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Abstract. In this manuscript, we introduce the multiplicative Laguerre polynomials (MLPs) that arise as
one of the solutions of the multiplicative Sturm-Liouville equation

d∗

dx

(
exω(x)

⊙
d∗y
dx

)
⊕

(
enω(x)

⊙ y
)
= 1, x > 0,

where ω(x) = xαe−x with α > −1. Here, d∗
dx f (x) denotes the multiplicative derivative of the function f at x,

defined by

lim
h→0

(
f (x + h)

f (x)

)1/h

,

whenever this limit exists. We compute the multiplicative Laplace transform of the multiplicative Laguerre
polynomials and establish the multiplicative version of Tricomi’s formula. Furthermore, we introduce two
numerical methods for approximating the inverse multiplicative Laplace transform, based on properties of
the multiplicative Laguerre polynomials. We illustrate the obtained results with some examples related to
the solution of nonlinear classical second-order differential equations.

1. Introduction

Multiplicative calculus (MC) is a type of Non-Newtonian calculus that is associated with the definition of
multiplicative (or geometric) derivative (4) (see [20]). It is commonly referred to as geometric calculus, and it
has been successfully applied in various contexts, including population growth modeling [33], modeling the
radius of certain human body cells [2], efficient approximation of linear and nonlinear signal representations
[5], and other natural phenomena described by multiplicative differential equations [3]. Moreover, problems

2020 Mathematics Subject Classification. Primary 42C05; Secondary 42C10, 33C45, 44A10.
Keywords. Multiplicative calculus, Laguerre polynomials, inverse multiplicative Laplace transform.
Received: 17 August 2025; Revised: 22 November 2025; Accepted: 02 December 2025
Communicated by Dragan S. Djordjević
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that are complicated to address using classical calculus can be solved in a more efficient way using MC, such
as the problem of approximating exponentially varying weights or the analysis of nonlinear differential
equations whose solution is an exponential function, as will be shown in this contribution. Although
this definition of multiplicative calculus is usually the standard definition considered in the literature,
it is worth noticing that there are other kinds of multiplicative calculus that have been studied in other
contexts. Among others, bigeometric calculus [49] is useful in economics, fractal like scaling, and power
laws; projective multiplicative calculus [15] appears in more advanced functional analysis and abstract
differential geometry; and time-scale multiplicative calculus [6] is defined on arbitrary time scales (discrete,
continuous, hybrid) and it is used in hybrid dynamical systems and economic models that mix continuous
and discrete growth.

Moreover, numerical methods in MC have recently been addressed. For instance, an iterative method
based on MC similar to Newton’s method to solve nonlinear equations was constructed in [32] , numerical
methods to solve multiplicative partial differential equations were introduced in [48], classical methods
for solving differential equations, such as the Runge-Kutta method, were discussed in [30], methods for
approximating positive functions through multiplicative series were studied in [10], and methods for
multiplicative dynamical systems describing the position of a particle were considered in [28]. These works
highlight the growing relevance of multiplicative approaches and justify the need for specialized numerical
methods such as the numerical method to approximate the inverse multiplicative Laplace transform.

On the other hand, in classical calculus, the generalized Laguerre polynomials L(α)
n are the polynomials

defined by the following Rodrigues’ formula

L(α)
n (x) =

1
n!ω(x)

dn

dxn [xnω(x)] , (1)

where ω(x) = xαe−x is the Laguerre weight function, α > −1, and n is a non-negative integer. The case α = 0
was originally studied by Laguerre [24], and it is common to denote these polynomials by Ln(x) = L(0)

n (x).
The general case, where α > −1, was studied by Sonin [34]. For this reason, L(α)

n is sometimes referred to
as the Sonin-Laguerre or the generalized Laguerre polynomial. However, in this context, it will simply be
referred to as the Laguerre polynomial. A nice summary of properties, as well as many references about
Laguerre polynomials, can be found in [7, 36].

These polynomials have a wide range of applications, including their use in approximating the inverse
Laplace transform [39]. The Laplace transform is an important tool in engineering [12], and its numerical
inversion has historically been a significant challenge due to its inherently ill-posed nature, representing an
important problem in applied mathematics and engineering. Numerous references on numerical techniques
for this problem can be found in [8]. Among these techniques, the Tricomi’s method and the Weeks’ method
are two of the most well-known approaches; see [9, 16, 21, 38–40] among many others.

The main reason for the popularity of the Weeks’ method is that it provides an analytic formula for the
domain function of a smooth function f (x) with bounded exponential growth, expressed as an expansion
in Laguerre polynomials:

f (x) =
∞∑

n=0

fnLn(2bx)e(σ−b)x, b > 0, σ > σ0, (2)

where σ0 denotes the abscissa of convergence of the Laplace transform F(s) =
∫
∞

0 f (x)e−sxdx of f (x). That
is, all the singularities of F(s) are located in the half-plane Re(s) < σ0. In particular, if σ = b we obtain the
Tricomi’s method.

Furthermore, within the framework of MC, the multiplicative Laguerre polynomials (MLPs) with α = 0
were studied in [23]. In that work, the authors obtained the MLPs in terms of the classical Laguerre
polynomials, given by the formula:

L̃(0)
n (x) = e1

 n∏
k=1

e(−1)k n!
(n−k)!(k!)2


xk

= eL(0)
n (x).
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The MLPs arise as solutions of a particular case of a Sturm-Liouville multiplicative differential equation
introduced in [17]. This equation is given by

d∗

dx

(
ep(x)
⊙

d∗y
dx

)
⊕ (eq(x)

⊙ y) ⊕
(
eγω(x)

⊙ y
)
= 1, x ∈ (a, b), (3)

where d∗y/dx = y∗ denotes the multiplicative derivative of a positive function y (see [4]). Here p(x), q(x),
and ω(x) are real-valued continuous functions, and γ is a constant known as the spectral parameter. The
operators⊕ and⊙ are binary operations defined in the MC framework in the domainR+, given by a⊕b := ab
and a ⊙ b := aln b = bln a. With these definitions, (3) can be rewritten in the equivalent form:((

y∗
)p(x)

)∗
⊕

(
yq(x)

)
⊕

(
yγω(x)

)
= 1, x ∈ (a, b).

This equation reveals a close connection with classical differential equations, which will be further explored
in Section 3.

Moreover, the study of the Sturm-Liouville theory has contributed to the development of several math-
ematical theories, such as Fourier analysis, orthogonal polynomials, and the Laplace transform, among
others [25]. Furthermore, these theories have been linked to solutions of problems that arise in physics and
engineering. Thus, to study properties of the theory of Sturm-Liouville from the framework of MC can
offer new perspectives to address classical problems where the Sturm-Liouville theory is applied.

Several studies have explored particular cases of the functions p(x), q(x), and ω(x), which are similar
to those of classical calculus. In each case, a family of multiplicative orthogonal polynomials arises. The
particular cases where q(x) = 0 are summarized in the following table.

Polynomials p(x) ω(x) λ (a, b) Ref.
Legendre 1 − x2 1 n(n + 1) (−1, 1) [18]

Chebyshev (1 − x2)ω(x) 1
√

1−x2
n2 (−1, 1) [41]

(first kind)
Chebyshev (1 − x2)ω(x)

√

1 − x2 n(n + 2) (−1, 1) [41]
(second kind)

Jacobi (α, β > −1) (1 − x2)ω(x) (1 − x)α(1 + x)β n(n + α + β + 1) (−1, 1) [10]
Hermite e−x2 e−x2

2n (−∞,∞) [19, 42]
Laguerre xe−x e−x n (0,∞) [23]

Table 1: Multiplicative orthogonal polynomials with q(x) = 0.

Furthermore, the multiplicative Bessel polynomials arise when p(x) = x, q(x) = − v2

x , and ω(x) = x for
x ∈ (0, b], where b is a positive real number, and v is a real number (see [26, 50]).

On the other hand, the theory of orthogonal polynomials, in particular the Laguerre polynomials, plays
a fundamental role in mathematical physics, as it provides practical tools for solving a wide range of
problems related to Sturm–Liouville differential equations [7], function approximations [37], quadrature
formulas [37], spectral methods for partial differential equations [31], and, as previously mentioned, the
approximation of the inverse Laplace transform, among many others (see [7, 36]).

As a consequence, due to the important role that Laguerre polynomials and the inverse Laplace trans-
form play in various fields of pure and applied mathematics, one of the main aims of this contribution is to
introduce the multiplicative generalized Laguerre polynomials (for α > −1), examine some of their prop-
erties, and explore their application in the approximation of the inverse multiplicative Laplace transform
(MLT) via the Tricomi’s and Weeks’ methods, all within the framework of MC.

The structure of the manuscript is as follows. Section 2 provides definitions and properties related to
both MC and MLT using the same notation given in [45]. Then, in Section 3, we establish and prove the
connection between classical and multiplicative homogeneous differential equations when they share the
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same solution. We also introduce the reverse relationship. These results lead to the conclusion that MC can
be applied to solve classical differential equations, whose solutions are not easily found using traditional
methods, by solving their corresponding multiplicative differential equations.

In Section 4, we introduce the MLPs that arise as solutions of the multiplicative Sturm–Liouville equation
(20). We deduce some of their properties, including the orthogonality relation. Subsequently, we present
the MLT of the MLPs and the multiplicative version of Tricomi’s formula. This formula allows for the
computation of the MLT of positive functions that can be expressed as a multiplicative Laguerre series. In
classical calculus, this result was originally established by Tricomi in [38, 39], and has been widely used in
many areas of mathematics and applied sciences. It is commonly referred to as Tricomi’s formula.

In the final section, we introduce two methods for the numerical inversion of the MLT, based on
specific properties of the MLPs. These methods are known as the multiplicative Tricomi’s method and
the multiplicative Weeks’ method, respectively. Finally, we apply the previously introduced techniques to
solve a nonlinear classical second-order differential equation within the framework of MC. All plots, as
well as the numerical data in the tables presented in the manuscript, were generated using Matlab R2024a.

2. Multiplicative calculus and Laplace transform

In this section, we present the definition and properties of the multiplicative Laplace transform (MLT)
[45]. To achieve this, we first present the fundamental definitions and properties of MC. These concepts are
analogous to those of classical calculus, and their proofs can be found in [4, 17, 35].

2.1. An overview of multiplicative calculus
Henceforth, R+ denotes the set of all positive real numbers.

Definition 2.1. Let f : A ⊆ R→ R+ be a function. The multiplicative (or geometric) derivative, or ∗-derivative, of
f at x ∈ A is defined by

f ∗(x) :=
d∗

dx
f (x) = lim

h→0

(
f (x + h)

f (x)

)1/h

, (4)

if the above limit exists and it is positive.

In particular, if f is differentiable in the classical sense at x, there exists a relationship between the
classical derivative and the multiplicative derivative (see [35, Theorem 1]):

f ∗(x) = e(ln ◦ f )′(x) = e
f ′ (x)
f (x) , (5)

where (ln ◦ f )(x) = ln( f (x)). Furthermore, the n-th multiplicative derivative of the positive function f is
defined by f ∗(n)(x) := e(ln ◦ f )(n)(x) (see [35]). Additionally, if f is multiplicative differentiable at the point x,
then (see [42, Theorem 2.1])

f ′(x) = f (x) ln( f ∗(x)). (6)

The multiplicative derivative satisfies the following properties.

Proposition 2.2. (see [4]) Let f , 1 be multiplicative differentiable at x, and let ϕ be classical differentiable at x, then

1. (k f )∗(x) = f ∗(x), k ∈ R+,
2. ( f1)∗(x) = f ∗(x)1∗(x),
3. ( f/1)∗(x) = f ∗(x)/1∗(x),
4. ( fϕ)∗(x) = f ∗(x)ϕ(x) f (x)ϕ

′(x). In particular, if f is a constant function

( fϕ)∗(n)(x) = f (x)ϕ
(n)(x), n = 0, . . . . (7)
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A multiplicative integral is also defined in [4] for positive bounded functions.

Definition 2.3. Let f : [a, b] → R+ be a positive function that is Riemann integrable on [a, b]. The multiplicative
integral of f , denoted by

∫ b

a f (x)dx, is defined as∫ b

a
f (x)dx = exp

(∫ b

a
(ln f (x))dx

)
= e

∫ b
a (ln f (x))dx. (8)

In such a case, f is said to be multiplicative integrable or ∗-integrable.

In the same way, if f is ∗-integrable on [a, b], then (see [4])
∫ b

a f (x)dx = ln
∫ b

a

(
e f (x)

)dx
. This multiplicative

integral satisfies the following properties.

Proposition 2.4. (See [4]) Let f , 1 : [a, b] → R+ be bounded and ∗-integrable functions, and let ϕ : [a, b] → R+ be
classical differentiable at x ∈ [a, b], then

1.
∫ b

a

(
f (x)k

)dx
=

(∫ b

a f (x)dx
)k

, k ∈ R,

2.
∫ b

a

(
f (x)1(x)

)dx =
(∫ b

a f (x)dx
) (∫ b

a 1(x)dx
)
,

3.
∫ b

a

( f (x)
1(x)

)dx
=

∫ b
a f (x)dx∫ b
a 1(x)dx

,

4. Multiplicative integration by parts formula:
∫ b

a

(
f ∗(x)ϕ(x)

)dx
=

f (b)ϕ(b)

f (a)ϕ(a)

[∫ b

a

(
f (x)ϕ

′(x)
)dx

]−1
.

Finally, a set of real and positive functions { f1(x), . . . , fn(x)} is said to be multiplicatively linearly independent
on an interval I if and only if the equation

∏n
k=1 f ck

k (x) = 1 admits only the trivial solution c1 = · · · = cn = 0,
where ck are real constants, for every x ∈ I.

Proposition 2.5. ([10, Proposition 8]) The set of real and positive functions { f1(x), . . . , fn(x)} is multiplicatively
linearly independent on the interval I if and only if the set {ln( f1(x)), . . . , ln( fn(x))} is linearly independent on I.

2.2. Multiplicative Laplace transform

Now, we consider the multiplicative Laplace transform (MLT) and introduce some of its properties,
whose proofs can be found in [45].

Definition 2.6. [45, Definition 3.1 and 3.3] Let f be a positive function on [0,∞). The MLT of f is defined as

Lm{ f (x)}(s) :=
∫
∞

0

(
f (x) ⊙ ee−sx)dx

= e
∫
∞

0 ln( f (x))e−sxdx = eL{ln( f (x))}(s),

whereL{·} is the classical Laplace transform. Moreover, if Fm(s) is the MLT of a continuous function f (x), the function
L
−1
m {Fm(s)}(x) is called the inverse MLT of Fm(s).

A positive function f on [0,∞) is said to be of β−double exponential order if and only if there exist
positive constants x0, K, and β such that | f (x)| ≤ Keeβx

, for x > x0.
The following theorem guarantees the existence of the MLT.

Theorem 2.7. [45, Theorem 3.7] Let f be a positive function of β−double exponential order for x > x0 on [0,∞), and
let f (x) be a piecewise continuous function given on [0,∞). Then, for s > β, Lm{ f (x)} exists.

The MLT satisfies the following properties.

Proposition 2.8. (See[45]) Let Lm{ f (x)} = Fm(s) be the MLT of f . The following properties hold.
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1. Multiplicative linearity property. Let k1, k2 be arbitrary constants and f1, f2 functions which have MLT,
then

Lm

{
f k1
1 (x) ⊕ f k2

2 (x)
}
=

(
Lm{ f1(x)}

)k1
⊕

(
Lm{ f2(x)}

)k2 .

2. Multiplicative change of scale property. For any non-negative real number b

Lm{ f (bx)} = Fm

( s
b

) 1
b

.

3. Multiplicative derivatives of Laplace transforms. For any non-negative integer number n

Lm{ f (x)xn
} =

(
F∗(n)

m (s)
)(−1)n

.

4. Multiplicative first shifting property.

Lm{ f (x) ⊙ eeax
} = Lm{ f (x)eax

} = Lm{ f (x)}(s)
∣∣∣
s→s−a = Fm(s − a).

5. Transform of multiplicative derivatives. Let f , f ∗, f ∗∗, . . . , f ∗(n−1) be continuous functions and f ∗(n) be a
piecewise continuous function on the interval 0 ≤ x ≤ A. Also, suppose that there exist positive real numbers
K, β and x0 such that

| f (x)| ≤ Keeβx
, | f ∗(x)| ≤ Keeβx

, . . . , | f ∗(n−1)(x)| ≤ Keeβx

for x ≥ x0. Then for s > β MLT Lm{ f ∗(n)(x)} exists and can be calculated by the formula

Lm{ f ∗(n)(x)} =
1

f (0)sn−1 f ∗(0)sn−2 f ∗∗(0)sn−3
· · · f ∗(n−1)(0)

Fm(s)sn
.

6. Let f1 and f2 be positive definite continuous functions.

f1 = f2 if and only if Lm{ f1} = Lm{ f2}. (9)

3. Homogeneous second-order multiplicative differential equations

In this section, we first introduce some properties of multiplicative series along with the multiplicative
version of Frobenius’ theorem (see [10, Theorem 7]), which will be used to solve the multiplicative Laguerre
differential equation in the following section. We then investigate the relationship between homogeneous
linear second-order multiplicative differential equations and classical second-order differential equations
when they share the same solution, and conversely.

A point x0 is said to be a multiplicative ordinary point of the homogeneous linear second-order multi-
plicative differential equation(

y∗∗
)
⊕

(
y∗

) f (x)
⊕

(
y
)1(x) = 1, (10)

where f , 1 are functions of x and y∗(n)(x) = e(ln y)(n)
(n = 1, 2), if and only if both f and 1 are analytic in the

classical sense at x0. Otherwise, x0 is called a multiplicative singular point.
Similarly, a point x0 is said to be a multiplicative regular singular point of the homogeneous linear

second-order multiplicative differential equation(
y∗∗

)A(x)
⊕

(
y∗

)B(x)
⊕

(
y
)C(x) = 1, (11)

where A, B and C are functions of x, if and only if the functions

(x − x0)
B(x)
A(x)

and (x − x0)2 C(x)
A(x)



E. Fuentes et al. / Filomat 40:3 (2026), 891–915 897

are analytic in the classical sense at x0.
A multiplicative power series centered at the fixed point x0 ∈ R is an infinite product of the form

∞∏
n=0

(an)(x−x0)n
, an ∈ R

+. (12)

The multiplicative series (12) is convergent if and only if the classical series
∑
∞

n=0 ln(an)(x−x0)k is convergent
(see [46, Lemma 4]).

Finally, the following result, known as the multiplicative Frobenius theorem, guarantees the existence
of solutions around a multiplicative regular singular point, and its proof can be found in [10, Theorem 7].

Theorem 3.1. (Multiplicative Frobenius’ theorem) Let x = x0 be a multiplicative regular singular point of (11).
Then, there exists at least one solution of the form

y(x) =
∞∏

k=0

(ak)(x−x0)k+L
, ak ∈ R

+, a0 , 1, (13)

where L is a constant to be determined. Moreover, there exists R > 0 such that the multiplicative series (13) converges
at least on the interval 0 < x − x0 < R.

On the other hand, the following results describe the relation between classical and multiplicative
second-order differential equations when they share the same solution. A first approach to these kind of
results can be found in [17].

Theorem 3.2. Let f and 1 be continuous functions on [0,∞). The positive function y(x) > 0 is a solution of the
homogeneous linear second-order classical differential equation with initial conditionsy′′ + f (x)y′ + 1(x)y = 0,

y(0) = y0, y′(0) = y1,
(14)

if and only if y(x) is also a solution of the nonlinear second-order multiplicative differential equation with initial
conditionsy∗∗ ⊕

[
(e f (x)

⊕ y∗) ⊙ y∗
]
⊕ e1(x) = 1,

y(0) = y0, y∗(0) = e
y1
y0 .

(15)

Proof. Suppose that y(x) > 0 is a solution of the classical differential equation (14). Since y is positive,
there exists a classical differentiable function ym such that y = eym , which implies that ym = ln y, y′m =

y′

y ,

and y′′m =
y′′y−(y′)2

y2 . Substituting these expressions into the following differential equation, we obtain

y′′m + ( f (x) + y′m)y′m + 1(x) = 1
y
(
y′′ + f (x)y′ + 1(x)y

)
= 0. Thus, we conclude that ym satisfies the classical

differential equation

y′′m + ( f (x) + y′m)y′m + 1(x) = 0. (16)

As a consequence, considering the multiplicative form of the above equation, it follows that y = eym is a
solution of (15). Since, from (7) y∗ = ey′m , y∗∗ = ey′′m , we have

y∗∗ ⊕
[
(e f (x)

⊕ y∗) ⊙ y∗
]
⊕ e1(x) = ey′′m+( f (x)+y′m)y′m+1(x) = e0 = 1.

Moreover, the initial conditions are immediate from (5) and (6). The converse follows in a similar way.

The above theorem states that if y > 0 is a solution of (14), then it is also a solution of (15), and the
converse is also true. In particular, if ym = −

∫
f (x)dx, then (16) becomes y′′m + 1(x) = 0. As a consequence,

we obtain the following corollary.
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Corollary 3.3. Let f and 1 be continuous functions on [0,∞), and let y = eym = e−
∫

f (x)dx. The positive function
y(x) > 0 is a solution of the homogeneous linear second-order classical differential equation with initial conditionsy′′ + f (x)y′ + 1(x)y = 0,

y(0) = y0, y′(0) = y1,

if and only if y is a solution of the second-order multiplicative differential equation with initial conditionsy∗∗ ⊕ e1(x) = 1,

y(0) = y0, y∗(0) = e
y1
y0 .

The following example shows that solving a homogeneous linear multiplicative differential equation is
equivalent to solving a more complex classical differential equation.

Example 3.4. We consider the second-order multiplicative differential equation with initial conditionsy∗∗ ⊕ y−a2
= 1,

y(0) = e, y∗(0) = e−a, a ∈ R.

Applying the MLT and its properties (Proposition 2.8), we obtain

Lm{y∗∗} ⊕ (Lm{y})−a2
= 1↔ Lm{y} = e

1
s+a ,

and its inverse transform is given by y(x) = ee−ax . As a consequence, we have solved equation y∗∗⊕ e−a2e−ax
= 1. Setting

1(x) = −a2e−ax, f (x) = (ym)′ = −(e−ax)′ = ae−ax and using Corollary 3.3, we find that y = ee−ax is also solution of the
classical differential equation with initial conditionsy′′ + ae−axy′ − a2e−axy = 0,

y(0) = e, y′(0) = −ae.

In a similar way, we have the following theorem.

Theorem 3.5. Let f and 1 be continuous functions on [0,∞). The positive function y(x) > 0 is a solution of the
homogeneous second-order multiplicative differential equation with initial conditionsy∗∗ ⊕ (y∗) f (x)

⊕ (y)1(x) = 1,
y(0) = y0, y∗(0) = y1,

(17)

if and only if y is also a solution of the second-order classical differential equation with initial conditionsy′′ +
(

f (x) − y′

y

)
y′ + 1(x)y ln y = 0,

y(0) = y0, y′(0) = y0 ln(y1).
(18)

Proof. Suppose that y(x) > 0 is a solution of the multiplicative differential equation (17). Since y is positive,
there exists a differentiable function ym such that y = eym . From (7) we have y∗ = ey′m and y∗∗ = ey′′m , then

ey′′m+ f (x)y′m+1(x)ym = ey′′m
(
ey′m

) f (x)
(eym )1(x) = y∗∗ ⊕ (y∗) f (x)

⊕ (y)1(x) = 1,

which implies that ym satisfies the classical differential equation y′′m + f (x)y′m + 1(x)ym = 0. Now, we will
prove that y = eym is also a solution of (18):

y′′ +
(

f (x) −
y′

y

)
y′ + 1(x)y ln y = y′′meym + (y′m)2eym +

(
f (x) −

y′meym

eym

)
y′meym + 1(x)eym ym

= eym (y′′m + f (x)y′m + 1(x)ym) = 0.

Thus the required result follows. Moreover, the initial conditions are immediate from (5) and (6). The
converse follows in a similar way.
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Now, we apply the above theorem to solve a nonlinear homogeneous classical differential equation
whose solution is not easily found using traditional methods.

Example 3.6. We consider the nonlinear second-order classical differential equation with initial conditionsyy′′ − (y′)2 + y2 ln y = 0,
y(0) = 2, y′(0) = 0.

(19)

It is difficult to solve this differential equation using classical calculus. However, applying the above Theorem (3.5),
the problem reduces to solving the multiplicative differential equation with initial conditionsy∗∗ ⊕ y = 1,

y(0) = 2, y∗(0) = 1.

Using the MLT and its properties (Proposition 2.8), we obtain

Lm{y∗∗} ⊕ Lm{y} = 1⇔ Lm{y} = 2
s

s2+1 =
(
e

s
s2+1

)ln 2
,

and its inverse transform is given by y(x) = (ecos x)ln 2 = 2cos x. As a consequence, the function y(x) = 2cos x is a
solution of (19).

More information on multiplicative differential equations can be found in [14, 43, 44, 46, 47], among many
others.

4. The multiplicative Laguerre polynomials and their Laplace Transform

In this section, we first introduce the MLPs that arise as one of the solutions of the multiplicative
Laguerre differential equation:

d∗

dx

(
exω(x)

⊙
d∗y
dx

)
⊕

(
enω(x)

⊙ y
)
= 1, x > 0, (20)

where ω(x) = xαe−x is the Laguerre weight function, α > −1, and n is a non-negative integer. We also state
the orthogonality property satisfied by these polynomials and present some properties required to obtain
their MLT. Finally, we explicitly compute the associated MLT.

4.1. The multiplicative Laguerre polynomials

The multiplicative differential equation (20) is a particular case of the multiplicative Sturm-Liouville
equation (3), as stated above. Notice that (20) is equivalent to(

y∗∗
)x
⊕

(
y∗

)1+α−x
⊕ yn = 1, x > 0, (21)

and x = 0 is a multiplicative regular singular point of equation (21).
On the other hand, according to Theorem 3.5, the equation (21) has the same positive solution than the

second-order classical differential equation

xy′′ +
(
1 + α − x −

y′

y

)
y′ + ny ln y = 0, x > 0.

The following theorem states that one of the solutions of (21) is a multiplicative polynomial and that it
is unique.
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Theorem 4.1. Let α > −1. Consider the multiplicative differential equation(
y∗∗

)x
⊕

(
y∗

)1+α−x
⊕ yγ = 1, x > 0, (22)

where γ ∈ R is a spectral parameter. The equation (22) has a multiplicative polynomial solution, not identically one,
of the form

yn(x) =
n∏

k=0

(ak)xk
, ak ∈ R

+, a0 , 1, (23)

if and only if γ = n for every non-negative integer n. Moreover, the solution yc (c constant) is the only multiplicative
polynomial solution, i.e. every other solution of (22) that is multiplicatively linearly independent to y on (0,∞) is
not a multiplicative polynomial.

Proof. Since equation (22) has a multiplicative regular singular point at x = 0, the multiplicative Frobenius’
theorem ensures the existence of at least one solution of (22) around x = 0 of the form

y(x) =
∞∏

k=0

(ak)xk+L
, a0 , 1. (24)

In particular, y(x) = (a0)xL
is solution. Taking its multiplicative derivatives and substituting into (22), we

obtain(
(a0)L(L−1)xL−2

)x (
(a0)LxL−1

)1+α−x (
(a0)xL)γ

= 1.

This expression is equivalent to (a0)(γ−L)x(a0)(L(L+α)). As a consequence, we deduce that L = 0 or L = −α.
We now analyze the solution corresponding to L = 0. From (24), a solution to (22) has the form

y(x) =
∏
∞

k=0(ak)xk
. Substituting in (22), we get

1 =

 ∞∏
k=2

(ak)k(k−1)xk−2


x  ∞∏

k=1

(ak)kxk−1


1+α−x  ∞∏

k=0

(ak)xk


γ

=

 ∞∏
k=1

(ak+1)k(k+1)xk


 ∞∏

k=0

(ak+1)(k+1)(1+α)xk


 ∞∏

k=1

(ak)−kxk


 ∞∏

k=0

(ak)γxk


=

(
a(1+α)

1 aγ0
)  ∞∏

k=1

(ak+1)k(k+1)+(k+1)(1+α)aγ−k
k


xk

.

Since the set {(a)xn
}n≥0, with a ∈ R+, is multiplicatively linearly independent, it follows that

(ak+1)(k+1)(k+1+α)(ak)γ−k = 1, k = 0, 1, 2, . . . . (25)

Assuming that y(x) =
∏n

k=0(ak)xk
, then an is the last non-one coefficient, i.e., ak+1 = 1 for k ≥ n. Taking k = n

in (25) we deduce that the exponent of an must be γ = n. Conversely, if γ = n, then from (25) we get ak+1 = 1
for k ≥ n.

Moreover, assume that y(x) =
∏n

k=0(ak)xk
and z(x) =

∏
∞

k=0(bk)xk−α
, bk ∈ R

+, are both multiplicative positive
solutions of (22) with γ = n. In such a case,[

(y∗)xω(x)
]∗
⊕ ynω(x) = 1,

[
(z∗)xω(x)

]∗
⊕ znω(x) = 1.

Since 1 ⊙ z = 1 ⊙ y = 1, using the distributive property of ⊙, we obtain 1 = ([(y∗)xω(x)]∗⊙z)⊕(ynω(x)
⊙z)

([(z∗)xω(x)]∗⊙y)⊕(znω(x)⊙y) . Since,

ynω(x)
⊙ z = znω(x)

⊙ y, we obtain

1 =

([
(y∗)xω(x)

]∗
⊙ z

)([
(z∗)xω(x)]∗ ⊙ y

) . (26)
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On the other hand, since ((y∗)xω(x)
⊙z)∗

((z∗)xω(x)⊙y)∗ =
([(y∗)xω(x)]∗⊙z)⊕((y∗)xω(x)

⊙z∗)
([(z∗)xω(x)]∗⊙y)⊕((z∗)xω(x)⊙y∗) , and (y∗)xω(x)

⊙ z∗ = (z∗)xω(x)
⊙ y∗, then by using

(26), we conclude(
(y∗ ⊙ z)xω(x)

(z∗ ⊙ y)xω(x)

)∗
=

(
(y∗)xω(x)

⊙ z
(z∗)xω(x) ⊙ y

)∗
= 1.

As a consequence, from [10, Proposition 3], there exists C ∈ R+ such that
( y∗⊙z

z∗⊙y

)xω(x)
= C, which is equivalent

to

xω(x)
[
(ln y)′ ln z − (ln z)′ ln y

]
= xω(x)

∣∣∣∣∣ ln z ln y
(ln z)′ (ln y)′

∣∣∣∣∣ = ln C. (27)

• If ln C = 0, it follows that ln y and ln z are linearly dependent on (0,∞), i.e., ln z is a constant multiple
of ln y =

∑n
k=0 ln(ak)xk, i.e. ln z must be a polynomial. Thus, z and y are multiplicative polynomials

such that z = yc.

• If ln C , 0, we conclude that ln y and ln z are linearly independent on (0,∞), then y is a multiplicative
polynomial and z is a multiplicative power series convergent in (0,∞).

Finally, following [36, Theorem 4.2.2], taking x → 0 in (27) we find that ln y and ln z cannot be both
polynomials unless one of them is a multiple of the other. Using Proposition 2.5, it follows that y and z are
not both multiplicative polynomials unless one of them is a multiple of the other. In fact, z(x) =

∏
∞

k=0(bk)xk−α

is a multiplicative power series convergent in (0,∞).

As a consequence of the previous theorem, the multiplicative Laguerre differential equation (21) admits
a multiplicative polynomial solution of the form (23) for every non-negative integer n. From (25) we get for
k = 1, 2 . . . ,n with γ = n

ak = (ak−1)
k−1−n
k(k+α)

= (ak−2)
(k−2−n)(k−1−n)

k(k−1)(k+α)(k−1+α)

...

= (a0)
(k−1−n)(k−2−n)···(−n)

[k(k−1)···1][(k+α)(k−1+α)···(1+α)] = (a0)
n!

(n−k)!(α+1)k

(−1)k

k! .

Substituting yn(x) =
∏n

k=0(ak)xk
, for n ≥ 1 we obtain

yn(x) = (a0)1+
∑n

k=1
n!

(n−k)!(α+1)k

(−x)k

k! = (a0)
n!

(α+1)n

(∑n
k=0

(α+1)n
(n−k)!(α+1)k

(−x)k

k!

)
.

Taking into account (1), we derive the following explicit formula for classical Laguerre polynomials:

L(α)
n (x) =

n∑
k=0

(
n + α
n − k

)
(−x)k

k!
=

n∑
k=0

(α + 1)n

(n − k)!(1 + α)k

(−x)k

k!
. (28)

where (α)n is the Pochhammer symbol or shifted factorial, defined by (α+ 1)0 := 1 and (α+ 1)n := (α+ 1)(α+
2) · · · (α + n) for n > 0.

Therefore, from (28), we obtain yn(x) = a
n!

(1+α)n
L(α)

n (x)
0 . Since yn being a solution of (21) implies that yc (c ∈ R)

is also a solution, it is customary to choose an appropriate value for a0. In particular, setting a0 = e
(α+1)n

n!

defines the solution yn(x) as the multiplicative Laguerre polynomial of degree n, denoted by

L̃(α)
n (x) = eL(α)

n (x)
⇔ L(α)

n (x) = ln
(
L̃(α)

n (x)
)
, n ≥ 0. (29)

In particular, if α = 0 we simply write L̃n(x) = L̃(0)
n (x).

The main property of the Laguerre polynomials is their orthogonality, which in the multiplicative
version is given as follows.
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Proposition 4.2. The sequence {L̃(α)
n }n≥0 of MLPs is multiplicatively orthogonal on [0,∞) with respect to the weight

ω(x) = xαe−x (α > −1). Moreover, for any non-negative integers n and m, we have∫
∞

0

(
L̃(α)

n (x) ⊙ L̃(α)
m (x)

)ω(x)dx
= exp

(
Γ(n + α + 1)

n!
δn,m

)
,

where δn,m is the Kronecker delta.

Proof. Suppose n and m are non-negative integers. From (8) and (29)

∫
∞

0

(
L̃(α)

n (x) ⊙ L̃(α)
m (x)

)ω(x)dx
= e

∫
∞

0 ln
[(

L̃(α)
n (x)

)L(α)
m (x)ω(x)

]
dx
= e

∫
∞

0 L(α)
n (x)L(α)

m (x)ω(x)dx,

the required result follows from the orthogonality of classical Laguerre polynomials∫
∞

0
L(α)

n (x)L(α)
m (x)ω(x)dx =

Γ(n + α + 1)
n!

δn,m. (30)

An alternative proof of the previous result that uses only MC properties can be found in [23]. The MLPs
satisfy the following properties.

Proposition 4.3. Let {L̃(α)
n }n≥0 be the sequence of MLPs. Then,

1. For n ≥ 0

L̃(α)
n (x) =

n∏
k=0

e(n+α
n−k) (−x)k

k! . (31)

In particular,

L̃(α)
n (0) = e(n+α

n ) and
d∗

dx

[
L̃(α)

n (x)
]

x=0
= e−(

n+α
n−1). (32)

2. For n ≥ 0

L̃(α)
n (x) =

n∏
k=0

L̃n−k(x) ⊙ e(α+k−1
k ) =

n∏
k=0

(
L̃n−k(x)

)(α+k−1
k )
, (33)

where
(
−1
0
)
= 1 and

(α+k−1
k

)
= 0 for any k > 0 with α + k − 1 < k.

Proof. The first equality follows directly from (28), while (32) is immediate from (31). For (33), we use the
following known relation (see [1]):

L(α)
n (x) =

n∑
k=0

(
n + α + 1

n

)
Ln−k(x).

Substituting this into (29), we obtain L̃(α)
n (x) =

(
eLn(x)

)(α−1
0 ) (

eLn−1(x)
)(α+1−1

1 )
· · ·

(
eL0(x)

)(α+n−1
n )

. This implies (33).
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4.2. Multiplicative Laplace transform of multiplicative Laguerre polynomials and Tricomi’s formula
Finally, we present the MLT of the MLPs and establish the multiplicative version of Tricomi’s formula.

Proposition 4.4. The MLT of the n-th multiplicative Laguerre polynomial for α = 0 is given by

Lm{L̃n(x)}(s) = e
1
s (1− 1

s )
n

. (34)

Moreover, for α > −1, it is given by

Lm{L̃
(α)
n (x)}(s) =

n∏
k=0

e
1
s (α+k−1

k )(1− 1
s )

n−k

. (35)

Proof. Applying the MLT to the multiplicative differential equation (21), and since Lm{1} = 1, we have
Lm{

(
y∗∗

)x
} ⊕Lm{

(
y∗

)1+α−x
} ⊕Lm{yn

} = 1,where y = L̃(α)
n . Applying the properties from Proposition 2.8 along

with (32), we get

Lm{
(
y∗∗

)x
} =

1
d∗
ds

(
Lm{y∗∗}

) = 1
d∗
ds

(
1

y(0)s y∗(0) (Lm{y})s2
) = e(n+α

n )(
d∗
ds [Lm{y}]

)s2 (
Lm{y}

)2s
,

and

Lm{
(
y∗

)1+α−x
} =

(
(Lm{y})s

y(0)

)1+α (
d∗

ds
[Lm{y∗}]

)
=

(
(Lm{y})s

e(n+α
n )

)1+α (
d∗

ds

[
(Lm{y})s

y(0)

])
=

(
Lm{y}

)s(1+α)+1

e(1+α)(n+α
n )

(
d∗

ds
[
Lm{y}

])s

.

By substituting and rearranging, we obtain the first-order multiplicative differential equation[
d∗

ds
[
Lm{y}

]] (
Lm{y}

) n+s(α−1)+1
s(1−s) = e

α
s(1−s) (n+α

n ). (36)

Setting α = 0 and applying the method of separation of variables to this first-order multiplicative differential
equation (see [14]) yields (34). Moreover, applying the MLT to (33) and using (34), we obtain (35).

Remark 4.5. By applying the methods presented in [14], we can derive the multiplicative solution of the multiplicative
differential equation (36). In such case, we obtain

Lm{L̃
(α)
n (x)}(s) = exp

(n + αn

)
α

sn+1

n∑
k=0

(
n
k

)
(s − 1)k

n + α − k

 ,
which provides an alternative expression of (35).

The above proposition provides a method for computing the MLT of functions that can be expanded as
a series of MLPs. In classical calculus, this result was established by Tricomi in [38, 39] and has been widely
used in various fields. This result is commonly known as Tricomi’s formula.

Theorem 4.6. The analytic function Fm(s) is regular at infinity and can be represented as a multiplicative series of
the form

Fm(s) =
∞∏

n=0

e fn ⊙

 n∏
k=0

e
1
s (α+k−1

k )(1− 1
s )

n−k


 , (37)
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if and only if Fm(s) is the MLT of f (x) a positive function on [0,∞). In this case, f (x) can be represented by the
multiplicative Laguerre series

f (x) =
∞∏

n=0

e fn ⊙ L̃(α)
n (x) =

∞∏
n=0

e fnL(α)
n (x) (38)

which is absolutely and uniformly convergent for x > 0.
In particular, if α = 0, under the above conditions, we have

Fm(s) =
∞∏

n=0

e fn ⊙ e
1
s (1− 1

s )
n

⇔ f (x) =
∞∏

n=0

e fn ⊙ L̃n(x). (39)

Moreover, the coefficient fn is said to be the n-th multiplicative Laguerre-Fourier coefficient and it is given by

fn =
n!

Γ(n + α + 1)

∫
∞

0
ln( f (x))L(α)

n (x)ω(x)dx. (40)

Proof. Using the properties of the MLT (Proposition 2.8) along with (35), we obtain

Fm(s) = Lm

 ∞∏
n=0

e fn ⊙ L̃(α)
n (x)

 = ∞∏
n=0

(
Lm{L̃

(α)
n (x)}

) fn
=

∞∏
n=0

 n∏
k=0

e
1
s (α+k−1

k )(1− 1
s )

n−k


fn

.

If Fm(s) is analytic at infinity and (37) holds, then from (9) and the above equation, it follows that Fm(s) is
the MLT of the positive function (38). In this case, since

f (x) =
∞∏

n=0

e fn ⊙ L̃n(x) = exp

 ∞∑
n=0

fnL(α)
n (x)


and the classical series

∑
∞

n=0 fnL(α)
n (x) is absolutely and uniformly convergent for x > 0 (see [29, Proposition

1]), it follows that the representation in (38) also converges absolutely and uniformly for x > 0. The converse
is similar.

Moreover, if ln( f (x)) has the following expansion ln( f (x)) =
∑
∞

n=0 fnL(α)
n (x), then by using the orthogo-

nality property of the classical Laguerre polynomials and (30), we obtain (40).

Notice that, from equation (39) along with properties 2 and 6 of Proposition 2.8 for MLT, we obtain

Lm

 ∞∏
n=0

e fn ⊙ L̃n(2bx)

 (s) =
∞∏

n=0

e fn ⊙ e
1
s (1− 2b

s )n

. (41)

This result is equivalent to

L
−1
m

 ∞∏
n=0

e fn ⊙ e
1
s (1− 2b

s )n

 = ∞∏
n=0

e fn ⊙ L̃n(2bx). (42)

In what follows, we consider the mean absolute error, defined as Ed
c (N, f , 1) :=

∫ d

c | f (x) − 1(x)|dx, where
c < d, and the functions f , 1 are absolutely integrable functions on the interval [c, d]. Ed

c (N, f , 1) quantifies the
average difference of two functions in [c, d]. That is, if 1 is an approximation of f , then Ed

c (N, f , 1) describes
how good such approximation is on the specified domain.
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Example 4.7. Consider the positive function f (x) = e−ax with a ∈ R. By applying (40) and using the orthogonality
of the classical Laguerre polynomials, we obtain the coefficients f0 = −a(α + 1), f1 = a, and fn = 0 for n ≥ 2. Thus,
from (38), the multiplicative series can be expressed as a finite product as follows:

e−ax =

1∏
n=0

e fnL(α)
n (x) = e−a(α+1)L(α)

0 (x)+aL(α)
1 (x), (43)

where L(α)
0 (x) = 1 and L(α)

1 (x) = −x+α+ 1. Since f (x) has exponential form , the approximation process using multi-
plicative series is more efficient than employing the classical Laguerre series. For instance, f (x) can be approximated
in a classical way by using partial sums of Laguerre expansions as follows:

e−ax
≈

N∑
n=0

an

(1 + a)1+α+n L(α)
n (x) = Σ(x,N, α, a), N ≥ 0, Re(α) >

1
2
. (44)

Figures 1 and 2 illustrate that, regardless of changes in the values of a and N, a considerable error can be observed.
Moreover, the error increases significantly as we move away from the origin. In contrast, approximating f using a
multiplicative series leads to a finite product representation, as shown in (43), providing a more accurate and stable
approximation.

2 4 6 8

-0.5

0

0.5

1

Figure 1: Plots f (x) = e−5x ( ), Σ(x, 10, 0, 5) ( ),
Σ(x, 10, 1

4 , 5) ( ), andΣ(x, 10,− 1
4 , 5) ( ) on [0, 10].

2 4 6 8

-0.2
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0.2

0.4
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1

Figure 2: Plots f (x) = e−5x ( ), Σ(x, 20, 0, 5) ( ),
Σ(x, 20, 1

4 , 5) ( ), andΣ(x, 20,− 1
4 , 5) ( ) on [0, 10].

Moreover, if we consider the mean absolute error between f (x) = e−5x and the partial sums of Laguerre expansions
(44) with a = 5, as can be seen in Table 2, for α = 0, 2, 4, 8 there is a reduction of the mean absolute error in [0, 10]
when N increases.

N E10
0

(
N, f ,Σ

)
α=0 E10

0

(
N, f ,Σ

)
α=2 E10

0

(
N, f ,Σ

)
α=4 E10

0

(
N, f ,Σ

)
α=8

0 1.680591 0.234532 0.200815 0.200042
1 4.502656 0.268524 0.200903 0.200042
2 5.669825 0.248570 0.200222 0.200038
5 2.161020 0.232325 0.193532 0.199951
10 0.964084 0.145893 0.164753 0.198674
15 0.492376 0.084480 0.123346 0.193412
20 0.218291 0.042975 0.083946 0.181358
25 0.090215 0.021205 0.053044 0.161875
30 0.036968 0.010303 0.031658 0.136895

Table 2: Mean absolute errors for f (x) = e−ax with a = 5 and α = 0, 2, 4, 8 on [0, 10].
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On the contrary, the mean absolute error between f (x) = e−5x and the partial products of MLPs for N = 0 is

E10
0

0, e−5x,
0∏

n=0

e fn ⊙ L̃n(x)

 = 0.25121,

E10
0

0, e−5x,
0∏

n=0

e fn ⊙ L̃(2)
n (x)

 = 0.20000,

E10
0

0, e−5x,
0∏

n=0

e fn ⊙ L̃(4)
n (x)

 = 0.20000,

and for N ≥ 1 (for any α > −1) we have

E10
0

0, e−5x,
N∏

n=0

e fn ⊙ L̃(α)
n (x)

 = 0.

That is, the mean absolute error is zero since we have an exact formula. As result, for this function in particular the
approximation using partial products of MLPs is more efficient than partial sums of Laguerre polynomials.

On the other hand, according to Theorem 4.6, the MLT of f (x) is given by (37):

Fm(s) =
1∏

n=0

e fn ⊙

 n∏
k=0

e
1
s (α+k−1

k )(1− 1
s )

n−k


 = e−

a
s (α+1)+ a

s (1− 1
s )+ a

s α = e−
a

s2 .

This is precisely the MLT of f (x), which, using the Definition 2.6, is given by Lm {e−ax
} = e−

a
s2 .

In general, if we consider a function of the form f (x) = eP(x), where P(x) is a real polynomial of degree
N, then

eP(x) =

N∏
n=0

e fn ⊙ L̃(α)
n (x)

where fn is as in (40) with ln( f (x)) = P(x). In contrast, to approximate f (x) with the the classical series of
Laguerre polynomials requires an infinite number of terms. In conclusion, MC and multiplicative series of
MLPs can be a more efficient tool to approximate exponential functions.

On the other hand, from a numerical computation point of view, the number of operations to compute
both the partial sums of Laguerre polynomials and the partial products of MLPs are the same, although it
is more expensive to compute products and exponentials than sums and differences. That is, computing
multiplicative series can be, in general, more expensive. However, as illustrated in the example and the
previous comments, the increased computational cost can be compensated when dealing with exponential
growth functions.

5. Numerical inversion of the multiplicative Laplace transform

In this section, we apply the results previously derived to introduce two numerical methods to approx-
imate the inverse MLT. In both methods, we use MLPs with α = 0. All plots and tables were generated
using Matlab R2024a.

5.1. Tricomi’s method for the numerical inversion multiplicative Laplace transform

The following proposition introduces the first method to approximate the inverse MLT, based on Tri-
comi’s formula. Henceforth, this method will be referred to as the multiplicative Tricomi’s method.
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Proposition 5.1. Let Fm(s) = eϕ(s) be an analytic function at s = 2b with b > 0. Define

ΦT(z) := Fm

(
2b

1 − z

)
⊙ e

2b
1−z , (45)

and let f (x) be a smooth, positive function with bounded exponential growth. If f (x) admits the following multiplicative
Laguerre series representation:

f (x) =
∞∏

n=0

(
e fn ⊙ L̃n(2bx)

)
, b > 0, x ≥ 0, (46)

then f (x) is the inverse MLT of Fm(s) if and only if

e fn =
(
Φ∗(n)

T (0)
) 1

n! , n = 0, 1, 2, . . . . (47)

Furthermore, the series for f (x) is absolutely and uniformly convergent for all x > 0.

Proof. By taking s = 2b
1−z ⇔ z = 1− 2b

s , if Fm(s) is analytic at s = 2b, then ΦT(z) is analytic at z = 0. In this case,
there exists R0 > 0 such that

ΦT(z) = exp

 ∞∑
n=0

anzn

 = ∞∏
n=0

ean ⊙ ezn
, an ∈ C, |z| < R0. (48)

From (48) and (45), we get

∞∏
n=0

ean ⊙ ezn
= Fm

(
2b

1 − z

)
⊙ e

2b
1−z . (49)

As a consequence, using (5), the coefficients of the Taylor multiplicative series (48) are given by

ean =
(
Φ∗(n)

T (0)
) 1

n! , n = 0, 1, 2, . . . . (50)

Assume that f (x) admits a multiplicative Laguerre series representation as in (46). By substituting s = 2b
1−z

in (49) and rearranging, we obtain

Fm(s) =
∞∏

n=0

ean ⊙ e
1
s (1− 2b

s )n

. (51)

From (42), it follows that

L
−1
m {Fm(s)} =

∞∏
n=0

(
ean ⊙ L̃n(2bx)

)
. (52)

By comparing (46) with (52) and using (50), we conclude that f (x) is the inverse MLT of Fm(s) if and only
if e fn is as in (46) for n = 0, 1, 2, . . .. Furthermore, since (51) is analytic at infinity from Theorem (4.6), the
positive function f (x) is absolutely and uniformly convergent for x > 0.

The positive constant b in (46) is often chosen to improve the convergence of the multiplicative Laguerre
series [27]. Furthermore, in classical calculus, some methods have been developed to numerically determine
the value of the coefficient fn of (2) (with σ = b) in terms of the associated Laplace transform. These methods
include algebraic manipulation, fast Fourier transform techniques, Cauchy’s integral theorem, Weeks’
algorithm, and its subsequent modification, see [11, 22, 27] among others. However, in this manuscript,
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we do not consider the problem of computing the numerical values of the multiplicative coefficients e fn .
Instead, we directly use e fn as given in (47).

In this case, the function f (x), which represents the inverse MLT of Fm(s), is approximated in (46) by the
truncated multiplicative series

f̃T(x, b,N) =
N∏

n=0

(
Φ∗(n)

T (0)
) 1

n!
⊙ L̃n(2bx), N = 0, 1, . . . , x ≥ 0. (53)

An algorithm is now presented to approximate the inverse MLT of a specified function based on Tricomi’s
method.

Algorithm 1 Approximation of the inverse MLT via Tricomi’s method.

Require: N ≥ 0, b > 0, {Ln(x)}Nn=0 the classical Laguerre polynomials, and Fm(s) a analytic function at s = 2b.
1: Initialize: f̃T(x)← 1

2: Initialize: ΦT(z)←
(
Fm

(
2b

1−z

)) 2b
1−z

3: for n = 0 to N do
4: ψ(n)← exp

(
(lnΦT(z))(n)(0)

)
5: f̃T(x)← f̃T(x) ·

(
ψ(n)

) 1
n! Ln(2bx)

6: end for
7: return f̃T(x, b,N)← f̃T(x) ▷ Truncated multiplicative series (53).

Now, we illustrate the above results with a numerical example.

Example 5.2. Consider the function Fm(s) = 2
s

s2+1 , which is analytic at s = 2b for any b > 0. From Example 3.6, the
positive function y = f (x) = 2cos x = L−1

m {2
s

s2+1 } is a solution of the classical differential equation (19). In this case,

we have ΦT(z) = 2
(2b)2

(2b)2+(1−z)2 , so the corresponding approximation is given by

2cos x
≈ f̃T(x, b,N) =

N∏
n=0

2
1
n!

(
(2b)2

(2b)2+(1−z)2

)(n)
∣∣∣∣∣∣
z=0

 ⊙ L̃n(2bx), N = 0, 1, . . . , x ≥ 0.

Figures 3 and 4 show that a more accurate approximation of f is obtained when N increases, for the cases when b = 1
and b = 2. Moreover, for b = 1 the approximation is significantly more accurate than for b = 2 when comparing
multiplicative polynomials of the same degree. Moreover, it can be inferred from Table 3 that the cases b = 1 and b = 4
have a faster convergence for larger N, since their mean absolute error is similar and it is lower than the other cases.

0 2 4 6 8 10

0

0.5

1

1.5

2

Figure 3: Plots f (x) = 2cos x ( ), f̃T(x, 1, 6) ( ),
f̃T(x, 1, 9) ( ), and f̃T(x, 1, 13) ( ) on [0, 10].

0 2 4 6 8 10
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0.5

1

1.5

2

Figure 4: Plots f (x) = 2cos x ( ), f̃T(x, 2, 6) ( ),
f̃T(x, 2, 9) ( ), and f̃T(x, 2, 13) ( ) on [0, 10].
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N E10
0

(
N, f , f̃T

)
b= 1

2

E10
0

(
N, f , f̃T

)
b=1

E10
0

(
N, f , f̃T

)
b=2

E10
0

(
N, f , f̃T

)
b=4

0 5.572586 8.420373 7.173369 8.912670
1 6.223941 6.060505 6.500677 5.148688
2 13.957701 7.539675 6.966991 7.766821
5 4.327238 5.153757 4.589747 5.811868
10 0.421964 0.245563 0.127360 3.399798
15 0.098554 0.000655 0.001319 2.066255
20 0.014414 7.275091 × 10−7 3.086705 × 10−5 9.054827 × 10−5

25 0.001243 7.933560 × 10−10 7.115391 × 10−7 3.361390 × 10−9

30 3.201083 × 10−4 6.281056 × 10−13 1.279487 × 10−8 1.221779 × 10−13

Table 3: Mean absolute errors for f (x) = 2cos x with b = 1
2 , 1, 2, 4 on [0, 10].

5.2. Weeks’ method for numerical inversion of the multiplicative Laplace transform
A generalization of the previous approach is the multiplicative Weeks’ method. In classical calculus,

this method has been widely studied; see [9, 16, 21, 40] among others.
Let σ0 denote the abscissa of convergence of the MLT Fm(s) = eϕ(s). That is, all the singularities of Fm(s)

are located in the half-plane Re(s) < σ0. Moreover, assume that Fm(s) is analytic at infinity and define

ΦW(z) := Fm

(
σ + b

z + 1
1 − z

)
⊙ e

2b
1−z , b > 0, σ > σ0. (54)

Notice that if b = σ, then the expressions (45) and (54) coincide. The condition b > 0 ensures that the
multiplicative weighted Laguerre polynomials L̃n(2bx) ⊙ ee−bx

exhibit well-behaved asymptotic properties
for large x. In particular, they satisfy the bound |L̃n(2bx) ⊙ ee−bx

| < e, since |Ln(2bx)e−bx
| < 1, see [22].

The Weeks’ method assumes that a smooth, positive function f (x), with bounded exponential growth
and given by the inverse MLT of Fm(s), admits the following multiplicative series representation in terms
of MLPs:

f (x) =
∞∏

n=0

(
e fn ⊙ L̃n(2bx) ⊙ ee(σ−b)x)

, x ≥ 0. (55)

Using the multiplicative first shifting property from Proposition 2.8 and (41), we obtain the MLT of (55):

Fm(s) = Lm

 ∞∏
n=0

(
e fn ⊙ L̃n(2bx) ⊙ ee(σ−b)x) (s)

= Lm

 ∞∏
n=0

(
e fn ⊙ L̃n(2bx)

) (s)
∣∣∣
s→s−(σ−b)

=

∞∏
n=0

e fn 1
s−σ+b (1− 2b

s−σ+b )n

.

By substituting s = σ + b z+1
1−z ⇔ z = 1 − 2b

s−σ+b , we obtain

Fm

(
σ + b

z + 1
1 − z

)
⊙ e

2b
1−z =

∞∏
n=0

e fnzn
= ΦW(z). (56)

Hence, the coefficients e fn in the multiplicative expansion (55) are also the coefficients of the Taylor multi-
plicative series (56). The radius of convergence of (56) is strictly greater than one, due to the choice of Fm(s)
being analytic at infinity and σ > σ0 (see [22]). Moreover, the multiplicative series converges uniformly
within this radius (see [22]). As a consequence, the multiplicative expansion (55) also converges uniformly.
Therefore, from (56) we conclude

e fn =
(
Φ∗(n)

W (0)
) 1

n! , n = 0, 1, 2, . . . . (57)
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Therefore, the function f (x), which represents the inverse MLT of Fm(s), is approximated by the truncated
multiplicative series

f̃W(x, b, σ,N) =
N∏

n=0

(
Φ∗(n)

W (0)
) 1

n!
⊙ L̃n(2bx) ⊙ ee(σ−b)x

, N = 0, 1, . . . , x ≥ 0. (58)

The algorithm below provides a procedure for approximating the inverse MLT of a specified function
based on Weeks’ method.

Algorithm 2 Approximation of the inverse MLT via Weeks’ method.

Require: N ≥ 0, b > 0, {Ln(x)}Nn=0 the classical Laguerre polynomials, Fm(s) = eϕ(s) an analytic function at
infinity, and σ > σ0.

1: Initialize: f̃W(x)← 1

2: Initialize: ΦW(z)←
(
Fm

(
σ + b z+1

1−z

)) 2b
1−z

3: for n = 0 to N do
4: ψ(n)← exp

(
(lnΦW(z))(n)(0)

)
5: f̃W(x)← f̃W(x) ·

(
ψ(n)

) 1
n! Ln(2bx)e(σ−b)x

6: end for
7: return f̃W(x, b,N)← f̃W(x) ▷ Truncated multiplicative series (58).

On the other hand, the choice of appropriate values for the parameters σ0, σ y b can be quite complicated
and even chaotic. The multiplicative series (55) is highly sensitive to these parameters, and inappropriate
choices can result in a slower or less accurate convergence. Nevertheless, in [13] the authors provide useful
guidelines for the choice of these parameters. Although those recommendations were originally developed
for the classical Weeks’ method, this is not a limitation since the multiplicative Weeks’ method is structurally
similar, the main difference lies in the use of an exponential basis.

• Choice of the parameter σ0. It is necessary to know or determine the numerical value of the abscissa
of convergence σ0 of the MLT Fm(s). This can be defined either as the limit of the set of values of Re(s)
for which this integral converges, or, alternatively, as the maximum of the real parts of the singular
points s j of Fm(s).

• Choice of the parameter σ. Suppose T > 0, and consider the interval 0 ≤ x ≤ T. Two cases arise:

1. For large values of T, it is necessary to choose σ − σ0 > 0 small. In this case, the multiplicative
series (2) converges slowly and thus the multiplicative expansion (55) also converges slowly. As
a result, more terms are needed to achieve an accurate approximation.

2. For small values of T, it is possible to take a larger σ− σ0 > 0. This leads to faster convergence of
the multiplicative expansion (55) and a more efficient approximation with fewer terms.

• Choice of the parameter b. Once σ has been fixed, a suitable choice for b is any value that satisfies
b ≥ σ − σ0 > 0. This condition guarantees the convergence of the multiplicative expansion (55) (see
[13]).

The following example illustrates the algorithm and the choice of the parameters.

Example 5.3. We consider the MLT Fm(s) = e
1

s+a (s > −a) of an unknown function f (x). In this case, using equations
(56) and (57), we obtain

ΦW(z) = exp
(

2b
b + σ + a + (b − a − σ)z

)
, and fn =

2b(σ − b + a)n

(σ + b + a)n+1 , n = 0, 1, . . . .
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As a consequence, from (55), we have

f (x) =
∞∏

n=0

exp
(

2b(σ − b + a)n

(σ + b + a)n+1 Ln(2bx)e(σ−b)x
)
, x ≥ 0.

In fact, the function Fm(x) = e
1

s+a is the MLT of f (x) = ee−ax .
In this case we have σ0 = −a, so taking into account the previous comments about the choice of the parameters,

setting σ = a = 2 and given that σ− σ0 = 4, then we can choose b ≥ 4. In Table 4 we present the mean absolute errors
for values close to σ − σ0 = 4.

N E10
0

(
N, f , f̃W

)
b=4.1

E10
0

(
N, f , f̃W

)
b=4.2

E10
0

(
N, f , f̃W

)
b=4.5

E10
0

(
N, f , f̃W

)
b=4.8

0 0.024786 0.047624 0.106691 0.154830
1 7.641490 × 10−4 0.002828 0.014284 0.030274
2 2.524369 × 10−5 1.788606 × 10−4 0.002006 0.006138
5 1.084664 × 10−9 5.392163 × 10−8 6.593886 × 10−6 6.015012 × 10−5

10 1.933722 × 10−16 7.745445 × 10−14 5.319749 × 10−10 3.061855 × 10−8

15 1.222468 × 10−16 1.155787 × 10−16 3.117515 × 10−14 1.360649 × 10−11

20 1.174733 × 10−16 1.143644 × 10−16 1.225808 × 10−16 2.380223 × 10−15

25 1.174733 × 10−16 1.143644 × 10−16 1.219146 × 10−16 1.563350 × 10−16

30 1.174733 × 10−16 1.143644 × 10−16 1.219146 × 10−16 1.563350 × 10−16

Table 4: Mean absolute errors for f (x) = ee−2x
with σ = 2, and b = 4.1, 4.2, 4.5, 4.8 on [0, 10].

On the other hand, Table 5 shows the mean absolute error for values afar from σ − σ0 = 4.

N E10
0

(
N, f , f̃W

)
b=5

E10
0

(
N, f , f̃W

)
b=6

E10
0

(
N, f , f̃W

)
b=8

E10
0

(
N, f , f̃W

)
b=10

0 0.182387 0.284185 0.397328 0.459370
1 0.042159 0.104216 0.209269 0.285552
2 0.010044 0.038580 0.109589 0.175549
5 1.585969 × 10−4 0.002201 0.016658 0.041684

10 1.801854 × 10−7 2.159754 × 10−5 0.000826 0.004234
15 1.917256 × 10−10 2.177889 × 10−7 4.291099 × 10−5 4.534032 × 10−4

20 9.938997 × 10−14 2.037308 × 10−9 2.247647 × 10−6 4.918743 × 10−5

25 1.555868 × 10−16 1.052363 × 10−11 1.172801 × 10−7 5.357011 × 10−6

30 1.555868 × 10−16 7.979381 × 10−15 5.642207 × 10−9 5.837429 × 10−7

Table 5: Mean absolute errors for f (x) = ee−2x
with σ = 2, and b = 5, 6, 8, 10 on [0, 10].

For this example, it can be observed that for different values close to b = 4 the mean absolute error decreases as N
increases. However, when b moves away from σ − σ0 = 4, the mean absolute error increases with respect to the case
when b is closer to 4.

5.3. Application to the solution of a nonlinear classical second-order differential Equation
Here, we use the previous results to analytically and numerically solve a nonlinear second-order clas-

sical differential equation that would be very difficult to solve with classical calculus techniques. This
example highlights the importance of studying both the analytic and numerical properties of multiplicative
differential equations.

Consider the nonlinear second-order classical differential equation with initial conditionsy′′ +
(
2 − y′

y

)
y′ + 3y ln y = 0,

y(0) = y′(0) = 1.
(59)
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The presence of nonlinear terms makes it difficult to solve it by using conventional methods. However,
according to Theorem 3.5, the solution of this nonlinear equation coincides with the solution of the linear
multiplicative differential equation:

y∗∗ ⊕ (y∗)2
⊕ (y)3 = 1,

y(0) = 1, y∗(0) = e.
(60)

By applying properties of the MLT and denoting Y = Lm{y} = Fm(s), we obtain

(
Ys2

y(0)sy∗(0)

)
⊕

(
Ys

y(0)

)2

⊕ Y3 = 1.

It follows that Fm(s) = e
1

s2+2s+3 . Using the inverse MLT, we obtain the solution of (59) and (60)

y(x) = e
1
√

2
sin(
√

2x)e−x

, x ≥ 0.

In this case, the expressions (45) and (54) take the following form:

ΦT(z) = exp
(

2b(1 − z)
(2b)2 + (1 − z)[4b + 3(1 − z)]

)
,

ΦW(z) = exp
(

2b(1 − z)
[σ(1 − z) + b(1 + z)]2 + (1 − z)[(2σ + 3)(1 − z) + 2b(1 + z)]

)
.

Since σ0 = −1, setting σ = −0.5 we can choose b ≥ σ−σ0 = 0.5. Figures 5 and 6 illustrate the approximated
solution using multiplicative Tricomi’s method and multiplicative Weeks’ method, respectively, with b = 1
and N = 10, 15, respectively. At first sight, it appears that multiplicative Weeks’ method produces a more
accurate and faster approximation compared to the multiplicative Tricomi’s method.
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Figure 5: Plots y(x) = e
1
√

2
sin(
√

2x)e−x

( ), f̃T(x, 1, 10)
( ), and f̃W(x, 1,−0.5, 10) ( ) on [0, 10].
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Figure 6: Plots y(x) = e
1
√

2
sin(
√

2x)e−x

( ), f̃T(x, 1, 15)
( ), and f̃W(x, 1,−0.5, 15) ( ) on [0, 10].

However, Table 6 shows that, for larger values of N, the mean absolute error generated by Tricomi’s
method is smaller than the mean absolute error generated by the Weeks’ method.
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Tricomi’s method Weeks’ method
N E10

0

(
N, y, f̃T

)
b=1

E10
0

(
N, y, f̃T

)
b=5

E10
0

(
N, y, f̃W

)
b=1

E10
0

(
N, y, f̃W

)
b=5

0 1.811982 0.975320 0.338518 0.447504
1 3.778614 19.540803 0.260349 0.374860
2 6.135666 8.285467 0.095946 0.269092
5 5.311679 7.302854 0.036310 0.073683
10 0.690709 5.351663 0.003220 0.013332
15 0.030597 3.271044 8.475483 × 10−4 0.006264
20 9.457852 × 10−4 1.372400 2.625599 × 10−4 0.003090
25 3.107117 × 10−5 0.063786 6.076312 × 10−5 0.001340
30 6.311106 × 10−7 1.939664 × 10−6 1.113459 × 10−5 5.174536 × 10−4

Table 6: Mean absolute errors for y(x) = e
1
√

2
sin(
√

2x)e−x

with σ = −0.5 and b = 1, 5 on [0, 10].

Now, considering the parameters σ = 2 and b ≥ σ − σ0 = 4, Table 7 shows the mean absolute errors
obtained with both methods with b = 4.5 and b = 5. In this case, the multiplicative Weeks’ method produces
a smaller mean absolute errors when N increases, compared with the erros produced by Tricomi’s method.
Moreover, the convergence speed of the error is greater. As a result, the Weeks’ method is more efficient for
this selection of the parameters.

Tricomi’s method Weeks’ method
N E10

0

(
N, y, f̃T

)
b=4.5

E10
0

(
N, y, f̃T

)
b=5

E10
0

(
N, y, f̃W

)
b=4.5

E10
0

(
N, y, f̃W

)
b=5

0 1.026411 0.975320 0.415539 0.425183
1 17.344966 19.540803 0.193250 0.245082
2 8.234676 8.285467 0.102797 0.100969
5 7.191053 7.302854 0.023104 0.040632

10 5.181549 5.351663 0.008018 0.003443
15 2.893741 3.271044 2.450855 × 10−4 0.001189
20 1.664429 1.372400 2.728235 × 10−5 1.133764 × 10−4

25 0.001637 0.063786 8.077798 × 10−9 7.765518 × 10−4

30 4.887999 × 10−8 1.939664 × 10−6 3.214810 × 10−11 5.576192 × 10−10

Table 7: Mean absolute errors for y(x) = e
1
√

2
sin(
√

2x)e−x

with σ = 2 and b = 4.5, 5 on [0, 10].

Thus, the methods are sensitive to the choice of the parameters. As previously stated, several contribu-
tions have addressed the problem of properly choosing the parameters, but a general criteria has not been
established (see [13]).

Finally, the classical Laplace transform nor the Weeks method is used to solve (59) because the Laplace
transform of the product of functions and logarithms is quite complicated. As a consequence, it is not
possible to obtain the Laplace transform of (59) explicitly and, as a consequence, its inverse cannot be
approximated by using the Weeks classical method.

6. Conclusions

Multiplicative calculus can be used as an alternative tool to solve nonlinear classical differential equations
whose solutions are not easily found using traditional methods of classical calculus, such as the ones
presented in Examples 3.4, 3.6, and the equation (59). We present several examples that show that this
approach presents numerical advantages compared with the classical approach, especially when dealing
with some classes of functions such as exponential functions. In particular, Example (4.7) shows that the
approximation of an exponential function using multiplicative series of MLPs can be more efficient than
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using classical series of Laguerre polynomials. Lastly, numerical techniques such as the multiplicative
Tricomi’s method and multiplicative Weeks’ method can be useful tools in the process of approximating the
inverse MLT, since it provides an analytic formula for the domain function, as in (53) and (58), respectively.
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