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Hybrid Chlodowsky-Jain-Appell operators
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Abstract. In this paper, by using Jain-Appell operators and classical Bernstein-Chlodowsky operators,
we introduce Hybrid Chlodowsky-Jain-Appell operators. We investigate approximation properties of
these new operators by using modulus of continuity, partial moduli of continuities, weighted modulus of
continuity and bivariate Lipschitz class functionals. We introduce new operators of GBS type by using
new defined Hybrid Chlodowsky-Jain-Appell operators. Furthermore, we investigate the approximation

properties for new GBS version of the operators by using mixed modulus of continuity and bivariate
Lipschitz class functional.

1. Introduction

The goal of approximation theory is to approximate functions by simpler functions such as polynomials.
Weierstrass’ theorem was proved by the operators that developed in 1912 which are called as Bernstein
operators [3]. This theorem shows that every continuous function on a closed set can be uniformly approx-
imated with the help of sequence of polynomials. Many linear positive operators have been investigated
with the Weierstrass’ theorem to study approximation properties in many function spaces. These opera-
tors includes Szasz, Baskakov, Lupas, Meyer-Konig and Zeller, Bleimann-Butzer-Hahn, and many others.
Interest in the exploration of different linear positive operators has grown significantly over the past few
years([1], [7], [8], [16]).

Paul Appell, in [2], introduced the polynomial sequence P,(&), which are referred as Appell polynomials
satisfying the following monomiality property,

DP, (&) = nPas (), Dz%. 1)

The Appell polynomials can also be defined using the generating function

00

A@)e™ = ) p&)7,

k=0
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where A(v) = Y, a,0", with A(1) # 1, represents an analytic function within the disk |v| < r where r > 1.
Jakamovski and Leviatan [12] introduced a set of operators denoted as P, (I; &), using Appell polynomials.
The definition of these operators is as follows:

PR k
P,(h; &) = A0 ;Pk(”é)h(g)r £>0, (2)

Here, P, (h; &) involves the exponential term e™"¢ and the Appell polynomials px(né).
A famous member of P,(l; &), the Szasz-Mirakjan operators were used for approximating continuous
functions on the unbounded interval [0, o). These operators are defined as:

8,(0:8) 1= —"EZ(”‘E) (%)

where n € IN, £ € [0, ), and £ is a sufficiently smooth function that ensures the convergence of the series.
The function  is a member of a particular subset of the space C[0, o) such that the above series is convergent.
In the last few years, there have been a number of modifications or generalizations of the Szasz-Mirakjan
operators. We mention two of these generalization which are Jain-Pethe and Jain-Appell operators. These
two operators are important in the construction of Hybrid Chlodowsky-Jain-Appell operators.

The Jain-Pethe operators are defined [14] as follows:

(@) (1,. e
S (&) = (1+na)(g/a)z ( )(1+na

where &9 = E(& + a)(& +2a)---(E+ (k= Da),(k € N :=1,2,---) and £0~® = 1. These operators can be
described as the gamma transform of the Szasz-Mirakjan operators.
The Jain-Appell operators, were defined by [16]

)k g(k,—a)

K ®)

@ . oy — 1 (K @
Cn (h/ 5) - (1 + na)(é/“)A(l) kZOh(n)pk (é/ 7’1) (4)

where

~(a)(5, n) = Z (k - (1 +nna )k_i g

and these operators are the gamma transform of the Jakimovski-Leviatan operators. Jain-Appell operators
include the Jain-Pethe operators as well as several interesting new operators such as the Appell-Baskakov
and Appell-Lupas operators. It can be shown that the Appell polynomials can be applied to derive the
classical operators of Baskakov and Lupas in the sense of Jakimovski-Leviatan.

The classical Bernstein-Chodowsky polynomials, denoted as B, (h; £), have the following form:

B (1 &) = ;O(Z)(f)k (1- f)kh(ag) (5)

n

Here, 0 < £ < a, and a, is a sequence of positive numbers satisfying the conditions lim, . 4, = o0 and
lim, . 2 = 0. Chlodowsky introduced the classical Bernstein-Chodowsky polynomials in 1932, as an
extension of Bernstein polynomials on an unbounded intervals.

Most of the problems in Applied Sciences are investigated in the higher dimensions and approximating to
a functions in higher dimensions is very important in analysing these problems. Especially the problems
studied in the unbounded domains needs a bivariate operators that are defined on them. In the present
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paper, combining the classical Bernstein-Chodowsky operators (5) and the Jain-Appel operators (4), origi-
nally defined for univariate functions, we can extend these operators to the bivariate case. Therefore, we
introduce the Hybrid Chlodowsky-Jain-Appell operators by

o 1 -y (1) (£
qu,zq(h; &= (1 + ma) W/ A(1) kZ—() ]Z_; (Z) (a)

forall n,m € N, h € C([0, 00) X [0, ©0)) such that the above series is convergent. The operator in (8) can be

k

expressed as the tensorial product of B and ,7C£ff), that is, CS‘L =B o ,]ci,‘: ) where

B &) = i (Z) (i)k (1 - i)nkh(ang)

k=0

and

@1, [ @ (o

J=0

Letting A,, : {(§,1) : 0 < & < a,,n > 0} also we define the operators Cn(‘,’;) as

o CO (&), (& n) €A,
wlli &) = L@m, (&) € [0, 00) X [0, 00) \ Aq,. (©)

Recently, a similar approach in constructing two variable operators, as in (8), was considered in [20].

In the construction, we used Appell polynomials which are a general family including many important
members such as Bernoulli, Euler, Genocchi and Hermite polynomials. Therefore, rather than introducing
and investigating each operator one by one, we prefer to introduce the general family and focus on the
main approximation results.

The paper organised in order to examine the approximation properties of the bivariate operators mentioned
in (8). For these purposes, we use the Lipschitz class functionals and the moduli of continuity. In particular,
we obtain the order of convergence of these operators in weighted spaces ,we take into account the modulus
of continuity introduced in [11]. We also introduce the GBS version of the operators in (8) and utilize the
mixed modulus of smoothness to study the approximation properties of the GBS operators. With these
methods, we study approximations of these operators and these methods are used to examine how well
the operators approximate functions and whether they improve and converge in specific function spaces,
especially when weighted conditions are involved.

2. Moments of the Hybrid Chlodowsky-Jain-Appell operators

To investigate the approximation properties of new defined Hybrid Chlodowsky-Jain-Appell operators, we
consider a basic test functions defined as w; ; = t's/, where 0 <i<4and 0 < j < 4.
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Lemma 2.1. The following moments, hold true
Cglo,(‘r)n(wo,@/. é/ T]) =1/

Cil%(wo,o; &n =1,

C (w1p; &, 1) =&,
1 A’ (1)
m A(l)

Ciﬁ%(wlo; &, 77) 252 + E(an - CE)/

(X) (wo 17 é/ T]) 17

AQ) + 2A'(1)) N 1 (A’(l) + A”(l))
m2

C%)n(wo,z} &) = +an+ 10— ( A(D) A(1)
5( Ay 5)

C (w30, &, 1) =& + (E(Bn —2) +ay),

CE’!,T)Tl(wo,fi/.élTI) =n® + 3na + 2na’® + (* + na)— (%)4_ _( 1)+ A((1))+ ( ))
A1) +4A7(1) + A”(1)
" ﬁ A1) ’

m2

3¢, _ ) 2 ~ B
Ci%(w;;/o; &n) =&+ %(6712 -5n+2)+ E(Q”n €) QEGN —2) +ay,) + Ean(ay nf)(" 1),
C,(f,(r)n(wo,zi; &n) :T]4 + 6773a + 1117 a®+ 617a + (q + 317 a+ 27?“ )— (%)

4A A A’
e 1704)% (1 1) + 3(34(1()1) +6 (1))
1 (A1) +26A"(1) + 30A” (1) + 447 (1)
T ( A(D) )
A’(1) + 1447 (1) + 104”7 (1) + ADQ1)
T ( A )

Proof. We can easily show the above results using the fact that the operators can be written in the form of the
tensorial product Cff',)n =B o ,7C£ff) ans using the moments of each univariate operators B, and nCﬁff). O

Lemma 2.2. As a result of Lemma 2.1, the following central moments holds true:

CO (w10 — £73 €, 1) =§ sy

Chm((@oa = 1% &) Oﬂ7+n T (%)

. 6a,(n —2 3 7 3
Cihlwnn - 0% Em =(5 - 2)et - 20D g (2 D)o by

2
Ciin((o1 =% &) = (3a2 + 140% + % (—10’4(12:1;1‘4/(1))) T+ (609 a2l (ZOA(ljxa ;BA’(l))

L (14A(1)+30A’(1)+6A”(1))+ 1 (A(1)+22A’(1)+14A”(1)))
2

A) e A
1 (A1) + 1447(1) + 10A"(1) + AD(D)|
T A

Proof. The proof follows from Lemma 2.1 and the linearity of these operators. [
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Corollary 2.3. Using the given conditions on (a,) and using Lemma 2.1 and Lemma 2.2, we can derive the following
estimates:

CY ((wip — &% &, 1) = (D(@)(é2 +&)asn — oo
Cithl(wos =% &) < A@O( )+

Cil((wio = 9%, = O(L) (& + &4 24 Hasn - o0
Clth(@on =)&) < YAO ()P + 7+ 1)

where @ = a, — Qwith ay, = O (%) , A(A) and Y (A) represent specific constants which is depending on the function
A.
3. Approximation results
Let 6(&,n) = 1+ &2 + 1% be weighted function defined by
Bo(R?) = {h : h € |h(&, n)| < MyO(E, 1) for My, > 0}.
For ]R%r = {(E, n) € IREr :&,nelo, oo)} we can also assume following classes of functions:

C(’)(]RZ) = {h € C(R?) | h is r-times continuously differentiable}
Co(R?) = {I: It € Bo(R2) N C(R?))

h(E,m)
C’é(]R {h h € Co(R?) such that l;%o ) =k, <

h(&, )
CUR?) = {h h € Co(R?) such that gln—wo 0, 1) 0}

h(&Em)
oEn”

The norm on By is defined as || 1 ||g= SUP; pe2

Lemma 3.1 ([91,[10)). Let 6(&,n) = 1+ &2 + n? be a weight function defined on R%. Then, any positive linear
operator {J, mtnms1 acting from Cg to Bg satisfies the following property:

| Jum(6; <, 1) llo< C
where C > 0 is a positive real constant.
Theorem 3.2 ([9],[10]). For any positive linear operator { [, m}nms1 acting Ck (]R ) to Bo(R2) and satisfying
Jm | Jam(@E,m =1lle =0
Jim G Em =&l =0
Jm A Jum(s: €, m) = nlle =0
JHm (4 %8, m) = &+ 1P e =0

we have

im || Jum(h) =hlle = 0.

n,m— o0
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the rest of the paper, we assume that a = a,,, where a,, = 0 as n — oo.

Theorem 3.3. Forall h € CK (]R ), the operators {Cn(m)}n m>1 satisfy

Jim I G (h) — h |lo= 0.
Proof.

I C50; &, 1) llo
Cld(1+ 2+ %8,

= sup

(1) +24A(1) 1
AQD) )+ﬁ(

A1) +2A7 (1)) L1 (A’(l) + A”(l)))
"2

£neR 14 &+ 12
- i (L+ £+ 8% &,1) Co L+ 2+ % E,1)
< su
5,1;eR317Aa” 1+& 41 Ened, 1+&2+n2
1 cen (g2, (@)
< 1+ sup |—5—(Cun’ @& + Coi(s%:6,m)
»:,nefan[l%“n ( 1 1
1 &
= 1+ sup |—————|E+ 2@ - &) +n* +aun+ (
Enefa [1+52+772( ”( O+ Ty
< 2
< 1o g (0 o- 0) s [ om0 (S5
N0 n=0
< 1+M<N

as n,m — oo, N is positive number, and thus

I C(6;&,1) llo< N.

Since (&, n) = 1+ &2+ 2 and || CL%(6; &, 1) lle< N we get Co(IR2) — Bg(R2)

My, moeo | Cro (L E,m) = 1lle = lim | sup
n,m— o0 5

EnERY

WMy, oo | CR (4 E,m) = Elle = Lim | sup
1,m—>00 )

ENERS

limy, o | C*(a")(s EmM-1nlle = lm [ sup
n,m—oo 2

ENER

hm I C*(““)(f2 +555mM - E+1) llo

n,Mm—00

EnER?

1+&+ 12

1,1m—00
4 EneR?

lim [ sup

0.

1-1
1+&+n?

E-¢
1+52+n2

0,

1 “(a
lim ( sup [m( an)(tZ 5,17)+C( ,x)(g &) - 52_112)]

A(D)

A'(1)+A” (1)
A1)

A1) + A”(1)
A(D)

1+&+1n?

[52+ £ (0, —5)—52] i rﬂmmqm%(%% 2 (
&neR?

Therefore, limy; ;o || C*n(,‘,f;“)(tz +5%&,1) = (&2 + 1% llo= 0, which completes the proof. [

=)

922

)

)
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4. Main Results

The aim of this section is to find the degree of approximation provided by the operators in (8) within the
continuous functions space defined on a compact set denoted as I, := [0, u] X [0, v] which is the subset of
[0, 00) X [0, 00). The goal is to understand the convergence behaviour and the accuracy of approximation.
The full modulus of continuity is defined by

w(l; ) = supl] h(k, €)= H(E, 1) |: 0, €), (1) € Ly and [l = 2 + (£ = )2 < ).
The partial moduli of continuities for variables £ and 7 are defined as

w1 (h; €) = sup{lh(&1, 1) = h(&2, M) : n € [0,0] and | & = &z |< €}
and

wa(h; €) = sup{|h(&, m) —h(&, M)l : E € [0,u]and [m —n2 < €}

It can be easily seen that partial moduli of continuities possess the same properties of the usual modulus of
continuity.

Theorem 4.1. We have the inequality for any (£, 1) € L, and h € C(ly,) as follows:
| Chd (. &,m) = h(E, 1) 1< 200(h; @uan (&, ) (8)

where g m(&,m) = (O (%) (& + &) + AA)O (L) (n+ 1))% :

Proof. As a result of the definition of complete modulus of continuity, we have

| ) &,1m) = (&, ) |
< CY( hit, 5) = h(E, ) ;&)

<l (o e - 22 + = 2]

1 @

—ci) (- 92+ - m2ie, n)} :

Using Corollary 2.3 and the Cauchy-Schwarz inequality, we get
| G :€,1m) = W&, 1) |

< a)(h; Qn,m(gl n)) {l +

< w(l Mo{l +
¢ o

[T

Ciin (w19 = & + (wo1 = )% €, )}

}

1 . . :
< w(t; Oum(&, n)){l + m{c;,;f«wl,o ~ &% &)+ C(wor — )% €, n)} }

1
Onm (&, 77)

1
Qn,m(éz T]) {

<l gunte 1+ {o(%)@+o+amwo(s)u+ 1)};}.

This inequality provides the desired result. [J

Theorem 4.2. For any function h in the continuous functions space on the compact set 1., and for all (£,1) € L,
the following estimate holds true:

| CE (&, m) = h(E, 1) |< 2(01(; €4(E)) + @2l (1))
where
A1)+ A”(l))

oS 2 _ 1.1
(&) —n(ﬂn &) and  vy(n) —an77+77m+m2( A1)
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Proof. With the Cauchy-Schwarz inequality and the definition of partial moduli of continuity along with
the moments given in Lemma 2.2 , we can establish the following inequality:

| Ch; &, 1) = (&, ) |

< Co (1t 9) = h(E, ) &, 1)

< CY(1 h(t, ) = h(E,9) [ E,m) + C (L h(E, 5) = h(E ) [ E 1)
< C i1t = E ;&) + Clalwa (b | s = 1 1); &, 1)

< wi(l; () [1 + ( é)d:*:,m t-&lé, n)] + (It V(1)) [1 e )c;“;;m s—nlE n)]

< 1 (564(E) [1 — 5 G- 676 n))z] + w2(h; V() [1 e >(Ci“;;2<<wm — %€, n))Z]
choosing en(&)? = % (a, — &) and vm(n)2 =, + n% + # (’%) , we obtain the required result.

O

To evaluate the degree of approximation provided by the hybrid operators defined in equation (8), we
utilize the concept of the Lipschitz class. In the bivariate case, we defined the Lipschitz class functions
Lipm(y1,y2) with 0 <1 £ 1and 0 <y, <1 as follows:

| ik, €) = h(E, ) s M [k= & £=n >
where & belongs to the continuous function space.

Theorem 4.3. Let h € Lippm(y1,y2). We have

| Gl &) = (&, ) 1< Me @V (),
where &,(&) and v,,,(n) are the same as Theorem 4.2.
Proof. Since h € Lipp(y1,)2), we may write
| CL s &, 1) = (&, 1) | < CLl(L ) = h(E, ) €, 1)
SChAMIt=EP s =nP%En)
<M By t=& P Em (G| 5= 1% Em)

Applying the Holder’s inequality with (p1,q1) = ( = yl) and (p2,q2) = (n, > yz) we have

| Cl iy &,m) = h(E, 1) |
< M By (w0 = &% &2 eB(awoo; & )70 - (o = m) & m)*/2 O awo; &, ) B 72
= Me} (&), (1)

This proves the theorem. [

To determine the approximation order of the bivariate operators in (8) within a weight space, we introduce
the weighted modulus of continuity, which is defined as follows:

| (& +h1,n+hy) = f(E,1) ]
we(h; €1,€2) = su su .
e ane[f},goo) \/11|S€1,|II’Z|S£2 0(&, mO(hy, ho)

©)



M. Cil, M. A. Ozarslan / Filomat 40:3 (2026), 917-930 925

Theorem 4.4. If h belongs to the class Ck(R?), then, for values of n and m that are sufficiently large, the following
estimate is satisfied:

| CY iy &, 1) = (&, ) |

< Cwo(h; €, Vi),
o T ey = el
1/2 1/2
where &, = (”7) ! , Vi = (%) ! , 0(A) = max{A(A), Y(A)} and C is a constant depending on n, m.

Proof. We may write

| h(t, ) — h(&,n) | < 8(1 +£2+r]2)a)g(h;e;l,v:n)(1 + 't_,g ')(1 + | Sv_” |)(1 +t=EHA+ (s -n)).

& n m

Thus,

| CC)h; &, 1) — (&, n) |
<8(1+ 52 +17 )a)g(h Eny Vi)

kZ:)(Z) (%)k (1 - %)n k( l‘:l k_ - é‘)( k_ - é) )i 1+ man)(n/an)A(l (an) (77/ m)

el ()

Applying the Cauchy-Schwarz inequality, we can derive

| CC(h; &,m) = h(&, 1) |
< 8(1 + & + Pwe(h; €, vl,)

(8¢ 1 Q,
X1+ Cll(@io = %5 1) + = Cl(no - P51

\/C(a")((ﬂh 0= OZEMC (w10 — OYE, 77)]

1+ GGy = 6 m) + = \/C,S“;;k (w01 = % &)

1
\/Cfff.? ((wo1 — )% & MC(wor — N &, r])]
Using Lemma 2.3, we have

| C &, m) — h(E, ) |
< 8(1 + & + P we(h; €, vl

[1+®( )(a2+5>+ —\o(%)eE+o

+€l;1\/o(“;")(éugno(%)(éu&+£2+é)]

x [1 + A(A)(D(%)(n 1)+ Vim \/A(A)O(%)(n +1)

1

A(A)(D( )(77 1)+ T(A)(D(%) (P +1+ 1)].

m
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: ’ a 1/2 / a(A) 1/2 s s :

Taking ¢, = (ﬁ) SV = (T) with 0(A) = max{A(A), Y(A)}, we reach the desired solution. [J

5. GBS operator constructed by the Hybrid Chlodowsky-Jain-Appell operators and their approximation
results

In this section, we give the definition of GBS Hybrid Chlodowsky-Jain-Appell operators and we give
approximation results for these new defined operators.
A function defined on the rectangle A = ([u, v] X [d, e]) is considered B-continuous if, for every (£, 1) € A,
the function satisfies the following property:

(u,bl)l—{%,q) Agph(&,m) =0,
where A ph(&, 1) = h(&, 1) — h(E,b) — h(a,n) + h(a, b).
We define C,(A) as the space of all B-continuous functions on the rectangle A. Similarly, B(A) represents
the all bounded functions space defined on A, and C(A) denotes the all continuous functions space on A,
endowed with the sup-norm || - ||. It is known that C(A) c C,(A) ([4]).
The mixed modulus of smoothness of i € C(A) is defined as

Wmived(H; €1, €2) 1= supf| An, g€, 1) 1}, (10)

where the supremum is obtained by considering all possible (&, n) pairs in the set A. Let (h1, hy) € [0, 00) X
[0, 00), such that (§ + h1,n+hy) € A. 0 <| hy |[< €1, 0 <| hy |[< €, and where A, ;h(E, n) is defined as above.
Marchaud defined the mixed modulus of continuity with upper bounds and the total modulus of continuity
[15].

A function with real values, defined on the set A, is uniformly B-continuous if and only if the following
condition is satisfied:

lim . Wived(l; €1, €2) = 0. (11)

£1,62—
Furthermore, for any non-negative values of A; and A,, the following inequality is valid:
Wmived(1; A1€1, A282) < (LMD A+]A2D)@mixea(B; €1, €2), (12)

where the notation JA[ represents the floor function applied to the value A, which means it denotes the
greatest integer that is less than or equal to A. A function  : A — R s called as Bogel differentiable [5], of
& mneAit

Agnh(&E,n)

— 7~ = Dsh(&, 1) < co.
<”rb>1*n<15/n> (a-&®b-n Bh(E, 1) < o

Here, the term IDg denotes the B-derivative of the function f, and the space of all B-differentiable functions
is represented as D, (A).
In this section, we introduce a specialized version of the operators (8).

For any function & belonging to the space C,(A), the GBS operators corresponding to C;“,’,’f (h; &, 1) operators
are defined as follows:

Kl (h; &,m) = Z i (Z) (;)k (1 - a%)n_k i+ man;(n/an)A(l)

k=0 j=0

X p;(a") (7;m) [h (k%”, n) +h (5, i) —h (k%”, #)] )

(13)
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Let I4;:=[0,c] X [0,d] Cc A,,.
The important difference between Hybrid Chlodowsky-Jain-Appell operators and the GBS kind of these
operators is Hybrid Chlodowsky-Jain-Appell operators requires less input then the GBS kind. The values

of the function at the points ]% and < is enough to get the approximation results for Hybrid Chlodowsky-

Jain-Appell operators. On the other hand, for GBS Hybrid Chlodowsky-Jain-Appell operators we need to

know the values at the points —* kay J L and the lines passing through these points. From our observations, we

can say that the GBS Hybrid Chlodowsky—]ain—Appell operators provides better approximation with more
input.

Theorem 5.1. For every function h belonging to the set Cy(l.q) and for all (&,n) in I, with (13) the following
estimates holds true

| Kl ;€)= B(E, ) 1< A@isea (B Dy i),

where ¢y, = (%‘(c2 + c)) P = (A(A)(D( )(d + 1)) and A(A) is a constant.

Proof. Using the definition of wpixed(h; A1¢n, A21) and the elementary inequality, we have
Omived(1; AP, A2P) SA+IMDA+]A) X Opivea (s Py Yi), A1, A2 >0,

we get

k- -
|A(£,n)h(kr€) | < a)mixed(h}| k=¢&1,1 5_77 D < (1 + | (;b ¢ |)(1 + | ll} 1 |)wmixed(h}¢n/ Ebm)

for every (&, 1), (k, {) € I.4 and for any ¢, ¢, > 0. Further, by the definition of A h(k, ), we write
W&, €) + hk, 1) = h(k, £) = h(&, 1) = A phlk, O). (14)
Applying the operator (8) to both sides of the equality (14), we get

Koo (1; €, 1) = h(&, mCiin) o3 &) = Cooy (A ph(k, 0); €, 7).

(n,m
Since CE:’;L)(wO,O) =1, applying the Cauchy-Schwarz inequality

| K (s &, m) = h(E, 1) |
<l (I Agph(k,0) | 5, 1)

(n,m)
(an) (an) (an) .
S(QWMWwé,) o ¢bmm«wm—é>énn+¢—vbmm«wm—nﬂém>
(an) . (an) . .
+ anll)m \/C(n m)((wl,O - 5)2/ é/ 77) C(n 1) ((w0,1 - 7])2/ CE/ 7])) X wmixed(hr (Pl’l/ Ebm)

By Corollary 2.3 and for all (&, r]) € I.4, we have

C™) ((wip - E% &) = w as%@+as%6+@

(n,m)

Similarly

CWw%rwfam<Amm()m+n<Amm()u+n

where A(A) is a constant depending on A. Choosing ¢, = (%”(C2 + c))l/2 and ¢, = (A(A)(D( )(d 1))
the proof is completed. [
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For h € Lippm(y1,y2) and (&, 1) € Iy, we have

| K, &, 1) = B(E, 1) I< Me,n (E)2 ), ()2,

In the next theorem, with respect to the Lipschitz-class functional we derive the degree of approximation

of K{%) operators.
If h belongs to the space of all B-continuous functions C;(I.;) and parameters 0 < y; < 1and 0 < y, <1, the
Lipschitz class function Lippi(y1, y2) is defined as follows:

Lipm(y1,y2) = {h € Colea) | Agpph(t, o) KM |t =& s —n [, for (t,5)(&,n) € ch}-
Theorem 5.2. For hh € Lipp(y1,y2) and (&, 1) € L4, we have

| Upm(h; &) = h(E, 1) |< M), ()2, (),
where (&) =1l eBS((t = &)%) lloo, Yh(m) =l ,,Cm(“”)((s —10)?) lleo and M is a certain positive constant.
Proof. from the linearity of the operators, we have

K-, ) = il (W(E, 5) + h(t, ) = ht, 9); &)

= C\ (&, 1) = Agph(t, 9); &,1)
= h(&, MC) (wo0; &,1m) = Clil (A mh(t, ); &,1)
By the hypothesis, we get
| K &,m) = h(E, ) | < Gl At 9) 1 E,m)
<MCE (1 t= & s—n 1781
= MCS (1t=&18,mMCo) (| s=n P& m).

Now applying the Holder’s inequality with (p1,41) = (V%, ﬁ) and (p2, q2) = (y%’ 5 —2)/2) we obtain

| K (&) = h(E, 1) | < MeBS((t — &) )12 B (wp; £) @7/
X G (s = %) 2 G (s ) B2

Taking ¢;,(&) =l BS((t — &)%) lleo and ¢7,(n) =lI; C&f“)((s -2 llo , we get the desired solution. [
Theorem 5.3. If h € IDy(I,4) and Dgh € B(l.4), then for each pair of (£, 1) € .4, the following estimates holds true;
| Ko ;&) = (&) |
< C{3 11 Dl +200insh 65, 930 VE + EN 1|10,

{mina 1507, 030 NE T E T ETEIFTL+6 i+ 412+ ).
for ¢;, = (%), Yr, = \J0(A), 0(A) = max{A(A), Y(A)} and C is a constant depending on n and m only.

Proof. By the hypothesis, we can write

Agnphlk, ) = (k= E)(C = mDgh(an, f), E<an<kn<p<tl.
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Clearly,
1D]Bh(ai’lr ﬁ) = A(E,Y])D]Bh(an/ ﬁ) + D]Bh(al’l/ T]) + D]Bh(ér ﬁ) - D]Bh(ér TI)

Since Dgh € B(l.4) , we have from the above inequality that

| Chin (M ph(k, 0);E,1) |

=| CU (k= &)(¢ = )Dgh(an, B); €, 1) |

<CWN (k=N E—n 1l AyDshanp) ;& 1)

+C (k=& £~ 11 ( Dghas,n) | + | Dghf(s,p) | - | Deh(&,m) ;&)

<CN k=& €= 1| WmiveaDph; | aw = E LI =11, 1) +3 | Dph lle C2( k= ENNE=11:&,1). (15)

Using the (12), we can write

Wmixed(DBl; | 0y — E 1,1 B—1) < ﬂ)mixed(lDugh'l k=&l e=71)
( o )( )a)mzxed(D]Bh G Pr)- (16)

Combining (15), (16) and using the Cauchy-Schwarz inequality, we obtain the following
| K (&, m) = W&, m) 1= il Ace bk, €0;€,1) |
<311 Dgh o C (k- (¢ - n>2 3 n)+(6‘“">(| k=&l e-nl&n)

1
+¢ CY (k=& 1 6-n;&, ;&)

C1(1a;;1)((k 5) (f 77)2 5/ T])C‘)mlxed D]Bh (Pnll)m

n,m

qbnwm
< 31| Dl ll (0 - EP(C )25, ) + (\/c;m)«k - (L -5, n)

\/c“" (6= DX =51+ o O (k= D2~ 0

———C) (k= (€ = 1% &, 1) mixea(Dpl; ).

qbntpm
Since for (&, 1), (k, €) € I.4 we have
CO (k= &2 = )¥; &, 1) = eBu((k = £)%;.E),Co® (€ = )3 1) (17)

fori=1{1,2} and j = {1, 2}. From Lemma 2.3, we can write
Bk - £58) =0 (%)@ +
Bul(k- 858 =0 (%)t + £+ £+
(€= %) < AAO( )1+ 1)

Cn ™ ((€ = )*; 1) < Y(A)O (%) (P +n+1)

combining (16) and (17), on choosing ¢}, = (”") Yy, = \Jo(A) and
a(A) = max{A(A), Y(A)}, we obtain the desired result. [
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6. Concluding Remarks

Recently some approximation operators have been constructed based on certain special functions. Appell
polynomials are one of them. Another one can be the Mittag-Leffler functions, see [18]. Research of this
type can be extended to the new special functions considered for instance in the paper [6], [13], [19] and
[17].
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