

)
dt +

∫ 1

0

∣∣∣∣∣ t
2

(66
45
− t

)∣∣∣∣∣ (3 − t
4

)
dt

+

∫ 1

0

∣∣∣∣∣ t
2

(24
45
− t

)∣∣∣∣∣ (2 − t
4

)
dt +

∫ 1

0

∣∣∣∣∣ t
2

(62
45
− t

)∣∣∣∣∣ (1 − t
4

)
dt

)
+

(
|Φ′′ (z2)|

(∫ 1

0

∣∣∣∣∣ t
2

(28
45
− t

)∣∣∣∣∣ ( t
4

)
dt +

∫ 1

0

∣∣∣∣∣ t
2

(66
45
− t

)∣∣∣∣∣ (1 + t
4

)
dt

+

∫ 1

0

∣∣∣∣∣ t
2

(24
45
− t

)∣∣∣∣∣ (2 + t
4

)
dt +

∫ 1

0

∣∣∣∣∣ t
2

(62
45
− t

)∣∣∣∣∣ (3 + t
4

)
dt

)}
=

(z2 − z1)2

64

[ 4916701
24603750

|Φ′′ (z1)| +
7081469
24603750

|Φ′′ (z2)|
]
.

Hence, the proof of Theorem 2.2 is completed.

Theorem 2.3. Assume that Φ : [z1, z2] ⊂ R → R is a twice differentiable function on (z1, z2) , such that Φ′′ ∈
L [z1, z2] . If |Φ′′|q is convex on [z1, z2] with q ≥ 1, then the following inequality holds:∣∣∣∣∣∣ 1

90

[
(z2 − z1)

16

(
17Φ′ (z2) − 21Φ′

(z1 + 3z2

4

)
+ 21Φ′

(z1 + z2

2

)
− 17Φ′

(3z1 + z2

4

))
+7Φ (z2) + 32Φ

(z1 + 3z2

4

)
+ 12Φ

(z1 + z2

2

)
+ 32Φ

(3z1 + z2

4

)
+ 7Φ (z1)

]
−

1
z2 − z1

∫ z2

z1

Φ (ξ) dξ

∣∣∣∣∣∣
≤

(z2 − z1)2

64

( 28027
546750

)1− 1
q
{( 16854253

393660000

)
|Φ′′ (z1)|q +

( 3325187
393660000

)
|Φ′′ (z2)|q

} 1
q

+
(1

5

)1− 1
q
{( 173

1440

)
|Φ′′ (z1)|q +

( 23
288

)
|Φ′′ (z2)|q

} 1
q

+
( 1187

20250

)1− 1
q
{( 90373

4860000

)
|Φ′′ (z1)|q +

( 194507
4860000

)
|Φ′′ (z2)|q

} 1
q

+
( 8

45

)1− 1
q
{( 79

4320

)
|Φ′′ (z1)|q +

( 689
4320

)
|Φ′′ (z2)|q

} 1
q
 .

Proof. When we first apply (7) to the power-mean inequality using absolute property, it becomes∣∣∣∣∣∣ 1
90

[
(z2 − z1)

16

(
17Φ′ (z2) − 21Φ′

(z1 + 3z2

4

)
+ 21Φ′

(z1 + z2

2

)
− 17Φ′

(3z1 + z2

4

))
+7Φ (z2) + 32Φ

(z1 + 3z2

4

)
+ 12Φ

(z1 + z2

2

)
+ 32Φ

(3z1 + z2

4

)
+ 7Φ (z1)

]
−

1
z2 − z1

∫ z2

z1

Φ (ξ) dξ

∣∣∣∣∣∣
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≤
(z2 − z1)2

64


(∫ 1

0

∣∣∣∣∣ t
2

(28
45
− t

)∣∣∣∣∣ dt
)1− 1

q
(∫ 1

0

∣∣∣∣∣ t
2

(28
45
− t

)∣∣∣∣∣ ∣∣∣∣∣Φ′′ (4 − t
4

z1 +
t
4

z2

)∣∣∣∣∣q dt
) 1

q

+

(∫ 1

0

∣∣∣∣∣ t
2

(66
45
− t

)∣∣∣∣∣ dt
)1− 1

q
(∫ 1

0

∣∣∣∣∣ t
2

(66
45
− t

)∣∣∣∣∣ ∣∣∣∣∣Φ′′ (3 − t
4

z1 +
1 + t

4
z2

)∣∣∣∣∣q dt
) 1

q

+

(∫ 1

0

∣∣∣∣∣ t
2

(24
45
− t

)∣∣∣∣∣ dt
)1− 1

q
(∣∣∣∣∣∣
∫ 1

0

t
2

(24
45
− t

)∣∣∣∣∣∣
∣∣∣∣∣Φ′′ (2 − t

4
z1 +

2 + t
4

z2

)∣∣∣∣∣q dt
) 1

q

+

(∫ 1

0

∣∣∣∣∣ t
2

(62
45
− t

)∣∣∣∣∣ dt
)1− 1

q
(∫ 1

0

∣∣∣∣∣ t
2

(62
45
− t

)∣∣∣∣∣ ∣∣∣∣∣Φ′′ (1 − t
4

z1 +
3 + t

4
z2

)∣∣∣∣∣q dt
) 1

q
 .

As |Φ′′|q is convex on the interval [z1, z2], we attain∣∣∣∣∣∣ 1
90

[
(z2 − z1)

16

(
17Φ′ (z2) − 21Φ′

(z1 + 3z2

4

)
+ 21Φ′

(z1 + z2

2

)
− 17Φ′

(3z1 + z2

4

))
+7Φ (z2) + 32Φ

(z1 + 3z2

4

)
+ 12Φ

(z1 + z2

2

)
+ 32Φ

(3z1 + z2

4

)
+ 7Φ (z1)

]
−

1
z2 − z1

∫ z2

z1

Φ (ξ) dξ

∣∣∣∣∣∣
≤

(z2 − z1)2

64


(∫ 1

0

∣∣∣∣∣ t
2

(28
45
− t

)∣∣∣∣∣ dt
)1− 1

q
{∫ 1

0

∣∣∣∣∣ t
2

(28
45
− t

)∣∣∣∣∣ ((4 − t
4

)
|Φ′′ (z1)|q +

t
4
|Φ′′ (z2)|q

)
dt

} 1
q

+

(∫ 1

0

∣∣∣∣∣ t
2

(66
45
− t

)∣∣∣∣∣ dt
)1− 1

q
{∫ 1

0

∣∣∣∣∣ t
2

(66
45
− t

)∣∣∣∣∣ ((3 − t
4

)
|Φ′′ (z1)|q +

(1 + t
4

)
|Φ′′ (z2)|q

)
dt

} 1
q

+


(∫ 1

0

∣∣∣∣∣ t
2

(24
45
− t

)∣∣∣∣∣ dt
)1− 1

q ∫ 1

0

∣∣∣∣∣ t
2

(24
45
− t

)∣∣∣∣∣ ((2 − t
4

)
|Φ′′ (z1)|q +

(2 + t
4

)
|Φ′′ (z2)|q

)
dt


1
q

+

(∫ 1

0

∣∣∣∣∣ t
2

(62
45
− t

)∣∣∣∣∣ dt
)1− 1

q
{∫ 1

0

∣∣∣∣∣ t
2

(62
45
− t

)∣∣∣∣∣ ((1 − t
4

)
|Φ′′ (z1)|q +

(3 + t
4

)
|Φ′′ (z2)|q

)
dt

} 1
q


=
(z2 − z1)2

64

( 28027
546750

)1− 1
q
{( 16854253

393660000

)
|Φ′′ (z1)|q +

( 3325187
393660000

)
|Φ′′ (z2)|q

} 1
q

+
(1

5

)1− 1
q
{( 173

1440

)
|Φ′′ (z1)|q +

( 23
288

)
|Φ′′ (z2)|q

} 1
q

+
( 1187

20250

)1− 1
q
{( 90373

4860000

)
|Φ′′ (z1)|q +

( 194507
4860000

)
|Φ′′ (z2)|q

} 1
q

+
( 8

45

)1− 1
q
{( 79

4320

)
|Φ′′ (z1)|q +

( 689
4320

)
|Φ′′ (z2)|q

} 1
q
 .

Hence, the proof of Theorem 2.3 is completed.

Theorem 2.4. Assume that Φ : [z1, z2] ⊂ R → R is a twice differentiable function on (z1, z2) , such that Φ′′ ∈
L [z1, z2] . If |Φ′′|q is convex on [z1, z2] , then for p > 1, the following inequality holds:∣∣∣∣∣∣ 1

90

[
(z2 − z1)

16

(
17Φ′ (z2) − 21Φ′

(z1 + 3z2

4

)
+ 21Φ′

(z1 + z2

2

)
− 17Φ′

(3z1 + z2

4

))
+7Φ (z2) + 32Φ

(z1 + 3z2

4

)
+ 12Φ

(z1 + z2

2

)
+ 32Φ

(3z1 + z2

4

)
+ 7Φ (z1)

]
−

1
z2 − z1

∫ z2

z1

Φ (ξ) dξ

∣∣∣∣∣∣
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≤
(z2 − z1)2

64

Ωp
1

(
7 |Φ′′(z1)|q + |Φ′′(z2)|q

8

) 1
q

+Ωp
2

(
5 |Φ′′(z1)|q + 3 |Φ′′(z2)|q

8

) 1
q

+Ωp
3

(
3 |Φ′′(z1)|q + 5 |Φ′′(z2)|q

8

) 1
q

+Ωp
4

(
|Φ′′(z1)|q + 7 |Φ′′(z2)|q

8

) 1
q
 ,

where 1
p +

1
q = 1 and

Ωp
1 :=

(∫ 1

0

∣∣∣∣∣ t
2

(28
45
− t

)∣∣∣∣∣p dt
) 1

p

,

Ωp
2 :=

(∫ 1

0

∣∣∣∣∣ t
2

(66
45
− t

)∣∣∣∣∣p dt
) 1

p

,

Ωp
3 :=

(∫ 1

0

∣∣∣∣∣ t
2

(24
45
− t

)∣∣∣∣∣p dt
) 1

p

,

Ωp
4 :=

(∫ 1

0

∣∣∣∣∣ t
2

(62
45
− t

)∣∣∣∣∣p dt
) 1

p

.

Proof. By utilizing Hölder’s inequality in (7) using absolute property, it yields∣∣∣∣∣∣ 1
90

[
(z2 − z1)

16

(
17Φ′ (z2) − 21Φ′

(z1 + 3z2

4

)
+ 21Φ′

(z1 + z2

2

)
− 17Φ′

(3z1 + z2

4

))
+7Φ (z2) + 32Φ

(z1 + 3z2

4

)
+ 12Φ

(z1 + z2

2

)
+ 32Φ

(3z1 + z2

4

)
+ 7Φ (z1)

]
−

1
z2 − z1

∫ z2

z1

Φ (ξ) dξ

∣∣∣∣∣∣
≤

(z2 − z1)2

64


(∫ 1

0

∣∣∣∣∣ t
2

(28
45
− t

)∣∣∣∣∣p dt
) 1

p
(∫ 1

0

∣∣∣∣∣Φ′′ (4 − t
4

z1 +
t
4

z2

)∣∣∣∣∣q dt
) 1

q

+

(∫ 1

0

∣∣∣∣∣ t
2

(66
45
− t

)∣∣∣∣∣p dt
) 1

p
(∫ 1

0

∣∣∣∣∣Φ′′ (3 − t
4

z1 +
1 + t

4
z2

)∣∣∣∣∣q dt
) 1

q

+

(∫ 1

0

∣∣∣∣∣ t
2

(24
45
− t

)∣∣∣∣∣p dt
) 1

p
(∫ 1

0

∣∣∣∣∣Φ′′ (2 − t
4

z1 +
2 + t

4
z2

)∣∣∣∣∣q dt
) 1

q

+

(∫ 1

0

∣∣∣∣∣ t
2

(62
45
− t

)∣∣∣∣∣p dt
) 1

p
(∫ 1

0

∣∣∣∣∣Φ′′ (1 − t
4

z1 +
3 + t

4
z2

)∣∣∣∣∣q dt
) 1

q

 .
Since |Φ′′|q is convex on the interval [z1, z2], it becomes∣∣∣∣∣∣ 1

90

[
(z2 − z1)

16

(
17Φ′ (z2) − 21Φ′

(z1 + 3z2

4

)
+ 21Φ′

(z1 + z2

2

)
− 17Φ′

(3z1 + z2

4

))
+7Φ (z2) + 32Φ

(z1 + 3z2

4

)
+ 12Φ

(z1 + z2

2

)
+ 32Φ

(3z1 + z2

4

)
+ 7Φ (z1)

]
−

1
z2 − z1

∫ z2

z1

Φ (ξ) dξ

∣∣∣∣∣∣
≤

(z2 − z1)2

64


(∫ 1

0

∣∣∣∣∣ t
2

(28
45
− t

)∣∣∣∣∣p dt
) 1

p
(∫ 1

0

[(4 − t
4

)
|Φ′′ (z1)|q +

t
4
|Φ′′ (z2)|q

]
dt

) 1
q

+

(∫ 1

0

∣∣∣∣∣ t
2

(66
45
− t

)∣∣∣∣∣p dt
) 1

p
(∫ 1

0

[(3 − t
4

)
|Φ′′ (z1)|q +

1 + t
4
|Φ′′ (z2)|q

]
dt

) 1
q
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+

(∫ 1

0

∣∣∣∣∣ t
2

(24
45
− t

)∣∣∣∣∣p dt
) 1

p
(∫ 1

0

[(2 − t
4

)
|Φ′′ (z1)|q +

2 + t
4
|Φ′′ (z2)|q

]
dt

) 1
q

+

(∫ 1

0

∣∣∣∣∣ t
2

(62
45
− t

)∣∣∣∣∣p dt
) 1

p
(∫ 1

0

[(1 − t
4

)
|Φ′′ (z1)|q +

3 + t
4
|Φ′′ (z2)|q

]
dt

) 1
q


=
(z2 − z1)2

64


(∫ 1

0

∣∣∣∣∣ t
2

(28
45
− t

)∣∣∣∣∣p dt
) 1

p
(

7 |Φ′′(z1)|q + |Φ′′(z2)|q

8

) 1
q

+

(∫ 1

0

∣∣∣∣∣ t
2

(66
45
− t

)∣∣∣∣∣p dt
) 1

p
(

5 |Φ′′(z1)|q + 3 |Φ′′(z2)|q

8

) 1
q

+

(∫ 1

0

∣∣∣∣∣ t
2

(24
45
− t

)∣∣∣∣∣p dt
) 1

p
(

3 |Φ′′(z1)|q + 5 |Φ′′(z2)|q

8

) 1
q

+

(∫ 1

0

∣∣∣∣∣ t
2

(62
45
− t

)∣∣∣∣∣p dt
) 1

p
(
|Φ′′(z1)|q + 7 |Φ′′(z2)|q

8

) 1
q

 .
Hence, the proof of Theorem 2.4 is completed.

3. Computational Analysis

In this section, numerical examples are given to check the validity of newly established results.

Example 3.1. If Φ (z) = e2z is twice differentiable convex function on (z1, z2) , where z1, z2 ∈ R, then we have

Left Inequality :∣∣∣∣∣∣ 1
90

[
(z2 − z1)

16

(
17Φ′ (z2) − 21Φ′

(z1 + 3z2

4

)
+ 21Φ′

(z1 + z2

2

)
− 17Φ′

(3z1 + z2

4

))
+7Φ (z2) + 32Φ

(z1 + 3z2

4

)
+ 12Φ

(z1 + z2

2

)
+ 32Φ

(3z1 + z2

4

)
+ 7Φ (z1)

]
−

1
z2 − z1

∫ z2

z1

Φ (ξ) dξ

∣∣∣∣∣∣ . (8)

Right Inequality :

(z2 − z1)2

64

[ 4916701
24603750

|Φ′′ (z1)| +
7081469

24603750
|Φ′′ (z2)|

]
. (9)

Inequalities (8) and (9) of Theorem 2.2 are valid, see Figure 1-(a).

Example 3.2. If Φ (z) = z5 is twice differentiable convex function on (z1, z2) , where z1, z2 ∈ R, then we have

Left Inequality :∣∣∣∣∣∣ 1
90

[
(z2 − z1)

16

(
17Φ′ (z2) − 21Φ′

(z1 + 3z2

4

)
+ 21Φ′

(z1 + z2

2

)
− 17Φ′

(3z1 + z2

4

))
+7Φ (z2) + 32Φ

(z1 + 3z2

4

)
+ 12Φ

(z1 + z2

2

)
+ 32Φ

(3z1 + z2

4

)
+ 7Φ (z1)

]
−

1
z2 − z1

∫ z2

z1

Φ (ξ) dξ

∣∣∣∣∣∣ . (10)

Right Inequality :

(z2 − z1)2

64

[ 4916701
24603750

|Φ′′ (z1)| +
7081469

24603750
|Φ′′ (z2)|

]
. (11)

Inequalities (10) and (11) of Theorem 2.2 are valid, see Figure 1-(b).
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(a) Φ(z) = e2z (b) Φ(z) = z5

Figure 1: Comparative analysis of inequalities of Theorem 2.2
.

Φ (z) First time differentiable Boole’s Twice differentiable Boole’s
z1 = 1, z2 = 2 239(z2−z1)

6480 [|Φ′ (z1)| + |Φ′ (z2)|] (z2−z1)2

64

[
4916701
24603750 |Φ

′′ (z1)| + 7081469
24603750 |Φ

′′ (z2)|
]

z6 7.30278 2.25233
z5 3.13503 0.78200
ez 0.372786 0.0417177

Table 1: Comparison of newly established error bounds in Theorem 2.2 and proved
in [39] .

Remark 3.3. Results proved in this paper gives better error estimates than proved in [39], clearly seen from Table 1.

4. Applications

In this section, applications are given to show the effectiveness of newly established results.

4.1. q-Digamma function
The φq-digamma function, defined as the logarithmic derivative of the q-gamma function, plays a sig-

nificant role in q-calculus. Its monotonicity and complete monotonicity properties have been extensively
studied, leading to notable inequalities (see [40, 41]).

Assume the q−analogue of the digamma function φ for 0 < q < 1 and ξ > 0, is the q−digamma function
φq, (see [42]) is given as:

φq(ξ) = − ln
(
1 − q

)
+ ln q

∞∑
k=0

qk+ξ

1 − qk+ξ

= − ln
(
1 − q

)
+ ln q

∞∑
k=1

qkξ

1 − qk
.

For q > 1 and ξ > 0, q−digamma function φq can be given as:

φq(ξ) = − ln
(
q − 1

)
+ ln q

[
ξ −

1
2
−

∞∑
k=0

q−(k+ξ)

1 − q−(k+ξ)

]
= − ln

(
q − 1

)
+ ln q

[
ξ −

1
2
−

∞∑
k=1

q−kξ

1 − q−k

]
.
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Proposition 4.1. Let φq : [z1, z2] ⊂ (0,∞) → R be the q-digamma function, where φ′′q ∈ L [z1, z2] , then the
following inequality holds:∣∣∣∣∣∣ 1

90

[
(z2 − z1)

16

(
17φ′q (z2) − 21φ′q

(z1 + 3z2

4

)
+ 21φ′q

(z1 + z2

2

)
− 17φ′q

(3z1 + z2

4

))
+7φq (z2) + 32φq

(z1 + 3z2

4

)
+ 12φq

(z1 + z2

2

)
+ 32φq

(3z1 + z2

4

)
+ 7φq (z1)

]
−

1
z2 − z1

∫ z2

z1

φq (ξ) dξ

∣∣∣∣∣∣
≤

(z2 − z1)2

64

[ 4916701
24603750

∣∣∣φ′′q (z1)
∣∣∣ + 7081469

24603750

∣∣∣φ′′q (z2)
∣∣∣] .

Proof. Substitute Φ(ξ) → φq (ξ) in Theorem 2.2. The result is obtained immediately by φq (ξ) that is a completely
monotone function on (0,∞) for all ξ > 0 and consequentlyΦ′′(ξ) := φ′′q (ξ) is convex on the same interval (0,∞).

4.2. Modified Bessel function
We revisit the series representation of the first kind modified Bessel function ℑτ (see [43]).

ℑτ(η) = Σn≥0

(
η
2

)τ+2n

n!Γ (τ + n + 1)
.

where η > 0 and τ > −1,while the second kind modified Bessel function ℏτ (see [43]) is usually defined as:

ℏτ
(
η
)
=
π
2
ℑ−τ

(
η
)
− ℑτ

(
η
)

sin τπ
.

Consider the function Bτ
(
η
)

: R→ [1,∞) defined by

Bτ
(
η
)
= 2τΓ (τ + 1) η−τℏτ

(
η
)
,

where Γ(·) is the gamma function.
The first order derivative formula of Bτ

(
η
)

is given by [43]:

B′τ
(
η
)
=

η

2 (τ + 1)
Bτ+1

(
η
)

(12)

and the second derivative can be easily calculated from (12) to be

B′′τ
(
η
)
=

η2Bτ+2
(
η
)

4 (τ + 1) (τ + 2)
+
Bτ+1

(
η
)

2 (τ + 1)
. (13)

The third derivative of Bτ(η) is given by:

B′′′τ (η) =
3ηBτ+2(η)

4(τ + 1)(τ + 2)
+

η3Bτ+3(η)
8(τ + 1)(τ + 2)(τ + 3)

. (14)

Proposition 4.2. Suppose τ > −1, then∣∣∣∣∣∣ 1
90

[
(z2 − z1)

16

(
17B′′τ (z2) − 21B′′τ

(z1 + 3z2

4

)
+ 21B′′τ

(z1 + z2

2

)
− 17B′′τ

(3z1 + z2

4

))
+7B′τ (z2) + 32B′τ

(z1 + 3z2

4

)
+ 12B′τ

(z1 + z2

2

)
+ 32B′τ

(3z1 + z2

4

)
+ 7B′τ (z1)

]
−
B(z2) −B(z1)

z2 − z1

∣∣∣∣∣
≤

(z2 − z1)2

64

[ 4916701
24603750

∣∣∣B′′′τ (z1)
∣∣∣ + 7081469

24603750

∣∣∣B′′′τ (z2)
∣∣∣] .

Proof. Applying Theorem 2.2 for the functionΦ(ξ) := B′τ (ξ) ,with ξ > 0 and systematically integrating the identities
(12), (13), and (14), we derive the required result.
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5. Conclusion

In this study, we established a new Boole-type identity for twice differentiable functions and derived cor-
responding inequalities for convex functions. By employing the power mean and Hölder’s inequalities, we
enhanced the error bounds for Boole’s quadrature formula, providing more precise estimates. Numerical
examples validated the effectiveness of the proposed results, demonstrating their applicability in integral
approximations. Applications to the q-digamma function and modified Bessel functions further demon-
strated the versatility of our approach, bridging abstract inequality theory with practical computational
problems. These contributions not only refine the analysis of Boole’s quadrature but also underscore the
efficacy of convexity in numerical integration. This work contributes to the theory of inequalities by refining
classical quadrature estimates. Future research could extend these results to other convex classes, such as
quasi-convex or harmonically convex functions, and explore adaptive quadrature algorithms that leverage
the derived bounds. Additionally, integrating fractional calculus or quantum integrals may yield further
generalizations, enhancing the applicability of Boole-type inequalities in diverse mathematical and engi-
neering contexts. This work lays a foundation for such explorations, emphasizing the enduring relevance
of convexity in numerical analysis.
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[5] M. Z. Sarikaya, E. Set, M. E. Özdemir, On new inequalities of Simpson’s type for s-convex functions, Comput. Math. Appl., 60 (2010),

no. 8, 2191–2199.
[6] A. Abdeldaim, M. Yakout, On some new integral inequalities of Gronwall-Bellman-Pachpatte type, Appl. Math. Comput., 217(20)

(2011), 7887–7899.
[7] M. A. Ali, H. Budak, F. Michal, K. Sundas, A new version of q-Hermite-Hadamard midpoint and trapezoid type inequalities for convex

functions, Math. Slovaca, 73(2) (2023), 369–386.
[8] H. Kara, H. Budak, M. A. Ali, F. Hezenci, On inequalities of Simpson’s type for convex functions via generalized fractional integrals,

Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 71(3) (2022), 806–825.
[9] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematics

Studies, vol. 204, Elsevier Science B.V., Amsterdam, 2006.
[10] M. Z. Sarikaya, H. Budak, Hermite-Hadamard type inequalities for twice differentiable mappings via fractional integrals, Filomat, 31(7)

(2017), 1957–1965.
[11] H. Budak, S. Erden and M. A. Ali, Simpson and Newton type inequalities for convex functions via newly defined quantum integrals,

Math. Methods Appl. Sci., 44(1) (2021), 378–390.
[12] F. Hezenci, H. Budak, H. Kara, The new version of fractional Simpson-type inequalities for twice differentiable functions, Adv. Difference

Equ., 2021(1) (2021), Article ID 460, 1–10.
[13] J. Soontharanon, M. A. Ali, H. Budak, K. Nonlaopon, Z. Abdullah, Simpson and Newton type inequalities for (α,m)-convex functions

via quantum calculus, Symmetry, 14(4) (2022), Article ID 736, 1–16.
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