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Abstract. This paper investigates the existence and uniqueness of solutions to Caputo-type neutral frac-
tional stochastic differential equations driven by multiplicative and fractional noises within the framework
of the G-Lévy process, where the Hurst index satisfies H ∈

(
1
2 , 1

)
. The analysis employs Cauchy’s inequality

and Gronwall’s inequality as essential mathematical tools to obtain rigorous estimates and establish the
well-posedness of the system. To validate the theoretical findings, a detailed comparison is carried out
between the exact solution and its approximation obtained via the Picard iterative method, with particular
emphasis on evaluating the associated error bounds. Furthermore, an exponential estimation for the so-
lutions is derived, providing deeper insight into their long-term behavior. Finally, two carefully designed
illustrative examples are presented to demonstrate the applicability and effectiveness of the proposed
theoretical framework.

1. Introduction

Over the past decades, fractional differential equations (FDEs) have become an essential mathematical
framework for capturing memory and hereditary properties in diverse scientific processes. Their broad
applicability spans disciplines such as physics, chemistry, engineering, and medicine [24, 29]. Researchers
have successfully employed FDEs in various contexts, including the fractional modeling of influenza [14],
the tuberculosis model [13], and the development of numerical algorithms for solving real-world fractional
models [2, 20]. For more study, we recommend some other resources such as [28, 30, 35].

The study of neutral differential equations (NDEs) has attracted considerable attention due to their
diverse applications in finance, population dynamics, and control theory. Foundational contributions were
made by Hale and Lunel [8], who developed the basic theoretical framework for deterministic NDEs.
Later, Liu [16] extended this research by addressing optimal control problems involving neutral differential
systems. In recent years, several studies have continued to explore various aspects of neutral stochastic
differential equations (NSDEs) under different conditions and modeling frameworks [1, 3, 12, 17, 18].

Recently, growing interest has been directed toward the theory of nonlinear expectation because of its
significance in dealing with uncertainty modeling, risk evaluation, and superhedging in financial systems.
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In particular, substantial progress has been made in extending the sublinear expectation (SLE) framework
to account for volatility ambiguity, leading to the development of the G-Brownian motion (GBM) theory.
Peng [22] developed G-Brownian motion as a way to include the unidentified volatility in financial models.
Uncertainty issues affecting an undominated family of probability measures are intimately related to its
theory. Other linkages have been found in the analysis of equations whose solutions depend on the entire
trajectory of a process, typically represented by backward stochastic differential equations, in addition to
the subject of financial mathematics. Thus, coupled G-expectation and GBM are attractive mathematical
concepts. Accordingly, GBM together with its associated G-expectation are considered fascinating struc-
tures within mathematical theory. The studies by Soner et al. [32], Wang et al. [38], Geo [6] and others are
recommended for further information. The behavior of the solution including its existence, uniqueness,
stability, moment estimations, and its varied and continuous dependence on initial conditions has been
thoroughly investigated in [15, 23]. Lévy process-based stochastic differential equations (SDEs) are used in
many different domains, such as biology [10] to simulate disease propagation, physics [39] to depict distinct
phenomena, genetics [5] to examine animal movement, and finance [4] to predict market dynamics. GBM
is insufficient for depicting the financial world when it comes to handling volatility uncertainty in financial
models. The continuous route trait, which is common to both GBM and ordinary Brownian motion, fre-
quently makes them unsuitable for precise modeling. Consequently, it makes sense that Hu and Peng [9]
created the jump-based approach, which they named the G-Lévy process (GLP). SLE was later expressed
as an upper-expectation by Ren [26], who introduced a novel method. The author of [19] investigated the
integration theory for the GLP with finite activity, determined the Itô formula for the generic G-Itô Lévy
process, and developed the integral based on the jump measure associated with the pure jump GLP. The
author in [36] has graciously established the existence and derived exponential estimates for solutions of
SDEs governed by GLP. In [6], the author derived the Burkholder Davis Gundy (BDG) inequality in the
context of G-stochastic calculus related to GBM. The work of the author [31] marks a major breakthrough
in the study of SDEs by being the first to investigate their quasi-sure exponential stability under the frame-
work of the GLP. Yuan et al. [41] investigated discrete-time feedback stabilization for neutral stochastic
functional differential equations driven by a GLP. Gueye et al. [7] investigated backward SDEs driven by
GLP with double reflexions. Wang et al. [37] examined the existence of solutions to SDEs driven by a
GLP with discontinuous coefficients. Ullah et al. [33] discuss solutions to stochastic functional differential
equations governed by the GLP and their exponential estimates.

Suppose ℜd
0 = ℜ

d
\ {0} where, ℜd represent the d-dimensional (d − D) Euclidean space. We define

BC((−∞, 0];Rd) as the set of functions ℵ that are continuous and bounded on (−∞, 0], with values in ℜd,
equipped with the norm

∥ℵ∥ = sup
θ∈(−∞,0]

|ℵ(θ)|.

Let (S,F,P) be a complete probability space (CPs) and Fµ = σ{B(v) : 0 ≤ v ≤ µ} denote the natural filtration
on a CPs. It is assumed that the filtration {Fµ : µ ≥ 0} satisfies the standard conditions. Furthermore, let the
following functions be defined: ϑ1 : [0, χ] × BC((−∞, 0];ℜd) → ℜd, ϑ2 : [0, χ] × BC((−∞, 0];ℜd) → ℜd×m,
Λ1 : [0, χ] × BC((−∞, 0];ℜd)→ℜd×m, Λ2 : [0, χ] × BC((−∞, 0];ℜd)→ℜd×m, Π : [0, χ] × BC((−∞, 0];ℜd)→
ℜ

d×m, 𭟋 : [0, χ]×BC((−∞, 0];ℜd)→ℜd×m, where each of these functions is assumed to be Borel measurable.
In [27] Ren et al. studied stochastic functional differential equations with infinite delay driven by GBM

of the form:

dβ(µ) = ϑ1(µ, βµ) dµ + ϑ2(µ, βµ)d⟨B,B⟩(µ) + Λ1(µ, βµ)dB(µ), (1)

where µ ∈ [0, χ], the initial condition β(0) ∈ ℜd is given, {⟨B,B⟩(µ), µ ≥ 0} denotes the quadratic variation
process of theGBM{B(µ), µ ≥ 0}, andϑ1, ϑ2, andΛ1 are given functions satisfyingϑ1(·, β), ϑ2(·, β), Λ1(·, β) ∈
M2

G([0, χ];ℜd) for all β ∈ ℜd.

In [34], Ullah et al. investigated the Carathéodory approximation scheme in the context of SDEs driven
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by a GLP of the form:

dβ(µ) = ϑ1(µ, β(µ))dµ + ϑ2(µ, β(µ))d⟨B,B⟩(µ) + Λ1(µ, β(µ))dB(µ) +
∫
ℜd

0

𭟋(µ, β(µ−), q)L(dµ, dq). (2)

For 0 ≤ µ ≤ χ < ∞, consider the process with initial condition β(µ0) = β0 such that E[|β0|
2] < ∞. Note

that β(µ−) denotes the left-hand limit of β(µ). Here, ϑ1(·, β), ϑ2(·, β), Λ1(·, β) ∈ M2
G([0, χ];ℜn) and 𭟋(·, β, ·) ∈

H2
G([0, χ] ×ℜd

0;ℜn).
Inspired by [27, 34], we investigate the following Caputo-type neutral fractional stochastic differential

equations driven by the GLP

cD ȷ
[
β(µ) − δI ȷΠ(µ, βµ)

]
= ϑ1(µ, βµ) + ϑ2(µ, βµ)d⟨B,B⟩(µ) + Λ1(µ, βµ)dB(µ) + Λ2(µ, βµ)dBH(µ)

+

∫
ℜd

0

𭟋(µ, βµ−, q)L(dµ, dq), (3)

where cD ȷ is the Caputo fractional derivative of order ȷ (0 < ȷ < 1) and I ȷ is the Riemann-Liouville integral,
δ ∈ ℜ , on µ ∈ [0, χ], with the initial value σ(0) belonging ℜd, βµ = {β(µ + θ),−∞ < θ ≤ 0}. Additionally,
βµ− denotes the left-hand limit of βµ, and B(µ) represents a d − D GBM and BH(µ) represent fractional
Brownian motion (FBM). The functions ϑ1(·, β), ϑ2(·, β), Λ1(·, β), Λ2(·, β) and Π(·, β) belong to the space
M2

G((−∞, χ];ℜd), while 𭟋(·, β, ·) belongs to the spaceH2
G((−∞, χ] ×ℜd

0;ℜd) for each χ ∈ ℜd. Please refer to
[36]. The initial condition for equation (3) is specified as

β0 = σ = {σ(θ) : −∞ < θ ≤ 0} , (4)

is F0-measurable, a random variable with values in BC((−∞, 0];ℜd), such that σ ∈M2
G((−∞, χ];ℜd).

The characteristics of FBM depend on the Hurst exponent H. When H = 1
2 , the FBM behaves like a

standard Brownian motion. If H > 1
2 , the process exhibits positive correlation in its increments, indicating

long-range dependence. In contrast, when H < 1
2 , the increments are negatively correlated, reflecting

short-range dependence or anti-persistence.
The main contributions of this paper are summarized as follows:

• Investigated Caputo-type neutral fractional SDEs driven by the GLP.

• Established existence and uniqueness results for the proposed model.

• Derived an exponential estimate for the obtained solutions.

• Compared exact and Picard approximate solutions with error analysis.

• Presented an illustrative example to verify the theoretical findings.

The structure of the article is as follows: Section 2 outlines the fundamental definitions and lemmas
related to fractional calculus and the G-framework. In Section 3, we investigate the existence and uniqueness
of solutions to neutral fractional SDEs driven by the GLP, along with an analysis of their boundedness. This
section also includes an error estimate between the exact and approximate solutions. Section 4 is devoted to
establishing an exponential estimate for the solutions of fractional SDEs influenced by the GLP. In Section
5, two examples are given to show how the proposed results can be applied in practice.

2. Preliminaries

Important notations and initial findings inside the G-framework that will form the basis of the next
discussion are presented in this section. Consider the space Sχ = C([0, χ];ℜd), comprising continuous
mappings from [0, χ] intoℜd. For any χ > 0, we define the space Lip(Sχ) as follows:

Lip(Sχ) =
{
φ(B(µ1),B(µ2), . . . ,Bµd))

∣∣∣ d ≥ 1, µ1, . . . , µd ∈ [0, χ], φ ∈ Cb.Lip (ℜd×m)
}
,
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where Cb.Lip (ℜd×m) denotes the set of all bounded Lipschitz continuous functions onℜd×m. A functional E
acting on Lip(Sχ) is referred to as a SLE if it satisfies the following properties for all β1, β2 ∈ Lip(Sχ):

(a) Monotonicity: E[β1] ≥ E[β2] if β1 ≥ β2.

(b) Constant preserving: E[a] = a for any constant a ∈ ℜ.

(c) Sub-additivity: E[β1 + β2] ≤ E[β1] + E[β2].

(d) Positive homogeneity: E[aβ1] = aE[β1] for all a ≥ 0.

For any µ ≤ χ, we have the inclusion Lip(Sµ) ⊆ Lip(Sχ), and we define Lip(S) =
⋃
∞

n=1 Lip(Sn). For each p ≥ 1,
the space Lp

G(S) is defined as the completion of Lip(S) under the norm

∥X∥p :=
(
Ê[|X|p]

)1/p
,

which endows it with a Banach space structure. Furthermore, for 0 ≤ µ ≤ χ < ∞, the following inclusions
hold:

Lp
G(Sχ) ⊆ Lp

G(Sχ) ⊆ Lp
G(S).

The triplet (S,Lip(Sχ),E) is referred to as a SLE space. Given p ≥ 1, a partition of the interval [0, χ] is defined
as a finite set ANχ = {0 = µ0 < µ1 < · · · < µN = χ}. For each p ≥ 1, the space of simple processes Mp,0

G ([0, χ])
consists of processes of the form

λµ(q) =
N−1∑
i=0

Φµi (q)I[µi,µi+1](µ),

where Φµi (q) ∈ Lp
G(Sµi ) and {0 = µ0 < µ1 < · · · < µN = χ} is a partition of the interval [0, χ]. The space

Mp,0
G ([0, χ]) is then completed w.r.t the following norm:

∥λ∥p =

(∫ χ

0
Ê[|λ(ℓ)|p] dℓ

)1/p

.

This completed space is denoted by Mp
G(0, χ).

Definition 2.1. [21] Suppose λµ ∈ Mp
G(0, χ) for some p ≥ 1 . The corresponding Itô integral in the G-framework is

defined as:∫ χ

0
λ(ℓ) dB(ℓ) =

N−1∑
j=0

Φ j

(
B(µ j+1) −B(µ j)

)
.

Definition 2.2. [21] A process {⟨B⟩(µ)}µ≥0, where ⟨B⟩(0) = 0, is called the G-quadratic variation process, which is
defined by:

⟨B⟩(µ) = lim
N→∞

N−1∑
j=0

(
B(µNj+1) −B(µNj )

)2
= B(µ)2

− 2
∫ µ

0
B(ℓ) dB(ℓ).

Define △0,χ as a function from M0,1
G (0, χ) to L2

G(Fχ), given by:

△0,χ(λ) =
∫ χ

0
λ(ℓ) d⟨B⟩(ℓ) =

N−1∑
j=0

Φ j

(
⟨B⟩(µ j+1 ) −B(µ j)

)
.

The above operator △0,χ admits an extension to the space M1
G(0, χ), where for each λ ∈M1

G(0, χ), it is defined as:∫ χ

0
λ(ℓ) d⟨B⟩(ℓ) = △0,χ(λ).
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Assume thatU is a weakly compact set associated with the SLE. The corresponding capacity ĉ is defined
by:

ĉ(J) = sup
P∈ U

P(J), J ∈ Fχ.

The set J is classified as polar if ĉ(J) = 0. Additionally, if a characteristic persists beyond a polar set, it is
true q.s.

Lemma 2.3. [21] Let y ∈ Lp
G such that E[|y|p] is finite, with p ≥ 0. Then,

ĉ(|y| > η) ≤
E[|y|p]
η

,

for every η > 0.

Lemma 2.4. Let Υ ∈MP
G(0, χ) with p ≥ 2. Then, the following inequality holds:

E

 sup
0≤t≤χ

∣∣∣∣∣∣
∫ t

0
Υ(ℓ) dB(ℓ)

∣∣∣∣∣∣
p ≤ ζE [∫ t

0
|Υ(ℓ)|2 dℓ

]p/2

,

where 0 < ζ = m2χ
p
2−1 < ∞, and m2 is a positive value that depends on p.

Lemma 2.5. Let Υ ∈MP
G(0, χ) with p ≥ 1. Then, the following inequality holds:

E

 sup
0≤t≤χ

∣∣∣∣∣∣
∫ t

0
Υ(ℓ) d⟨B,B⟩(ℓ)

∣∣∣∣∣∣
p ≤ γE [∫ t

0
|Υ(ℓ)|2 dℓ

]p/2

,

where 0 < γ = m1χp−1 < ∞, and m1 is a positive value that depends on p.

Definition 2.6. [11] The fractional integral of order ȷ from 0 to y of the function ϑ1 is expressed as

I ȷ0,yϑ1(y) =
1
Γ( ȷ)

∫ y

0
(y − ζ) ȷ−1ϑ1(ζ) dζ, for, y > 0, ȷ > 0,

where Γ(·) is the Gamma function.

Definition 2.7. [1] The Caputo derivative of fractional order ȷ for the function ϑ1is defined as

CD ȷ
0,yϑ1(y) =

1
Γ(n − ȷ)

∫ y

0
(y − ζ)n− ȷ−1ϑ(n)

1 (ζ) dζ, where n = ⌊ ȷ⌋ + 1.

Definition 2.8. [40] Let u(µ) be a continuous function on [0, χ], and suppose there exists a continuous non-decreasing
function φ(µ) such that

u(µ) ≤ φ(µ) +
∫ µ

0
ȷ(ℓ)u(ℓ) dℓ, µ ∈ [0, χ],

where ȷ(µ) is a given continuous function. Then, the solution u(µ) satisfies the following inequality:

u(µ) ≤ φ(µ) exp
(∫ µ

0
ȷ(ℓ) dℓ

)
, µ ∈ [0, χ].
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Lemma 2.9. [25] Let φ : I→ L0
2 be a function that satisfies∫ χ

0
∥φ(µ)∥L0

2
dµ < ∞.

Then, the following inequality holds:

E

∥∥∥∥∥∫ τ

0
φ(µ) dBH(µ)

∥∥∥∥∥2

≤ 2H µ2H−1
∫ τ

0
E∥φ(µ)∥2L0

2
dµ.

In this manuscript we put m3 = 2H µ2H−1, where m3 is positive value.

Definition 2.10. [36] The process {Y(µ), µ ≥ 0}, constructed on a SLE space (S,Lip(Sχ),E), is termed a GLP provided
that it fulfills the following five fundamental characteristics.

1. Y(µ)=0.
2. For any ℓ, µ ≥ 0, the increment Y(µ + ℓ) − Y(ℓ) is independent of the collection
{Y(µ1),Y(µ2), . . . ,Y(µm)} for every m ∈N and for all partitions satisfying
0 ≤ µ1 ≤ µ2 ≤ · · · ≤ µm ≤ µ.

3. The distribution of the increment Y(µ + ℓ) − Y(ℓ) is invariant with respect to the starting time ℓ, and thus
depends only on the length of the increment µ, for all ℓ, µ ≥ 0.

Furthermore, the process {Y(µ)}µ≥0 is classified as a GLP if the following additional conditions hold:

4. There exists a Lévy process in 2 − dimension, denoted by {(Yc(µ),Yd(µ))}µ≥0, such that for every µ ≥ 0, the
decomposition

Y(µ) = Yc(µ) + Yd(µ)

holds, where Yc(µ) and Yd(µ) represent the continuous and jump components, respectively.
5. The processes Yc(µ) and Yd(µ) satisfy the following properties:

lim
µ→0+

E[|Yc(µ)|3]
µ

= 0, and E[|Yd(µ)|] < Cµ, ∀µ ≥ 0,

where C is a constant that depends on the properties of the process Y(µ).

We denote by Hϕ
G([0, χ] × ℜd

0) the space consisting of all basic (elementary) random fields on [0, µ] × ℜd
0 × S,

which can be represented in the following form:

𭟋(h, q)(ω) =
n−1∑
i=1

m∑
j=1

Φi, j1(µi,µi+1](h)ψ j(q),

consider n,m ∈ N with 0 ≤ µ1 < µ2 < · · · < µn ≤ χ, and let {ψ j}
m
j=1 ⊂ Cb,lip(ℜd) be a collection of non-

overlapping functions such that ℵ j(0) = 0. The coefficients Φi, j are expressed as Φi, j = φi, j(βµ1 , . . . , βµi − βµi−1 ), where
φi, j ∈ Cb,lip(ℜd×i). This space is equipped with the norm given by

∥ 𭟋∥Hp
G([0,χ]×ℜd

0) = E

∫ χ

0
sup
v∈ν

∫
ℜd

0

|𭟋(ℓ, q)|pv(dq) dℓ


1
p

, p = 1, 2.
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Definition 2.11. Consider the Itô integral of 𭟋 ∈ Hϕ
G([0, χ] × ℜd

0) with respect to the discontinuity measure L,
which is defined as follows:∫ µ

0

∫
ℜd

0

𭟋(ℓ, q)L(dℓ, dq) =
∑

v<ℓ≤µ

𭟋
(
ℓ,∆β(ℓ)

)
, quasi surely.

SupposeHp
G([0, χ] ×ℜd

0) denote the topological closure ofHϕ
G([0, χ] ×ℜd

0) with respect to the norm ∥𭟋∥Hp
G([0,χ]×ℜd

0),
for p = 1, 2. The Itô integral can be extended to this space, and for p = 1, 2, the extended integral takes values in
Lp

G(Sχ). The following BDG-type inequality applies to these integrals.

Lemma 2.12. Let 𭟋(ℓ, q) ∈ H2
G([0, χ] × ℜd

0). Then, there exists a cadlag modification β̂(µ) of the process β(µ) =∫ µ
0

∫
ℜd

0
𭟋(ℓ, q)L(dℓ, dq) such that ∀ µ ∈ [0, χ] and p ≥ 2, the following condition is satisfied:

E

 sup
0≤ℓ≤µ

|β̂(µ)|2
 ≤ m4E

∫ µ

0

∫
ℜd

0

𭟋2(ℓ, q)v(dq)dℓ

 , m4 > 0.

In this manuscript, we put m5 = δ2 and Q = µ2 ȷ−1.

3. Uniqueness and Existence of Solutions for Caputo-Type Neutral Fractional SDEs Governed by GLP

Definition 3.1. A càdlàg process β(µ), adapted to the filtration Fµ and belonging to the space M2
G((−∞, χ];Rd), is

considered to satisfy equation (3) along with the initial condition(4) if it satisfies

β(µ) = σ(0) +
1
Γ( ȷ)

∫ µ

0
(µ − ℓ) ȷ−1ϑ1(ℓ, βℓ)dℓ +

1
Γ( ȷ)

∫ µ

0
(µ − ℓ) ȷ−1ϑ2(ℓ, βℓ)d⟨B,B⟩(ℓ)

+
1
Γ( ȷ)

∫ µ

0
(µ − ℓ) ȷ−1Λ1(ℓ, βℓ)dB(ℓ) +

1
Γ( ȷ)

∫ µ

0
(µ − ℓ) ȷ−1Λ2(ℓ, βℓ)dBH(ℓ)

+
1
Γ( ȷ)

∫ µ

0
(µ − ℓ) ȷ−1

∫
ℜd

0

𭟋(ℓ, βℓ− , q)L(dℓ, dq)

+
δ
Γ( ȷ)

∫ µ

0
(µ − ℓ) ȷ−1Π(ℓ, βℓ)dℓ. (5)

Let β(µ) and y(µ) be two solutions of equation (3). The solution β(µ) is considered unique if it coincides
with y(µ) for all µ, that is

E
[
|β(µ) − y(µ)|2

]
= 0,

holds q.s.
In this article, we establish the necessary conditions for linear growth and Lipschitz continuity, as

follows:

(H1) For every β ∈ BC((−∞, 0];ℜd), a positive constant ξ1 exists such that

|ϑ1(µ, β)|2 ∨ |ϑ2(µ, β)|2 ∨ |Π(µ, β)|2 ∨ |Λ1(µ, β)|2 ∨
∫
ℜd

0

|𭟋(µ, β, q)|2υ(dq)

∨ |Λ2(µ, β)|2 ≤ ξ1(1 + |β|2).

(H2) ∀ β, y ∈ BC((−∞, 0];ℜd), a positive constant ξ2 exists such that

|ϑ1(µ, y) − ϑ1(µ, β)|2 ∨ |ϑ2(µ, y) − ϑ2(µ, β)|2 ∨ |Π(µ, y) −Π(µ, β)|2 ∨ |Λ1(µ, y) −Λ1(µ, β)|2

∨

∫
ℜd
|𭟋(µ, y, q) − 𭟋(µ, β, q)|2υ(dq) ∨ |Λ2(µ, y) −Λ2(µ, β)|2 ≤ ξ2|y − β|2.
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In the subsequent lemma, we demonstrate that every solution β(µ) to equation (3) exhibits boundedness,
indicating that β(µ) belongs to the space M2

G((−∞, χ];ℜd).

Lemma 3.2. Consider a function β(µ) that satisfies equation (3) along with the initial condition specified in (4).
Assuming the expectation E|β|2 is finite and that the growth condition (H1) is met. Then

E

 sup
−∞≤ℓ≤µ

|β(ℓ)|2
 ≤ E∥σ∥2 + 7

[(
1 +

ξ1MQχ
(1 − 2 ȷ)(Γ( ȷ)2

)
E∥σ∥2 +

ξ1MQχ
(1 − 2 ȷ)(Γ( ȷ)2

]
e

7ξ1MQχ

(1−2 ȷ)(Γ( ȷ)2 ,

whereM = χ +m1χ +m2 +m3 +m4 +m5 where mi are positive constants.

Proof. We now turn our attention to equation (5) and make use of the associated inequality
∣∣∣∑7

j=1 b j

∣∣∣2 ≤
7
∑7

j=1 |b j|
2, to derive

|β(µ)|2 ≤ 7|σ(0)|2 + 7

∣∣∣∣∣∣ 1
Γ( ȷ)

∫ µ

0
(µ − ℓ) ȷ−1ϑ1(ℓ, βℓ)dℓ

∣∣∣∣∣∣
2

+ 7

∣∣∣∣∣∣ 1
Γ( ȷ)

∫ µ

0
(µ − ℓ) ȷ−1ϑ2(ℓ, βℓ)d⟨B,B⟩(ℓ)

∣∣∣∣∣∣
2

+ 7

∣∣∣∣∣∣ 1
Γ( ȷ)

∫ µ

0
(µ − ℓ) ȷ−1Λ1(ℓ, βℓ)dB(ℓ)

∣∣∣∣∣∣
2

+ 7

∣∣∣∣∣∣ 1
Γ( ȷ)

∫ µ

0
(µ − ℓ) ȷ−1Λ2(ℓ, βℓ)dBH(ℓ)

∣∣∣∣∣∣
2

+ 7

∣∣∣∣∣∣ 1
Γ( ȷ)

∫ µ

0
(µ − ℓ) ȷ−1

∫
Rd

0

𭟋(ℓ, βℓ− , q)L(dℓ, dq)

∣∣∣∣∣∣
2

+ 7

∣∣∣∣∣∣ δΓ( ȷ)
∫ µ

0
(µ − ℓ) ȷ−1Π(ℓ, βℓ)dℓ

∣∣∣∣∣∣
2

. (6)

Based on the Cauchy inequality, Lemmas 2.4, 2.5, 2.9, 2.12 and G-expectation, we obtain

E
[

sup
0≤ℓ≤µ

|β(ℓ)|2
]
≤ 7E|σ(0)|2 +

7Qµ
(1 − 2 ȷ)Γ( ȷ)2E

∫ µ

0

∣∣∣∣ϑ1(ℓ, βℓ)
∣∣∣∣2dℓ

+
7m1Qµ

(1 − 2 ȷ)Γ( ȷ)2E

∫ µ

0

∣∣∣∣ϑ2(ℓ, βℓ)
∣∣∣∣2dℓ

+
7m2Q

(1 − 2 ȷ)Γ( ȷ)2E

∫ µ

0

∣∣∣∣Λ1(ℓ, βℓ)
∣∣∣∣2dℓ

+
7m3Q

(1 − 2 ȷ)Γ( ȷ)2E

∫ µ

0

∣∣∣∣Λ2(ℓ, βℓ)
∣∣∣∣2dℓ

+
7m4Q

(1 − 2 ȷ)Γ( ȷ)2E

∫ µ

0

∫
ℜd

0

∣∣∣∣𭟋(ℓ, βℓ− , q)
∣∣∣∣2v(dq)dℓ

+
7m5Q

(1 − 2 ȷ)Γ( ȷ)2E

∫ µ

0

∣∣∣∣Π(ℓ, βℓ)
∣∣∣∣2dℓ.

By utilizing hypothesis (H1), we have

E
[

sup
0≤ℓ≤µ

|β(ℓ)|2
]
≤7∥σ∥2 +

7ξ1Qµ
(1 − 2 ȷ)Γ( ȷ)2

∫ µ

0
E(1 + |βℓ|2)dℓ

+
7ξ1Qm1µ

(1 − 2 ȷ)Γ( ȷ)2

∫ µ

0
E(1 + |βℓ|2)dℓ

+
7ξ1Qm2

(1 − 2 ȷ)Γ( ȷ)2

∫ µ

0
E(1 + |βℓ|2)dℓ
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+
7ξ1Qm3

(1 − 2 ȷ)Γ( ȷ)2

∫ µ

0
E(1 + |βℓ|2)dℓ

+
7ξ1Qm4

(1 − 2 ȷ)Γ( ȷ)2

∫ µ

0
E(1 + |βℓ|2)dℓ

+
7ξ1Qm5

(1 − 2 ȷ)Γ( ȷ)2

∫ µ

0
E(1 + |βℓ|2)dℓ

≤7∥σ∥2 +
7ξ1Q

(1 − 2 ȷ)Γ( ȷ)2 (χ +m1χ +m2 +m3 +m4 +m5)χ

+
7ξ1Q

(1 − 2 ȷ)Γ( ȷ)2 (χ +m1χ +m2 +m3 +m4 +m5)χ
∫ µ

0
E|βℓ|

2dℓ

≤7E∥σ∥2 +
7ξ1Q

(1 − 2 ȷ)Γ( ȷ)2 (χ +m1χ +m2 +m3 +m4 +m5)χ

+
7ξ1Q

(1 − 2 ȷ)Γ( ȷ)2 (χ +m1χ +m2 +m3 +m4 +m5)
∫ µ

0

[
E∥σ∥2 + E

(
sup

0≤u≤ℓ
|β(u)|2

)]
dℓ

≤7E∥σ∥2 +
7ξ1QMχ

(1 − 2 ȷ)Γ( ȷ)2 +
7ξ1QMχ

(1 − 2 ȷ)Γ( ȷ)2E∥σ∥
2

+
7ξ1QMχ

(1 − 2 ȷ)Γ( ȷ)2

∫ µ

0
E
[

sup
0≤u≤ℓ

|β(u)|2
]
dℓ,

whereM = χ + m1χ + m2 + m3 + m4 + m5. By applying Gronwall’s inequality, we obtain the following
result.

E
[

sup
0≤ℓ≤µ

|β(ℓ)|2
]
≤ 7

[
(1 +

ξ1MQχ)
(1 − 2 ȷ)Γ( ȷ)2E∥σ∥

2 +
ξ1MQχ

(1 − 2 ȷ)Γ( ȷ)2

]
e

7ξ1MQχ

(1−2 ȷ)Γ( ȷ)2 .

Observing that

E
[

sup
−∞<ℓ≤µ

|β(ℓ)|2
]
≤ E∥σ∥2 + sup

0≤ℓ≤µ
E|β(ℓ)|2,

this implies

E
[

sup
0≤ℓ≤µ

|β(ℓ)|2
]
≤ E∥σ∥2 + 7

[
(1 +

ξ1MQχ
(1 − 2 ȷ)Γ( ȷ)2E∥σ∥

2 +
ξ1MQχ

(1 − 2 ȷ)Γ( ȷ)2

]
e

7ξ1MQχ

(1−2 ȷ)Γ( ȷ)2 .

For µ ∈ [0, χ], let β0(µ) = σ(0) and β0(0) = σ. For every natural number n, we define: βn(0) = σ and define
the Picard iteration process as:

βn(µ) = ζ(0) +
1
Γ( ȷ)

∫ µ

0
(µ − ℓ) ȷ−1ϑ1(ℓ, βn−1

ℓ )dℓ +
1
Γ( ȷ)

∫ µ

0
(µ − ℓ) ȷ−1ϑ2(ℓ, βn−1

ℓ )d⟨B,B⟩(ℓ)

+
1
Γ( ȷ)

∫ µ

0
(µ − ℓ) ȷ−1Λ1(ℓ, βn−1

ℓ )dB(ℓ) +
1
Γ( ȷ)

∫ µ

0
(µ − ℓ) ȷ−1Λ2(ℓ, βn−1

ℓ )dBH(ℓ)

+
1
Γ( ȷ)

∫ µ

0
(µ − ℓ) ȷ−1

∫
ℜd

0

𭟋(ℓ, βn−1
ℓ− , q)L(dℓ, dq)

+
δ
Γ( ȷ)

∫ µ

0
(µ − ℓ) ȷ−1Π(ℓ, βn−1

ℓ )dℓ. (7)

Next, we focus on proving the existence and uniqueness of the solution, as well as deriving an error bound
for the difference between the exact solution β(µ) and the Picard approximations βn(µ), where n =N.
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Theorem 3.3. Assume that conditions (H1) and (H2) are satisfied, and that E∥σ∥2 < ∞. Under these conditions,
the solution to equation (3) is unique and càdlàg, with β(µ) ∈ M2

G((−∞, χ];ℜd). In addition, ∀ n ≥ 1, the Picard
approximations βn(µ) and the exact solution β(µ) satisfy the following inequality:

E
[

sup
0≤ℓ≤µ

|βn(ℓ) − β(ℓ)|2
]
≤ Z

(
Ψµ

)n 1
n!

eΨµ,

where,

Z =
6ξ1Q

(1 − 2 ȷ)Γ( ȷ)2 (χ +m1χ +m2 +m3 +m4 +m5)(1 + E∥σ∥2)χ

Ψ =
6ξ2Q

(1 − 2 ȷ)Γ( ȷ)2 (χ +m1χ +m2 +m3 +m4 +m5)

and mi are positive constants.

Proof. Let {βn
}n≥1 be the sequence generated by the Picard iteration as defined in equation (7). It is evident

that the initial function β0(µ) belongs to the space M2
G

(
(−∞, χ];ℜd

)
. By applying the inequality

∣∣∣∑7
j=1 b j

∣∣∣2 ≤
7
∑7

j=1 |b j|
2, together with Lemmas 2.4, 2.5, and 2.12, as well as the Cauchy-Schwarz inequality and the

assumption (H1), we can establish the following result.

E
[

sup
0≤ℓ≤µ

|βn(ℓ)|2
]
≤ 7E∥σ∥2 +

7ξ1QMχ

(1 − 2 ȷ)Γ( ȷ)2 +
7ξ1QMχ

(1 − 2 ȷ)Γ( ȷ)2E∥σ∥
2

+
7ξ1QM

(1 − 2 ȷ)Γ( ȷ)2

∫ µ

0
E
[

sup
0≤u≤ℓ

|βn−1(u)|2
]
dℓ,

whereM = χ +m1χ +m2 +m3 +m4 +m5. Observing that

max
1≤n≤ j

E

 sup
0≤ℓ≤µ

|βn−1(ℓ)|2
 ≤ max

E∥σ∥2,max
1≤n≤ j

E

 sup
0≤ℓ≤µ

|βn(ℓ)|2



≤ E∥σ∥2 +max
1≤n≤ j

E

 sup
0≤ℓ≤µ

|βn(ℓ)|2
 ,

so we have

max
1≤n≤ j

E

 sup
0≤ℓ≤µ

|βn(ℓ)|2
 ≤ 7E∥σ∥2 +

7ξ1QMχ

(1 − 2 ȷ)Γ( ȷ)2 +
14ξ1QMχ

(1 − 2 ȷ)Γ( ȷ)2E∥σ∥
2

+
7ξ1QM

(1 − 2 ȷ)Γ( ȷ)2

∫ µ

0
max
1≤n≤ j

E
[

sup
0≤u≤ℓ

|βn(u)|2
]
dℓ.

Utilizing Grownwall inequality

max
1≤n≤ j

E

 sup
0≤ℓ≤µ

|βn(ℓ)|2
 ≤ 7

[(
1 +

2ξ1MQχ)
(1 − 2 ȷ)Γ( ȷ)2

)
E∥σ∥2 +

ξ1MQχ
(1 − 2 ȷ)Γ( ȷ)2

]
e

7ξ1MQµ

(1−2 ȷ)Γ( ȷ)2 .

Since j can be any value, setting µ = χ gives

E sup
0≤ℓ≤χ

|βn(ℓ)|2 ≤ 7
[
(1 +

2ξ1MQχ)
(1 − 2 ȷ)Γ( ȷ)2E∥σ∥

2 +
ξ1MQχ

(1 − 2 ȷ)Γ( ȷ)2

]
e

7ξ1MQχ

(1−2 ȷ)Γ( ȷ)2 . (8)
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Based on the sequence {βn(µ);µ ≥ 0} given in equation (7), we obtain

β1(µ) − β0(µ) =
1
Γ( ȷ)

∫ µ

0
(µ − ℓ) ȷ−1ϑ1(ℓ, β0

ℓ)dℓ +
1
Γ( ȷ)

∫ µ

0
(µ − ℓ) ȷ−1ϑ2(ℓ, β0

ℓ)d⟨B,B⟩(ℓ)

+
1
Γ( ȷ)

∫ µ

0
(µ − ℓ) ȷ−1Λ1(ℓ, β0

ℓ)dB(ℓ) +
1
Γ( ȷ)

∫ µ

0
(µ − ℓ) ȷ−1Λ2(ℓ, β0

ℓ)dBH(ℓ)

+
1
Γ( ȷ)

∫ µ

0
(µ − ℓ) ȷ−1

∫
ℜd

0

𭟋(ℓ, β0
ℓ− , q)L(dℓ, dq)

+
δ
Γ( ȷ)

∫ µ

0
(µ − ℓ) ȷ−1Π(ℓ, β0

ℓ)dℓ.

Based on (H1), the Cauchy inequality, Lemmas 2.4, 2.5, 2.9, 2.12 and G-expectation, we obtain

E

 sup
0≤ℓ≤χ

|β1(ℓ) − β0(ℓ)|2
 ≤ ξ1Qµ

(1 − 2 ȷ)Γ( ȷ)2

∫ µ

0
(1 + E∥σ∥2)dℓ

+
ξ1m1Qµ

(1 − 2 ȷ)Γ( ȷ)2

∫ µ

0
(1 + E∥σ∥2)dℓ

+
ξ1m2Q

(1 − 2 ȷ)Γ( ȷ)2

∫ µ

0
(1 + E∥σ∥2)dℓ

+
ξ1m3Q

(1 − 2 ȷ)Γ( ȷ)2

∫ µ

0
(1 + E∥σ∥2)dℓ

+
ξ1m4Q

(1 − 2 ȷ)Γ( ȷ)2

∫ µ

0
(1 + E∥σ∥2)dℓ

+
ξ1m5Q

(1 − 2 ȷ)Γ( ȷ)2

∫ µ

0
(1 + E∥σ∥2)dℓ

≤
ξ1Q

(1 − 2 ȷ)Γ( ȷ)2 (χ +m1χ +m2 +m3 +m4 +m5)
∫ µ

0
(1 + E∥σ∥2)dℓ

≤ Z.

LetZ = 6ξ1Q
(1−2 ȷ)Γ( ȷ)2

[
(χ +m1χ +m2 +m3 +m4 +m5)(1 + E∥σ∥2)χ

]
. Then, using similar presumptions and justi-

fications, (H2) follows

E

 sup
0≤ℓ≤µ

|β2(ℓ) − β1(ℓ)|2
 ≤ 6ξ2Q

(1 − 2 ȷ)Γ( ȷ)2 (χ +m1χ +m2 +m3 +m4 +m5)

×

∫ µ

0
E|β1(ℓ) − β0(ℓ)|2 dℓ

≤
6ξ2Q

(1 − 2 ȷ)Γ( ȷ)2 (χ +m1χ +m2 +m3 +m4 +m5)

×

∫ µ

0
E sup

0≤v≤ℓ
|β1(v) − β0(v)|2 dℓ

≤
6ξ2Q

(1 − 2 ȷ)Γ( ȷ)2 (χ +m1χ +m2 +m3 +m4 +m5)Zµ.

Likewise, we get

E

 sup
0≤ℓ≤µ

|β3(ℓ) − β2(ℓ)|2
 ≤ Z[

6ξ2Q
(1 − 2 ȷ)Γ( ȷ)2 (χ +m1χ +m2 +m3 +m4 +m5)

]
µ2

n!
.
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Consequently, ∀ n ≥ 0, we assert that

E

 sup
0≤ℓ≤µ

|βn+1(ℓ) − βn(ℓ)|2
 ≤ ZΨnµn

n!
, (9)

where

Z =
6ξ1Q

(1 − 2 ȷ)Γ( ȷ)2 (χ +m1χ +m2 +m3 +m4 +m5)(1 + E∥σ∥2)χ

Ψ =
6ξ2Q

(1 − 2 ȷ)Γ( ȷ)2 (χ +m1χ +m2 +m3 +m4 +m5).

Using the mathematical induction, we confirm that (9) is true for any n ≥ 0. At n= 0, it has been established.
Assume (9) is true for some n ≥ 0. Using the same reasoning as before, we arrive at

E

 sup
0≤ℓ≤µ

|βn+2(ℓ) − βn+1(ℓ)|2
 ≤ 6ξ2Q

(1 − 2 ȷ)Γ( ȷ)2 (χ +m1χ +m2 +m3 +m4 +m5)

×

∫ µ

0
E|βn+1

s − βn
ℓ )|2 dℓ

≤ Ψ

∫ µ

0
E
[

sup
0≤v≤ℓ

|βn+1(v) − βn(v)|2
]
dℓ

≤ Ψ

∫ µ

0
Z
Ψnµn

n!
dℓ

≤ Z
Ψn+1µn+1

(n + 1)!
. (10)

This indicates that for n + 1, (9) is true. Consequently, induction (9) is true for every n ≥ 0. Lemma 2.3
grants us:

ĉ

 sup
0≤ℓ≤χ

|βn+1(ℓ) − βn(ℓ)|2 >
1
2n

 ≤ 2nE

 sup
0≤ℓ≤χ

|βn+1(ℓ) − βn(ℓ)|2


≤ Z
[
2Ψµ

]n 1
n!
.

For nearly everyω, a positive integer n0 = n0(ω) exists since
∑
∞

n=0
k[2Ψµ]n

n! < ∞, according to the Borel-Cantelli
lemma,

sup
0≤µ≤χ

|βn+1(µ) − βn(µ)|2 ≤
1
2n , as n ≥ n0. (11)

It indicates that, quasi surely, the partial sums

β0(µ) +
n−1∑
j=0

[
β j+1(µ) − β j(µ)

]
= βn(µ),

the sequence exhibits uniform convergence on µ ∈ (−∞, χ], with β(µ) representing the limit. Therefore,
βn(µ) converges uniformly to β(µ) on the interval µ ∈ (−∞, χ]. This guarantees that β(µ) is Fµ-adapted and
càdlàg. Moreover, from equation (9), it is clear that the sequence {βn(µ) : n ≥ 1} forms a Cauchy sequence in
L2

G. Consequently, βn(µ) converges to β(µ) in L2
G, which implies that

E
[
|βn(µ) − β(µ)|2

]
→ 0, as n→∞.
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By letting n→∞ in equation (8), we obtain

E
[

sup
0≤ℓ≤χ

|β(ℓ)|2
]
≤ 7

[
(1 +

2ξ1MQχ)
(1 − 2 ȷ)Γ( ȷ)2E∥σ∥

2 +
ξ1MQχ

(1 − 2 ȷ)Γ( ȷ)2

]
e

ξ1MQχ

(1−2 ȷ)Γ( ȷ)2 . (12)

After that, we must confirm that β(µ) meets equation (3). With assumption (H2) in mind and applying the
same reasoning as before, we arrive at

E

[
sup

0≤ℓ≤χ

∣∣∣∣∣ 1
Γ( ȷ)

∫ µ

0
(µ − ℓ) ȷ−1

[
ϑ1(ℓ, βn

ℓ ) − ϑ1(ℓ, βℓ)
]

dℓ
∣∣∣∣∣2 ]

+ E

[
sup

0≤ℓ≤χ

∣∣∣∣∣ 1
Γ( ȷ)

∫ µ

0
(µ − ℓ) ȷ−1

[
ϑ2(ℓ, βn

ℓ ) − ϑ2(ℓ, βℓ)
]

d⟨B,B⟩(ℓ)
∣∣∣∣∣2 ]

+ E

[
sup

0≤ℓ≤χ

∣∣∣∣∣ 1
Γ( ȷ)

∫ µ

0
(µ − ℓ) ȷ−1

[
Λ1(ℓ, βn

ℓ ) −Λ1(ℓ, βℓ)
]

dB(ℓ)
∣∣∣∣∣2 ]

+ E

[
sup

0≤ℓ≤χ

∣∣∣∣∣ 1
Γ( ȷ)

∫ µ

0
(µ − ℓ) ȷ−1

[
Λ2(ℓ, βn

ℓ ) −Λ2(ℓ, βℓ)
]

dBH(ℓ)
∣∣∣∣∣2 ]

+ E

[
sup

0≤ℓ≤χ

∣∣∣∣∣∣ 1
Γ( ȷ)

∫ µ

0
(µ − ℓ) ȷ−1

∫
ℜd

0

[
𭟋(ℓ, βn

ℓ− , q) − 𭟋(ℓ, βℓ− , q)
]
L(dℓ, dq)

∣∣∣∣∣∣2
]

+ E

[
sup

0≤ℓ≤χ

∣∣∣∣∣ δΓ( ȷ)
∫ µ

0
(µ − ℓ) ȷ−1

[
Π(ℓ, βn

ℓ ) −Π(ℓ, βℓ)
]

dℓ
∣∣∣∣∣2 ]

≤
Qµ

(1 − 2 ȷ)Γ( ȷ)2

∫ µ

0
E
[
|ϑ1(ℓ, yℓ) − ϑ1(ℓ, βℓ)|2

]
dℓ

+
m1Qµ

(1 − 2 ȷ)Γ( ȷ)2

∫ µ

0
E
[
|ϑ2(ℓ, yℓ) − ϑ2(ℓ, βℓ)|2

]
dℓ

+
m2Q

(1 − 2 ȷ)Γ( ȷ)2

∫ µ

0
E
[
|Λ1(ℓ, yℓ) −Λ1(ℓ, βℓ)|2

]
dℓ

+
m3Q

(1 − 2 ȷ)Γ( ȷ)2

∫ µ

0
E
[
|Λ2(ℓ, yℓ) −Λ2(ℓ, βℓ)|2

]
dℓ

+
m4Q

(1 − 2 ȷ)Γ( ȷ)2

∫ µ

0

∫
Rd

0

E
[
|𭟋(ℓ, yℓ, q) − 𭟋(ℓ, βℓ, q)|2

]
v(dq)dℓ

+
m5Q

(1 − 2 ȷ)Γ( ȷ)2

∫ µ

0
E
[
|Π(ℓ, yℓ) −Π(ℓ, βℓ)|2

]
dℓ

≤
ξ2Qµ

(1 − 2 ȷ)Γ( ȷ)2

∫ µ

0
E
[

sup
0≤v≤ℓ

|βn(v) − β(v)|2
]
dℓ

+
ξ2m1Qµ

(1 − 2 ȷ)Γ( ȷ)2

∫ µ

0
E
[

sup
0≤v≤ℓ

|βn(v) − β(v)|2
]
dℓ

+
ξ2m2Q

(1 − 2 ȷ)Γ( ȷ)2

∫ µ

0
E
[

sup
0≤v≤ℓ

|βn(v) − β(v)|2
]
dℓ

+
ξ2m3Q

(1 − 2 ȷ)Γ( ȷ)2

∫ µ

0
E
[

sup
0≤v≤ℓ

|βn(v) − β(v)|2
]
dℓ

+
ξ2m4Q

(1 − 2 ȷ)Γ( ȷ)2

∫ µ

0

∫
Rd

0

E
[

sup
0≤v≤ℓ

|βn(v) − β(v)|2
]
v(dq)dℓ
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+
ξ2m5Q

(1 − 2 ȷ)Γ( ȷ)2

∫ µ

0
E
[

sup
0≤v≤ℓ

|βn(v) − β(v)|2
]
dℓ

≤
ξ2Q

(1 − 2 ȷ)Γ( ȷ)2 (χ +m1χ +m2 +m3 +m4 +m5)
∫ µ

0
E
[

sup
0≤v≤ℓ

|βn(v) − β(v)|2
]
dℓ

→ 0 as n→∞. (13)

Alternatively, we say

1
Γ( ȷ)

∫ µ

0
(µ − ℓ) ȷ−1ϑ1(ℓ, βn

ℓ ) →
1
Γ( ȷ)

∫ µ

0
(µ − ℓ) ȷ−1ϑ1(ℓ, βℓ) in L2

G,

1
Γ( ȷ)

∫ µ

0
(µ − ℓ) ȷ−1ϑ2(ℓ, βn

ℓ ) d⟨B,B⟩(ℓ)→
1
Γ( ȷ)

∫ µ

0
(µ − ℓ) ȷ−1ϑ2(ℓ, βℓ) d⟨B,B⟩(ℓ), in L2

G,

1
Γ( ȷ)

∫ µ

0
(µ − ℓ) ȷ−1Λ2(ℓ, βn

ℓ ) dBH(ℓ)→
1
Γ( ȷ)

∫ µ

0
(µ − ℓ) ȷ−1Λ2(ℓ, βℓ) dBH(ℓ), in L2

G,

1
Γ( ȷ)

∫ µ

0
(µ − ℓ) ȷ−1Λ1(ℓ, βn

ℓ ) dB(ℓ)→
1
Γ( ȷ)

∫ µ

0
(µ − ℓ) ȷ−1Λ1(ℓ, βℓ) dB(ℓ), in L2

G,

1
Γ( ȷ)

∫ µ

0
(µ − ℓ) ȷ−1

∫
ℜd

0

𭟋(ℓ, βn
ℓ−, q)L(dℓ, dq) →

1
Γ( ȷ)

∫ µ

0
(µ − ℓ) ȷ−1

∫
ℜd

0

𭟋(ℓ, βℓ−, q)L(dℓ, dq) , in L2
G,

δ
Γ( ȷ)

∫ µ

0
(µ − ℓ) ȷ−1Π(ℓ, βn

ℓ )→
δ
Γ( ȷ)

∫ µ

0
(µ − ℓ) ȷ−1Π(ℓ, βℓ) in L2

G.

With the limits n→∞ in (7), we have for µ ∈ [0, χ],

lim
n→∞

βn(µ) = σ(0) +
1
Γ( ȷ)

∫ µ

0
(µ − ℓ) ȷ−1 lim

n→∞
ϑ1(ℓ, βn−1

ℓ )dℓ +
1
Γ( ȷ)

∫ µ

0
(µ − ℓ) ȷ−1 lim

n→∞
ϑ2(ℓ, βn−1

ℓ )d⟨B,B⟩(ℓ)

+
1
Γ( ȷ)

∫ µ

0
(µ − ℓ) ȷ−1 lim

n→∞
Λ1(ℓ, βn−1

ℓ )dB(ℓ) +
1
Γ( ȷ)

∫ µ

0
(µ − ℓ) ȷ−1 lim

n→∞
Λ2(ℓ, βn−1

ℓ )dBH(ℓ)

+
1
Γ( ȷ)

∫ µ

0
(µ − ℓ) ȷ−1

∫
ℜd

0

lim
n→∞
𭟋(ℓ, βn−1

ℓ− , q)L(dℓ, dq)

+
δ
Γ( ȷ)

∫ µ

0
(µ − ℓ) ȷ−1 lim

n→∞
Π(ℓ, βn−1

ℓ )dℓ,

this leads to

β(µ) = σ(0) +
1
Γ( ȷ)

∫ µ

0
(µ − ℓ) ȷ−1ϑ1(ℓ, βℓ)dℓ +

1
Γ( ȷ)

∫ µ

0
(µ − ℓ) ȷ−1ϑ2(ℓ, βℓ)d⟨B,B⟩(ℓ)

+
1
Γ( ȷ)

∫ µ

0
(µ − ℓ) ȷ−1Λ1(ℓ, βℓ)dB(ℓ) +

1
Γ( ȷ)

∫ µ

0
(µ − ℓ) ȷ−1Λ2(ℓ, βℓ)dBH(ℓ)

+
1
Γ( ȷ)

∫ µ

0
(µ − ℓ) ȷ−1

∫
ℜd

0

𭟋(ℓ, βℓ− , q)L(dℓ, dq)

+
δ
Γ( ȷ)

∫ µ

0
(µ − ℓ) ȷ−1Π(ℓ, βℓ)dℓ, (14)

µ falls between 0 and χ. This demonstrates that β(µ) is the answer to (3). Let us consider the case where
equation (3) yields two distinct solutions, β(µ) and y(µ), in order to demonstrate unicity/uniqueness. Based
on related reasoning, we arrive at

E

 sup
0≤ℓ≤µ

|y(ℓ) − β(ℓ)|2
 ≤ 6Qµ

(1 − 2 ȷ)Γ( ȷ)2

∫ µ

0
E|ϑ1(ℓ, yℓ) − ϑ1(ℓ, βℓ)|2dℓ
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+
6m1Qµ

(1 − 2 ȷ)Γ( ȷ)2

∫ µ

0
E|ϑ2(ℓ, yℓ) − ϑ2(ℓ, βℓ)|2dℓ

+
6m2Q

(1 − 2 ȷ)Γ( ȷ)2

∫ µ

0
E|Λ1(ℓ, yℓ) −Λ1(ℓ, βℓ)|2dℓ

+
6m3Q

(1 − 2 ȷ)Γ( ȷ)2

∫ µ

0
E|Λ2(ℓ, yℓ) −Λ2(ℓ, βℓ)|2dℓ

+
6m4Q

(1 − 2 ȷ)Γ( ȷ)2

∫ µ

0

∫
ℜd

0

E|𭟋(ℓ, yℓ, q) − 𭟋(ℓ, βℓ, q)|2v(dq)dℓ

+
6m5Q

(1 − 2 ȷ)Γ( ȷ)2

∫ µ

0
E|Π(ℓ, yℓ) −Π(ℓ, βℓ)|2dℓ.

Due to assumption (H2), we can obtain

E

 sup
0≤ℓ≤µ

|y(ℓ) − β(ℓ)|2
 ≤ 6ξ2Qµ

(1 − 2 ȷ)Γ( ȷ)2

∫ µ

0
E
[

sup
0≤u≤ℓ

|y(u) − β(u))|2
]
dℓ

+
6ξ2m1Qµ

(1 − 2 ȷ)Γ( ȷ)2

∫ µ

0
E
[

sup
0≤u≤ℓ

|y(u) − β(u))|2
]
dℓ

+
6ξ2m2Q

(1 − 2 ȷ)Γ( ȷ)2

∫ µ

0
E
[

sup
0≤u≤ℓ

|y(u) − β(u))|2
]
dℓ

+
6ξ2m3Q

(1 − 2 ȷ)Γ( ȷ)2

∫ µ

0
E
[

sup
0≤u≤ℓ

|y(u) − β(u))|2
]
dℓ

+
6ξ2m4Q

(1 − 2 ȷ)Γ( ȷ)2

∫ µ

0

∫
ℜd

0

E
[

sup
0≤u≤ℓ

|y(u) − β(u))|2
]
dℓ

+
6ξ2m5Q

(1 − 2 ȷ)Γ( ȷ)2

∫ µ

0
E
[

sup
0≤u≤ℓ

|y(u) − β(u))|2
]
dℓ.

Where µ ∈ [0, χ], so

E

 sup
0≤ℓ≤µ

|y(ℓ) − β(ℓ)|2
 ≤ 6ξ2Q

(1 − 2 ȷ)Γ( ȷ)2 (χ +m1χ +m2 +m3 +m4 +m5)
∫ µ

0
E
[

sup
0≤u≤ℓ

|y(u) − β(u))|2
]
dℓ.

It is evident that

sup
−∞<u≤χ

|y(u)|2 ≤ |σ|2 + sup
0<u≤χ

|y(u)|2,

and by leveraging the Grownwall inequality with identical initial conditions, the conclusion can be derived,

E
[

sup
−∞<ℓ≤µ

|y(ℓ) − β(ℓ)|2
]
= 0, (15)

this shows that β(µ) = y(µ) holds quasi-surely for all µ ∈ (−∞, χ]. To conclude, the error estimation needs to
be verified. Using equations (5) and (7), along with the same reasoning as before, we obtain the following
results

E

 sup
0≤ℓ≤µ

|βn(ℓ) − β(ℓ)|2
 ≤ 6Qµ

(1 − 2 ȷ)Γ( ȷ)2

∫ µ

0
E|ϑ1(ℓ, βn(ℓ)) − ϑ1(ℓ, βℓ)|2dℓ

+
6m1Qµ

(1 − 2 ȷ)Γ( ȷ)2

∫ µ

0
E|ϑ2(ℓ, βn(ℓ)) − ϑ2(ℓ, βℓ)|2dℓ
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+
6m2Q

(1 − 2 ȷ)Γ( ȷ)2

∫ µ

0
E|Λ1(ℓ, βn(ℓ)) −Λ1(ℓ, βℓ)|2dℓ

+
6m3Q

(1 − 2 ȷ)Γ( ȷ)2

∫ µ

0
E|Λ2(ℓ, βn(ℓ)) −Λ2(ℓ, βℓ)|2dℓ

+
6m4Q

(1 − 2 ȷ)Γ( ȷ)2

∫ µ

0

∫
ℜd

0

E|𭟋(ℓ, βn(ℓ), q) − 𭟋(ℓ, βℓ, q)|2v(dq)dℓ

+
6m5Q

(1 − 2 ȷ)Γ( ȷ)2

∫ µ

0
E|Π(ℓ, βn(ℓ)) −Π(ℓ, βℓ)|2dℓ

≤
6ξ2Q

(1 − 2 ȷ)Γ( ȷ)2 (χ +m1χ +m2 +m3 +m4 +m5)

×

∫ µ

0
E
[

sup
0≤v≤ℓ

|βn(v) − β(v))|2
]
dℓ

≤ Ψ

∫ µ

0
E
[

sup
0≤v≤ℓ

|βn(v) − βn−1(v)|2
]
dℓ

+Ψ

∫ µ

0
E
[

sup
0≤v≤ℓ

|βn−1(v) − β(v)|2
]
dℓ.

Considering (9), we get

E

 sup
0≤ℓ≤µ

|βn(ℓ) − β(ℓ)|2
 ≤ ZΨnµn

n!
+Ψ

∫ µ

0
E
[

sup
0≤v≤ℓ

|βn−1(v) − β(v)|2
]
dℓ.

Utilizing Grownwall inequality

E

 sup
0≤ℓ≤µ

|βn(ℓ) − β(ℓ)|2
 ≤ ZΨnµn

n!
eΨµ.

This provides the error estimate between the exact solution β(µ) and the Picard approximate solutions βn(µ),
for n ≥ 0, of problem (3).

4. Estimating Exponential Behavior with GLP

Assuming there is a single solution β(µ) to problem (3) for µ ∈ [0,∞), we can display the exponential
estimates. Here is how we now calculate the exponential estimate for (3).

Theorem 4.1. Assuming the validity of conditions (H1) and (H2), the following inequality holds:

lim
n→∞

sup
1
µ

log |β(µ)| ≤
7
2

(
ξ1QM

(1 − 2 ȷ)Γ( ȷ)2

)
,

whereM = χ +m1χ +m2 +m3 +m4 +m5 with mi representing positive values.

Proof. We know from claim (12) that

E
[

sup
0≤ℓ≤χ

|β(ℓ)|2
]
≤ 7

[
(1 +

2ξ1MQχ)
(1 − 2 ȷ)Γ( ȷ)2E∥σ∥

2 +
ξ1MQχ

(1 − 2 ȷ)Γ( ȷ)2

]
e

ξ1MQχ

(1−2 ȷ)Γ( ȷ)2 . (16)

Considering (16), for every ℑ = 1, 2, . . . , we obtain

E
[

sup
ℑ−1≤µ≤ℑ

|β(ℓ)|2
]
≤ 7

[
(1 +

2ξ1MQχ)
(1 − 2 ȷ)Γ( ȷ)2E∥σ∥

2 +
ξ1MQχ

(1 − 2 ȷ)Γ( ȷ)2

]
e

ξ1ΛQℑ

(1−2 ȷ)Γ( ȷ)2 .
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Applying Lemma 2.3 to every ε > 0, we obtain

ĉ

w : sup
ℑ−1≤µ≤ℑ

|β(µ)|2 > e

(
7ξ1QΛ

(1−2 ȷ)Γ( ȷ)2
+ε

)
ℑ

 ≤ E
[

supℓ−1≤µ≤ℓ |β(µ)|2
]

e

(
7ξ1QM

(1−2 ȷ)Γ( ȷ)2
+ε

)
ℑ

≤ 7
[
(1 +

2ξ1MQχ)
(1 − 2 ȷ)Γ( ȷ)2E∥σ∥

2 +
ξ1MQχ

(1 − 2 ȷ)Γ( ȷ)2

]
e−εℑ.

It is evident that the series
∞∑
ℑ=1

7
[(

1 +
2ξ1MQχ

(1 − 2 ȷ)Γ( ȷ)2

)
E∥σ∥2 +

ξ1MQχ
(1 − 2 ȷ)Γ( ȷ)2

]
e−εℑ

converges. As a result, invoking the Borel-Cantelli lemma implies that for almost every outcome ω ∈ Ω,
there exists a random index ℑ0 = ℑ0(ω) such that

sup
ℑ−1≤µ≤ℑ

|β(µ)|2 ≤ e

(
7ξ1QM

(1−2 ȷ)Γ( ȷ)2
+ε

)
ℑ

, as ℑ ≥ ℑ0.

This means that for ℑ > ℑ0 and ℑ − 1 ≤ µ ≤ ℑ, we obtain

|β(µ)| ≤ e
1
2

(
7ξ1QM

(1−2 ȷ)Γ( ȷ)2
+ε

)
ℑ

.

Therefore

lim
µ→∞

sup
1
µ

log |β(µ)| ≤
1
2

( 7ξ1QM
(1 − 2 ȷ)Γ( ȷ)2 + ε

)
.

Since ε is arbitrary, the intended phrase becomes the result.

5. Simulation Analysis

To clarify the main findings, illustrations are presented.

Example 5.1. Examine the scalar fractional stochastic differential equation governed by a GLP

cD ȷβµ = βµ + βµd⟨B⟩µ + sin(βµ)dBµ + cos(βµ)dBH
µ +

∫
q≥1
βµL(dµ, dq) + βµ. (17)

Let β(0) = σ(0), and assume that the G-Lévy measure is defined by ν(dq) = dq
(1+|q|2) . The stochastic differential equation

in question (17) will have a unique solution if it satisfies the conditions (H1) and (H2).
For this scenario, we define the following functions:

ϑ1(µ, βµ) = βµ, ϑ2(µ, βµ) = βµ, Λ1(µ, βµ) = sin(βµ), Λ2(µ, βµ) = cos(βµ),
𭟋(µ, βµ, q) = βµ, Π(µ, βµ) = βµ.

Next, we proceed to establish the growth condition for this model.

|ϑ1(µ, β(µ))|2 + |ϑ2(µ, β(µ))|2 + |Λ1(µ, β(µ))|2 + |Π(µ, β(µ))|2 +
∫

c≥1
|𭟋(µ, β(µ), c)|2 ν(dc) + |Λ2(µ, β(µ))|2

= |βµ|
2 + |βµ|

2 + | sin(βµ)|2 + |βµ|2 +
∫

c≥1
|βµ|

2 ν(dq) + | cos(βµ)|2
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≤ 5|β|2 +
∫

c≥1
|β|2

dq
1 + |q|2

≤

(
5 +

π
2

)
+

(
5 +

π
2

)
|β|2

=
(
5 +

π
2

) (
1 + |β|2

)
.

To verify the Lipschitz property, we analyze the boundedness of the differences between the system components with
respect to their arguments.

|ϑ1(µ, y) − ϑ1(µ, β)|2 + |ϑ2(µ, y) − ϑ2(µ, β)|2 + |Λ1(µ, y) −Λ1(µ, β)|2 + |Π(µ, y) −Π(µ, β)|2

+

∫
q≥1
|𭟋(µ, y, q) − 𭟋(µ, β, q)|2 ν(dq) + |Λ2(µ, y) −Λ2(µ, β)|2

≤ 5 |βµ − yµ|2 +
∫

q≥1
|βµ − yµ|2 ν(dq)

= 5 |βµ − yµ|2 +
∫

q≥1
|βµ − yµ|2

dq
1 + |q|2

≤

(
5 +

π
2

)
|βµ − yµ|2.

Consequently, the scalar fractional SDE (17) guarantees a unique solution.
The problem (17) also satisfied

E

 sup
0≤ℓ≤µ

|βn(ℓ) − β(ℓ)|2
 ≤ ZΨnµn

n!
eΨµ,

the error estimate between the exact solution β(µ) and the Picard approximate solutions βn(µ), for n ≥ 0.

Figure 1: Simulation of Exact and Picard Solution
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µ Exact solution Picard Approximation
0.0000 0.00000 0.00000
1.3378 0.91002 0.91843
2.6756 0.39306 0.37901
4.0134 -0.62630 -0.61018
5.3512 -0.61436 -0.62901
6.6890 0.28252 0.29291
8.0268 0.65946 0.65492
9.3645 0.03769 0.03618
10.702 -0.56060 -0.55412
12.040 -0.27511 -0.28462
13.378 0.37158 0.38181
14.716 0.40115 0.39238
16.054 -0.15179 -0.14607
17.391 -0.41648 -0.41835
18.729 -0.04711 -0.04898

Table 1: Table of Computed Values for the Exact and Picard Approximate Solutions

Example 5.2. Consider the scalar fractional stochastic differential equation governed by a GLP

cD ȷβµ =
1
2
βµ + tanh(βµ)d⟨B⟩µ + arctan(βµ)dBµ +

βµ

1 + β2
µ

dBH
µ +

∫
q≥1

βµ

1 + β2
µ

L(dµ, dq) + sin(βµ). (18)

Let β(0) = σ(0), and assume that the G-Lévy measure is given by

ν(dq) =
dq

1 + |q|2
, q ≥ 1.

For this model, we define the following functions:

ϑ1(µ, βµ) =
1
2
βµ, ϑ2(µ, βµ) = tanh(βµ),

Λ1(µ, βµ) = arctan(βµ), Λ2(µ, βµ) =
βµ

1 + β2
µ

,

𭟋(µ, βµ, q) =
βµ

1 + β2
µ

, Π(µ, βµ) = sin(βµ).

Next, we proceed to establish the growth condition for this model.

|ϑ1(µ, β(µ))|2 + |ϑ2(µ, β(µ))|2 + |Λ1(µ, β(µ))|2 + |Π(µ, β(µ))|2 +
∫

c≥1
|𭟋(µ, β(µ), c)|2ν(dc) + |Λ2(µ, β(µ))|2

= 1
4 |βµ|

2 + | tanh(βµ)|2 + | arctan(βµ)|2 + | sin(βµ)|2 +
∫

c≥1

∣∣∣∣ βµ
1+β2

µ

∣∣∣∣2ν(dq) +
∣∣∣∣ βµ

1+β2
µ

∣∣∣∣2
=

(5
2
+
π2

4
+
π
8

) (
1 + |βµ|2

)
.

To verify the Lipschitz property, we analyze the boundedness of the differences between the system
components with respect to their arguments.

|ϑ1(µ, y) − ϑ1(µ, β)|2 + |ϑ2(µ, y) − ϑ2(µ, β)|2 + |Λ1(µ, y) −Λ1(µ, β)|2 + |Π(µ, y) −Π(µ, β)|2
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+

∫
q≥1
|𭟋(µ, y, q) − 𭟋(µ, β, q)|2 ν(dq) + |Λ2(µ, y) −Λ2(µ, β)|2

≤

(17
4
+
π
2

)
|βµ − yµ|2.

Consequently, the scalar fractional SDE (18) guarantees a unique solution.
The problem (18) also satisfied

E

 sup
0≤ℓ≤µ

|βn(ℓ) − β(ℓ)|2
 ≤ ZΨnµn

n!
eΨµ,

the error estimate between the exact solution β(µ) and the Picard approximate solutions βn(µ), for n ≥ 0.

Figure 2: Simulation for Exact and Picard Solution.

µ Exact solution Picard Approximation
0.000 0.59876 0.60848
2.005 -0.39613 -0.41793
4.010 0.05483 0.07174
6.015 0.28146 0.25584
8.020 -0.43383 -0.40823
10.025 0.33137 0.37059
12.030 -0.11526 -0.11774
14.035 -0.13173 -0.11268
16.040 0.28437 0.29837
18.045 -0.30092 -0.26168

Table 2: Table of Computed Values for the Exact and Picard Approximate Solutions



M. Khan et al. / Filomat 40:3 (2026), 953–974 973

6. Conclusion

This work establishes a comprehensive study of Caputo-type fractional stochastic differential equations
driven by G-Lévy jumps, demonstrating the existence and uniqueness of solutions and providing a clear
understanding of the system’s behavior. Exponential estimates were derived to describe the long-term
dynamics of the solutions, offering valuable insights into their evolution over time. Additionally, a detailed
error analysis comparing exact solutions with numerical approximations obtained through the Picard
iterative method highlights the accuracy and reliability of the results.

Directions for future work

Building on the results and methodology presented in this paper, several promising avenues can be
explored to further advance the study of Caputo fractional stochastic differential equations driven by
G-Lévy noise.

Extension to Alternative Fractional-Order Operators

Examine the applicability of the theoretical results to alternative fractional derivatives, including Caputo-
Fabrizio, Prabhakar, and Hilfer operators. Conducting comparative analyses across these different frac-
tional frameworks could offer deeper insights into the mathematical structures and physical interpretations
associated with each type of fractional derivative.

Hybrid Systems with Random Switching

One may consider introducing random or Markovian switching mechanisms, resulting in hybrid
stochastic fractional systems. These models are particularly relevant in the study of cyber-physical systems
and offer a more complex and rich dynamical behavior for analysis.
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