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Abstract. This paper investigates the existence and uniqueness of solutions to Caputo-type neutral frac-
tional stochastic differential equations driven by multiplicative and fractional noises within the framework
of the G-Lévy process, where the Hurst index satisfies H € (%, 1). The analysis employs Cauchy’s inequality
and Gronwall’s inequality as essential mathematical tools to obtain rigorous estimates and establish the
well-posedness of the system. To validate the theoretical findings, a detailed comparison is carried out
between the exact solution and its approximation obtained via the Picard iterative method, with particular
emphasis on evaluating the associated error bounds. Furthermore, an exponential estimation for the so-
lutions is derived, providing deeper insight into their long-term behavior. Finally, two carefully designed

illustrative examples are presented to demonstrate the applicability and effectiveness of the proposed
theoretical framework.

1. Introduction

Over the past decades, fractional differential equations (FDEs) have become an essential mathematical
framework for capturing memory and hereditary properties in diverse scientific processes. Their broad
applicability spans disciplines such as physics, chemistry, engineering, and medicine [24, 29]. Researchers
have successfully employed FDEs in various contexts, including the fractional modeling of influenza [14],
the tuberculosis model [13], and the development of numerical algorithms for solving real-world fractional
models [2, 20]. For more study, we recommend some other resources such as [28, 30, 35].

The study of neutral differential equations (NDEs) has attracted considerable attention due to their
diverse applications in finance, population dynamics, and control theory. Foundational contributions were
made by Hale and Lunel [8], who developed the basic theoretical framework for deterministic NDEs.
Later, Liu [16] extended this research by addressing optimal control problems involving neutral differential
systems. In recent years, several studies have continued to explore various aspects of neutral stochastic
differential equations (NSDEs) under different conditions and modeling frameworks [1, 3, 12, 17, 18].

Recently, growing interest has been directed toward the theory of nonlinear expectation because of its
significance in dealing with uncertainty modeling, risk evaluation, and superhedging in financial systems.
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In particular, substantial progress has been made in extending the sublinear expectation (SLE) framework
to account for volatility ambiguity, leading to the development of the G-Brownian motion (G8M) theory.
Peng [22] developed G-Brownian motion as a way to include the unidentified volatility in financial models.
Uncertainty issues affecting an undominated family of probability measures are intimately related to its
theory. Other linkages have been found in the analysis of equations whose solutions depend on the entire
trajectory of a process, typically represented by backward stochastic differential equations, in addition to
the subject of financial mathematics. Thus, coupled G-expectation and GBM are attractive mathematical
concepts. Accordingly, GBM together with its associated G-expectation are considered fascinating struc-
tures within mathematical theory. The studies by Soner et al. [32], Wang et al. [38], Geo [6] and others are
recommended for further information. The behavior of the solution including its existence, uniqueness,
stability, moment estimations, and its varied and continuous dependence on initial conditions has been
thoroughly investigated in [15, 23]. Lévy process-based stochastic differential equations (SDEs) are used in
many different domains, such as biology [10] to simulate disease propagation, physics [39] to depict distinct
phenomena, genetics [5] to examine animal movement, and finance [4] to predict market dynamics. GBM
is insufficient for depicting the financial world when it comes to handling volatility uncertainty in financial
models. The continuous route trait, which is common to both GBM and ordinary Brownian motion, fre-
quently makes them unsuitable for precise modeling. Consequently, it makes sense that Hu and Peng [9]
created the jump-based approach, which they named the G-Lévy process (GLP). SLE was later expressed
as an upper-expectation by Ren [26], who introduced a novel method. The author of [19] investigated the
integration theory for the GLP with finite activity, determined the Ité6 formula for the generic G-It6 Lévy
process, and developed the integral based on the jump measure associated with the pure jump GLP. The
author in [36] has graciously established the existence and derived exponential estimates for solutions of
SDEs governed by GLP. In [6], the author derived the Burkholder Davis Gundy (BDG) inequality in the
context of G-stochastic calculus related to GBM. The work of the author [31] marks a major breakthrough
in the study of SDEs by being the first to investigate their quasi-sure exponential stability under the frame-
work of the GLP. Yuan et al. [41] investigated discrete-time feedback stabilization for neutral stochastic
functional differential equations driven by a GLP. Gueye et al. [7] investigated backward SDEs driven by
GLP with double reflexions. Wang et al. [37] examined the existence of solutions to SDEs driven by a
GLP with discontinuous coefficients. Ullah et al. [33] discuss solutions to stochastic functional differential
equations governed by the GLP and their exponential estimates.

Suppose Re = R7\ {0} where, R? represent the d-dimensional (4 — D) Euclidean space. We define
BC((—o0,0];R?) as the set of functions N that are continuous and bounded on (—oo, 0], with values in K¢,
equipped with the norm

INI| = sup [R(O)I.

9e(~00,0]

Let (S, FF, IP) be a complete probability space (CPs) and [F, = 0{B(v) : 0 < v < u} denote the natural filtration
ona CPs. Itis assumed that the filtration {IF, : u > 0} satisfies the standard conditions. Furthermore, let the
following functions be defined: 9; : [0, x] X BC((=o0,0]; RY) — R4, 9, : [0, x] X BC((—o0,0]; R?) — R,
A : [0, x] X BC((=00,0]; RY) — R, Az : [0, x] X BC((=00,0]; RY) — R, TT : [0, x] x BC((=c0,0]; R) —
R F 10, x] X BC((—o0,0]; RY) — R¥>™ where each of these functions is assumed to be Borel measurable.

In [27] Ren et al. studied stochastic functional differential equations with infinite delay driven by GBM
of the form:

dp(u) = S1(w, Pu) du + 92(u, B)d( A, B) () + A, p)d A (w), 1)

where p € [0, x], the initial condition 3(0) € R is given, {(%, %)(u), it > 0} denotes the quadratic variation
process of the GBM{A(u), 1 > 0}, and 94, 9>, and A, are given functions satisfying 91(-, ), 92(-, B), A1(-, B) €
M2([0, x]; RY) forall p e RY.

In [34], Ullah et al. investigated the Carathéodory approximation scheme in the context of SDEs driven
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by a GLP of the form:

dp(p) = S1(p, Bu)dp + 2w, p(u)d( A, B)(u) + M, p())dHA (1) + f% S Bw™), )Ly, dg). (2)

0

For 0 < u < x < oo, consider the process with initial condition (up) = fo such that E[|Bol*] < o0. Note
that p(u~) denotes the left-hand limit of f(u). Here, 91(-, f), 92(-, B), Ai(-, B) € M2G([O, xI; R") and F(-,B,°) €
H2 ([0, x] x R R™).

Inspired by [27, 34], we investigate the following Caputo-type neutral fractional stochastic differential
equations driven by the GLP

DI [B() = SUTI(w, By)] = 102t i) + (s, BB, ) + M (it Bu)AB(w) + Aoy, B2 1)
+ f F(t, Bue, 0) Ly, dg), )
xt

where D’ is the Caputo fractional derivative of order j (0 < 7 < 1) and I is the Riemann-Liouville integral,
6€ R, onpu € [0,x], with the initial value 0(0) belonging R¢, B, = {B(u + 0), —c0 < 6 < 0}. Additionally,
Bu- denotes the left-hand limit of B,, and Z(u) represents a d — D GBM and %" (u) represent fractional
Brownian motion (¥ 8M). The functions 91(-, f), 92(-, B), A1(-, B), Az(-, B) and II(:, B) belong to the space
Mé((—oo,)(]; R4), while F(-, 8, -) belongs to the space II—Ié((—oo,)(] X %g; R4) for each y € R¥. Please refer to
[36]. The initial condition for equation (3) is specified as

Bo=0={0(0): —0 <0 <0}, 4)

is [Fy-measurable, a random variable with values in BC((—0, 0]; R%), such that ¢ € Mzc((—oo, xl; RY).

The characteristics of #8M depend on the Hurst exponent H. When H = 1, the # 8M behaves like a
standard Brownian motion. If H > 1, the process exhibits positive correlation in its increments, indicating
long-range dependence. In contrast, when H < 3, the increments are negatively correlated, reflecting
short-range dependence or anti-persistence.

The main contributions of this paper are summarized as follows:

e Investigated Caputo-type neutral fractional SDEs driven by the GLP.

e Established existence and uniqueness results for the proposed model.
e Derived an exponential estimate for the obtained solutions.

e Compared exact and Picard approximate solutions with error analysis.
e Presented an illustrative example to verify the theoretical findings.

The structure of the article is as follows: Section 2 outlines the fundamental definitions and lemmas
related to fractional calculus and the G-framework. In Section 3, we investigate the existence and uniqueness
of solutions to neutral fractional SDEs driven by the GLP, along with an analysis of their boundedness. This
section also includes an error estimate between the exact and approximate solutions. Section 4 is devoted to
establishing an exponential estimate for the solutions of fractional SDEs influenced by the GLP. In Section
5, two examples are given to show how the proposed results can be applied in practice.

2. Preliminaries

Important notations and initial findings inside the G-framework that will form the basis of the next
discussion are presented in this section. Consider the space S, = C([0, x]; R¥), comprising continuous
mappings from [0, x] into R¥. For any x > 0, we define the space L;,($,) as follows:

Lip(S)() = {(P(%(Ml), %(#2)/ ey %Hd)) | d > 1/ Hi,eee, Ud € [0/ X]/ (2 € Ch.L,'p (%dXiﬂ)} ’
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where Cb_L,.p(‘RdX’") denotes the set of all bounded Lipschitz continuous functions on R A functional E
acting on L;,(S,) is referred to as a SLE if it satisfies the following properties for all 51, 82 € Liy(5,):

(a) Monotonicity: E[p1] = [E[B.] if 1 = Ba.

(b) Constant preserving: E[a] = a for any constanta € R.

(c) Sub-additivity: E[p1 + B2] < E[B1] + E[B2].

(d) Positive homogeneity: E[ap:1] = aE[B1] for all a > 0.

For any u < x, we have the inclusion L;,(8,) € Liy(S,), and we define L;,(S) = (U,;~; Liy(5,). For eachp > 1,
the space L’é(S) is defined as the completion of L;,($) under the norm

i1l == (Boxrn)”

which endows it with a Banach space structure. Furthermore, for 0 < u < x < oo, the following inclusions
hold:

LE(Sy) € LGSy € LE(©)-
The triplet (5, Ljy(S,), [E) is referred to as a SLE space. Given p > 1, a partition of the interval [0, x] is defined

as a finite set AN {0=po < <--- <puy = x}. For each p > 1, the space of simple processes MZ’O([O, xD)
consists of processes of the form

N-1
Aulg) = 2 Oy ()i 112,

where @,.(q) € L’ c(Sy)and {0 = po < 1 < --- < puny = x} is a partition of the interval [0, x]. The space
MZ’O([O, X]) is then completed w.r.t the following norm:

X 1/p
Al = ( fo IE[IA(K)I”]df) .

This completed space is denoted by M" <0, ).

Definition 2.1. [21] Suppose A, € MY.(0, x) for some p > 1. The corresponding Itd integral in the G-framework is
defined as:

N-1

f MOARO) = ), @ (Blujm) - ).

j=0

Definition 2.2. [21] A process {{%)(u)}u=0, where (#)(0) = 0, is called the G-quadratic variation process, which is
defined by:
N-1

2 H
(B = (B - B@))) = 2@ -2 | BOdBQ.
]:0

Define A,y as a function from MY 1(0 X) to LE(Fy), given by:
" N—
Aox(A) = fo MO HB)(C) = Z O} ((By) = B(u))).
j=0

The above operator Ao, admits an extension to the space M(0, x), where for each A € M(0, x), it is defined as:

X
fo MO ABYE) = 80, ().
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Assume that U is a weakly compact set associated with the SLE. The corresponding capacity ¢ is defined
by:

¢() = sup P()), Je€F,.
Pe U

The set ] is classified as polar if &(J) = 0. Additionally, if a characteristic persists beyond a polar set, it is
true q.s.

Lemma 2.3. [21] Let y € LZ such that E[|y|'] is finite, with p > 0. Then,

EllylP
et > m < =25,

for every 1 > 0.

Lemma 2.4. Let Y € ME(0, x) with p > 2. Then, the following inequality holds:

p/2

P
] < CE [ | ror df} ,
0

where 0 < C = myx ™! < oo, and my is a positive value that depends on p.

t
f Y(6)d (L)

0

E{sup

0<t<y

Lemma 2.5. Let Y € M{(0, x) with p > 1. Then, the following inequality holds:

14 t p/2
]SyIE[ [ mf)Fdf] ,
0

where 0 <y = myxP~1 < co, and my is a positive value that depends on p.

f
f Y(0) d(3, B)(0)

0

lE{sup

0<t<y

Definition 2.6. [11] The fractional integral of order j from O to y of the function 31 is expressed as

1 Y
] - _ry-1
hy1) = ¢ ) fo (y =0/ 91(QdC, for, y>0,7>0,
where I'(-) is the Gamma function.

Definition 2.7. [1] The Caputo derivative of fractional order | for the function 91is defined as

1 Y n
Dy, 1) = J>f0 (y =07 9Q e, wheren =] +1.

I'(n-

Definition 2.8. [40] Let u(u) be a continuous function on [0, x1, and suppose there exists a continuous non-decreasing
function ¢(u) such that

L
u(#)S(P(quO J@Quydt, pel0,x],

where j(u) is a given continuous function. Then, the solution u(p) satisfies the following inequality:

n
u(#)s(p(u)eXp( | ](f)df), b el0 ]
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Lemma 2.9. [25] Let ¢ : I — L9 be a function that satisfies

X
f ()l dp < oo.
0

Then, the following inequality holds:

"

T 2 T
f () dB™ (w)|| <2H ! f Ellg(u)II7, du.
0 0 z

In this manuscript we put ms = 2H u?=1, where mj is positive value.

Definition 2.10. [36] The process {Y(u), i > 0}, constructed on a SLE space (S, L;y(S,), E), is termed a GLP provided
that it fulfills the following five fundamental characteristics.

1. Y(u)=0.

2. Forany €, u > 0, the increment Y(u + €) — Y(€) is independent of the collection
{Y(u1), Y(u2), ..., Y(um)} for every m € IN and for all partitions satisfying
Oy Spp < <y <

3. The distribution of the increment Y(u + €) — Y(£) is invariant with respect to the starting time €, and thus
depends only on the length of the increment u, for all €, u > 0.

Furthermore, the process {Y(u)} 0 is classified as a GLP if the following additional conditions hold:

4. There exists a Lévy process in 2 — dimension, denoted by {(Y*(1), Y/ (u))}uso, such that for every u > 0, the
decomposition

Y(u) = Y(u) + Y(r)

holds, where Y¢(u) and Y?(u) represent the continuous and jump components, respectively.
5. The processes Y¢(u) and Y?(u) satisfy the following properties:

EJlY¢ 3
lim w =0, and E[Y'u)I]<Cu, Yu=0,
p—0*

where C is a constant that depends on the properties of the process Y ().

We denote by ]H(g([O, x1x RY) the space consisting of all basic (elementary) random fields on [0, u] X R x S,
which can be represented in the following form:

n-1 m
F(h/ Q)(CU) = q)i,jl(‘u,‘,pm](h) 1/)](‘1),
1 j=1

]

i=

consider n,m € N with 0 < u; < pp < --- < u, < x, and let {%}Tzl - Cb,l,-,,(‘Rd) be a collection of non-
overlapping functions such that X;(0) = 0. The coefficients ®; j are expressed as @; j = @; ;(By,, - - -, Bu; = Pui.), Where
@ij € Coiip(R). This space is equipped with the norm given by

vev

X p
I Fllgr (o aaxwey) = ]E[ f sup L IF( p)Fo(da) dﬁ} , p=12
0 0
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Definition 2.11. Consider the It0 integral of F € ]I—Iz([o, x1 x RE) with respect to the discontinuity measure L,
which is defined as follows:

f f F(t,q)L(d¢,dg) = Z F(¢,AB(0)), quasi surely.

v<l<u

Suppose HY, ([0, xT % Rd) denote the topological closure of H? ([0, xT % RA) with respect to the norm IF e (fo, 1Ry

forp =1, 2 The It6 integral can be extended to this space, and for p = 1,2, the extended integral takes values in
L’ c(Sx)- The following BDG-type inequality applies to these integrals.

Lemma 2.12. Let F(¢,q) € HZ([0, x] X R{). Then, there exists a cadlag modification B(w) of the process B(u) =
foy f% ; F(¢,q)L(d¢,dq) such that ¥ u € [0, x] and p > 2, the following condition is satisfied:

f L F2(¢,q) v(dq)de] e > 0.

In this manuscript, we put ms = 6> and Q = p?/-!

sup |B(w) |2} < myE
0<€<y

3. Uniqueness and Existence of Solutions for Caputo-Type Neutral Fractional SDEs Governed by GLP

Definition 3.1. A cadlag process B(u), adapted to the filtration F,, and belonging to the space M2((—co, x];RY), is
considered to satisfy equation (3) along with the initial condition(4) if it satisfies

1 H _ 1 H _
B(u) = 0(0) + mf (1= 07" 91(¢, Byt + mfo (= O/ 92(¢, po)d( 2, B)(O)

v [ -0 m@ g0+ 5 [ -0t podr o

r()
i

_ _ ]_1 )

+T(J)f =0 f F(C, Be-, )L, dg)

KB
-1
Let B(u) and y(y) be two solutions of equation (3). The solution p(u) is considered unique if it coincides
with y(u) for all u, that is

E [18(w) - y(@)P] =

holds g.s.
In this article, we establish the necessary conditions for linear growth and Lipschitz continuity, as
follows:

(H1) For every g € BC((—o0,0]; R, a positive constant &; exists such that

1930, P V 9200 P V TG, B ¥ Wae B v [ PG ot
V1A, B < Ea(1 + 1BP). 0
(Hy) ¥ B,y € BC((—o0,0]; RY), a positive constant &, exists such that
19101, ) = 91, PP V 192, y) = 92, B)P V T, y) = TIw, )P V A1 (s, ) — Aa(p, PP
v L Gy, 0) ~ Fl B, )P0V ol ) = Aol PP < oy = B
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In the subsequent lemma, we demonstrate that every solution p(u) to equation (3) exhibits boundedness,
indicating that (1) belongs to the space M2 ((—oo, x1; RY).

Lemma 3.2. Consider a function B(u) that satisfies equation (3) along with the initial condition specified in (4).
Assuming the expectation E|B|? is finite and that the growth condition (Hy) is met. Then

IE{ sup W)F] <E|o|?*+7

—oco<{<u

EMQx ) ) EIMQx MO
1+ —=— _|E + —————" |e-2)(?,
( a-2peqr 2 T 2yagr

where M = x + myx + my + mz + my + ms where m; are positive constants.

2
Proof. We now turn our attention to equation (5) and make use of the associated inequality |Z]7.:1 b j| <
7 Y7 Ibj, to derive

2

B < 7160) + 7| =~ L7l

L
f (u—=6y7194(¢, ﬁg)df fo (u— &Y' 92(L, Br)d(2, 2B)(0)

1

I'(7)
1 U

),

1 ’
— —o | Fe Be, q)Lde, d

2

()

N

+ +7

1 H
— _py1
I ])fo (- 0P it poasa|

N

+

ﬂ

¥ (u £y B -

()

Based on the Cauchy inequality, Lemmas 2.4, 2.5, 2.9, 2.12 and G-expectation, we obtain

7Q[J H 2

7m1 Qu u 2
+ WEL Sz(f,ﬁ[)' dat

7m2Q H 2
+ W]E‘[O‘ Al(g,‘B[)| dac

7m3Q (o 2
“Trget el

T, Hf e af e

T 71;1]5)?(])2 f |H(f ﬁz)| de.

By utilizing hypothesis (H;), we have

2 2 7&1Qu " 2
] gup WOF) 71 + 55 |+ e
78 Qm f“El 2)q¢
a=2prp Jy FAHIAD

7&1Qmy

i
mfo B+ et
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7&1Qms
(1-=2pr()?
7&1Qmy
(1=2pr()?
781.0m t
e —élz?)ré)z fo E(1+ pP)de
761Q
(1=2)r()?
761Q
(1-2)rQ)3
7&1Q
(1=-2prQG)?

n
g ety -+ o) [ [l + E( sup I6)P)Jar
7&1QMx N 7&1QMx
1=2pr(> 1 -2pr@)?

7&1QMx u )
T a-2)ror f [Osgigflﬁ(u)l Jac,

where M = x + myx + my + m3 + my + ms. By applying Gronwall’s inequality, we obtain the following
result.

[.l
f E(1 + |Be?)det
0
L
f E(1 + |B*)d¢
0
<7llo|* + (X +max + my + ms + my + ms)x
L
()( +mx +my+mz+my+ m5))(f ]Elﬁflzdf
0
<7E|lo| +

()(+m1)(+m2+m3+m4+m5))(

<7E|lo|” + Ello]

SIMQX) 2. SMQx | o
E| sup [BO)I*| < 7[ 1+ —=FE|o|* + —]ea—zj)r(nZ,
[ogfy por] <7|c (1=-2)r()? (1=2)r()?
Observing that

E[ sup (O] < Ellol? + sup EIBO)P,

—co<l< 0<l<u

this implies

e 1-2)ro? |

EIMQx IE||G||2 n

E| sup IBO)F] < Ellolf +7|(1+ 775 =212

0<t<u

aMar ).

1+

For p € [0, x], let B°() = 0(0) and B°(0) = 0. For every natural number 1, we define: "(0) = o and define
the Picard iteration process as:

o
B (w) = C(OHW[ (= O 91(C,B; 1)df+mf (1 = O/7182(C, By~ A%, B)(0)

- LYt - -1 n-1 H
+ 5 [ -0 me 0+ o [ -0 s o

£yt F(¢, B)- de,d
5 | w0 Ju PP 20
+W) fo (= O/, Br LY. )

Next, we focus on proving the existence and uniqueness of the solution, as well as deriving an error bound
for the difference between the exact solution g(u) and the Picard approximations "(u), wheren = IN. [
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Theorem 3.3. Assume that conditions (Hy) and (Hy) are satisfied, and that E||o||* < co. Under these conditions,
the solution to equation (3) is unique and cadlag, with B(u) € M2 ((—eo, x1; RY). In addition, ¥ n > 1, the Picard
approximations p" (1) and the exact solution () satisfy the following inequality:

E[ sup [8(0) - BOF] < Z (W) ~e¥,

0<l<u !
where,
6
Z= %(){ +myx + mo +ms + my +ms)(1+ Ello|*)x
65,Q

ZW(){+TH1)(+W12+H13+H14+WZ5)

and m; are positive constants.
Proof. Let {f"},>1 be the sequence generated by the Picard iteration as defined in equation (7). It is evident

that the initial function f°(u) belongs to the space MZG((—oo, xl; ‘Rd). By applying the inequality |Z]7-:1 bjlz <

7):‘]7:1 Ibj|?, together with Lemmas 2.4, 2.5, and 2.12, as well as the Cauchy-Schwarz inequality and the
assumption (Hj), we can establish the following result.

Ello|

7E1QMx 7E1QMx
E (O < 7E|o|?
[ sup O] < 7BIoIP + (=5 07 * = 2)m0

TR, ELup e

where M = x + myx + my + m3 + my + ms. Observing that

max [E | sup |ﬁ”‘1({’)|2 < max { E||o]|?, max sup Iﬁ"(f)l2
1<n<j 0<t<p 1<n<j 0<t<u
< Ello|* + max E | sup |8"(O)*],
1<n<j 0<f<u
so we have

7E1QMy 145, QMy
1=-2pr@Gp?  A-2prgy3?

7&1O0M H o
Wfo maxE| sup [8"()F|dc.

Utilizing Grownwall inequality

Ello]

max [E [ sup Iﬁ”(f)lz] < 7E|lo|* +

Isn<j o<e<u

7E MQu

- 25 MQx) 2, MOy | s
Qfém[oi?fy'ﬁ (5)']g[(“<1—2]>r<]>2)]E”‘7” e

Since j can be any value, setting u = x gives

2E:MQ)) IE||G||2 n

RN =T | ea-2)rp? | )
(1= 2)I()? a-2prge) ®)

E sup |"(0)]* < 7[(1 +

0<l<x

oy | s
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Based on the sequence {5"(u); 1 > 0} given in equation (7), we obtain

Bl (w) - B(w) = i) ) f (= €Y1 91(¢, Bt + m (M = )7 9a(C, B, B)(0)

n
TG f (1= 07 MO + 1 [ =07 0alt 20

! (u £y! f F(€, B)-, q)L(d¢, dg)
I*( ) R4

— - O)7TI(¢, BO)dce.

Based on (H;), the Cauchy inequality, Lemmas 2.4, 2.5, 2.9, 2.12 and G-expectation, we obtain

&1Qu H
|oi‘25 810 - ﬁ(f)F] T fo (1 + EllolP)de

1
—(15_1"21]1)% e fo (1 + Ello|P)de

n
% f (1 + Ello|?)de

51m3Q

511714@
-2 )2f (1 el

E1msQ 2
o= 1+E dat
- 2)T(P 0( + Ellelr)

€10 f” 2
S(l —2])1"(])2(X +myx +my + mz + my + ms) | (1 + E|lo|])d¢
<Z

LetZ = % [()( +myx + my + mz + my +ms)(1 + ]E||a||2))(] Then, using similar presumptions and justi-

fications, (H,) follows

{sup I[S & -p (f)lz] < %(){+m1x+mz + mz + my + ms)

0<l<u
x fo EIR'(0) - f(OR de
65,0
T =2pr(p)?
u
xf E sup |,81(v) —ﬁo(v)l2 dt
0

0<v<t

6520
T (1=-2pr()?

+mix +my +msz+my+ ms
X

(x +mx +my +mz + my + ms) .

Likewise, we get

2
E [ sup 8°(¢) - .52(5)|2] < Z[%(){ + MY + Mo + M3 + My + Ms) %

0<l<u
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Consequently, ¥V n > 0, we assert that

n+1 n 2 xynyn
E| sup [0 - §"OF | < Z— =, 9)
0<l<u :
where
6
Z= %(% +myx + my + mz + my + ms)(1 + Ellol*)x
65,Q

= ——"=__(x + my X + My + M3 + My + Ms).

(1 =2)r@)>
Using the mathematical induction, we confirm that (9) is true for any n > 0. Atn =0, it has been established.
Assume (9) is true for some n > 0. Using the same reasoning as before, we arrive at

E| sup |ﬁ"+2(£’) - ﬁ”“(f)lz} < 65,0 (x + myx + my + mz + my + ms)

0<f<u T (1-2prp2
U
X f E|g/* - By dt
0

<v fo ' E[ sup 8" (0) - B"(0)]dt

0<v<(
u \l]n}lﬂ
<w Z dt
0 n!

- 2{xyn+1yn+1 (10)
T (m+ 1)

This indicates that for n + 1, (9) is true. Consequently, induction (9) is true for every n > 0. Lemma 2.3
grants us:

@{sup 1B (6) — B (O > zl} <2"E [ sup |B"1(6) — B (O))
0<l<y 0<t<x

|
< Z[29u]" .

For nearly every w, a positive integer 1y = no(w) exists since ), k[z\ij!” L <o, according to the Borel-Cantelli

lemma,

sup 181 (0) ~ B (P < 57, as 2. a

7
O<u<x 2"

It indicates that, quasi surely, the partial sums
n-1
B+ Y [Fw - Fw] =),
j=0

the sequence exhibits uniform convergence on y € (—oo, x], with B(u) representing the limit. Therefore,
B"(u) converges uniformly to f(u) on the interval u € (—oo, x]. This guarantees that g(u) is F,-adapted and
cadlag. Moreover, from equation (9), it is clear that the sequence {"(u) : n > 1} forms a Cauchy sequence in
LZ. Consequently, " (i) converges to f(u) in L, which implies that

E[Ig"(w) - ] >0, as n—oco.
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By letting n — oo in equation (8), we obtain

E[ sup IB(O)P] <7

0<l<x

2E1MQx)
(1 =2)r())?

EMQx

[(1 + Ello|/> +

(1 =2)Ir()?

965

£ MQx
e (1=2)rg2 |

(12)

After that, we must confirm that (1) meets equation (3). With assumption (H) in mind and applying the
same reasoning as before, we arrive at

|

L(dt, dq)

E sup %]) fo y(y = 0y [1(E BY) — 91(E B d€2]

¥ swp |5 | -0 [sa(6 ) -

+ ]EHOSSL;EX %]) f H(M = 07 [ Ao, B}) — Mot Bo)] d%’H(f)ﬂ
| sup |t -0 Jo [Fe80~FCpea)

+ ]Ekos,;g( O] fo (u— O [TIE, BY) - TI(E, o)) de 2]

S -
(1-2pT(n* Jo
+(1—21)F(J)2 0
T a=2prgr J,

" (1 -2 I(y)?

T a—2)rge
&0Qu H
= T=2)rOP f E|

(1-2pr()?
(1-2)I(y)?

(1 -2)r@y?

2 [ VE[I91(6v0) - $1(6, poRJae

e f V{1926, o) - 9a(¢, poR]ie

m2Q fu IE[|A1(€/ Ye) — Al(frﬁf)ﬂdf

m3Q f " E[|A2(€, yr) — M€, Bo)P]de

f f FC ve,0) - F(C, B, )P Jotdapde

[l v - e polae

m4Q
(1 (1-2)T()

msQ

sup |8"(v) - B(o)|de
EomiQu

EamyQ

EamzQ

0<v<t
0<v<t

U

f E[ sup 8"(0) - Bo)P|de

L

f E[ sup [8"() - o) Ja¢

f TE] sup [8'(0) - po)R]ae
0<v<(l
LS

_ LomsQ

T a- 2002 sup |8"(v) - B(0) [o(dg)dt

O<v<tl
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o
gy )y Ham sk

< —(1 _<§22]()2r(])2 (X +myx +my +mz +my + m5)f IE[Osig IB"(0) = B(0)| ]df

—0 as n— oo. (13)

Alternatively, we say

L
rz])f ([J f)] 1\91(5 ﬁf f ([Ll 5] 1‘91(5 ﬁf) inLZG,
iﬂr(JV”“WW%%W%%—fY—wHSwMM@%m in 12
0N 26 Be) K7, u A6 BB, B0, inL2,
Hpuf(” OB AZTD tf<y O Aol BB, L2,

%])f (H_f)]_lf F(¢, Bp_,q) L, dq) —>—)f (y_f)i—lf F(¢, Be-,q) L(dC, dg),in [2,
0

pf@f“mwf )f@memnmﬁ
With the limits # — oo in (7), we have for u € [0, x],
U
lim g"(u) = o(0) + %]) f P(y —0)7! lim 94(¢, Bphyde + L f (u-0"! lim 95(, B (B, B)(0)
n—oo 0 n—00

[.l
+ %]) fo (i = O/ lim Ay(C, 7B + 5 f (= &y Tim Ao(C, ;A8 (0)

1 i
T fo (m-0 L O lim F(¢, B, q) L(de, do)

5 H
+ — — &)1 1lim T1(¢, B 1)de,
w5 [ w0 pm e gy

this leads to
1 .
ﬁ(“) =0(0) + % f (M - 5)]—1\91(5,ﬁ5)d{)+ % fo (‘u _ OJ_lSZ(&ﬁ[)d(,%’/ BY0)
Fz ) (“ — O As(L, Br)d B (0)
0] f (=07 f F(E, pr-,q) L(dC, dg)

rmfmoﬂwmw (14)

wa#€WMMMWH

u falls between 0 and x. This demonstrates that f(u) is the answer to (3). Let us consider the case where
equation (3) yields two distinct solutions, (1) and y(u), in order to demonstrate unicity/uniqueness. Based
on related reasoning, we arrive at

6Q
} s [ 0 - e porac

meaﬂw a=2)rr

0<l<u
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6m1Qu H )
+ Wfo ElS2(, ye) = 92(L, Bo)l°dl

6mQ " )
- g [ A w0 - e porac

671’13Q t )
+W fo ElA2(¢, ye) — Aa(€, Bo)l7dE

6m4Q H ,
T a-2)r2 fo LSEF(M/M)—F(&&#)I o(dq)dt

6msQ " 5
————— | EII{, y,) —TI(C, Be)|"dE.
* (1-2)r()> fo ILI(E, ye) (& Bo)l

Due to assumption (H;), we can obtain

E'sup |y<€>—ﬁ<€>|2} 522()3151( 7 f E| sup [y(u) - pu))P]d¢

0<l<u O<u<t

6&2m1Qu
Ta 22];1“ ())? f [Osjilff'y(”) Bu))P Jde

6E2mQ
G aprir )y g o -por o

6&2m3Q )
el i AR

_ 6&mQ ,
T a—2rgr f Ldﬁ[oijljfly(u) B)P |de

6&21m5Q
T3 Jy e o =g e

Where u € [0, x], so

} 6£20Q
(

QR X e e ) f E[ sup Iy(0) - Ba)F Jae.

0<u<t

{Sup y(0) - BOP

0<l<u

It is evident that

sup ly(w)P < lof? + sup |y(u)f?,

—oco<uULy O<u<y

and by leveraging the Grownwall inequality with identical initial conditions, the conclusion can be derived,

E[ sup |y(0)-BOF] =0, (15)

—oco<{<p

this shows that (1) = y(u) holds quasi-surely for all u € (—oo, x]. To conclude, the error estimation needs to
be verified. Using equations (5) and (7), along with the same reasoning as before, we obtain the following
results

” 6Qu n
lElos;[lgl " (£) —5(5)|2] A=2)T0F f E[9:1(¢,8"(6)) = $1(¢, Bo)Pdt
6m Qu

L
¢ s [ B 0 - ot o
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61m2Q
i (1=2pr()?
N 6m3Q
(1=2pr()?
N 6m4Q
(1-2pr()?
6msQ
" (1-2pI(y)?
65,Q
T (A-2pr(p)?
U
E "(v) — 2 |de
X fo | sup 18"0) - BO)P |

0<v<t

n
fo EIA(C, B'(0) — Av(C, o)t
n
fo EIAo(C, B(0)) — Aall, Bo)Pde
f ' f EF(,8'(0),9) - F(C, B, )P
B"(0),q) — F(E, Be, )Poldg)de
0 JRrI

n
fo EITI(C, (0) — TI(6, Bo) Pt

(X’+-ﬂ11X’+—ﬂ42-F7n3 + miy +'TH5)

<w fo H]E[ sup [8"(v) - p" (v)2]d¢

0<v<t

+‘I’fﬁl]E[ sup | L(v) - - B()| ]

0<v<t

Considering (9), we get

E| sup |B"(£) - ﬁ(é’)l2

|0<l<u

W +‘I’f ]E[ sup "~ L(v) - ﬁ(v)lZ]

0<v<t

Utilizing Grownwall inequality

E | sup [8"(0) - ﬁ(f)lz <z—— ’“’ eve,

| 0<l<u

This provides the error estimate between the exact solution f(u) and the Picard approximate solutions 5" (1)
forn > 0, of problem (3). O

4. Estimating Exponential Behavior with GLP

Assuming there is a single solution () to problem (3) for u € [0, o), we can display the exponential
estimates. Here is how we now calculate the exponential estimate for (3).

Theorem 4.1. Assuming the validity of conditions (H1) and (Ha), the following inequality holds:

. 1 7 M
,P_rﬂ, sup ﬁ log [B(w)] < E((lfleW)/

where M = x + mx + my + mz + my + ms with m; representing positive values.

Proof. We know from claim (12) that

2E1MQx)

SMQOx |
(- 2prge ol + 2 i

K] zup wof] <7 a-2rge | (16)

0<t<x

Considering (16), for every 3 = 1,2,..., we obtain

25 MQx) 2
71(1 + ——=——FE —_—
i( ol T2y

e 1-2)rg? |

E[ sup IBOP] <

oy | sk
J-1=<u<3
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Applying Lemma 2.3 to every ¢ > 0, we obtain

761QA E| su << 2
é{w: sup B(wI* > e(“’2/;§0>2 +£)S} < [ Petsper A1) ]

J-1=u<3 e( <1ii1/§$>2 +5)3
25, MQY) 2. SMQx | s
<7]1 + =225 g2 4 —SLTRA | e
[< a—2prr T T aprge

It is evident that the series

. 25 MQx ,  EMQx ] o3
7111 + ————|E —_—
SZ:; [( +<1—2]>r<1>2) W+ G207 |°

converges. As a result, invoking the Borel-Cantelli lemma implies that for almost every outcome w € Q,
there exists a random index 3y = Jy(w) such that

( 75.QM +S)
sup |,3(#)|2 < e\ 2)r?2
J-1<u<g

as J=>Y,.

This means that for 3 > Jpand J — 1 < u < J, we obtain

7E1QM
Bl < e%(u—zlnrmz +€)S_

Therefore

_ 1 1o 750M
fim sap 1081901 < 5[5z * )

Since ¢ is arbitrary, the intended phrase becomes the result. [J

5. Simulation Analysis
To clarify the main findings, illustrations are presented.

Example 5.1. Examine the scalar fractional stochastic differential equation governed by a GLP
“DIBy = Py + Pud(B)y + sin(B)dRB,, + cos(B,)d A} + f BuL(dy, dq) + By (17)
g1

Let B(0) = 0(0), and assume that the G-Lévy measure is defined by v(dq) = (Hd#. The stochastic differential equation

in question (17) will have a unique solution if it satisfies the conditions (H1) and (Hy).
For this scenario, we define the following functions:

91(41/5;1) = ﬁy/ ‘92(.’4'.8#) = ﬁy/ Al(rumB#) = Sin(ﬁp)/ AZ([J/ﬁH) = COS(.By)/
Fu, Bur @) = Bur T, ) = By

Next, we proceed to establish the growth condition for this model.

191 (1, BUWNP + 192(, B + 11 (s, BE)IP + T, B())P + f 1 IF (1, B(), )P v(de) + A2 (p, p()P

cz

= Iﬁy|2 + |,By|2 + |Sin(ﬁy)|2 + |ﬁy|2 + f . Iﬁy|2 V(dQ) + |C05(ﬁp)|2
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<o [ e
< (5+ g)+(5+ E)lﬁlz
_ (5+g)(1+|5|2).

970

To verify the Lipschitz property, we analyze the boundedness of the differences between the system components with

respect to their arguments.
191(t, y) = 91, B + 192(1, y) = 921, B + A1 (1, y) — M, PP + T, y) — T, B)P
+ f FGu9,0) = P B0 ) + 1AaG ) = Aol P
q>

<51y — yul® + f 1By = yul v(dg)
g>1

dq
=5|B, — 2+f —y,[?
|ﬁ/~ yyl 1 |ﬁ# yH| 1+ |q|2

( )|5u yu .

Consequently, the scalar fractional SDE (17) guarantees a unique solution.
The problem (17) also satisfied

[sup B"(6) - ﬁ(€)|2]<Z W e,

0<l<u

the error estimate between the exact solution B(u) and the Picard approximate solutions B"(u), for n > 0.

1 Error Estimate of exact Solutlon and Picard Approximation

Exact Solution
— — =Picard Approximation

Figure 1: Simulation of Exact and Picard Solution
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u Exact solution  Picard Approximation
0.0000 0.00000 0.00000
1.3378 0.91002 0.91843
2.6756 0.39306 0.37901
4.0134 -0.62630 -0.61018
5.3512 -0.61436 -0.62901
6.6890 0.28252 0.29291
8.0268 0.65946 0.65492
9.3645 0.03769 0.03618
10.702 -0.56060 -0.55412
12.040 -0.27511 -0.28462
13.378 0.37158 0.38181
14.716 0.40115 0.39238
16.054 -0.15179 -0.14607
17.391 -0.41648 -0.41835
18.729 -0.04711 -0.04898

Table 1: Table of Computed Values for the Exact and Picard Approximate Solutions

Example 5.2. Consider the scalar fractional stochastic differential equation governed by a GLP

‘DI, = %ﬁy + tanh(B,)d{%), + arctan(B,)d B, + ﬁ—yzd%H + fq iL(dy, dq) + sin(By).

1+p; * 1 1463
Let B(0) = 0(0), and assume that the G-Lévy measure is given by
dq
v(dq) = TWZ’
For this model, we define the following functions:
1
Sl(y/ﬁp.) = E,By/ SZ(Plrﬁy) = tanh(ﬁy)/
A = arct A _ b
1(1, Bu) = arctan(By), 2(u, Bu) = m,
P .
F(u, Bu,q) = H(y, By) = sin(Bp)-

1+

Next, we proceed to establish the growth condition for this model.

191(, BUWNP + 192(, B + 11 (s, BE)IP + T, B()) + f g IF (1, B(), €)Prde) + 1A (, B()P

cz

Bu |
1+ﬁﬁ

Bu |
1+ﬁﬁ

= 1Bl + [tanh(B,)* + | arctan(B,)* + | sin(B,)* + f 1

v(dq) +

2
=(3+ T+ D)1+ 180).

971

(18)

To verify the Lipschitz property, we analyze the boundedness of the differences between the system

components with respect to their arguments.

191(1, y) = S1.(u, B + 192, y) = a2, PP + 1M1 (1, y) = M, B + T, y) = TI(w, )P
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q
< (T + 3wl

N f (13, = FGu B0 ) + i, ) = Aol P

Consequently, the scalar fractional SDE (18) guarantees a unique solution.

The problem (18) also satisfied

E [ sup |B"(£) - ﬁ(é’)l2] < Z%ew“,

0<t<u

972

the error estimate between the exact solution (i) and the Picard approximate solutions (1), for n > 0.

0.8

Error Estimate of exact Solution and Picard Approximation

0.6

0.4

0.2

B(y)

-0.2

-0.4

-0.6

Exact Solution

— — — Picard Approximation

Figure 2: Simulation for Exact and Picard Solution.

u

Exact solution = Picard Approximation

0.000
2.005
4.010
6.015
8.020
10.025
12.030
14.035
16.040
18.045

0.59876
-0.39613
0.05483
0.28146
-0.43383
0.33137
-0.11526
-0.13173
0.28437
-0.30092

0.60848
-0.41793
0.07174
0.25584
-0.40823
0.37059
-0.11774
-0.11268
0.29837
-0.26168

Table 2: Table of Computed Values for the Exact and Picard Approximate Solutions
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6. Conclusion

This work establishes a comprehensive study of Caputo-type fractional stochastic differential equations
driven by G-Lévy jumps, demonstrating the existence and uniqueness of solutions and providing a clear
understanding of the system’s behavior. Exponential estimates were derived to describe the long-term
dynamics of the solutions, offering valuable insights into their evolution over time. Additionally, a detailed
error analysis comparing exact solutions with numerical approximations obtained through the Picard
iterative method highlights the accuracy and reliability of the results.

Directions for future work

Building on the results and methodology presented in this paper, several promising avenues can be
explored to further advance the study of Caputo fractional stochastic differential equations driven by
G-Lévy noise.

Extension to Alternative Fractional-Order Operators

Examine the applicability of the theoretical results to alternative fractional derivatives, including Caputo-
Fabrizio, Prabhakar, and Hilfer operators. Conducting comparative analyses across these different frac-
tional frameworks could offer deeper insights into the mathematical structures and physical interpretations
associated with each type of fractional derivative.

Hybrid Systems with Random Switching

One may consider introducing random or Markovian switching mechanisms, resulting in hybrid
stochastic fractional systems. These models are particularly relevant in the study of cyber-physical systems
and offer a more complex and rich dynamical behavior for analysis.
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