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Abstract. Let G be a locally compact group and S a weak ∗-closed translation invariant subspace of L∞(G).
M.E.B. Bekka proved that S is the range of a projection on L∞(G) which commutes with translation if and
only if S is the range of a projection on L∞(G) which commutes with convolution. Our first purpose in
this paper is to generalize Bekka’s results for a certain class of left Banach G-module. This result is used
to show that G is amenable if and only if whenever X is a left Banach G-module and S is a weak∗-closed
right invariant subspace of X∗ which is complemented in X∗, then S is the range of a projection on X∗

which commutes with convolution. Finally, we explore the link between the projections properties and
amenability of group algebras.

1. Introduction and Notations

Let G be a locally compact group and Cb(G) be the space of bounded continuous complex-valued
functions on G with supremum norm. Let LUC(G) denote the space of bounded left uniformly continuous
complex-valued functions on G. Let M(G) be the space of complex-valued, regular Borel measures on G.
Recall that L1(G) is a Banach subalgebra and an ideal in M(G) with a bounded approximate identity. We
denote by P1(G) the convex set formed by the probability measures in L1(G). Let L∞(G) denote the Banach
space of essentially bounded complex-valued functions on G with the essential supremum norm as defined
in [5]. For each t ∈ G, define the left and right translation operators on L∞(G) by lt f (s) = f (t−1s) and
rt f (s) = f (st) for all s ∈ G and f ∈ L∞(G).

If X is a Banach space, then X∗ denotes its continuous dual. Also if f ∈ X∗ and x ∈ X, then the value
of f at x will be written as f (x) or ⟨ f , x⟩. Suppose M is a subspace of X, and N is a subspace of X∗. Their
annihilators M⊥ and ⊥N are defined as follows:

M⊥ = { f ∈ X∗; ⟨ f , x⟩ = 0 for all x ∈M},
⊥N = {x ∈ X; ⟨ f , x⟩ = 0 for all f ∈ N}.

If Y is another Banach space, then B(X,Y) will denote the space of bounded continuous linear operators
from X into Y. As far as possible, we follow [3] in our notation and refer to [19] for basic functional analysis
and to [5] for basic harmonic analysis.
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The bounded projections on L∞(G) which commute with convolutions and translations have been
studied by Lau in [14] and by Lau and Losert in [12], see also [13] and [16]. They also went further, and for
several subspaces S of L∞(G), they have obtained a number of interesting and nice results. A closed, left
translation invariant subspace S of L∞(G) is said to be invariantly complemented in L∞(G) if S is the range
of a continuous projection on L∞(G), which commutes with all left translation operators on L∞(G). This
concept was introduced by Lau [14] for locally compact groups and was studied in [12], see also [6] and [7].

For a locally compact abelian group G, Gilbert [10] characterized weak∗ closed translation invariant
complemented subspaces of L∞(G) by their spectra. In [24], Wood investigated the ideals in the Fourier
algebra of a locally compact group G which are complemented by an invariant projection, see also [25]. In
[23] Takahashi proved that if G is a compact group, then any weak∗ closed complemented left translation
invariant subspace S of L∞(G) is invariantly complemented, i.e., S admits a left translation invariant closed
complement. Note that if T is the circle group, then the Hardy space H∞ is a weak∗ closed translation
invariant subalgebra of L∞(H) and not complemented. Tahmasebi [21] initiated the study of projections on
hypergroups, extending the definition from groups, see also [9] and [22].

Bekka proved that if S is a weak∗ closed subspace of L∞(G), then S is the range of a continuous projection
on L∞(G), which commutes with all left translation operators if and only if S is the range of a continuous
projection on L∞(G), which commutes with all convolution operators. Our first result is a generalization of
this fact to weak∗ closed subspaces of X∗ where X is a left G-module Banach. Forrest in [8] proved that the
analogue of Bekka’s theorem holds for A(G) when G is an amenable group.

It was shown by Lau and Losert [12] that if G is an amenable locally compact group and X is a left Banach
G-module, then any weak∗ closed translation invariant subspace of L∞(G) is the range of a continuous
projection commuting with translations. We will show that if S is a weak∗-closed right translation invariant
subspace of X∗, then S is the range of a continuous projection commuting with convolution.

In this paper, among the other things, we shall study projections on dual of a left Banach G-module and
we also extend a result on group proved by Bekka in [2]. This result is used to show that G is amenable
if and only if whenever X is a left Banach G-module and S is a weak∗ closed right translation invariant
subspace of X∗, then S is the range of a continuous projection commuting with convolution. Finally, we
give sufficient conditions and some necessary conditions for G to have a left invariant mean.

2. Main results

We introduce the following crucial concept which is a general property for Banach spaces.

Definition 2.1. Let X be a complex Banach space and let G be a topological group. We say that the complex Banach
space X constitutes a left Banach G-module if there exists a mapping (t, x) 7→ t.x (G × X→ X) having the following
properties:

(i) t.(x + y) = t.x + t.y, α(t.x) = t.αx, (st).x = s.(t.x) and e.x = x, where α ∈ C, s, t ∈ G and x, y ∈ X;

(ii) for all x ∈ X, the map t 7→ t.x is continuous from G into X;

(iii) there exists k ∈ R such that ∥t.x∥ ≤ k∥x∥ for every t ∈ G and x ∈ X.

Let X be a left Banach G-module. We may define for X a Banach L1(G)-module structure via a vector-valued
integral. We put µ.x =

∫
t.xdµ(t). We define for each f ∈ X∗, t ∈ G and x ∈ X,

⟨ f .δt, x⟩ = ⟨ f , t.x⟩.

Define also

⟨ f .µ, x⟩ =
∫
⟨ f .δt, x⟩dµ(t).

Then f .µ ∈ X∗, f .µ = f .δt if µ = δt and ( f .µ1).µ2 = f .(µ1 ∗ µ2) for all µ1, µ2 ∈M(G).
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If U runs over a basis of open relatively compact neighborhoods of e in G, we put

φU.x =
1
|U|

∫
U

t.xdt =
1
|U|

∫
t.x1U(t)dt.

By the continuity of the mapping t 7→ t.x for any x ∈ X, we obtain limU φU.x = x. It follows that {φU} is a
bounded approximate identity for X in L1(G), see [18]. A subspace S ⊆ X∗ is called right invariant if S.δt ⊆ S
for all t ∈ G. We say that S is topologically right invariant if f .φ ∈ S whenever f ∈ S and φ ∈ L1(G).

Let S ⊆ X∗ be a subspace of X∗ that is right invariant [resp. topologically right invariant]. A projection
P : X∗ → S is called right invariant [resp. topologically right invariant] if P( f .δt) = P( f ).δt for all f ∈ S and
t ∈ G [resp. P( f .φ) = P( f ).φ for all f ∈ S and φ ∈ L1(G)].

Lemma 2.2. Let X be a left Banach G-module.

(i) X∗L1(G) is weak∗-dense in X∗;

(ii) If S is a weak∗-closed subspace of X∗, then S is right invariant if and only if S is topologically right invariant;

(iii) Let S be a weak∗-closed subspace of X∗. If P is a weak∗-weak∗ continuous projection from X∗ into S and P
commutes with right translations, then P also commutes with convolutions from the right, and vice versa.

Proof. (i) Note that X∗L1(G) is a closed linear subpace of X∗, see Theorem 32.22 in [11]. Let {φα} be a bounded
approximate identity for X in L1(G) and f ∈ X∗. Then the net { f .φα} is in X∗L1(G) and converges in the
weak∗-topology to f .

(ii) Let f ∈ S and φ ∈ P1(G). We will show that f .φ ∈ S. We assume to the contrary that f .φ is not in S .
Part (b) of the separation Theorem 3.4 in [19] shows that there exist x ∈ X and γ ∈ R such that

Re⟨ f .δt, x⟩ < γ < Re⟨ f .φ, x⟩

for all t ∈ G. The mapping t 7→ ⟨ f .δt, x⟩ is obviousely continuous. Lemma 2.1 in [19] implies that

Re⟨ f .φ, x⟩ =
∫

Re⟨ f .δt, x⟩dφ(t) ≤ γ < Re⟨ f .φ, x⟩.

This is contradiction. It follows that S is topologically right invariant.
Conversely, let f ∈ S and t ∈ G. Let {φα} be a bounded approximate identity for X in L1(G) and f ∈ X∗.

Obviousely the net { f .δt ∗ φα} converges in the weak∗-topology to f .δt, and so f .δt ∈ S.
(iii) Let P∗ : X∗∗ → X∗∗ be the adjoint operator of P, i.e., P∗ is the bounded linear operator of X∗∗ into X∗∗

which satisfies ⟨P∗(F), f ⟩ = ⟨F,P( f )⟩ for all F ∈ X∗∗ and f ∈ X∗. We next show that for each x ∈ X, P∗(x) ∈ X.
Let x ∈ X and { fα} be a net in X∗ such that fα → f in the weak∗-topology. We have

lim
α
⟨P∗(x), fα⟩ = lim

α
⟨P( fα), x⟩ = ⟨P( f ), x⟩,

since P is weak∗-weak∗ continuous. Therefore P∗(x) ∈ X∗∗ is weak∗ continuous. By ([19], Chapter 3),
P∗(x) ∈ X.

Now, let f ∈ X∗ and ψ ∈ P1(G). Let {ψα} be a net of convex combinations of point measures on G such
that f .ψα → f .ψ and P( f ).ψα → P( f ).ψ in the weak∗-topology. For every x ∈ X,

⟨P( f ).ψ, x⟩ = lim
α
⟨P( f ).ψα, x⟩ = lim

α
⟨P( f .ψα), x⟩

= ⟨ f .ψα,P∗(x)⟩ = ⟨P( f .ψ), x⟩.

As x ∈ X is chosen arbitrary, we have P( f .ψ) = P( f ).ψ for all f ∈ X∗ and ψ ∈ P1(G).
Conversely, let P be a topologically right invariant. Let U denote the family of symmetric compact

neighborhoods of e and regard U as a directed set in the usual way: U ≻ V if U ⊆ V. For each U ∈ U,
choose a functionφU ∈ P1(G) such thatφU(G\U) = {0}. Let f be in X∗ and t in G. For every U ∈ U and x ∈ X,
⟨P( f .φU ∗ δt), x⟩ = ⟨P( f ).φU ∗ δt, x⟩. Since P is weak∗-weak∗ continuous, we have ⟨P( f .δt), x⟩ = ⟨P( f ).δt, x⟩. It
follows that P( f .δt) = P( f ).δt. This completes our proof.
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If f is a complex-valued function defined locally almost everywhere on G, and if s, t ∈ G, then ls f (t) = f (s−1t)
whenever this is defined. Notice that, for φ ∈ L1(G), s 7→ δs ∗ φ = lsφ is a continuous mapping of G into
L1(G) [5]. Clearly L1(G) is a left Banach G-module.

Recall that a linear functional m ∈ L∞(G)∗ is called a mean if m ≥ 0, ∥m∥ = 1. A mean m is topologically
left invariant (left invariant mean) ⟨m, f .φ⟩ = 1 (⟨m, lt f ⟩ = ⟨m, f ⟩) for all f ∈ L∞(G), φ ∈ P1(G) and t ∈ G. G
is called amenable if it admits a left invariant mean on L∞(G). Amenable locally compact groups include
all compact groups and all solvable groups. However, the free group on two generators is not amenable.
More information on this problem can be found in [18] and [17].

Example 2.3. (i) Let G be a locally compact group. As known (see [18]) if G is a nondiscrete compact abelian group (or
more generally, G is amenable as discrete), there exists a left invariant mean m on L∞(G) which is not a topologically
left invariant mean on L∞(G). Put S = {c1G; c ∈ C}. It is easy to see that S is a right translation invariant weak∗-closed
subspace of L∞(G). Now define P( f ) = ⟨m, f ⟩1G. Then P is a projection of L∞(G) into S commuting with right
translations. Choose φ ∈ P1(G) and f ∈ L∞(G) such that ⟨m, φ̂ ∗ f ⟩ , ⟨m, f ⟩ where φ̂(s) = ∆(s−1)φ(s−1) for s ∈ G
and ∆ is the Haar modulus function on G. It is easy to see that f .φ = φ̂ ∗ f . We can write

P( f .φ) = ⟨m, f .φ⟩1G = ⟨m, φ̂ ∗ f ⟩1G , ⟨m, f ⟩1G = P( f ).φ.

This shows that (in Lemma 2.2) weak∗-weak∗ continuity of P is necessary.
(ii) Let G be a locally compact group. Baker, Lau and Pym [1] proved that Hom(L∞(G),L∞(G)) (where T ∈

Hom(L∞(G),L∞(G)) means T( f .φ) = T( f ).φ for every f ∈ L∞(G) and φ ∈ L1(G)) can be identified isometrically
isomorphic with LUC(G)∗. Indeed, for every T ∈ Hom(L∞(G),L∞(G)) there exists a unique element F ∈ LUC(G)∗

such that T( f ) = F f for all f ∈ L∞(G).
Now, let G be a compact group and let P be a bounded projection from L∞(G) onto S such that P( f .φ) = P( f ).φ

for all f ∈ L∞(G) and φ ∈ L1(G). Therefore P( f ) = F f for some F ∈ LUC(G)∗ = C(G)∗ =M(G).
Now, let { fα} converges to f in the weak∗-topology of L∞(G), and φ ∈ L1(G). It is known that L1(G) is a two-sided

ideal in M(G) [5], and so φ ∗ F ∈ L1(G). We can write

lim
α
⟨P( fα), φ⟩ = lim

α
⟨F fα, φ⟩ = lim

α
⟨ fα, φ ∗ F⟩

= ⟨ f , φ ∗ F⟩ = ⟨P( f ), φ⟩.

This shows that P is weak∗-weak∗ continuous.
(iii) Let G be a locally compact group. The space L∞(G) may be embedded into B(L1(G),L∞(G)) by the linear map

T such that T( f )(φ) = f .φ where f ∈ L∞(G) and φ ∈ L1(G). Since B(L1(G),L∞(G)) carries naturally the strong
operator topology, T allows us to consider the induced topology on L∞(G), which we denote by τs. Let S be the range
of a τs-continuous projection P on X∗ such that P( f .δt) = P( f ).δt for all f ∈ X∗ and t ∈ G. Let φ,ψ ∈ L1(G). Since
the mapping t 7→ f .δt is τs-continuous, we have

⟨P( f .φ), ψ⟩ =
∫
⟨P( f .δt), ψ⟩dφ(t) =

∫
⟨P( f ).δt, ψ⟩dφ(t)

= ⟨P( f ).φ, ψ⟩.

Since this relation holds for all ψ ∈ L1(G), we conclude that P( f .φ) = P( f .φ). Conversely, let P( f .φ) = P( f ).φ for all
f ∈ L∞(G) and φ ∈ L1(G). Let t ∈ G and {φα} be a bounded approximate identity for L1(G). Obviousely { f .φ ∗ δt}

converges to f .δt in the τs-topology. On the other hand, the projection P is τs-continuous. Therefore

⟨P( f .δt), φ⟩ = lim
α
⟨P( f .φα ∗ δt), φ⟩ = lim

α
⟨P( f ).φα ∗ δt, φ⟩

= lim
α
⟨P( f ), φα ∗ δt ∗ φ⟩ = ⟨P( f ).δt, φ⟩

for all φ ∈ L1(G). It follows that P commutes with right translations.

Theorem 2.4. Let X be a left Banach G-module. Suppose that S is a weak∗-closed right invariant subspace of X∗. The
following statetments are equivalent:
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(i) S is topologically invariantly complemented in X∗, i.e., S is the range of a continuous projection P on X∗ such
that P( f .φ) = P( f ).φ for all f ∈ X∗ and φ ∈ L1(G);

(ii) S is invariantly complemented in X∗, i.e., S is the range of a continuous projection P on X∗ such that P( f .δt) =
P( f ).δt for all f ∈ X∗ and t ∈ G;

(iii) S ∩ X∗L1(G) is topologically invariantly complemented in X∗L1(G).

Proof. (i)⇒ (ii) Recall that, by Lemma 2.2, S is right invariant if and only if it is topologically right invariant.
Let P : X∗ → S be a bounded projection such that P( f .φ) = P( f ).φ for all f ∈ X∗ and φ ∈ L1(G). Let {φα} be a
bounded approximate identity for X in L1(G). For f ∈ X∗, x ∈ X and t ∈ G,

⟨P( f .δt), x⟩ = lim
α
⟨P( f .δt), φα.x⟩ = lim

α
⟨P( f .δt).φα, x⟩

= lim
α
⟨P( f .δt ∗ φα), x⟩ = lim

α
⟨P( f ).δt ∗ φα, x⟩

= lim
α
⟨P( f ).δt, φα.x⟩ = ⟨P( f ).δt, x⟩.

Hence we conclude that P is a bounded projection of X∗ onto S such that P( f .δt) = P( f ).δt for all f ∈ X∗ and
t ∈ G.

(ii) ⇒ (iii) Let P : X∗ → S be a bounded projection such that P( f .δt) = P( f ).δt for all f ∈ X∗ and t ∈ G.
Suppose that f ∈ X∗ and φ,ψ ∈ P1(G). We claim that P( f .φ ∗ ψ) = P( f .φ).ψ. Let x ∈ X, and ϵ > 0 be given.
By density we may suppose that ψ ∈ P1(G) ⊆M(G) has compact support, say K. As the mapping t 7→ φ ∗ δt
is continuous [5], for every t ∈ G, there exists an open neighborhood Ut of t in G such that for all s ∈ Ut,
∥φ ∗ δs − φ ∗ δt∥1 < ϵ and also ∥s.x − t.x∥ < ϵ. Since K is compact, the cover {Ut} contains a finite subcover
Ut1 , ...,Utm . We can find a finite sequence {A1, ...,Am} of measurable sets which are disjoint and such that

K ⊆
m⋃

i=1

Ai, ∥φ ∗ δt − φ ∗ δti∥1 < ϵ, ∥t.x − ti.x∥ < ϵ whenever t ∈ Ai.

If i ∈ {1, ...,m}, we also put αi =
∫

Ai
ψ(t)dt. Then α1 + · · · + αm = 1. We can write

ϵ∥P∗(x)∥∥ f ∥ > ∥P∗(x)∥∥ f ∥
m∑

i=1

∫
Ai

∥φ ∗ δt − φ ∗ δti∥1dψ(t)

≥

∣∣∣∣ m∑
i=1

∫
Ai

⟨P∗(x), f .φ ∗ δt − f .φ ∗ δti⟩dψ(t)
∣∣∣∣

=
∣∣∣∣⟨P∗(x), f .φ ∗ ψ −

m∑
i=1

αi f .φ ∗ δti⟩

∣∣∣∣
=
∣∣∣∣⟨P( f .φ ∗ ψ) −

m∑
i=1

αiP( f .φ ∗ δti ), x⟩
∣∣∣∣,

and also

ϵ∥P( f .φ)∥ >
m∑

i=1

∥P( f .φ)∥
∫

Ai

∥t.x − ti.x∥dψ(t)

≥

∣∣∣∣ m∑
i=1

∫
Ai

⟨P( f .φ), t.x⟩ − ⟨P( f .φ ∗ δti ), x⟩dψ(t)
∣∣∣∣

=
∣∣∣∣⟨P( f .φ).ψ −

m∑
i=1

αiP( f .φ ∗ δti ), x⟩
∣∣∣∣.

As ϵ > 0 is arbitrary, we conclude that P( f .φ ∗ ψ) = P( f .φ).ψ.
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Now, let f .ψ ∈ X∗L1(G). Since L1(G) has a bounded approximate identity, Cohen’s factorization theorem
[11] implies that each ψ ∈ L1(G) has the form ψ1 ∗ ψ2 for ψ1, ψ2 ∈ L1(G). Since

P( f .ψ) = P( f .ψ1 ∗ ψ2) = P( f .ψ1).ψ2,

we have P(X∗L1(G)) ⊆ X∗L1(G). Thus P
∣∣∣∣
X∗L1(G)

is a projection on X∗L1(G) ∩ S commuting with convolutions.

(iii) ⇒ (i) Let P : X∗L1(G) → S ∩ X∗L1(G) be a bounded projection such that P( f .φ) = P( f ).φ for all
f ∈ X∗ and φ ∈ L1(G). Let {φα} be a bounded approximate identity for X in L1(G). Define P′ : X∗ → X∗ by
⟨P′( f ), x⟩ = limα⟨P( f .φα), x⟩. It is not hard to see that the limit exists. Indeed, x = ψ.y for some ψ ∈ L1(G)
and y ∈ X (see Theorem 32.22 in [11]). We can write

⟨P( f .ψ), y⟩ = lim
α
⟨P( f .φα ∗ ψ), y⟩ = lim

α
⟨P( f .φα), ψ.y⟩

= lim
α
⟨P( f .φα), x⟩ = ⟨P′( f ), x⟩.

We claim that P′ is a bounded projection of X∗ onto S and that P′( f .φ) = P′( f ).φ for all f ∈ X∗ and φ ∈ L1(G).
The operator P′ is obviously linear. For f ∈ S and x ∈ X, we have

⟨P′( f ), x⟩ = lim
α
⟨P( f .φα), x⟩ = lim

α
⟨ f .φα, x⟩ = ⟨ f , x⟩,

and so P′ is the identity map on S. If f ∈ X∗, then

⟨P′( f ), x⟩ = lim
α
⟨P( f .φα), x⟩ = 0,

for all x ∈ ⊥S. Since S is a weak∗-closed subspace of X∗, (⊥S)⊥ = S and so P′( f ) ∈ S [19]. Consequently P′ is
an extension of P to X∗ as a bounded projection.

Next, let f ∈ X∗ and φ ∈ L1(G). We can write

⟨P′( f .φ), x⟩ = lim
α
⟨P( f .φ ∗ φα), x⟩ = lim

α
⟨P( f .φα ∗ φ), x⟩

= lim
α
⟨P( f .φα).φ, x⟩ = ⟨P′( f ).φ, x⟩.

This completes the proof.

Theorem 2.4 is proved by Bekka [2] for the case X = L1(G). His proof is completely different.

Corollary 2.5. Let G be a locally compact group. Let S be a weak∗-closed right translation invariant subspace of
L∞(G). The following statements are equivalent:

(i) S is topologically invariantly complemented in L∞(G);

(ii) S is invariantly complemented in L∞(G);

(iii) S ∩ LUC(G) is topologically invariantly complemented in LUC(G);

(iv) The left ideal ⊥S has bounded right approximate identity.

Proof. By Theorem 2.4, (i), (ii) and (iii) are equivalent. Now if (i) holds, there exists a bounded projection
P : L∞(G) → S such that P( f .φ) = P( f ).φ for all f ∈ L∞(G) and φ ∈ L1(G). By Theorem in [1], there exists
F ∈ LUC(G)∗ such that F f = f for all f ∈ L∞(G). Let f ∈ (⊥S)∗, and let f ′ be any Hahn-Banach extension
of f to a continuous functional on L1(G). Now, let {φα} be a bounded approximate identity bounded by
1 [5]. By Theorem 3.15 in [19], it has a converging subnet {φβ}. We consider E : (⊥S)∗ → C defined by
⟨E, f ⟩ = limβ⟨F f ′ − f ′, φβ⟩. It is easy to see that xE = E for all x ∈ ⊥S. This shows that ⊥S has a bounded
right approximate identity, see Proposition 2.2.1 and its proof in [20].

Now, let {φα} be a bounded approximate identity in ⊥S. Without loss of generality, we may assume that
φα → E in the weak∗-topology. Define P : L∞(G) → L∞(G) by ⟨P( f ), φ⟩ = ⟨E f − f , φ⟩, where f ∈ L∞(G) and
φ ∈ L1(G). Clearly, P is a bounded projection from L∞(G) onto S such that P( f .φ) = P( f ).φ for all f ∈ L∞(G)
and φ ∈ L1(G).



I. Amani et al. / Filomat 40:3 (2026), 881–890 887

Let X be a left Banach G-module. It was shown by Lau and Losert [13] that if G is an amenable locally
compact group, then any weak∗ closed left translation invariant subspace of X∗ is the range of a continuous
projection commuting with left translations. We will show that if S is a weak∗-closed left translation
invariant subspace of X∗, then S is the range of a continuous projection commuting with convolution.

Corollary 2.6. Let G be a locally compact group. Then G is amenable if and only if whenever X is a left Banach
G-module and S is a weak∗-closed right invariant subspace of X∗ which is complemented in X∗, then there exists a
projection P of X∗ onto S such that P( f .φ) = P( f ).φ for all f ∈ X∗ and φ ∈ L1(G).

Proof. Let G be amenable. Applying the Theorem 1 of Lau and Losert [13], there exists a continuous
projection Q from X∗ onto S such that Q commutes with the right translations {δt; t ∈ G}. By Theorem 2.4,
we can find a projection P of X∗ onto S such that P( f .φ) = P( f ).φ for all f ∈ X∗ and φ ∈ L1(G).

To prove the converse, let X be a left Banach G-module and S be a weak∗-closed right invariant subspace
of X∗ which is complemented in X∗. Let P be a projection of X∗ onto S such that P( f .φ) = P( f ).φ for all f ∈ X∗

and φ ∈ L1(G). It is not hard to see that P( f .δt) = P( f ).δt for all f ∈ X∗ and t ∈ G. Indeed, let x ∈ X be given.
Then x = ψ.y for some ψ ∈ L1(G) and y ∈ X (see Theorem 32.22 in [11]). We can write

⟨P( f .δt), x⟩ = ⟨P( f .δt), ψ.y⟩ = ⟨P( f .δt).ψ, y⟩ = ⟨P( f .δt ∗ ψ), y⟩
= ⟨P( f ).δt ∗ ψ, y⟩ = ⟨P( f ).δt, ψ.y⟩ = ⟨P( f ).δt, , x⟩.

Since this holds for all x ∈ X, we conclude that P( f .δt) = P( f ).δt for all f ∈ X∗ and t ∈ G. Clearly G is
amenable by Theorem 1 in [13].

Corollary 2.7. Let G be a locally compact group. Then G is compact if and only if whenever S is a weak∗ closed
complemented right invariant subspace of L∞(G/H), H a closed normal subgroup of G, then there exists a weak∗-weak∗

continuous projection P of L∞(G/H) onto S such that P( f .φ) = P( f ).φ for all f ∈ L∞(G/H) and φ ∈ L1(G/H).

Proof. If G is compact, then G/H is amenable. Therefore S is topologically invariantly complemented, see
corollary 2.6. Let S be the range of a continuous projection commuting with convolution, say P. Since G/H
is compact, part (ii) of Example 2.3 shows that P is weak∗-weak∗ continuous.

To prove the converse, take H = {e} and S = C1. It is not hard to see that S is a weak∗ closed complemented
right invariant subspace of L∞(G). Since dim S = 1 < ∞, by Lemma 4.21 in [19], S is complemented in
L∞(G). By assumption, there exists a weak∗-weak∗ continuous projection P of L∞(G) onto S such that
P( f .φ) = P( f ).φ for all f ∈ L∞(G) and φ ∈ L1(G), and so P( f .δt) = P( f ).δt for all f ∈ L∞(G) and t ∈ G. On the
other hand, the members of L1(G) are exactly those linear functionals on L∞(G) that are continuous relative
to its weak∗-topology. Therefore P = φ for some φ ∈ L1(G). If f ∈ L∞(G), then ⟨ f .δt, φ⟩ = ⟨ f , φ⟩ for every
t ∈ G. So that

⟨ f , ψ ∗ φ⟩ =
∫
⟨ f , δt ∗ φ⟩dψ(t) =

∫
⟨ f , φ⟩dψ(t) = ⟨ f , φ⟩

∫
dψ(t).

Define ρφ : L1(G)→ L1(G) by setting ρφ(ψ) = ψ ∗φ. Since the range of ρφ is finite dimensiona, ρφ is compact.
Filali in [8] proved that finite-dimensional left ideals exist in L1(G) if and only if G is compact. Consequently
G is compact.

Theorem 2.8. Let G be an amenable locally compact group. If X is a reflexive left Banach G-module and S is a
right invariant subspace of X∗ which is complemented in X∗, then there exists a projection P of X∗ onto S such that
P( f .δt) = P( f ).δt for all f ∈ X∗ and t ∈ G.

Proof. The assumptions imply that there is a projection P′ from X∗ onto S of norm ∥P′∥. So letP be the set of
all projections P from X∗ onto S such that ∥P∥ ≤ ∥P′∥. P is thus non-empty and convex, and norm bounded.
Now let B(X∗) be the space of all bounded linear operators on X∗, under the weak operator topology. It is
not hard to see that P is a compact convex subset of B(X∗). If t ∈ G and P ∈ P, we define Pt ∈ B(X∗) by
Pt( f ) = P( f .δt).δt−1 . Obviousely Pt ∈ P for all P ∈ P and t ∈ G. For a given t ∈ G, the mapping P 7→ Pt is
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a homeomorphism from P onto P. It is not hard to see that the multiplication (t,P) 7→ Pt : G × P → P is
separately continuous. Indeed, let {tα} be a net in G converging to t. For every f ∈ X∗ and x ∈ X,

lim
α
⟨Ptα ( f ), x⟩ = lim

α
⟨P( f .δtα ).δt−1

α
, x⟩ = lim

α
⟨P( f .δtα ), t

−1
α .x⟩

= lim
α
⟨ f .δtα ,P

∗(t−1
α .x)⟩ = lim

α
⟨ f , tα.P∗(t−1

α .x)⟩

= ⟨ f , t.P∗(t−1.x)⟩ = ⟨P( f .δt).δt−1 , x⟩.

It follows that the map (t,P)→ Pt is separately continuous. The jointly continuity of (t,P)→ Pt is equivalent
to the separate continuity in each variable, a classical result due to Ellis. Consequently (G,P) is an affine
flow, for more information see [18]. By Theorem 5.4 in [18], there exists a point P inP that is invariant under
the action of G, that is, Pt = P whenever t ∈ G. It follows that P( f .δt) = P( f ).δt for all f ∈ X∗. This completes
our proof.

Let X be a left Banach G-module. Let B(X∗) be the space of bounded linear operators from X∗ into X∗.
By the weak∗ operator topology on B(X∗), we shall mean the locally convex topology determined by the
family of seminorms {ρ f ,x; f ∈ X∗ and x ∈ X} where ρ f ,x(T) = |⟨T( f ), x⟩|. It is known that the unit ball of
B(X∗) is compact in the weak∗ operator topology [3]. For each t ∈ G, define δt ∈ B(X∗) by δt( f ) = f .δt. Let
co{δt; t ∈ G} (here co(A) will denote the convex hull of a subset A of a linear space) denote the closure of
co{δt; t ∈ G} in the weak∗ operator topology. Then co{δt; t ∈ G} is a semigroup and a compact subset ofB(X∗).

Theorem 2.9. Let G be a locally compact group. Then G is amenable if and only if whenever X is a left Banach G-
module and H is a closed subgroup of G, then there exists a projection P of X∗ onto X∗H = { f ∈ X∗; f .δt = f for all t ∈ H}
such that P( f .φ) = P( f ).φ for all f ∈ X∗ and φ ∈ L1(H).

Proof. If H is a closed subgroup of G, it is easy to see that

X∗H = { f ∈ X∗; f .δt = f for all t ∈ H}

is a right translation invariant weak∗-closed subspace of X∗. If G is amenable, then H is also amenable [17].
Let m be a right invariant mean on Cb(H). Then m is a positive functional on Cb(H) with norm one. Hence
there exists a net {µα} in Cb(H)∗ such that each µα is a convex combination of point evaluations and {µα}
converges to m in the weak∗-topology of Cb(H)∗. Let f ∈ X∗ be given. Since { f .µα} is a bounded subset of X∗,
the net { f .µα} admits a subnet { f .µβ} converging to an element h in X∗ in the weak∗-topology [3]. In order to
show that h ∈ X∗H, let s ∈ H and x ∈ X be given. Define f ′ : H → C by f ′(t) = ⟨ f .δt, x⟩. Clearly f ′ ∈ Cb(H).
We have

⟨h.δs, x⟩ = lim
β
⟨ f .µβ ∗ δs, x⟩ = lim

β

∫
⟨ f .δt, x⟩dµβ ∗ δs(t)

= lim
β

∫
f ′(t)dµβ ∗ δs(t) = lim

β

∫
f ′(ts)dµβ(t)

= ⟨M,Rs f ′⟩ = ⟨M, f ′⟩ = lim
β

∫
f ′(t)dµβ(t)

= lim
β
⟨ f .µβ, x⟩ = ⟨h, x⟩.

Since this holds for all x ∈ X, we conclude that co{ f .δt; t ∈ H} ∩ X∗H , ∅ for all f ∈ X∗.
For each f ∈ X∗ let K( f ) = {T ∈ co{δt; t ∈ H}; T( f ) ∈ X∗H}. The sets K( f ) are obviously compact in the weak∗

operator topology. We shall show that the family {K( f ); f ∈ X∗} has the finite intersection property. Since
K( f ) is compact, it will follow that ⋂

{K( f ); f ∈ X∗} , ∅,

and if T is any member of this intersection, then T( f ) ∈ X∗H for all f ∈ X∗. We proceed by induction. For
f ∈ X∗, K( f ) , ∅. Let n ∈ N, f1, f2, ..., fn ∈ X∗, and assume that

⋂
{K( fi); 1 ≤ i ≤ n − 1} , ∅. If S is a member
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of this intersection and if R ∈ K(S( fn)), then RS ∈
⋂
{K( fi); 1 ≤ i ≤ n}. Thus {K( f ); f ∈ X∗} has the finite

intersection property, as required.
Since T ∈ co{δt; t ∈ H}, there exists a net {Tα} such that each Tα is a convex combination of point

evaluations and {Tα} converges to T in the weak∗ operator topology of B(X∗). For f ∈ X∗H and x ∈ X, we
have

⟨T( f ), x⟩ = lim
α
⟨Tα( f ), x⟩ = ⟨ f , x⟩,

and so T is the identity map on X∗H. It follows that T is a continuous projection of X∗ onto X∗H. By Corollary
2.6, we can find a projection P of X∗ onto X∗H such that P( f .φ) = P( f ).φ for all f ∈ X∗ and φ ∈ L1(H).

To prove the converse, we consider X = L1(G). Then L1(G) is a left G-module with respect to the action
(t, φ)→ δt ∗ φ. Let

X∗G = { f ∈ L∞(G); f .δt = f for all t ∈ G}.

It is easy to see that the subalgebra X∗G of L∞(G) consisting of constant functions. Indeed, if φ and ψ are in
P1(G), then

⟨ f .φ, ψ⟩ = ⟨ f , φ ∗ ψ⟩ =
∫
⟨ f , δt ∗ ψ⟩dφ(t) =

∫
⟨ f .δt, ψ⟩dφ(t)

=

∫
⟨ f , ψ⟩dφ(t) = ⟨ f , ψ⟩

whenever f ∈ X∗G. This shows that f .ψ = f , and so f ∈ LUC(G). On the other hand,

⟨ls−1 f , φ⟩ =
∫

ls−1 f (t)dφ(t) =
∫

f (st)dφ(t) =
∫

f (t)dδs ∗ φ(t)

= ⟨ f , δs ∗ φ⟩ = ⟨ f .δs, φ⟩ = ⟨ f , φ⟩,

for all s ∈ G andφ ∈ L1(G). Consequently ls f = f for all s ∈ G, and so f (s) = f (e) for all s ∈ G . By assumption,
there exists a continuous projection P from L∞(G) onto X∗G such that P commutes with convolutions. In
particular, P commutes with the right translations. Since L∞(G) is a Banach lattice, we consider the modulus
|P| of P. Note that

|P|( f ) = sup{|T(h)|; h ∈ L∞(G) and |h| ≤ f } for all f ∈ L∞(G)+.

It is known that |P| commutes with the right translations, see [15]. Since P , 0, |P| , 0. If h ≥ 0, then
|P(h)| ≤ ∥h∥|P|(1), and it follows that |P|(1) > 0. Hence |P|

|P|(1) commutes with right translations on L∞(G)
also. Without loss of generality we may assume that P is a positive operator and P(1) = 1. Let {φβ} be
an approximate identity in L1(G) such that each φβ belongs to P1(G) [5]. Then we may suppose that {φβ}
converges in the weak∗-topology on L∞(G)∗, say to E. Define m ∈ L∞(G)∗ by setting ⟨m, f ⟩ = ⟨E,P( f )⟩. Then
⟨m, 1⟩ = ∥m∥ = 1 and ⟨m, f .δt⟩ = ⟨m, f ⟩ for each f ∈ L∞(G) and t ∈ G. Hence G is amenable. This completes
our proof.
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