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Abstract. In this paper, we present the concept of g-statistical convergence for any sequence of real-
valued functions. Several characteristics of g-statistical convergence for sequences of functions with real
values are examined. Further, we introduce the notion of g-statistical convergence for sequences of Jackson
integrable functions. Finally, we determine the g-statistical solution of q-differential equations that involve
non-uniquely solvable Cauchy problems.

1. Introduction

Summability theory addresses the generalization of the limit concept associated with sequences or
series, which is usually influenced by an auxiliary sequence of linear means derived from the specified
sequences or series.Although the original sequence or series may exhibit divergence, it is essential that the
linear mean sequence converges. It is known that Zigmund [33] first proposed the concept of statistical
convergence in his well-known work “Trigonometric series” in 1935. The notion was formally established
by Fast [2] and Steinhaus. The principle of convergence pertaining to an infinite series was first satisfactorily
clarified by the French mathematician A.L Cauchy. Then, Bilalov et al. [5] presented the idea of the statistical
convergence in Lebesgue spaces L”. One can see [11-14] and references therein for several work of statistical
convergence sequence of functions. One can see [22,31] and their references for recent trends of statistical
convergence and their related works. Illner et al. [10] put forth the notion of employing a statistical method
for differential equations tied to a Cauchy problem that does not yield a unique solution.

Quantum calculus [9}121,130], referred to as g-calculus, represents a type of calculus that operates without
the concept of limits. Recently, g-calculus has drawn the attention of numerous researchers due to its wide-
ranging applications in Mathematics and Physics. Jackson systematically introduced and explored the
g-derivative and g-integral [18, [19]. The creation and annihilation operator matrix elements are used by
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Kaniadakis et al. [20] to present a generalized exclusion-inclusion principle that is intrinsically related to
the quantum g-algebra. The fractional g-integral with the parametric lower limit, Rajkovic et al. [27] use
the fractional g-derivative of Caputo type as the integration. In particular, they introduce its applications to
g-exponential functions: Mittag-Leffler function g-analogs. In broad approach: Zhang et al. [32] investigate
the solution theory pertaining to the Caputo type nonlinear g-fractional differential equation. Ultimately,
a successive approximation technique is introduced to determine the analytical approximate solution for
this issue. The research conducted by Atici et al. [3] in this document serves as a bridge that connects the
established fractional g-calculus present in the literature with the fractional q-calculus formulated within a
time scale.

Lately, Bekar et al. [6] introduced the concept of g-density and g-statistical convergence. Mursaleen et
al. [23] investigate g-statistical convergence, g-statistical limit points, and g-statistical cluster points. They
provide a definition for g-statistical Cauchy and investigate its relationship with g-statistical convergence.
Additionally, they introduce two concepts, namely g-strongly Cesaro summable sequences and statistically

ng)-summable sequences, and illustrate their connection to g-statistical convergence. In their analysis,
they consider g-statistical convergence to scrutinize a Korovkin-type approximation finding. Further,
Mursaleen et al. [24] investigate g-statistical convergence in double sequences. They offer definitions for
the statistical pre-Cauchy and g-analog of statistical Cauchy pertaining to double sequences. Additionally,
they identified the necessary and sufficient criteria for a double sequence to exhibit distinct statistical limits.
It is illustrated that a g-statistical convergent sequence qualifies as a g-statistical Cauchy sequence, and
the opposite is confirmed. Mursaleen et al. [25] introduce a new category of Lupa s-Bernstein operators
defined by the shape parameter A and establish a Korovkin-type approximation theorem. Furthermore, they
ascertain the rate of statistical convergence associated with these operators. Additionally, they determine
the rate of statistical convergence for these operators. Moreover, authors provide various graphs and
numerical illustrations demonstrating the convergence of the newly introduced operators and indicate
that in certain scenarios, the errors are smaller than those of the conventional ones. In recent times,
g-calculus has been employed in several summability approaches, encompassing both matrix and non-
matrix frameworks, including gq-Césaro matrices, q-Hausdorff summability and g-statistical convergence
(see [[1} 16, [7] and references therein for details).

Recently, Jena et al. [15] discuss statistical gauge integrable functions. In application, Korovkin-type
aproximation theorem is proved. Jena et al. [29] defined statistical Riemann and Lebesgue integrable
sequence of functions with Korovkin-type approximation theorems. Jena et al. [16] discuss approximation
of Fourier series via a class of product deferred summability mean. Jena et al. [17] introduce equi-statistical
convergence of distribution product via deferred Norlund summability mean. Satapathy et al. [28] find
a new class of Korovkin-type approximation theorem based on equi-statistical convergence of double
sequence. Parida et al. [26] extend statistical Riemann summability and fuzzy approximation.

The idea of [5] encourage us to introduce g-statistical convergence of sequence of functions. Further,
the methods presented in [10] inspired us to seek a ¢-statistical solution of non-uniquely solvable Cauchy
problems in our settings.

The structure of the manuscript is as follows: In Section 1, we recall several definitions, results that are
useful to our next section. Additionally, we discuss several properties of sequence of g-integrable functions.
In Section 2, we discuss g-statistical convergence sequence of functions and several results related to the
same. In Section 3, we present ¢-statistical convergence of sequence of Jackson integrable or g-integrable
functions. We provide the necessary and sufficient condition for the g-statistical convergence of sequences in
sense of Jackson integrable functions. In Section 4, we present the g-statistical solution for the non-uniquely
solvable Cauchy problem within the framework of g-calculus.

2. Preliminaries

We recall several definitions, and theorems of g-calculus that will be use in our Sections. We denote IN
is natural number set and R is real number set.

Definition 2.1. [18] Let 0 < q < 1. The quantum number or g-number of n € N is defined by
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1_qn

— ,n>0
o=[n={1-a "

1 ,n=0.

One may notice that when ¢ — 1 then [n], = n for n > 0.
The g-analog of binomial coefficient or g-binomial coefficient is defined by

!
A =1y [ —r]g![r]y!
q 0 n<r
where g-factorial [n],! of n is given by

1 =0
ot = [n]t = {[n][n —1]---[211] , n>0.

867

The g-differential of an arbitrary ¢ function is defined by d,p(x) = p(qx) —p(x). In particular let dx = (q—1)x.

Then the g-derivative of  defined by

dop(x) _ p(ax) — p(x)

Dqp(x) = dox Y

where x # 0 and 0 < g < 1. Note that if ¢ is differentiable function, then

. o 9ax) —p(x)  xp'(x) dp(x)
}g}Daxo(x)—lqgrll -Tx ~ x =9 =—-

One can see [4] [7, 8 18} 20, [21] 31] and references therein for details of g-differential of an arbitrary ¢

functions and their related work. The g-analogue of (a — b)" is defined by

. ,n=0
(a_b)q _{(a_b)(a_qb)...(a—q”‘lb) ,n>1

for every a,b € R. In other saying

n-1
(@a—b) = H(a —qb) and (@-b°=1, neN.
i=1

Recall the g-integral or Jackson integral as follows:

Suppose p(x) is an arbitrary function. To construct its g-derivative @(x), recall the operator M,(P(x)) =

D(gx), and
1 _ _ D(qx) — D(x)
oD M T DR =
= p(x).

Since the operator do not commute, we can formulate the g-derivative as

) = 1= (1 - ()

=(1-a) ) Mxp()).
j=0
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2.1. Sequence of g-integrable functions and their properties.
In this Section, we discuss several properties of sequence of g-integrable sequence of functions. We start
the Section with the following definition.

Definition 2.2. Let p(x) be an arbitrary function. We called p(x) to be Jackson integrable (or q-integrable) if for
T > 0 there exists € > 0 such that

ja- q)x; Aip(ain) - f P

<€

(1—a)x fo ap(/x)
]:

whenever <T.

It is not hard to find, if p(x) is Jackson integrable then this is unique. Linearity and sub-additivity holds
for Jackson integrable functions. In this manuscript, we are focusing on several properties of sequence of
Jackson integrable functions. For the purpose of furthering our research, we articulate the following.

Definition 2.3. Let 9, (x) be a sequence of any functions converges to p(x) in sense of Jackson integral if lim p,(x) =
p(x) and (1 - q)x ¥, a/pu(a/x) = [ p(x)dex asn — eo.

j=0
Definition 2.4. Let p,(x) be a sequence of Jackson integrable functions on [a.b] C R. We placed a call p,(x)

converges g-uniformly to the function ¢ : [a,b] — R on [a,b], if for any € > 0 there exists k € IN such that
n>k ‘gon(x) - go(x)‘ < eforall x € [a,b] with (1 — q)x ¥, ¢/pn(a/x) = fg)(x)dqx asn — oo,
j=0

Remark 2.5. The convergence of any g-integrable function in sense of the Definition [2.4|implies the convergence of
the Definition

Theorem 2.6. The sequence ,(x) convergence q-uniformly in sense of Jackson integrable if and only if for every

€ > 0 there exists k € N such that if m,n > k with |Hm(x) - H,,(x)| < e where Hy(x) = (1 — q)x ¥ o/9.(0/x).
=0

Proof. Suppose that p,(x) sequence g-uniformly convergence to p(x) in sense of Jackson integral on [a, b].
That is for given € > 0 and all x € [a, D], there exists k € IN such that for each n > k |H,(x) — f P(x)dox| < 5.
Let m > k anumber and N = max(im, n), for every x and N > k

|Ha(x) ~ Hu(@)| =

H,(x) - f P + f P()ox — Hou(r)

< +

Hy) - f o(dox]| + [Hn() - f P(Od,x

< + =E€.

NI o
NI |

Conversely, suppose that for every € > 0 there exists k € IN such that if m,n > k with |Hm(x) - Hn(x)| <e€
where H,(x) = (1 — q)x Y, o/p,(¢/x) for all x € [4,b]. Then by Cauchy criterion for series the equality
=0
1 -qx Y d/p.(a/x) = f P(x)d,x as 1 — oo exists for every x. Taking the limit of |[H,(x) — H,,(x)| as m — oo,
j=0
Hy(x) = [ p()dox

we have <eforallx €a,blandn>k. O
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Definition 2.7. Suppose 9, (x) be a sequence of Jackson integrable functions on [a.b]. If for every x € [a,b]and n € N

there exists a L € R such that ‘(1 —qx ) quon(qjx)‘ < L then ¢, (x) is said to be q-bounded.
j=0

Definition 2.8. ¢, (x) sequence of Jackson integrable functions on [a.b] is called g-continuous if for every € > 0 and
n € IN there exists a T > 0 such that for all x,y € [a, b], |H,(x) — Ha(y)| < € whenever |p,(x) — 9u(y)| < T

Now we give results involving the relations between uniform convergence, bounded and continuity.
Since proofs are directly follows from definitions, we have ommitted their proofs.

Theorem 2.9. Suppose p,,(x) be a sequence of Jackson integrable functions and 9, — ¢ q-uniformly on [a, b]. If each
9 is bounded on [a, b] then the sequence @, is q-uniformly bounded on [a, b] and g is bounded on [a, b].

Theorem 2.10. Let 9, (x) be a sequence of Jackson integrable functions on [a, b] converging uniformly to o on [a, b].
If every 9, is q-continuous on [a, b] then ¢ is g-continuous on [a, b].

Theorem 2.11. Let @, (x) be a sequence of Jackson integrable function on [a, b]. If 9, converges uniformly to ¢ on

[a,b], then g is Jackson integrable and lim H,(x) = fu ’ P (x)d,x.

Recall the notion of g-statistical convergence, which is linked to both density and statistical convergence.
Definition 2.12. [6] Suppose K € N and let K, = {j : j < n, j € K}. Then the natural density d(K) of K is defined
by

A(K) = lim 2!

n—co 1N

=k

where the k is a real number and finite, |9G,| is the cardinality of ¥,.

A given sequence (x,,) is statistically convergent to L, if for each € > 0
Ke=1{j:jeN,lxj— L]l > €}

has zero natural density. Thus for each € > 0, we have

A = lim el

n—oo n

0

Here we write

stat- lim (x,) = L.

n—oo

Definition 2.13. [1]] A sequence (x,) is called g-statistically convergent to L number, if for every € > 0 and the
g-density of the set Ko = {k: k € N, |xy — L| > €}

d4(K) = lim L] k<n:dlg-L>el|=0

n—oo 1],
and we write
sty- lim (x,) = L.
n—oo

One should recall that the statistical convergence of a sequence corresponds to g-statistical convergence,
yet the reverse is not valid. This indicates that g-statistical convergence encompasses a wider range than sta-
tistical convergence. Consequently, we were motivated to extend the framework of g-statistical convergence
from sequences of real numbers to sequences of functions that demonstrate g-statistical convergence.
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3. ¢-Statistical Convergence sequence of functions

In this section, we introduce the notion of g-statistical convergence for sequences of functions. We explore
various properties and results pertaining to g-statistical convergence of function sequences. Additionally,
we demonstrate that every sequence of functions that converges statistically is also g-statistically convergent;
the opposite does not hold. Below, we provide a definition for the g-statistical convergence of sequences of
functions.

Definition 3.1. A sequence (p,) of function is called q-statistically convergent to a function @ if for every € > 0,

q-density of the set K. = {k . ke Nand |pr — 9| > e} is zero i.e. 64(K;) = lim ﬁ'{k <n: ¢px—pl = e}‘ =0.
n—oo Mg

We denote g-statistical convergence of g, — @ by st,- 7}1_1)1; Pn(x) = p(x).

Lemma 3.2. The Definition [3.1]is hold if and only if there exists a set K = {k; < ky < --- <k, < ---} € N with
04(K) = 1and lim gy, = 9.

Proof. The proof is an analogous of [23, Theorem 1]. [

The following properties are directly follows from the Definition 3.1]

Theorem 3.3. If sty- lim 9, (x) = p(x), sto- im J,,(x) = I(x) and A is any real number, then

1. sty- im (p,(x) + T,(x)) = p(x) + I (x).
2. sty- im (A, (x)) = Ap(x).
According to Theorem the collection of all bounded q-statistically convergent sequences of real

functions constitutes a linear subspace within the linear normed space G of all g-bounded sequences of real
functions, where the norm is defined as |||l = sup |p(x)|.
X

Theorem 3.4. Let G the set of all g-statistically bounded convergence sequence of real functions. Then the set Gy is
a closed linear subspace of the linear normed space G.

Proof. Letp, € Go (n=1,2,---) and p, — @ € G in sense of g-statistically. In order to prove G be a closed

set, it is enough to prove that p, — ¢ € Gy. According to the assumption for each n there exists a real

sequence of functions J, such that ¢, — 3, hold forn = 1,2,--- . That is if 9, = {5}(’} then st,-&} = 3,
k=1

forn=1,2,--- . In order to complete our proof we need to establish the following facts:

1. The sequence (¢,);; , of real functions converges to a real function g;
2. 9, — ¢ in sense of g-statistical.

For (1) : Since (px);7, is convergent sequence of real functions from G, for € > 0 there exists a 19 € IN that
for every j,n > ng, we have

€
llpj — pnll < 3 (1)
By Lemma there exist such sets Aj, A,, Aj, A, C N that

lim pi = g;, wherek € A; (2)

k—o0

and

%im 9y = 9Pn, Wherek € A, 3)
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Since g-density of AjN A, is one, so it is clear that A; N A, is a infinite set. We can choose suchak € A;N A,
that have

- € €
9 — 9jl < 5 and o} — pul < 3. (4)
The Eqn. [[jand Eqn. [ gives for each j,n > ny
l9j—pul <e. (5)

Clearly, (p;) is a Cauchy sequence of functions. So it is converges to a real function g i.e. ]}im Ok = 9.

For (2) : Let n > 0. It suffices to demonstrate the existence of a set A ¢ IN with 6,(A) = 1 and for each
ke N, |pr — 9| < n.Since p; — ¢, there exists a number p € N such that

n
- 2 6
llpp = 9ll < 3 (6)
Next, the number p can be choosen in such a way that together with the Eqn. [5|also the inequality
n

o — 9|l < = 7

lpp — 9l 3 )

holds. Since g, — J,, as g-statistically, there exists a set A C IN with 6,(A) = 1 and for each k € A we have
9, =9yl < 3. ®)

Clearly, by Eqn. [6} Eqn. [7} and Eqn. [8|we can find for each k € A, |[px — .4 < 1. Hence the set Gy is a closed
linear subspace of the linear normed space G. O

Corollary 3.5. The set Gy is a nowhere dense set in G.

Theorem 3.6. Every statistical convergence sequence of functions are g-statistical convergence. The opposite might
not be true.

Proof. The proof is similar to [6| Theorem 3.2.2]. O

liog}]
Example 3.7. Let (p,) be a sequence of functions defined by @, = # on the set K ={k e N: p,(x) =1}
Clearly 5() does not exist. Hence the sequence of the function is not statistical convergence. In the other hand

lim L k|
im -k < n: ok 25— —0|)

n—00 [n]q

= 0. Thus @, is q-statistical convergence and converges to zero.

Definition 3.8. We say (9,) to be g-statistical uniformly converges to 9 on M C R if
sto- lim == sup af|p,(x) — p(x)| = 0.
n—oo Mg M
It is clear that g-statistical uniformly convergence of @, implies ¢-statistical convergence of g,. If the
Definition 3.8 true, then the following theorem is true.
Theorem 3.9. Let (p,) C Cla, b] and g-statistically uniformly convergent which is converges to @ on [a, ], then ¢
.. . b b
is in Cla, b] and st - &g{}ofa Pn(X)dgx = fa p(x)dyx.
Proof. Let (p,) C Cla, b] and g-statistically uniformly convergent and converges to p on M C R. Let Y}, =
ﬁ sup qk|g)n(x) - go(x)| ¥n € Nand k < n. Clearly, st,- lim Y, = 0 and there exists K = (1), © 11 < 12 <
xeM
o+ ,04(K) =1and lim Y, = 0.Thusif (p,)is continuous on M and g, — p which is g-statistically uniformly
r—o0

on M, then g is also continuous on M. Moreover for M = [a,b] we have st,- ’}g?o fa ’ Pn(X)dgx = fu ’ p)dyx. O
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4. g-statistical convergence of sequence of Jackson integrable functions

In this section, we discuss the g-statistical convergence of sequences of Jackson integrable functions,
utilizing the definition of g-statistical convergence. In addition, we outline the necessary and sufficient
condition for the g-statistical convergence of sequences regarding Jackson integrable functions.

Definition 4.1. A sequence of function 9,(x) is called g-statistically convergent to ¢ in the sense of g-integral or

Jackson integral if for every € > 0, d4(Ke) = 0, where K = {k (1= q)x i G/ pr(alx) — f Px)dyx| > e}.
=0

We write
St 1im (,)(x) = 9(x)

and

TR N | P
24(%) = lim [n]q]{k. q

qum(qfx)— f P(x)dyx 26}.
=0

Example 4.2. Let a sequence of functions {¢,}> | is defined by ¢, = = for x € [0, 1]. The sequence o-statistically
convergent to ¢(x) = 0 for x € [0, 1] in sense of Jackson integral.

Proof. Lete >0

.
2 )

K ={k: (1—Q)iqf¢k(qfx)— f P(X)dqx
={k: (1- q)Zq’ (qx deqx

:{k: (1—q)j_ZOqj_T” Ze}

for every x € [0, 1] K is a null set. So,

s dlo -0 Lot o <o

Therefore {¢,} is g-statistically convergent to ¢ in sense of Jackson integral. [

lim —
n—oo [n]q

Theorem 4.3. Every qg-integrable convergent sequence of functions is g-statistically convergent in sense of Jackson
integral.

Proof. Let p,(x) sequence of functions converges to ¢(x) in sense of g-integral. Then we havelim lim (p,,)(x) =
Nn—00

> 6}. Since g-integrable

@(x). For any arbitrary € > 0, we write K, = {k : ’(1 —ax Y d/o(a’x) = [ p(x)dgx
=0

©n(x) convergent to p(x),

{k af|(1 —Q)x;qfxok(qfx)— f P(x)dyx 26}

Therefore (p,) is q-statistically convergent to g in sense of Jackson integral. [

94(Ke) = lim 1 =0.

ws [nl,
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We shall examine the uniqueness of g-statistically convergent in sense of Jackson integral in the following
theorem.

Theorem 4.4. Ifasequence (9,,) of functions is q-statistically convergent to ¢ in sense of g-integral, then ¢ is unique.

Proof. Suppose that p and b are g-integrable functions and for each € > 0 the sequence (p,) be g-statistically
convergent to ¢ and b functions in sense of g-integral. Now we write

‘ f pdx — f bdox| = ' f pdyx+ (1= )x Y dor(a) = (1= a)x Y glpi(alx) - f bddqx
j=0 j=0

=) goutan) - [ o]+ [0 -0 ) aioutain) - [ b
= =0

-0

< +

Since st,- lim (p,,)(x) = @(x) and st,- lim (p,)(x) = b(x), we get 9 =b. O
Theorem 4.5. Let (9,,) and (b,) are sequence of functions that are q-statistically convergent to o and b functions
respectively in sense of q-integral.
1. sty- lim (cpn)(x) = 9(x), where c is nonzero scalar.
n—oo
2. ste- lim (9, + by)(x) = p(x) + b(x).
The proofs of linearity properties given above are directly follows from the definition.

Now we present the g-statistically Cauchy sequence for sequence of Jackson integrable functions that is
closely relation with g-statistically convergent.

Definition 4.6. A sequence (p,) of functions is called g-statistically Cauchy sequence in sense of Jackson integral
if for any € > O there exists a N natural number such that the set d,({k : |[Hx — Hy| > €}) = 0 where Hx =

(1= 9)x X2o d/r(a/x).

Theorem 4.7. Every sequence of g-statistically convergent functions in sense of Jackson integral is g-statistically
Cauchy sequence.

Proof. Let g, is g-statistically convergent to ¢ function in sense of Jackson integral. Thus for each € > 0,

9a(%.) = 0 where K. = {k  |He - [ p@)dyx

number such that d,(N.) = 0 where N, = {n : ’HN - fg)(x)dqx
the density has subadditive property

> 6} and Hg := (1 — q)x Z}io ¢/ pr(g/x). Now we choose a 1 < k

> e} and Hy := (1 - a)x 72y a/p.(a/x). Since

do(Ke U Ne) = dq({k : [Hk — Hnl = €}) < 9o(Ke) + do(Ne) = 0.
Therefore the sequence @, is g-statistically Cauchy sequence in sense of Jackson integral. [J
We shall introduce g-statistically bounded sequence of Jackson integrable functions.

Definition 4.8. A sequence (9,,) of functions is said to be q-statistically bounded in sense of Jackson integral if there

exist a L > 0 such that the set {k : |(1— q)x Y, o/pr(a/x)| > L} has zero q-density.
j=0

Theorem 4.9. Every q-statistically convergent sequence of Jackson integrable functions is q-statistically bounded in
sense of Jackson integral.
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Proof. Suppose that (p,) is a g-statistically convergent sequence of Jackson integrable functions. Let e > 0

and (p,) be unbounded. Then for the set K, = {k : ‘(1 - q)x io“ o/ pr(a/x) — fgo(x)dqx > e},
=0

9q(Ke) = lim ﬁ {k afla - q)xgqjsok(qfx) - f P(X)dex| > e} =0.
This implies,

lim ﬁ {k o Z i) > | | p(x)dex| - e}

< lim ﬁ {k qf Z "o 0)| = of| | 9()dex| - 6}

+ lim ﬁ {k k|1 - Q)XZ T ok x)| > | | p)dex| - e} .

rEmM

1-q)x Z o/ pr(alx) — f p(x)d,x # 0. This is a contradiction of g-statistically

{k ot b > e}

convergence. So, we conclude that (p,) is bounded sequence in sense of g-integral. 0O

Therefore hm

Theorem 4.10. A sequence (9,,) of Jackson integrable functions is g-statistically convergent in sense of q-integral if
and only if for every € > 0 the following condition is satisfied:
If for the set

Ke = lhkym: (1= ) dpu@x) = (1= a)x )| dou(@x)] > e
i=0 =0

has zero g-density that is d(Ke) = 0 whenever (9,,) is convergence subsequence of (k).

Proof. Let (p,) sequence of Jackson integrable functions is g-statistically convergent to g in sense g-integral.
Then for every € > 0
2 e}

{k: qf

where Hx = (1 — q)x ¥ ¢/px(q/x). Let Hy be a convergence subsequence of Hg then,

1
lim — =0

n—00 [n]q

He- [ owdun

=0
. 1 X
lim — {k,m:q Hyg — Hy Ze}
n—co [n]q
= lim % {k,m s of|Hg — fg)(x)dqx + fgo(x)dqx —HM' > e}
n—oo q
1
<hm—{k,m:kH —f xdx26}+hm {km f xdee}
im o 0 |Hg = | 9()dq R q* P(0)dq
— 1 1 .k _
= 31_{1; ol {k,m D q |Hpm fg)(x)dqx 26}.

f p(x)dx = 0. Therefore, we

> )

Since hm ©m = 9, (pm) is convergent to p. Hence hm I{k q"

2 )

=0.

{k,m:q

conclude that lim - Hy — Hy

n—00 [n]q
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= 0 for (p.) convergence subsequence of (py) such

Hy —HM' > 6}

: 1 .k
Conversely, suppose }1_1110 W‘{k,m 1 q

that lim ,, = . Now we get

1

lim—{k: KH —f{ X)dx Ze}
wes Tl q |1k P(x)d,
= limL{k,m:quK—HM+HM—f5(J(x)dqx Ze}

n—oo [n]q
< lim L{k,m:quK—HM Ze} + lim L{k,m:q"HM—‘fgo(x)dqx Ze}

n—oo [n]q n—eo [n]q

1

=1im—{k,m: KH —f( X)dqx Ze}.

wes Tnls q |m P(x)d,

=0.

Hy— [ p(@)dyx

.

= 0. This conclusion that H is g-statistically convergent

Since lim ¢, = @, (p) is g-statistically convergent to p. Therefore lim ﬁ'{k,m s gk
n—oo q

{k:qk 26}

in sense of g-integral. [J

Hg — fg)(x)dqx

Consequently, lim ¢i-
n—oo

5. g-statistical solution of non-uniquely solvable Cauchy problem

In this Section of the manuscript, we find g-statistical solution of non-uniquely solvable Cauchy problem
in the settings of g-Calculus. In order to develop the solution concept, we put forward several assumptions
regarding the fundamental initial value problems. We consider g-Cauchy problem

qu = S{)(}',), }'.(0) =X (9)

allows for a globally unique solution for every ¥y € R. The function g satisfies the global Lipschitz condition,
and there exists a family of g-diffeomorphisms S(¢) : R — R, t € [0, co) such that S(t)x( represents the solution
to Eqn. [0} Let S(0) = d and let y represent any probability measure on R. Let

wi(A) = po(S() ™' A) (10)

for all Borel sets A in R. Then 11, (S(t)A) = uo(A) signifies that yi; is the measure generated by (g as influenced
by S(t).

Let w belong to Cé([O, o) X R) be an arbitrary test function. The use of the transformation theorem for
integrals alongside g-differentiation produces

[ o, 9apn(9 =, [ 0,509t
= [t 5079 + 9599040,
— [+ g, Didap (o
and integration from 0 to oo, we get

fo f [, + (0ot (K)ot + f (0, ) tio(x) = 0. a1

Remark 5.1. It can be seen that S(t) does not contain explicitly in the Eqn. Hence Eqn. [T1|differemt from the
Eqn. [10} and makes sese even if Eqn. [9|is not uniquely solvable for all x.
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In analog approach of [10], we shall investigate the g-statistical solution of D,x = p(x). In this situation if can
claim a measure-valued mapping will be g-statistical solution of D x = p(x) then our g-statistical solution
will be as follows.

Definition 5.2. We define a measure-valued mapping [0, 00) — M,, t — u, as a g-statistical solution of Dyx = (%)
with the initial value uo if Equation (11|is satisfied for every w € Cy([0, o) X R), where My represents the collection
of probability measures on R.

In order to construct q-statistical solution, we consider the following axioms:

1. p: R —» R* is g-continuous;
. 9 : R\ {0} = R" is g-Lipschitz continuous;
. The only stationary point of the equation Dyx = ¢(x) is 0;
. The equation Dyx = ¢(x), ¥(0) = ¥ possesses a positive solution given by x(t) = T;10, t € (0,t) where
(0, ") represents the maximal existence interval in R*;
5. for each solution T,a of Dyx = p(x), ¥(0) = a < 0, there exists a finite time 7(a) such that T;(a)a =0and
T,ya < 0 for the interval 0 < t < 7(a).

=~ W N

Furthermore, let us consider the mapping 7 : (-=c0,0) — (0, o0) which is bijective, and assume that 7 is
g-differentiable. Let 1o be g-uniformly continuous with g-density 6, € q-L}, and let f 0q(¥)dqx = 1. In order
to examine “not stopping in 0 solution of Dyx = p(x), *(0) = a < 0, We define 0o(x) = u(x) + v(x), where
u(x) = 0 for all * > 0 and v(x) = 0 for all ¥x < 0.Then,

x(t) = Tya, t < 1(a)

= T;“_T(a),OO, t > 1(a).

Next, we can find the g-uniformly continuous solution of corresponds to

O(t, x) = u(Tyx)Dq x(T;x), x <0
- u(T_(Ot(S)))Dq,;(T_(Ot(s))), 0<x<Tho
= U(Tgtx)Dq,x(Tgtas), T;0 < x.

Let py denote an arbitrary probability measure representing initial values, and consider j as an aggre-
gation of numerous identical particles, where fA d,po indicates the relative quantity of particles within the
set A. Additionally, let all these particles evolve in accordance with the equation Dyx = p(x). Then T}, T,

produce the trajectories of particles that can linger at 0 for as long as they choose. The expression

5(t, %) = u(T_(ot(x)))Dq,x(T’(ot(x))), 0<a, T}

is reinstated if no particle remains at 0 at any point in time. Additional g-statistical solutions can be derived
when a particle arrives at time “s” at 0, remains there for a certain arbitrary “waiting time” #/, and then
departs from 0 at s + #’ on the trajectory T, _,. ;0. To express this heuristic observation within a g-stochastic
context, let {P;}[0,.0) denote a collection of g-substochastic measures defined on the interval [0, 00), such that
1. suppP; C [t, 00) and
2. The mappingt — P;(A) is measurable for every Borel set A C [0, o). The term P;(A) can be understood
as the likelihood that a particle arriving at time ¢ exits within the interval A. Utilizing the “waiting
measures” Py, we define the transition probabilities P(t, a, E) as follows:

P(t,a,E) = pm)(at(ﬁ N, T;OO])) + (1 - PT(a)([O, t)))éO(E) ifa<0&t> t(a).

Let H; : My — M, be the g-forward evolution in time of a measure (1o, which is defined by the equation
H;[uol(E) = [ P(t,x, E)d,io(3)-
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Next we claim our main result.

Theorem 5.3. Let SuppP; C [t,00), and if t — Py(A) is measurable for each Borel set A C [0, ), then for any
collection of substochastic measures {P;} on [0, c0), u; = H;[uo] constitutes a q-statistical solution of Dyx = ().

Proof. Letw € Cé([O, 00) X ]R). Then

00 00 TO
jﬁkf[m+@@MM%m&Mf—jw [m+@@ﬂd%w@ﬂﬁ+]ﬂ~[ [ws + p(E)wldopus ()t

f f [wr + @(x)weldq e (x)dqt

=1+ +]IIL

Given the involvement of not only g-uniform continuous measures, it is essential to clarify which boundaries
correspond to which integrals. In “I” the inner integral is taken over (T},0, o), in (II) over [0, T};0], and in
(III) over (—o0,0).

I= fo ) f ) fT " O0Lwr + 9wt )P, ¥, dua)d ro(a)da(t)

=1[i£ﬂw+@wmhﬁm%mﬁﬂﬁ

- f ) f " lwr + 9t T Do (st
j"j‘mmaTm%mmw

—1£wm@wm>

The calculation of (II) is

50
II= f f f [wr + p.w](t, a)P(t, x)dqa)dqpo(x)dqt
= f f [w + 9w 1(t, Tho¥)dqpo(x)dot
f f Dg[w(t, Ti%)ldqtdqpo(z)

=—fzmmmmo

0

The calculation of (II) is as follows:
00 00 0
I = f f f [w; + pw;](t, a)P(t, x, dqa)dqa)dpio(x)dqt
0 —00 J—00

00 0

= f ﬁ f [w: + pw:](t, a)dqéT;)x(a)daHO(}?)dat
0 —00 J —00
00 T (1)

- fo f Difw(t, Tiy)ldatdapio(x)
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0
= j: [w(T(x),0) — w(0, x)]d, Lo (%).

0

Adding up (I) — (III) we can conclude the complete proof. [

Conclusion

In this manuscript, we introduce the concept of g-statistical convergence sequences of functions. Various
important characteristics of these sequences are analyzed. We have established that every statistically
convergent sequence of functions shows g-statistical convergence. Moreover, we explore the g-statistical
convergence of sequences that consist of Jackson integrable functions, applying the definition of g-statistical
convergence. We also present both the necessary and sufficient conditions for the g-statistical convergence of
sequences pertaining to Jackson integrable functions. Additionally, we determine the g-statistical solution
for the Cauchy problem that lacks unique solvability in the context of g-calculus. Theorem{.6] shows
a generalization of [6, Theorem 3.2.2]. In future, we shall find relationship of g-statistical convergence
sequences of Jackson integrable functions and g-statistical convergence sequences of gauge integrable
functions. One can find a new class of Korovkin-type approximation theorem based on equi-statistical
convergence of double g-sequences.
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