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Abstract. We further develop (generalized) B-Fredholm theory relative to a fixed Banach algebra homo-
morphism.

1. Introduction

In [6], the interplay between Harte’s Fredholm theory and Drazin invertibility (resp. Koliha-Drazin
invertibility), which gives rise to B-Fredholm theory (resp. generalized B-Fredholm theory or, in short, GB-
Fredholm theory) in general Banach algebras is studied relative to a fixed Banach algebra homomorphism.

We recall that the well-known Atkinson’s Theorem gives a necessary and sufficient condition for a
bounded linear operator T on a Banach space X to be Fredholm, which is that the coset of T is invertible
in the Calkin algebra. This result inspired Harte’s work on Fredholm theory relative to a Banach algebra
homomorphism in [9], which has witnessed considerable development over the years. In [3, Theorem 3.4],
Berkani and Sarih proved an Atkinson-type theorem for B-Fredholm operators, which led to the introduction
of B-Fredholm theory (and an extension thereof, namely generalized B-Fredholm theory) relative to fixed
Banach algebra homomorphism in [6]. The purpose of this paper, which is a continuation of [6], is to provide
further (spectral) properties of the B-Fredholm, B-Weyl and B-Browder elements, which are studied in B-
Fredholm theory, as well as the generalized B-Fredholm, generalized B-Weyl and generalized B-Browder
elements, explored in GB-Fredholm theory (and the spectra that are derived from these classes of elements).
We arrange our article in the following way. In Section 2, we list some necessary concepts, notations and
results that are essential in the rest of the paper. In particular, in Subsection 2.1, we gather some concepts
and results from the theory of Drazin and Koliha-Drazin invertible elements and review, in Subsection 2.2,
some concepts and results from Fredholm theory relative to a fixed Banach algebra homomorphism. The
basic information on B-Fredholm theory and GB-Fredholm theory, as developed in [6], is gathered in Section
3, where sufficient examples are also supplied to demonstrate certain statements. In Section 4, we state
and prove further inclusion and algebraic properties of (generalized) B-Fredholm, (generalized) B-Weyl
and (generalized) B-Browder elements relative to a fixed Banach algebra homomorphism. In particular,
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we establish that the set of (generalized) B-Weyl elements (resp. (generalized) B-Browder elements) forms
an upper semi-regularity relative to Banach algebra homomorphisms with commutative domains. Section
5 further investigates the spectra that are studied in B-Fredholm theory and GB-Fredholm theory. In
particular, we state one-way spectral mapping theorems for the (generalized) B-Weyl and (generalized) B-
Browder spectra and demonstrate that, if a Banach algebra homomorphism does not have the strong Riesz
property, then the connected hulls of the (generalized) B-Fredholm, (generalized) B-Weyl and (generalized)
B-Browder spectra may not coincide. Finally, in Section 6, we give a necessary condition for an element to
be (generalized) B-Weyl (resp. (generalized) B-Browder) and specify some open questions.

2. Preliminaries

Throughout this paper, unless otherwise stated, A will denote a complex unital Banach algebra with
unit 1A. For a ∈ A, its ordinary spectrum will be denoted by

σ(a) := {λ ∈ C : λ1A − a < A−1
},

where A−1 indicates the set of invertible elements of A. If any confusion occurs, we will write σA(a) to
emphasize the Banach algebra under discussion. The isolated (resp. accumulation) points of σ(a) will be
denoted by iso σ(a) (resp. acc σ(a)) and, for λ < acc σ(a), the spectral idempotent associated with λ by
p(a, λ). If A is just a unital algebra, then the (Jacobson) radical and the sets of idempotent, nilpotent and
quasinilpotent elements will be indicated by Rad(A), Idem(A), Nil(A) and QN(A), respectively. We further
recall that A is said to be semisimple if its radical consists only of the zero element of A. Also recall that, for
a Banach algebra element a, a ∈ QN(A) if and only if σ(a) = {0}.

In [12, Definition 1.2], Kordula and Müller defined a regularity of a Banach algebra A as a subset R with
the following two properties: (i) if a ∈ A and n ∈ N, then a ∈ R if and only if an

∈ R and, (ii), if a, b ∈ A are
relatively prime (i.e. there exist elements c, d ∈ A such that {a, b, c, d} is a commuting set and ac+bd = 1A), then
a, b ∈ R if and only if ab ∈ R. In [17], Müller split the axioms of a regularity into two parts, and introduced
the notions of a lower semi-regularity and an upper semi-regularity:

Definition 2.1. ([17], Definition 1) Let A be a Banach algebra. A non-empty subset R of A is said to be a lower
semi-regularity if the following properties are satisfied:

(i) If a ∈ A and an
∈ R for some n ∈N, then a ∈ R.

(ii) If a, b ∈ A are relatively prime and ab ∈ R, then a, b ∈ R.

Definition 2.2. ([17], Definition 10) Let A be a Banach algebra. A non-empty subset R of A is said to be an upper
semi-regularity if the following properties are satisfied:

(i) If a ∈ R, then an
∈ R for all n ∈N.

(ii) If a, b ∈ A are relatively prime and a, b ∈ R, then ab ∈ R.
(iii) R contains a neighbourhood of the unit 1A.

Consequently, a non-empty subset of a Banach algebra is a regularity if and only if it is both an upper
and a lower semi-regularity. Finally, by F (X) and K (X) we denote, respectively, the ideal of finite-rank
operators and the closed ideal of compact operators of the Banach algebra L(X) of all bounded linear
operators on a Banach space X.

2.1. Drazin and Koliha-Drazin invertible elements
We continue with a dicussion on Drazin and Koliha-Drazin invertible elements, which are explored in

the intensively studied subject of generalized inverses. Following [7], an element a of a unital algebra A is
said to be Drazin invertible if there exists an element b ∈ A such that ab = ba, b = bab and a − aba ∈ Nil(A).
In [11], this concept was further generalized by Koliha who introduced a Koliha-Drazin invertible element
a ∈ A as one for which there exists an element b ∈ A such that ab = ba, b = bab and a − aba ∈ QN(A). It is
known that, if such b exists, then it unique, and we call it the Drazin inverse (resp. Koliha-Drazin inverse) of
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a and indicate it by aD (resp. aKD). The sets of all Drazin and Koliha-Drazin invertible elements of A will
be denoted by AD and AKD, respectively, which according to [3, Theorem 2.3] and [13, Theorem 1.2] form
regularities. Evidently, A−1

⊆ AD
⊆ AKD, where these inclusions are generally strict. In fact, we note that

the closures of these sets coincide in general:

Proposition 2.3. If A is a Banach algebra, then AKD
⊆ A−1. In particular,

A−1 = AD = AKD.

Proof. Suppose that a ∈ AKD. In view of [11, Theorem 3.1], 0 < acc σ(a). If 0 < σ(a), then a ∈ A−1
⊆ A−1, and

in the case where 0 ∈ iso σ(a), we let ϵa > 0 be such that B(0, ϵa) ∩ σ(a) \ {0} = ∅. Since for every non-zero
λ ∈ B(0, ϵa), λ < σ(a), i.e. a − λ1A ∈ A−1, we have for sufficiently large n that a − 1

n 1A ∈ A−1. From the fact
that the sequence (a − 1

n 1A) of invertible elements converges to a, we obtain that a ∈ A−1, as desired.

Using Example 4.3 from [10], we illustrate next that the inclusion AKD
⊆ A−1 in Proposition 2.3 is

generally strict.

Example 2.4. Consider the Banach algebraL(ℓ2⊕ ℓ2) of all bounded linear operators on the direct sum of the Banach
space

ℓ2 := {(x1, x2, . . . ) :
∞∑

n=1

|xi|
2 < ∞}

of square summable sequences. Then T : ℓ2 ⊕ ℓ2 → ℓ2 ⊕ ℓ2, defined by

T((x1, x2, . . . ), (y1, y2, . . . )) = ((0, x1, x2, . . . ), (y2, y3, . . . ))

for all (x1, x2, . . . ), (y1, y2, . . . ) ∈ ℓ2 belongs to (L(ℓ2 ⊕ ℓ2))−1\L(ℓ2 ⊕ ℓ2)KD.

Proof. If U,V : ℓ2 → ℓ2 define, respectively, the forward shift and backward shift operators on ℓ2, i.e.

U(x1, x2, . . . ) = (0, x1, x2, . . . )

and
V(x1, x2, . . . ) = (x2, x3, . . . )

for all (x1, x2, . . . ) ∈ ℓ2, then T can be represented as a 2 × 2 operator matrix

T :=
[
U 0
0 V

]
.

Since σ(T) = σ(U) ∪ σ(V) = {λ ∈ C : |λ| ≤ 1}, 0 ∈ acc σ(T), so that from [11, Theorem 3.1] it follows that
T < L(ℓ2 ⊕ ℓ2)KD. From [10, Example 4.3] we have that T is a sum of an invertible operator T1 and a
finite-rank operator T2, i.e. T = T1 + T2, and hence σ(TT−1

1 ) = {1} + σ(T2T−1
1 ). Since T2T−1

1 is compact, 1 will
be the only possible accumulation point of σ(TT−1

1 ). We can therefore find a sequence (λn) in C \ σ(TT−1
1 )

that converges to 0 and, since the sequence (λn − TT−1
1 )(−T1) in L(ℓ2 ⊕ ℓ2)−1 converges to T, we conclude

that T ∈ L(ℓ2 ⊕ ℓ2)−1. This proves that T ∈ L(ℓ2 ⊕ ℓ2)−1 \ L(ℓ2 ⊕ ℓ2)KD.

Finally, we mention that AD = AKD whenever A is a commutative semisimple Banach algebra [16,
Lemma 6(a) and Corollary 4] or A is finite-dimensional. In the latter case, these sets coincide with the whole
A.

Now using the regularities AD and AKD, the Drazin spectrum

σD(a) := {λ ∈ C : λ1A − a < AD
}
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of a ∈ A and Koliha-Drazin spectrum

σKD(a) := {λ ∈ C : λ1A − a < AKD
}

of a ∈ A, in view of [12, Theorem 1.4], both satisfy the spectral mapping theorem for functions which are
analytic on a neighbourhood of the spectrum and non-constant on each component of this neighbourhood.
In fact (in view of [13, Proposition 1.5]),

acc σ(a) ∪ (iso σ(a)\Π(a))

=

σKD(a) ⊆ σD(a) ⊆ σ(a),

=

acc σ(a)

where Π(a) denotes the set of poles of the resolvent of a. These identities confirm that the Drazin and
Koliha-Drazin spectra are compact subsets of the complex plane (though AD and AKD are not open sets in
general - see [11, Example 8.4]) that may be empty.

For a more detailed account on Drazin and Koliha-Drazin invertible elements in general Banach algebras,
the reader may consult [11] and [16].

2.2. Fredholm theory in general Banach algebras
By a unital homomorphism (resp. Banach algebra homomorphism) we mean a linear operator T between

unital algebras (resp. Banach algebras) A and B that satisfies T(ab) = TaTb and T1A = 1B. It is easy to show
that such mappings satisfy the inclusions T(A−1) ⊆ B−1,T(AD) ⊆ BD and T(AKD) ⊆ BKD, so that

σ(Ta) ⊆ σ(a), σD(Ta) ⊆ σD(a) and σKD(Ta) ⊆ σKD(a)

for all a ∈ A. A Banach algebra homomorphism T is said to have the Riesz property if acc σ(a) ⊆ {0} for all
a ∈ N(T), whereN(T) := {a ∈ A : Ta = 0B} denotes the null space of T. In addition, T is said to have the strong
Riesz property if acc σ(a) ⊆ ησ(Ta) for all a ∈ A, where ηK denotes the connected hull of a compact set K ⊆ C
and is given by the complement of the unique unbounded component of C \ K. Evidently, every Banach
algebra homomorphism with the strong Riesz property has the Riesz property.

Relative to a fixed Banach algebra homomorphism, Harte studied in [9] natural generalizations of the
notions of Fredholm, Weyl and Browder operators acting on a Banach space:

Definition 2.5. ([9], p.431) Let T : A→ B be a Banach algebra homomorphism. Relative to T, an element a ∈ A is
called:

• Fredholm if Ta ∈ B−1.

• Weyl if there exist elements b ∈ A−1 and c ∈ N(T) such that a = b + c.

• Browder if there exist commuting elements b ∈ A−1 and c ∈ N(T) such that a = b + c.

The sets of all Fredholm, Weyl and Browder elements (relative to a Banach algebra homomorphism
T : A→ B) will be denoted by FT,WT, and BT, respectively. Clearly, if A is commutative, then BT =WT,
and, in general,

A−1
⊆ BT ⊆WT ⊆ FT.

As an immediate consequence of Proposition 2.3 and [14, Corollary 3.8] we have:

Proposition 2.6. Let T : A→ B be a Banach algebra homomorphism with the Riesz property. Then

AKD = AD = A−1 = BT =WT.
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Harte also showed that the inclusion AKD
∩ FT ⊆ BT generally holds, which is an immediate corollary

of the following lemma:

Lemma 2.7. Let T : A→ B be a Banach algebra homomorphism and a ∈ AKD
∩ FT. Then p(a, 0) ∈ N(T).

Hence, if a ∈ AKD
\ A−1 and p(a, 0) < N(T), then a < FT, i.e. Ta < B−1.

Proof. Let a ∈ AKD
∩FT, i.e. 0 < acc σ(a) and Ta ∈ B−1. When considering the nontrivial case, i.e. 0 ∈ iso σ(a),

we have from [11, Theorem 4.2] that p(a, 0) = 1A − aKDa, and hence Tp(a, 0) = 1B − T(aKD)Ta = 1B − (Ta)KDTa.
Since Ta ∈ B−1 by assumption, it follows that (Ta)KD = (Ta)−1, from which we conclude that Tp(a, 0) =
1B − 1B = 0B, i.e. p(a, 0) ∈ N(T).

Consequently, for a ∈ AKD
∩ FT, we have that

a = a − p(a, 0)︸     ︷︷     ︸
A−1

+ p(a, 0)︸︷︷︸
∈N(T )

.

Harte continued to show that, if T has the Riesz property, then the sets AKD
∩ FT and BT coincide (see [9,

Theorem 1]). Furthermore, it is known that BT (when T has the Riesz property) and FT form regularities,
whileWT forms an upper semi-regularity. The spectra obtain from the sets of Fredholm, Weyl and Browder
elements are defined next:

Definition 2.8. ([9], p.433-434) Let T : A→ B be a Banach algebra homomorphism. Relative to T,

• the Fredholm spectrum of a ∈ A, denoted by γT(a), is the set

{λ ∈ C : λ1A − a < FT}.

• the Weyl spectrum of a ∈ A, denoted by ωT(a), is the set

{λ ∈ C : λ1A − a <WT}.

• the Browder spectrum of a ∈ A, denoted by βT(a), is the set

{λ ∈ C : λ1A − a < BT}.

These are all non-empty compact subsets of the complex plane as can be seen from the following
inclusions and identities [9]: ⋂

c∈N(T)
σ(a + c)

=

τT(a) ⊆ ωT(a) ⊆ βT(a) ⊆ σ(a).

= =

σ(Ta)
⋂

c∈N(T)
ac=ca

σ(a + c)

Though the Fredholm, Weyl and Browder spectra do not generally coincide, in [19], Živković-Zlatanović
and Harte showed that their connected hulls do:

Theorem 2.9. ([19], Corollary 2.2) Let T : A→ B be a Banach algebra homomorphism with the strong Riesz property
and a ∈ A. Then

ησ(Ta) = ηωT(a) = ηβT(a).

In particular, if A is finite-dimensional, then σ(Ta) = ωT(a) = βT(a), i.e. BT =WT = FT.
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We conclude this subsection with the spectral mapping properties of the Fredholm, Weyl and Browder
spectra that are pointed out next:

Theorem 2.10. ([9], p.434, (2.4) and Theorem 2) Let T : A→ B be a Banach algebra homomorphism. If a ∈ A, then
(i) σ(T( f (a))) = f (σ(Ta)),
(ii) ωT( f (a)) ⊆ f (ωT(a)),
(iii) βT( f (a)) ⊆ f (βT(a))

for every function f : U 7→ C which is analytic on a neighbourhood U of σ(a) and non-constant on each component
of U.

Moreover, if T has the Riesz property, then the reverse inclusion in (iii) also holds, i.e. βT( f (a)) = f (βT(a)).

For more on Fredholm theory in general Banach algebras, which has been widely studied by several
authors, see for instance [9], [14], [15] and [21].

3. B-Fredholm theory and generalized B-Fredholm theory

In [2], Berkani introduced the notion of a B-Fredholm operator acting on a Banach space X, which extends
the concept of a Fredholm operator on X. We recall that an operator T ∈ L(X) is said to be B-Fredholm if
there exists a non-negative integer n such that the range R(Tn) of Tn is closed and the restriction of T to
R(Tn) is a Fredholm operator on R(Tn). In [3, Theorem 3.4], it was established that an operator T ∈ L(X)
is B-Fredholm if and only if T + F (X) is Drazin invertible in L(X)/F (X), i.e., relative to the canonical
homomorphism π : L(X) → L(X)/F (X), πT ∈ (L(X)/F (X))D. Motivated by this Atkinson-type theorem
for B-Fredhom operators, the authors of [6] described a B-Fredholm element of a general unital algebra A
(w.r.t. a unital homomorphism T : A → B) as an element whose image under T is Drazin invertible in B.
They also introduced (generalized) B-Browder and (generalized) B-Weyl elements, which we define next.

Definition 3.1. ([6], Definition 2.3) Let T : A → B be a unital homomorphism. Relative to T, an element a ∈ A is
called:

• B-Fredholm if Ta ∈ BD.

• B-Weyl if there exist elements b ∈ AD and c ∈ N(T) such that a = b + c.

• B-Browder if there exist commuting elements b ∈ AD and c ∈ N(T) such that a = b + c.

The sets of Drazin invertible elements in Definition 3.1 are now replaced by the sets of Koliha-Drazin
invertible elements:

Definition 3.2. ([6], Definition 2.3) Let T : A → B be a unital homomorphism. Relative to T, an element a ∈ A is
called:

• generalized B-Fredholm (or GB-Fredholm) if Ta ∈ BKD.

• generalized B-Weyl (or GB-Weyl) if there exist elements b ∈ AKD and c ∈ N(T) such that a = b + c.

• generalized B-Browder (or GB-Browder) if there exist commuting elements b ∈ AKD and c ∈ N(T) such that
a = b + c.

The sets of all B-Fredholm, B-Weyl and B-Browder elements (relative to T) will be denoted by F (B)
T ,W

(B)
T

andB(B)
T , respectively, while the sets of all GB-Fredholm, GB-Weyl and GB-Browder elements (relative to T)

will be indicated by F (GB)
T ,W(GB)

T and B(GB)
T , respectively. Evidently,

FT ⊆ F
(B)

T ⊆ F
(GB)

T ,

WT ⊆W
(B)
T ⊆W

(GB)
T

and
BT ⊆ B

(B)
T ⊆ B

(GB)
T .
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Remark 3.3. Note that the first inclusions in the inclusion-schemes above are always strict (cf. [6, Theorem 3.4
((iii), (iv) and (v))]) since any a ∈ N(T) is obviously the sum of commuting elements 0A ∈ AD and a ∈ N(T), i.e.
a ∈ B(B)

T (⊆ W(B)
T ⊆ F

(B)
T ) but do not belong to FT(⊇ WT ⊇ BT) as Ta = 0B < B−1. In particular, we have that

N(T) ⊆ X, where X ∈ {B(B)
T ,W

(B)
T ,F

(B)
T } andN(T) ∩ Y = ∅, where Y ∈ {BT,WT,FT}.

The following inclusions are straightforward to show:

Proposition 3.4. ([6], Remark 2.5(iv)) Let T : A→ B be a unital homomorphism. Then

AD
⊆ B

(B)
T ⊆W

(B)
T ⊆ F

(B)
T

and
AKD

⊆ B
(GB)
T ⊆W

(GB)
T ⊆ F

(GB)
T .

Moreover, if A is a commutative semisimple Banach algebra, then F (B)
T = F (GB)

T ,W(B)
T =W

(GB)
T and B(B)

T = B
(GB)
T .

In [6], the main properties of the elements defined in Definitions 3.1 and 3.2 are studied. Adding to
[6], we list the following examples of (generalized) B-Fredholm, (generalized) B-Weyl and (generalized)
B-Browder elements:

Example 3.5. ([3], Theorem 3.4; [4], Corollary 4.4; [20], p.3599) Consider the canonical map π : L(X) →
L(X)/F (X) and let T ∈ L(X). Then:

(i) T ∈ F (B)
π if and only if T is a B-Fredholm operator on X.

(ii) T ∈ W(B)
π if and only if T is a B-Weyl operator on X, i.e. a B-Fredholm operator of index 0 [4, Definition 1.1],

where the index of a B-Fredholm operator T is defined as the index of the relevant (restriction) Fredholm operator.
(iii) T ∈ B(B)

π if and only if T ∈ L(X)D.

We remark that the statement in (iii) was not established by the authors of [20] but was stated there in
the given form. One way to see why the nontrivial implication in (iii) holds is by using the fact that the
Drazin spectrum remains stable under perturbation of commuting finite-rank operators [5, Theorem 2.7]:
Let T ∈ B(B)

π . Then there exist commuting operators T1 ∈ L(X)D and T2 ∈ F (X) such that T = T1 + T2. Since
T − T2 and T2 ∈ F (X) commute, we have from [5, Theorem 2.7] that σD(T) = σD((T − T2) + T2) = σD(T − T2).
Since T − T2 ∈ L(X)D, so that 0 < σD(T − T2), it follows that 0 < σD(T), and hence T ∈ L(X)D.

Remark 3.6. The concepts of GB-Fredholm, GB-Weyl and GB-Browder elements, unlike the notions of B-Fredholm,
B-Weyl and B-Browder elements (that were introduced in the context of bounded linear operators on Banach spaces),
were first defined and studied in general Banach algebras in [6].

For the function space in Example 3.7 - an example of a commutative semisimple Banach algebra - we
have the following result, which can be viewed as an analogue of [9, p.432]. By Ran( f ), we denote the
range of a complex-valued function f . Also, if X and Y are arbitrary compact Hausdorff spaces, then we
refer to the Banach algebra homomorphism T : C(X)→ C(Y) defined by T f = f ◦ θ for all f ∈ C(X), where
θ : Y→ X is a fixed continuous map, as the Banach algebra homomorphism induced by composition with θ.

Example 3.7. Let X and Y be compact Hausdorff spaces and T : C(X)→ C(Y) be the Banach algebra homomorphism
induced by composition with a fixed continuous map θ : Y→ X, i.e. T f = f ◦ θ for all f ∈ C(X). Then:

(i) f ∈ F (B)
T = F (GB)

T if and only if 0 < acc Ran(T f ).
(ii) f ∈ W(B)

T = B
(B)
T = B

(GB)
T =W(GB)

T if and only if f|θ(Y) has a (continuous) Koliha-Drazin invertible extension
1 to X, i.e. 1 : X→ C satisfies 0 < acc Ran(1).

Proof. Observe thatN(T) = { f ∈ C(X) : f|θ(Y) = 0}.
Let f ∈ C(X).
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(i) Then f ∈ F (B)
T if and only if T f ∈ C(Y)D = C(Y)KD, which (by [11, Theorem 3.1]) is equivalent to

0 < acc σ(T f ) = acc Ran(T f ).
(ii) If f ∈ W(B)

T , then there exist 1 ∈ C(X)D = C(X)KD and h ∈ N(T) such that f = 1 + h. Hence
f|θ(Y) = 1|θ(Y) + h|θ(Y) = 1|θ(Y), where 0 < acc σ(1) = acc Ran(1) follows from [11, Theorem 3.1] as 1 ∈ C(X)KD.
For the reverse implication, suppose that f|θ(Y) has a continuous Koliha-Drazin invertible extension 1 to X.
Then f = 1+ ( f − 1), where 1 ∈ C(X)KD = C(X)D and ( f − 1)|θ(Y) = 0, i.e. f − 1 ∈ N(T). Hence f ∈ W(B)

T . This
completes the proof.

We show next that the inclusions in Proposition 3.4 are strict in general.

Example 3.8. Consider the compact Hausdorff spaces X = [0, 3] = Y and the Banach algebra homomorphism
T : C(X) → C(Y) induced by composition with the fixed continuous map θ : Y → X defined by θ(z) = z+1

2 for all
z ∈ Y. Then f ∈ C(X), given by f (z) = z for all z ∈ X, belongs to B(B)

T \ C(X)D (resp. B(GB)
T \ C(X)KD).

Proof. Observe that θ(Y) = [ 1
2 , 2] and define 1 : X→ C by

1(z) :=


1
2 if 0 ≤ z ≤ 1

2

z if 1
2 < z < 2

2 if 2 ≤ z ≤ 3.

Then 1|θ(Y) = f|θ(Y) and σ(1) = Ran(1) =
[

1
2 , 2

]
, so that 0 < acc σ(1), i.e. 1 ∈ C(X)KD. By Example 3.7(ii),

f ∈ B(B)
T . Since 0 ∈ [0, 3] = Ran( f ) = acc σ( f ), it follows that f < C(X)KD. This completes the proof.

Example 3.9. Consider the canonical map π : L(ℓ2 ⊕ ℓ2)→ L(ℓ2 ⊕ ℓ2)/F (ℓ2 ⊕ ℓ2) on the Banach algebraL(ℓ2 ⊕ ℓ2)
of all bounded linear operators on the direct sum of ℓ2. If U,V : ℓ2 → ℓ2 define, respectively, the forward shift and
backward shift operators on ℓ2, then T : ℓ2 ⊕ ℓ2 → ℓ2 ⊕ ℓ2 given by

T =
[
U 0
0 V

]
belongs toW(B)

π \ B
(B)
π .

Proof. From [10, Example 4.3] we have that T is a sum of an invertible operator and a finite-rank operator,
i.e. T is Weyl (and hence B-Weyl), but T is not Browder w.r.t. π. It then follows from [1, Remark 3.1], which
states that a Drazin invertible Weyl operator is Browder, that T < L(ℓ2 ⊕ ℓ2)D, so that from Example 3.5(iii)
we have that T does not belong to B(B)

π .

For the next example we recall the concept of a retraction and a result involving retractions, so let X be
a topological space and Y be a subset of X. A continuous function f : X → Y is said to be a retraction of X
onto Y if the restriction f|Y of f to Y is the identity function on Y. According to [18, Theorem 34.5, p.236],
there is no retraction from D := {(x, y) ∈ R2 : x2 + y2

≤ 1} onto S′ := {(x, y) ∈ R2 : x2 + y2 = 1}. We also need
the following observation:

Lemma 3.10. Let X,Y,T : C(X) → C(Y) and θ : Y → X be as in Example 3.7. If X is connected, then there is no
f ∈ C(X) with the property that iso (σ( f ) \ σ(T f )) , ∅.

Proof. First observe that Idem(C(X)) = {0C(X), 1C(X)}. If f ∈ C(X) is such that there exists λ0 ∈ iso (σ( f )\σ(T f )),
then by Lemma 2.7, p( f , λ0) is a non-zero idempotent that belongs toN(T), i.e.

1C(X) = p( f , λ0) ∈ N(T) = { f ∈ C(X) : f|θ(Y) = 0},

which is a contradiction.
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Example 3.11. Consider the compact Hausdorff spaces X := {λ ∈ C : |λ| ≤ 1} and Y := {λ ∈ C : |λ| = 1} and
the Banach algebra homomorphism T : C(X) → C(Y) induced by composition with the identity map θ : Y → X on
Y, i.e. θ(λ) = λ for all λ ∈ Y. Then f ∈ C(X), defined by f (z) = z for all z ∈ X, belongs to F (B)

T \ W
(B)
T (resp.

F
(GB)

T \W
(GB)
T ).

Proof. Note that σ(T f ) = Ran(T f ) = Y and, since 0 < acc σ(T f ), we have that T f ∈ C(Y)KD = C(Y)D, i.e.
f ∈ F (B)

T .
We prove next by contradiction that f <W(B)

T . Hence, in view of Example 3.7(ii), suppose that f|θ(Y) = f|Y
has a continuous Koliha-Drazin invertible extension 1 to X, i.e. 1 : X→ C satisfies 0 < acc Ran(1). Observe
that

Ran(T f ) = { f (θ(y)) : y ∈ Y} = {1(θ(y)) : y ∈ Y} = Ran(T1),

so that 0 < Y = Ran(T f ) = Ran(T1). Since, in view of Lemma 3.10, the condition 0 ∈ iso (σ(1) \ Ran(T1))
cannot hold, it follows that 0 < σ(1) = 1(X).

Now define h : 1(X) → Y by h(z) = z
|z| for all z ∈ 1(X). Then h is a continuous function on 1(X) that

satisfies h(Y) ⊆ Y. Furthermore, the composition h ◦ 1 of h and 1 is a continuous function with domain X
and range Y that satisfies (for all y ∈ Y)

(h ◦ 1)(y) = h(1(y)) =
1(y)
|1(y)|

=
f (y)
| f (y)|

=
y
|y|
= y,

i.e. h◦1 is the identity function on Y. Consequently, h◦1 is a retraction of X onto Y, which is a contradiction
by the remark preceding Lemma 3.10. This shows that f|θ(Y) has no continuous Koliha-Drazin invertible
extension to X, so that f <W(B)

T according to Example 3.7(ii).

Example 3.12. Consider π,U,V and T as in Example 3.9. Then T belongs toW(GB)
π \ B

(GB)
π .

Proof. First note from Example 3.9 that T ∈ W(B)
π ⊆ W

(GB)
π . Assume now, by way of contradiction, that

T ∈ B(GB)
π , i.e. there exist commuting operators T1 ∈ L(ℓ2 ⊕ ℓ2)KD and T2 ∈ F (ℓ2 ⊕ ℓ2) such that T = T1 + T2.

Since T is not Browder (as pointed out in Example 3.9), T1 cannot be invertible in L(ℓ2 ⊕ ℓ2). Hence,
0 ∈ iso σ(T1). Since T ∈ W(B)

π , there exist T′ ∈ L(ℓ2 ⊕ ℓ2)D and T′′ ∈ F (ℓ2 ⊕ ℓ2) such that T = T′ + T′′.
Consequently, sinceF (ℓ2⊕ℓ2) is an ideal, T−T2 = T′+(T′′−T2) ∈ L(ℓ2⊕ℓ2)D+F (ℓ2⊕ℓ2), i.e. T1 = T−T2 ∈ W

(B)
π .

From [4, Theorem 4.2] it now follows that T1 ∈ L(ℓ2⊕ℓ2)D, so that T belongs toB(B)
π . But this is a contradiction

in view of Example 3.9. Hence, T < B(GB)
π .

4. Further properties

4.1. Inclusion properties
We recall the inclusion results for the classes of elements studied in Fredholm theory, B-Fredholm theory

and GB-Fredholm theory relative to a Banach algebra homomorphism T : A→ B:

A−1
⊆ BT ⊆WT ⊆ FT,

AD
⊆ B

(B)
T ⊆W

(B)
T ⊆ F

(B)
T

and

AKD
⊆ B

(GB)
T ⊆W

(GB)
T ⊆ F

(GB)
T .

In [6, Theorem 3.4(x) and Theorem 3.5(v)], the authors showed that the setsW(B)
T \WT andW(GB)

T \WT are
contained inF (B)

T \FT andF (GB)
T \FT, respectively. A natural question arising now is whether the inclusions

AD
\ A−1

⊆ B
(B)
T \ BT ⊆W

(B)
T \WT, (4.1)
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AKD
\ A−1

⊆ B
(GB)
T \ BT ⊆W

(GB)
T \WT, (4.2)

and

AKD
\ AD

⊆ B
(GB)
T \ B

(B)
T ⊆W

(GB)
T \W

(B)
T ⊆ F

(GB)
T \ F

(B)
T . (4.3)

also hold. This we examine next.
First, we observe that the containments AD

\ A−1
⊆ B

(B)
T \ BT and AKD

\ A−1
⊆ B

(GB)
T \ BT do not hold in

general:

Example 4.4. Consider the Banach algebra homomorphism T : Mu
2(C)→ C defined by

T
([

a11 a12
0 a21

])
= a11.

If we let A :=Mu
2(C), then a :=

[
1 0
0 0

]
∈ AD(= AKD) \ A−1 and a ∈ BT.

Proof. Since a is an idempotent with σ(Ta) = {1} ⊊ {0, 1} = σ(a), we have that a ∈ AD
\ A−1 and a ∈ FT. Since

A is finite-dimensional, it follows from Theorem 2.9 that a ∈ BT.

We point out next that, under the additional assumption that a < FT, the implications

a ∈ AD
\ A−1 =⇒ a ∈ B(B)

T \ BT

and

a ∈ AKD
\ A−1 =⇒ a ∈ B(GB)

T \ BT

will hold:

Proposition 4.5. Let T : A→ B be a Banach algebra homomorphism. Then:
(i) (AD

\ A−1) ∩ FT ⊆ BT ⊆ B
(B)
T .

(ii) (AKD
\ A−1) ∩ FT ⊆ BT ⊆ B

(GB)
T .

(iii) (AD
\ A−1) ∩ (A \ FT) ⊆ B(B)

T \ BT.
(iv) (AKD

\ A−1) ∩ (A \ FT) ⊆ B(GB)
T \ BT.

In the following result, we demonstrate that the second inclusions in both (4.1) and (4.2) - which are not
mentioned in [6] - also hold. That is, every B-Browder (resp. GB-Browder) element which is not Browder
belongs to the set of all B-Weyl (resp. GB-Weyl) elements that are not Weyl.

Theorem 4.6. Let T : A→ B be a Banach algebra homomorphism. Then

B
(B)
T \ BT ⊆W

(B)
T \WT ⊆ F

(B)
T \ FT

and
B

(GB)
T \ BT ⊆W

(GB)
T \WT ⊆ F

(GB)
T \ FT.

Proof. Since B(B)
T \ BT ⊆ B

(B)
T ⊆W

(B)
T ⊆ F

(B)
T , we are only left to show that a ∈ B(B)

T \ BT implies that a <WT,
so let a ∈ B(B)

T \ BT. Then there exist commuting elements b ∈ AD
\A−1 and c ∈ N(T) such that a = b + c. Let

p := p(b, 0) be the idempotent from [11, Lemma 2.4 and Theorem 3.1]. Since b and c commute, b + p ∈ A−1

and c − p will also commute, and since a < BT, it follows that p < N(T). By Lemma 2.7, Ta = Tb < B−1, i.e.
a < FT(⊇ WT). Hence a ∈ W(B)

T \WT. The proof of the implication a ∈ B(GB)
T \ BT ⇒ a ∈ W(GB)

T \WT is
essentially the same. Simply replace the sets from B-Fredholm theory with their GB-counterparts. Finally,
recall that the final inclusions were established in [6, Theorem 3.4(x) and Theorem 3.5(v)].
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In [6, Theorem 3.4(vi)], the authors proved the containment Idem(A) \ T−1
{1} ⊆ F (B)

T \ FT. Our next
result display a more complete list of inclusions. In particular, we establish that the set Idem(A) \ T−1

{1} is
contained in both AD

\ A−1 and A \ FT and then apply Proposition 4.5(iii) and Theorem 4.6.

Proposition 4.7. Let T : A→ B be a Banach algebra homomorphism. Then

Idem(A) \ T−1
{1} ⊆ (AD

\ A−1) ∩ (A \ FT) ⊆ B(B)
T \ BT ⊆W

(B)
T \WT ⊆ F

(B)
T \ FT.

Proof. Let a ∈ Idem(A) \ T−1
{1}. Since Idem(A) ⊆ AD, we are only left to show that a < FT(⊇ A−1). By

assumption, Ta , 1B is an idempotent in B. Therefore, either σ(Ta) = {0} or σ(Ta) = {0, 1}. From both cases
it follows that Ta < B−1, i.e. a < FT, and hence the inclusion a ∈ (AD

\ A−1) ∩ (A \ FT) holds.

The authors do not know whether the inclusions in (4.3) hold in general.

4.2. Algebraic properties
It is well-known that the sets of Fredholm and Weyl elements are generally closed under multiplication

(and hence also non-zero scalar multiplication since λ1A is invertible, and therefore Weyl and Fredholm,
for all 0 , λ ∈ C). In the case where the homomorphism has the Riesz property, then it is known that the
product of commuting Browder elements is again Browder. As we see next, the sets of (G)B-Fredholm,
(G)B-Weyl and (G)B-Browder elements are closed under arbitrary scalar multiplication.

Lemma 4.8. Let T : A→ B be a Banach algebra homomorphism and λ ∈ C. Then the following holds:
(i) If a ∈ F (B)

T , then λa ∈ F (B)
T .

(ii) If a ∈ B(B)
T , then λa ∈ B(B)

T .
(iii) If a ∈ W(B)

T , then resp. λa ∈ W(B)
T .

Proof. (i) Let a ∈ F (B)
T and λ ∈ C. If λ = 0, then λa = 0A ∈ N(T) ⊆ F (B)

T in view of Remark 3.3. If λ , 0, then
λ1A ∈ A−1

⊆ AD
⊆ F

(B)
T , so that from [6, Theorem 3.4(vii)] it follows that λa ∈ F (B)

T .
(ii) We prove only the implication a ∈ B(B)

T ⇒ λa ∈ B(B)
T for all λ ∈ C, as a similar reasoning applies in the

case whereW(B)
T is considered. So let a ∈ B(B)

T and λ ∈ C. Then there exist commuting elements b ∈ AD and
c ∈ N(T) such that a = b + c. If λ = 0, then again by Remark 3.3 we have that λa = 0A ∈ N(T) ⊆ B(B)

T . In the
case where λ , 0, we have that λb ∈ AD (since it is the product of commuting elements b and λ1A of AD) -
cf. [11, p.375]. Hence, λa = λb + λc ∈ B(B)

T .

Using the facts that the sets of Drazin and Koliha-Drazin invertible elements form regularities, one can
easily show that the sets of B-Fredholm and GB-Fredholm elements form regularities as well. We prove
next that the sets of (G)B-Weyl and (G)B-Browder elements form upper semi-regularities relative to Banach
algebra homomorphisms with commutative domains.

Proposition 4.9. If A is a commutative Banach algebra and T : A→ B a Banach algebra homomorphism, thenW(B)
T

(= B(B)
T ) is an upper semi-regularity.

Proof. We show that conditions (ii) and (iii) in Definition 2.2 are satisfied as condition (i) was already
established in [6, Theorem 3.4(viii)] (resp. [6, Theorem 3.4(ix)]) for B-Weyl elements (resp. B-Browder
elements). To prove (iii), simply use the facts that 1A ∈ A−1 and A−1 (which is contained in B(B)

T ⊆ W
(B)
T ) is

an open subset of A. To establish (ii), which is where the assumption that A is commutative is required,
suppose that a, b ∈ W(B)

T (are relatively prime). Then a = c+ d and b = e+ f , where c, e ∈ AD and d, f ∈ N(T).
Recalling the fact that the product of commuting Drazin invertible elements is again Drazin invertible, it
follows that

ab = (c + d)(e + f ) = ce + (c f + de + d f ) ∈ AD +N(T) =W(B)
T (= B(B)

T ),

which completes the proof.
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By applying a similar reasoning as in the proof of Proposition 4.9, and utilizing Theorems 3.5[(iii) and
(iv)] in [6] instead of Theorems 3.4[(viii) and (ix)], respectively, the following result is obtained:

Proposition 4.10. If A is a commutative Banach algebra and T : A → B a Banach algebra homomorphism, then
W

(GB)
T (= B(GB)

T ) is an upper semi-regularity.

Hence, relative to arbitrary Banach algebra homomorphisms with commutative domains, the classes of
elements from B-Fredholm theory and GB-Fredholm theory are all closed under finite products:

Proposition 4.11. If A is a commutative Banach algebra and T : A→ B a Banach algebra homomorphism, then:
(i) B(B)

T B
(B)
T =W

(B)
T W

(B)
T ⊆W

(B)
T = B

(B)
T .

(ii) F (B)
T F

(B)
T ⊆ F

(B)
T

(iii) B(GB)
T B

(GB)
T =W(GB)

T W
(GB)
T ⊆W

(GB)
T = B(GB)

T .

(iv) F (GB)
T F

(GB)
T ⊆ F

(GB)
T

5. Connected hulls of corresponding spectra

The classes of elements from Definitions 3.1 and 3.2 give rise to six new spectra that are all compact
subsets of the complex plane:

Definition 5.1. ([6], Definition 2.4) Let T : A→ B be a Banach algebra homomorphism. Relative to T,

• the B-Fredholm spectrum of a ∈ A, denoted by γ(B)
T (a), is the set

{λ ∈ C : λ1A − a < F (B)
T }.

• the B-Weyl spectrum of a ∈ A, denoted by ω(B)
T (a), is the set

{λ ∈ C : λ1A − a <W(B)
T }.

• the B-Browder spectrum of a ∈ A, denoted by β(B)
T (a), is the set

{λ ∈ C : λ1A − a < B(B)
T }.

• the GB-Fredholm spectrum of a ∈ A, denoted by γ(GB)
T (a), is the set

{λ ∈ C : λ1A − a < F (GB)
T }.

• the GB-Weyl spectrum of a ∈ A, denoted by ω(GB)
T (a), is the set

{λ ∈ C : λ1A − a <W(GB)
T }.

• the GB-Browder spectrum of a ∈ A, denoted by β(GB)
T (a), is the set

{λ ∈ C : λ1A − a < B(GB)
T }.

Then

γ(B)
T (a) ⊆ ω(B)

T (a) ⊆ β(B)
T (a) ⊆ σD(a)

⊆ ⊆ ⊆ ⊆

γ(GB)
T (a) ⊆ ω(GB)

T (a) ⊆ β(GB)
T (a) ⊆ σKD(a)
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and the B-Fredholm, B-Weyl and B-Browder spectra (resp. GB-Fredholm, GB-Weyl and GB-Browder
spectra) of a ∈ A can all be expressed in terms of the Drazin spectrum (resp. Koliha-Drazin spectrum):

γ(B)
T (a) = σD(Ta); ω(B)

T (a) =
⋂

c∈N(T)

σD(a + c); β(B)
T (a) =

⋂
c∈N(T)
ac=ca

σD(a + c)

and
γ(GB)

T (a) = σKD(Ta); ω(GB)
T (a) =

⋂
c∈N(T)

σKD(a + c); β(GB)
T (a) =

⋂
c∈N(T)
ac=ca

σKD(a + c).

In view of [17, Theorem 20], immediate consequences of Propositions 4.9 and 4.10 give one-way spectral
mapping theorems for the (G)B-Weyl and (G)B-Browder spectra:

Theorem 5.2. Let A be a commutative Banach algebra and T : A → B a Banach algebra homomorphism. If a ∈ A,
then

β(B)
T ( f (a)) = ω(B)

T ( f (a)) ⊆ f (ω(B)
T (a)) = f (β(B)

T (a))

for every function f : U 7→ C which is analytic on a neighbourhood U of σ(a) and non-constant on each component
of U.

Theorem 5.3. Let A be a commutative Banach algebra and T : A → B a Banach algebra homomorphism. If a ∈ A,
then

β(GB)
T ( f (a)) = ω(GB)

T ( f (a)) ⊆ f (ω(GB)
T (a)) = f (β(GB)

T (a))

for every function f : U 7→ C which is analytic on a neighbourhood U of σ(a) and non-constant on each component
of U.

We recall Theorem 2.9 which states that the connected hulls of the Fredholm, Weyl and Browder spectra
coincide relative to Banach algebra homomorphisms with the strong Riesz property. In L(X), relying on
the relevant operator-theoretic definitions, the authors showed in [20, Theorem 3.8(2)] that the connected
hulls of the B-Fredholm spectrum, B-Weyl spectrum and B-Browder spectrum (which coincides with the
Drazin spectrum, cf. Example 3.5) of an operator T ∈ L(X) coincide. Even from Example 3.8 (where
σD(T f ) = ω(B)

T ( f ) = β(B)
T ( f ) =

[
1
2 , 2

]
⊊ [0, 3] = σD( f )) and Example 3.11 (where σD(T f ) = Y ⊊ X = ω(B)

T ( f ) =

β(B)
T ( f ) = σD( f )) we observe that the connected hulls of the (G)B-Fredholm, (G)B-Weyl and (G)B-Browder

spectra coincide. It is therefore natural to investigate the connections between the connected hulls of the
B-Fredholm, B-Weyl and B-Browder spectra (resp. GB-Fredholm, GB-Weyl and GB-Browder spectra) of
general Banach algebra elements. This question, as we see next, is only of interest in the case of infinite-
dimensional Banach algebras:

Proposition 5.4. If A is a finite-dimensional Banach algebra, T : A → B a Banach algebra homomorphism and
a ∈ A, then σKD(a) = σD(a) = ∅, and hence

σKD(Ta) = ω(GB)
T (a) = β(GB)

T (a) = σKD(a) = σD(a) = β(B)
T (a) = ω(B)

T (a) = σD(Ta).

Proof. Since AD = AKD = A, so that σKD(a) = σD(a) = ∅ for all a ∈ A, the list of identities holds.

The authors do not know whether the connected hulls of the B-Fredholm, B-Weyl and B-Browder spectra
(resp. GB-Fredholm, GB-Weyl and GB-Browder spectra) of an arbitrary Banach algebra element belonging
to the domain of a general Banach algebra homomorphism with the strong Riesz property coincide, though
some sufficient conditions for such to happen will be given in Theorem 5.6. Using an example from Harte
[8], we demonstrate next that, if a Banach algebra homomorphism does not have the strong Riesz property,
the relevant sets may not coincide.
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Example 5.5. Consider the disc algebra A(D) of all continuous complex-valued functions on the unit disk D :=
{z ∈ C : |z| ≤ 1} which are analytic on the interior ofD and the Banach algebra homomorphism T : A(D)→A( 1

2D)
defined by T f = f

|
1
2D

for all f ∈ A(D). For the identity function 1 : D→ C onD, defined by 1(z) = z for all z ∈ D,
we have that

σKD(T1) = σD(T1) =
1
2
D ⊊ D = ω(B)

T (1) = β(B)
T (1) = β(GB)

T (1) = ω(GB)
T (1).

Proof. Observe that σ(1) = D = σKD(1) = σD(1) and that

σ(T1) = Ran(1
|

1
2D

) =
1
2
D = σKD(T1) = σD(T1),

which confirms that T does not have the strong Riesz property. Since N(T) = {0A(D)} (which proves that T
has the Riesz property), we have that

β(B)
T (1) = ω(B)

T (1) =
⋂

h∈N(T)

σD(1 + h) = σD(1) = D,

and hence
ησ(T1) =

1
2
D ⊊ D = ηω(B)

T (1) = ηβ(B)
T (1).

SinceA(D) is also semisimple, the desired result follows.

By a group invertible element of a unital algebra A we mean an element a ∈ A for which there exists an
element b ∈ A satisfying ab = ba, b = aba and a = aba. If A1 denotes the set of group invertible elements,
then clearly A1 ⊆ AD. The following result involves Banach algebras in which the sets of group and Drazin
invertible elements coincide.

Theorem 5.6. Let T : A→ B be a Banach algebra homomorphism with the strong Riesz property. If B1 = BD, then

ησD(Ta) = ηω(B)
T (a) = ηβ(B)

T (a)

and
ησKD(Ta) = ηω(GB)

T (a) = ηβ(GB)
T (a)

for all elements a ∈ A whose Fredholm spectra contain no isolated points.

Proof. Let a ∈ A be such that σ(Ta) = acc σ(Ta). Then, obviously,

σ(Ta) = σD(Ta) = σKD(Ta).

First, we confirm the inclusion AKD
∩ F

(B)
T ⊆ B

(B)
T , so let a ∈ AKD

∩ F
(B)

T . Since B1 = BD, so that Ta ∈ B1, it
follows from [6, Theorem 3.4(xii)] that a ∈ B(B)

T , proving the desired inclusion. Consequently, by also using
the fact that T has the strong Riesz property, we have that

β(B)
T (a) ⊆ {λ ∈ C : λ1A − a < AKD

∩ F
(B)

T }

= acc σ(a) ∪ σD(Ta)
⊆ acc σ(a)
⊆ ησD(Ta),

from which we conclude that ησD(Ta) = ηω(B)
T (a) = ηβ(B)

T (a). For the second list of identities, we obtain from
the containment β(GB)

T (a) ⊆ σKD(a) and the fact that T has the strong Riesz property that

β(GB)
T (a) ⊆ acc σ(a) ⊆ ησ(Ta) = ησKD(Ta),

so that
ησKD(Ta) = ηω(GB)

T (a) = ηβ(GB)
T (a),

which completes the proof.
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Example 5.5, where B := A( 1
2D) is a commutative semisimple Banach algebra (and hence B1 = BD according

to [16, Corollary 4]), confirms the necessity of the condition that the Banach algebra homomorphism has
the strong Riesz property even in Theorem 5.6.

6. Some open questions

Let T : A→ B be a unital homomorphism. By NilT(A) (resp. RT(A)) we denote the set of all T-nilpotent
(resp. T-Riesz) elements of A, where an element a ∈ A is called T-nilpotent (resp. T-Riesz) if Ta ∈ Nil(B) (resp.
Ta ∈ QN(B)). Clearly, NilT(A) ⊆ RT(A). We also recall that T is said to have the lifting property if for each
q ∈ Idem(A) there exists p ∈ Idem(A) such that Tp = q. In [6], relative to Banach algebra homomorphisms
with the lifting property, the authors established necessary and sufficient conditions for an element to be
(G)B-Fredholm. After observing that the lifting property assumption is only necessary to establish the
sufficiency parts, we formulate their results as follow:

Theorem 6.1. ([6], Theorem 3.3(ii)) Let T : A → B be a Banach algebra homomorphism and a ∈ A. If there exists
p ∈ Idem(A) such that

a + p ∈ FT, pa(1A − p), (1A − p)ap ∈ N(T) and pap ∈ NilT(A),

then a ∈ F (B)
T .

If, in addition, T has the lifting property, then the converse also holds.

Theorem 6.2. ([6], Theorem 3.3(i)) Let T : A→ B be a Banach algebra homomorphism. If there exists p ∈ Idem(A)
such that

a + p ∈ FT, pa(1A − p), (1A − p)ap ∈ N(T) and pap ∈ RT(A),

then a ∈ F (GB)
T .

If, in addition, T has the lifting property, then the converse also holds.

We further observed that the second part of Theorem 6.1 still holds when FT and F (B)
T are replaced by

WT andW(B)
T (resp. BT and B(B)

T ) and the assumption that T has the lifting property is removed. Hence,
the following results give a necessary condition for an element to be B-Weyl (resp. B-Browder) relative to
an arbitrary Banach algebra homomorphism.

Proposition 6.3. Let T : A → B be a Banach algebra homomorphism. If a ∈ W(B)
T , then there exists p ∈ Idem(A)

such that

a + p ∈ WT, pa(1A − p), (1A − p)ap ∈ N(T) and pap ∈ NilT(A).

Proof. Let a ∈ W(B)
T . Then there exist b ∈ AD and c ∈ N(T) such that a = b + c. Let p ∈ Idem(A) be the

idempotent from [16, Proposition 1]. Then

a + p = (b + p) + c ∈ A−1 +N(T) =WT

and, since bp = pb, we obtain that T(ap) = T(bp) = T(pbp) = T(pap) and T(pa) = T(pb) = T(pbp) = T(pap), i.e.
pa(1A − p), (1A − p)ap ∈ N(T). Finally, by using the fact that bp ∈ Nil(A), it follows that T(pap) = T(pbp) =
T(bp) ∈ Nil(B), i.e. pap ∈ NilT(A), which completes the proof.

Proposition 6.4. Let T : A → B be a Banach algebra homomorphism. If a ∈ B(B)
T , then there exists p ∈ Idem(A)

such that

a + p ∈ BT, pa(1A − p), (1A − p)ap ∈ N(T) and pap ∈ NilT(A).
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Proof. Let a ∈ B(B)
T . Then there exist commuting elements b ∈ AD and c ∈ N(T) such that a = b + c. Let

p ∈ Idem(A) be the idempotent from [16, Proposition 1]. As in the proof of Proposition 6.3, we have that
pa(1A − p), (1A − p)ap ∈ N(T) and pap ∈ NilT(A).We show next that a + p ∈ BT. Now, if b ∈ A−1, then p = 0A
and a ∈ BT, so that a + p = a ∈ BT. Hence, suppose that b < A−1, so that 0 ∈ iso σ(b) and p = p(b, 0) in view
of [11, Theorem 3.1]. Since b commutes with c and the idempotent p belongs to the double commutant of
b, it follows that b + p ∈ A−1 and c ∈ N(T) commute, and hence a + p = (b + p) + c ∈ BT. This completes the
proof.

Remark 6.5. The idempotent that works in Propositions 6.3 and 6.4 does not in general belong to the null space of
T, so that the results above do not follow immediately.

The analogues of Propositions 6.3 and 6.4 are given next. They provide necessary conditions for an
element to be GB-Weyl and GB-Browder relative to arbitrary Banach algebra homomorphisms.

Proposition 6.6. Let T : A→ B be a Banach algebra homomorphism.
(i) If a ∈ W(GB)

T , then there exists p ∈ Idem(A) such that

a + p ∈ WT, pa(1A − p), (1A − p)ap ∈ N(T), and pap ∈ RT(A).

(ii) If a ∈ B(GB)
T , then there exists p ∈ Idem(A) such that

a + p ∈ BT, pa(1A − p), (1A − p)ap ∈ N(T), and pap ∈ RT(A).

Proof. Simply replace [16, Proposition 1] in Propositions 6.3 and 6.4 by [11, Lemma 2.4].

Do the converses of Propositions 6.3, 6.4 and 6.6[(i) and (ii)] hold (under the assumption that T has the lifting
property)?
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