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On the strong Slater condition of linear systems with an evenly convex
constraint set
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Abstract. This paper deals with the stability of the intersection of a given evenly convex set X with the
solution set of a given linear system ¢ whose coefficients can be arbitrarily perturbed. More precisely, we
focus on the set of strong Slater points of ¢ in X, by analyzing firstly the case when X is a closed convex
set, and then the more general case when X is evenly convex. We shall establish dual characterizations for
the aforementioned set of strong Slater points by following well-known characterizations of the solution

set of a linear system. Finally, we apply our results to analyze the consistency of systems with both strict
and weak inequalities defined by lower semicontinuous convex functions.

1. Introduction

Stability in optimization is a fundamental concept that analyzes whether certain elements related to
a problem change when small perturbations are introduced into the model’s data. This analysis is cru-
cial in both theoretical and practical contexts, since in many real-world applications (such as economics,
engineering, or artificial intelligence) the data are often subject to uncertainty or noise.

In the seventies, Robinson [19] developed the first systematic studies on stability in linear systems,
analyzing how small perturbations in the data affected the solution set. Since then, numerous authors have
studied stability conditions for the feasible set [3, 4, 12, 13], the optimal value and the optimal set [5], the
uniqueness of optimal solution [16] or even the boundary of the feasible set [10] of an optimization problem.

In general, the study of stability of a linear system allows us to determine if the system remains consistent
(or inconsistent) under sufficiently small perturbations (due to either computing or measurement errors) of
the data. However, in most cases it is necessary to consider that some of the constraints of such a system
cannot be perturbed (e.g., the sign constraints). In such a case, it is useful to consider an exact constraint
set X which could represent either the solution set of the system formed by all the exact constraints or a
discrete subset of R" (as Z" or {0, 1}" in integer or Boolean programming).
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In this paper we shall consider a non-empty evenly convex set [7] X C IR” which can be expressed as
X:={xeR":{a,x)<b, teW; {a;,x)<by, t €S},
and a linear inequality system,
o:={{a;, x) < b, t €L}, (1)

where (-, -) denotes the standard inner product in R”, W, S and L are arbitrary pairwise disjoint index sets
(possibly infinite) such that WU S # 0, L # 0 and the coefficients are given by two functionsa : T — R" and
b:T — R,being T := WUSULand, a; := a(t) and b; := b(t) for all t € T. We denote by F and FX the solution
set of 0 in IR"” and X, respectively, that is,

F:= {xe]R”:(at,x>Sbt,t€L}

and FX = F N X. We say that o is consistent (with respect to X) if FX # 0.

In a more general context, with X an arbitrary non-empty set and ¢ possibly containing equality
constraints, [1] and [2] analyze the effect on FX of small changes in the coefficients of ¢ and generalize
different stability concepts studied in [11] and [14] for the classical setting, where X = R” and ¢ contains
only inequality constraints.

If X ¢ R" is an arbitrary non-empty exact constraint set and the system ¢ in (1) is consistent (i.e.,
FX := FN X # 0), it is said that o is stably consistent when it remains consistent under sufficiently small
perturbations of the data (see [1] and [11] for details about how the size of perturbations is measured).

In the classical context, where X = R”, [11, Theorem 3.1] establishes six characterizations of the stably
consistent systems, including the so-called strong Slater condition. It is said that ¢ in (1) satisfies the strong
Slater condition if there exist x € R” and ¢ > 0 such that {a;,x) + ¢ < b; for all t € L and, in such a case,
X is called a strong Slater point of 0. We shall denote by Fss the set of all the strong Slater points of o.
Properties and geometry of the set Fss have been recently studied in [22], where it is also obtained a dual
characterization for the non-emptiness of this set (i.e., for the fulfillment of the strong Slater condition) in
terms of the data of o, following similar characterizations provided for the solution set of a system.

In this paper, we analyze the stability of FX for the particular case in which X is an evenly convex set
(i.e., the intersection of a family of open halfspaces). More precisely, we focus on the set of strong Slater
points of ¢ in X, by analyzing firstly the case when X is a closed convex set, and then the more general case
when X is evenly convex.

The paper is organized as follows. Section 2 contains the necessary notation and some basic results on
convex as well as evenly convex sets to be used later. In addition, several results about the relationship
between stable consistency and the strong Slater condition, obtained in previous works, are gathered. In
Section 3, we analyze the strong Slater condition for linear systems with a closed convex constraint set,
obtaining dual characterizations, for both the solution set and the set of strong Slater points, in terms of the
data of 0 and X. Moreover, we analyze conditions under which the set of strong Slater points of ¢ in X is
contained in a closed/open halfspace. Section 4 is devoted to extend the results in Section 3 to the case in
which the constraint set is evenly convex. Finally, Section 5 presents an application to systems with both
strict and weak inequalities defined by lower semicontinuous convex functions.

2. Preliminaries

We begin this section by introducing the notation and basic definitions used throughout the paper. As
usual in convex analysis (see, e.g., [17, 20]), for a non-empty set A C IR” we denote by conv A, cone A, aff A
and dim A the convex hull of A, the convex cone generated by A and the origin, the affine hull of A and the
dimension of aff A, respectively. We consider cone @ := {0,} where 0, is the zero vector in R”. By R, and R,
we denote the sets of non-negative and positive real numbers, respectively, being R, A := {Ax: A 2 0, x € A}
and R, A := {Ax : A > 0, x € A} cones in R” with 0, € R, A. The smallest convex cone containing A U {0,} is
cone A = R, conv A. For an index set T, the space of generalized finite sequences, R, is the linear space
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of those functions A : T — IR whose support, supp A := {t € T : A; # 0}, is finite. The convex cone of the

non-negative generalized finite sequences is denoted by ]RSrT). From the topological side, given A ¢ R", we
denote by cl A, intA and rintA, the closure, the interior and the relative interior of A, respectively. The
Minkowski sum for sets is denoted in the usual way.

A set A C R" is said to be evenly convex (see [7]) if it is the intersection of some family, possibly empty,
of open halfspaces. The evenly convex hull of a set A C IR”, denoted by eco A, is the smallest evenly convex
set which contains A, or equivalently, it is the intersection of all the open halfspaces containing A. From the
definition, given x € R", x ¢ eco A if and only if there exists z € IR” such that (z,x —x) <0 forallx € A. In
particular,

0, ¢ ecoA ifand onlyif {(x,z) <0, x € A}is consistent. (2)

Further properties of the evenly convex hull operator are collected in [6, Chapter 1].

The next proposition recovers some results about the convex hull and the evenly convex hull of the
sum of certain sets. More precisely, statements (i), (i) and (iif) can be found in [23, Theorem 4.12], [15,
Lemma 2.1] and [15, Proposition 2.2], respectively.

Proposition 2.1. Let A, B be non-empty sets in IR". Then the following statements hold:

(1) conv(A + B) = conv A + conv B.
(i1) conv(A + R;B) = conv A + cone B.
(ii1) eco(A + R B) = eco(conv A + cone B).

Given two subsets C,D c IR", C is said to be openly separated from D [18] if there exists an open halfspace
H={xeR":(ax) <b}suchthat C c Hand D c R"\H. Analogously, C is said to be closedly separated from
D if there exists a closed halfspace H = {x € R" : {(a,x) < b} such that C ¢ H and D ¢ R"\H. Thus, C is
openly separated from D if and only if D is closedly separated from C. Moreover, it is easy to prove that, if
D is a cone containing the origin, then C is openly separated from D if and only if there exists a € R" such
that (a,x) < (a,y) forall x € C,y € D (equivalently, {(a,x) <0< (q,y) forallx € C,y € D).

Proposition 2.2. Let C,D c R". Then, 0, ¢ eco(C + R, D) if and only if —C is openly separated from R, D.

Proof. As R.D is a cone containing the origin, —C is openly separated from R, D if and only if there exists
a € R" such that (a,—x) < {(a,y) for all x € C,y € R, D. Equivalently, we have that (—a,x + y) < 0, for all
x € C,y € R,D and, by (2), this condition characterizes 0, ¢ eco(C + R.D). O

As a consequence of Propositions 2.1 and 2.2, one has that 0,, ¢ eco(C + R, D) if and only if — conv C is
openly separated from cone D. A further straightforward consequence of Proposition 2.2 is the following
result.

Corollary 2.3. Let Q C R™*!. Then,
0,41 € eco ((On, 1)+ 1R+Q) if and only if (0,,—1) ¢ clcone Q.
Proposition 2.4. Let A, B, C be non-empty sets in R". Then,
0, ¢ eco((A +R,C) U B) if and only if 0,, ¢ eco (AU B) + R,C).

Proof. (&) Clearly, A+ Ri.Cc(AUB)+R,Cand Bc B+ R,C c (AUB)+ R;C. Hence, (A+R;C)UB C
(AUB)+IR,C and so, eco ((A + R, C)U B) C eco ((A UB) + ]R+C). This shows that 0,, ¢ eco ((A UB) + ]R+C)

implies 0, ¢ eco ((A + R, C)U B).
(=) Assume that 0, ¢ eco ((A + R,.C) U B). By (2), there exists z € R" such that (z,x) < 0 for all

x € (A +R.C) U B. Particularly, one has (z,b) < 0forallb € B, and (z,a+ 6c) < Oforalla € A, c € C and
0 2 0. It easily follows that (z,c) < 0for all c € C. Then, (z,b+6c) <0forallb € B,c € Cand 6 > 0, and so

(z,x) <0 forall x € (AU B) + R,C. This means, again in virtue of (2), that 0, ¢ eco ((A U B) + ]R+C). O
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Now we recall two polar operators in the literature. For a proper set A € R”, we consider

A ={yeR":(x,y) <0, Vx € A},
A ={yeR": (x,y) <0, VYx e A},

assuming that R” is the polar in the first sense of {0,} (and in the second sense of @), and conversely. The
set A° is a closed convex cone containing the origin, while A¢ is an evenly convex cone omitting the origin.
Furthermore, one has A°° = clcone A, and so A = A°° if and only if A is a closed convex cone. In the same
way, one has A = A% if and only if A is an evenly convex cone omitting the origin.

We shall denote by F and Fsg, the solution set and the set of strong Slater points of ¢ in (1), respectively,
that is,

F={xeR":{a;,x) <b;, tel},
Fss:={xeR":3de>0,{a;, x)+¢e <b;, teLl.

Obviously, F is a closed convex set. Concerning the geometry of Fss, it has been recently studied in [22] joint
with further characterizations and properties of the set of strong Slater points. Moreover, for a consistent
system o as in (1), [22, Proposition 3.5] establishes the equivalence between the strong Slater condition and
a geometrical condition depending on the coefficients of o, recovering the following result which can be
found in [11, Theorem 3.1] and [1, Lemma 1].

Proposition 2.5. Given a consistent system o as in (1), the following statements are equivalent to each other:
(i) o is stably consistent.
(if) o satisfies the strong Slater condition.
(7i1) 0,41 ¢ clconv {(a;, by),t € L}.

Given a non-empty set X C R, the system ¢ in (1) is said to satisfy the strong Slater condition with respect
to X if there exist ¥ € X (called strong Slater point) and € > 0 such that {(a;,x) + € < b; for all t € L. We shall
denote by F§; the set of strong Slater points with respect to X, having that F5, = Fss N X. Analogously,

FEISX = Fgs N cl X. From this definition, one has the following set containments:

FX c FX < r
U U U 3)
X 1X

FSS (- ng Cc Fgs

In this context, in [1] the authors introduce a new geometrical condition, the so-called G-consistency, in order
to extend condition (iif) in Proposition 2.5 to the general case. It is said that o is G-consistent if the condition

0ns1 ¢ cl (K(X) + conv {(as, by), t € L} )

holds, where K(X) := {(a), y) € R™ 2 (w,x) < Y, Vx € X} is a closed convex cone (the so-called weak dual cone
of X, when X is a closed convex set [8]). The following result, obtained from [1], establishes the relationships
between the stable consistency, the G-consistency and the strong Slater condition in this general setting.

Proposition 2.6. If FX # 0, then the following statements hold:
(i) If o is stably consistent, then o is G-consistent.
(ii) If o is G-consistent and X is convex, then FEISX 0.

(iii) If FX; # 0, then o is stably consistent.
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In the particular case that X is a closed convex set, it can be expressed as the solution set of a certain
linear system. For this case, the following characterization is obtained as a consequence of Proposition 2.6.

Corollary 2.7. Let X := {x € R" : {a;,x) < by, t € W}. If FX # 0, then the following statements are equivalent to
each other:

(i) o is stably consistent.
(i) 0,41 ¢ cl(cone {(a;, by),t € W} + conv {(a;, by), t € L}).
(iif) Fé(s *0.

Proof. We just need to show that the G-consistency of ¢ is equivalent to statement (ii). Since X = {x €
R" : {a;, x) < by, t € W}, the nonhomogeneous Farkas Lemma for linear semi-infinite systems (see, e.g., [14,
Corollary 3.1.2]) establishes that

K(X) = clconef(a;, b;), t € W; (0,,, 1)}.

Then, since cone {(a;, b;), t € W} C K(X), the G-consistency of ¢ implies condition (if). Now, we prove the
converse implication. Indeed, if

Ous1 € cl (K(X) + conv {(as, by), t € L} ) = cl ( cone{(a, by), € W; (0, 1)} + conv {(as, by), t € L} ),

then there exist sequences {yk}keN C ]Riw), {yk}keN c R, (Mhen C ]R(f) with Y, )\’t‘ =1 forevery k € N,
such that 0,41 = I}im Yoiew y’t‘(at, by) + Yier )\]f(ﬂt/ by) + )/k(On, 1). Taking an arbitrary X € FX, one gets

0= (Or, (% ~1)) = lim )" b ®) — br) + ) A (Gar, B = b) =7~
%W =
Therefore, I}im Yiew y’t‘((at, xy—b) =0, I}im Yie /\’t‘((at, Xy — b)) =0and ]}im yk = 0. Hence,
Opr = lim " pib(as, br) + ) Af(ay by)
ke teW telL

and so,
0,41 € cl(cone {(as, by), t € W} + conv {(a;, by),t € L}),

which concludes the proof. O

Observe that we can recover Proposition 2.5 from the above result when X = R” (taking (a;, by) = Op41
for allt € W).
3. Strong Slater condition with a closed convex constraint set

In this section we are interested in the analysis of the strong Slater condition of the linear system
o := {{a;,x) < by, t € L} introduced in (1) with a closed convex constraint set of the form

X:={xeR":{a,x)<b, te W} 4)
In other words, we are interested on the set
FX ={xeR":{a,x) <b, t€ W; Je>0,(a,x)+ & < by, te L.

Our objective is to obtain the counterpart for F}; of the well-known characterizations of FX, the solution set
of o with respect to X.
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We firstly observe that FXis nothing else that the solution set of the linear system {(a;,x) < by, t € T},
where T = LU W. Throughout the paper, in order to shorten the notation, we associate to this linear system
the sets

Cr:={(a;, by),t € T} and
D :=Cr U{(0,, 1)},

which allow to define two prominent cones in linear semi-infinite programming (see, e.g., [14]) associated
to that system, say the second order moment cone, defined by N := cone Cr, and the characteristic cone, defined
by K := cone D, having that K = N + R, {(0,, 1)}. Applying the classical polarity operator to D, we get

D° = {(x,x4+1) € R" X R : {as, x) + byxy41 <0, € T; xy41 <0},

Next result summarizes several characterizations of the set FX of solutions of ¢ with respect to the closed
convex set X in (4).

Theorem 3.1 (Characterizations of FX). Forx € R", one has
X € FX ifand only if (X, —1) € D°.
Furthermore, the following statements are equivalent:
(i) o is consistent with respect to X (i.e., FX # ).
(i1) There exists (x, x,+1) € D° such that x,,11 # 0.
(iii) (0y,—1) ¢ clK.
(iv) (0,,—-1) ¢ cIN.
(©) Ot & eco((04,1) + R,Cr).

Proof. The first statement and the equivalence between (i), (if) and (iii) follow from [22, Theorem 3.1] applied
to the system {{a;,x) < by, t € T}. The equivalence between (iii) and (iv) follows from [14, Lemma 4.1],
whereas the equivalence between (iv) and (v) follows from Corollary 2.3. [

Now, we associate to Fg(s the sets

C:=C),UC;'u{(0,,1,-1)} and
D:=CU{(0,,0,1)},

where C9 := Cy X {0} = {(a;, by, 0),t € W} and C;* := Cp x {-1} = {(a, by, —1),t € L}. In this case, one has

D° = {(x, Xn41, Xn42) € R" X RX R :{as, x) + bixps1 <0, t € W;
@, %) + bixps1 — X402 <0, t € L;
Xn41 — Xn2 < 0; x40 <0}

Inspired by [21, 22] and proceeding similarly as in former lines, we will consider the following cones
associated to F;(s, say N := coneC and K := cone D, having that K = N + R.{(0,,0,1)}. Now we are in
a position to establish corresponding characterizations of the set F§ of the strong Slater points of ¢ with
respect to the closed convex set X in (4).

Theorem 3.2 (Characterizations of F?S(S). For x € R", one has
X € FX; ifand only if (x, -1, —¢) € D° for some £ €]0,1]. ®)

Furthermore, the following statements are equivalent:
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(i) o satisfies the strong Slater condition with respect to X (i.e., Fx; # 0).
(i1) There exists (x, Xy+1, Xu+2) € D° such that x,.o # 0.
(i) (0,,0,-1) ¢ clK.
(iv) (04,0,-1) ¢ cIN.

(@) Ourz ¢ eco((04,0,1) + R,C).

Proof. The first statement in (5) easily follows from the definition of F5; and the expression of D°.
[(}) @ (i1)] It is a straightforward consequence of (5).
[(ii) & (iii)] Assume that x,,4, = 0 for all (x, x,,41, X,+2) € D°. In this case, since

<(0nr 0/ _l)/ (x/ xn+1/xn+2)> = 0 S O/

for all (x, X,41, Xn4+2) € D°, then one has that (0,,0,-1) € c1 K = D°°. Conversely, if (0,,0,-1) € Il K = D°°,
then

_xﬂ+2 = <(0nr 0/ _1)/ (x/ xn+1/ xn+2)> S 0
for all (x,x,41,Xn12) € D°. Since x,.2 < 0 for all (x, X411, Xus2) € D°, one concludes that x,,, = 0 for all
(X, Xp41, Xn42) € D°.

Finally, the equivalence between (iif) and (iv) follows from [14, Lemma 4.1], whereas the equivalence
between (iv) and (v) follows from Corollary 2.3. [

Observe that whenever X = {x € R" : (0,,,x) < 0} = R", Theorem 3.2 reduces to [22, Theorem 3.3].
Furthermore, we are not explicitly assuming in Theorem 3.2 the non-emptiness of FX to characterize the
existence of strong Slater points within X (the non-emptiness of F?S), although it is a condition which is
implicit as we can see in the following result.

Proposition 3.3. Let X be a closed convex set as in (4). The following statements are equivalent:
(i) FX #0.
(it) FX # 0 and 0,41 ¢ clconv(Cy + R, Cy).

Proof. [(i) = (if)] pré(s # 0, then FX # @by (3). Now assume, on the contrary, that 0,1 € cl conv(C.+R,Cy) =
cl(conv Cp, + cone Cyy). Then, there exist sequences { pk}keN C ]Riw), (A Yenw © ]RS? with Y, )\’t‘ =1 for every

k € N, such that 0,41 = ]}im Yoiew y’;(at, b)) + Yier /\’f(llt, b;). Hence, one can write

(04,0,-1) = lim }" pf(ar, b, 0) + Y Af(ar, by, 1),
teW teL

and so (0,,0,-1) € cI N. This implies by Theorem 3.2 that Fé(s = ( and so, a contradiction.

W)
+ 7

[(i)) = ()] If F?S = 0, then (0,,,0,-1) € cl N by Theorem 3.2. Hence, there exist sequences {t/*};en € R
(A hen € R and {6F)ren € R, such that

(0,,0,-1) = lim Z 15 (s, by, 0) + Z Ay, by, —1) + 65(0,, 1, -1). (6)
tew

teL

If {6} is unbounded, then we may assume limy_, e 6F = +00. Hence, from (6), one has

Ouiz = lim ) )7 b b, 0) + ) (5 M@, b, =1) + (04, 1,-1),
teWw

tel
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which implies
(05, =1) = lim Y @ @, by + ) (09 Ak @, b € IN
teW

telL

and so, by Theorem 3.1, FX = (. Assume now that {6*} is bounded. Then, it contains a convergent
subsequence and, for brevity, we write limj_,« o =6 > 0. From (6), we have

Ousr = lim Y (e, br) + ) Mo, br) +6"(0,, ), 7)
- teWw tel
1:k1EZA’;+6’<. ®)
teL

Since FX # 0, for any X € FX one has

0= (O, (%, =) = lim ) ke, ) = by) + ) Af(Gar, ) = by) = 6.
teW

teL

Therefore, I}im Yoiew y’t‘((at,@ -by) =0, ]}im Yier /\’t‘((at, Xy—b) =0and 6 = l}im & = 0. Taking this into

—00

account in (7) and (8), we get that 0,41 = %1_)1‘{)10 Yiew i@, be) + Lyer A¥ar, by) and 1 = ]}1_{?0 YL AF. Since

Y% := Yo AF > 0 for k large enough, then

Ouir = lim )" () (e, b) + ), 052 @i, by)
teW

teL

with Y, (F)71AF = 1, which shows that 0,41 € cl(cone Cyy + conv Cr). [

Observe that, by applying Proposition 2.1(ii) to condition (ii) in Proposition 3.3, we recover the equiva-
lence between conditions (if) and (ii) in Corollary 2.7.

As a consequence of Proposition 3.3 and Theorem 3.1, one has that F, # 0 if and only if (0,, —1) ¢ cIN
and 0,41 ¢ clconv(Cy + R, Cw), that is, in order to guarantee the fulfillment of the strong Slater condition
with respect to a closed convex set, one has to check two conditions in the space R"*!. Theorem 3.2 shows
that these two conditions are indeed equivalent to a unique condition in the space R"*2.

A weak or strict inequality is said to be a consequence (or a consequent relation) of the set Fi,‘(s provided
that F}, is contained in the (closed or open) halfspace defined by such an inequality.

Proposition 3.4 (Consequent weak relations of F,). Let (2,b) € R" X R, and assume that Fy; is non-empty.
Then, the following statements are equivalent:

(i) {a,x) < b is a consequence of FX..
(ii) (a,b,0) € I K.
(iii) (a,b) € clK.
(iv) (a,x) < bis a consequence of FX,

Proof. [(i) = (ii)] Assume that {a,x) < b is a consequence of FX,, that is, F5; C {x € R" : (a,x) < b}. We shall

prove that (4,b,0) € D°° = cl K. For that purpose, given (x, X,11, X442) € D°, we distinguish two cases:

e Case 1: x,41 < Xp0 < 0. In this case, we see that (_xx -, -1, _XY”—*ZI) € D° where 0 < iL*’;* < 1. According
n+ AN+ n+

to Theorem 3.2, x := ﬁx € F;(s and so, by assumption, {a,x) < b, that s, (g, x) + bx,.1 < 0.
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e Case 2: X1 < Xp42 = 0. For X € FY,,

(e, xh o xh L) o= (1= A)(x, X441, 0) + AR, -1, %) € D°

let € €]0, 1] be such that (x, -1, —¢) € D°. Then,

A
n+1’

A

xn+2

forall A €]0,1[. Since x}, | < x} , <0, the vector (x*, x

1 < ) corresponds to the Case 1. Thus,

(1= A)(a, x) + bxya1) + A({a, Xy = b) = (@, x") + bx?, | <0

for all A €]0,1[. By taking limits when A — 0, one has {a, x) + bx,.1 <0.

Since {a, x) + bx,+1 < 0 for all (x, x,4+1, Xn42) € D°, then (a,b,0) € D*° = cl K.
[(i1) = (iif)] It is a straightforward consequence of the definitions of the cones K and K.
[(ii]) = (iv)] It follows from [14, Corollary 3.1.2].
[(iv) = ()] 1t easily follows since Fi, C FX. [

We observe from the above result that the set of all the weak inequalities which are consequence of F},,

coincides with the weak dual cone of its closure, FX. To see that cl F5; = FX whenever F} is non-empty, we
firstly observe that
dFf =c(FssnX)CclFssnNcdX=FNnX=FX

since X is closed and clFss = F (see [22, Lemma 2.1(i)]). Now, given x € FX and x € FX

o it follows that
X = limy o x* where x* := Ax + (1 - A)x € FX; forall A €]0,1[. Thus, X € clF; .

Proposition 3.5 (Consequent strict relations of F}). Let (a,b) € R" X R, and assume that F is non-empty.
Then, {a,x) < b is a consequence of F3 if and only if

(0,,0,-1) € clcone (D U {(—a,—b,0)}).
Proof. Since Fé(s is non-empty, then the set containment F?S C {x € R": {(a,x) < b} is equivalent to
{x e R" : {(—a,x) < =b; {a;,x) <b;, te W, e >0,{a;,x)+ec<b,telL} =0,
and this is equivalent, by Theorem 3.2, to (0,0, —1) € clcone (D U {(-a,-b,0)}). O

Proposition 3.6. Lef (a,b) € R" X R, and assume that F?S is non-empty. If (a,b,c) € c1'K for some ¢ < 0, then
(a,x) < b is a consequence of Fy.

Proof. Assume that (a,b,c) € cl'K for some ¢ < 0 and let x € F?S. Since (x, -1, —¢) € D° for some € €]0, 1] by
Theorem 3.2, and cl K = D°°, then

(a,X)y—b<{a,x)y—b-ce={@a,b,c),x-1,-¢) <0.
Hence, (1,X) < b, and so Fi, C {x e R" : (a,x) <b}. O

As a consequence of the previous results, by considering the case X = R" we recover [22, Proposi-
tions 3.6 and 3.7].

Corollary 3.7 (Consequent relations of Fsg). Let (a,b) € R" X IR, and assume that Fss is non-empty. Then,
(1) <a,x) < bisa consequence of Fsg if and only if

(ll, bl 0) € Cl Cone{(at/ btr _1)/ te LI (Onl 1/ _1)1 (OVI/ 0/ 1)}

(i1) {a,x) < b is a consequence of Fss if and only if

(0,,0,-1) € clcone{(—a, —b,0); (a;, by, —1),t € L; (0,,,1,-1); (0,, 0, 1)}.
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4. Strong Slater condition with an evenly convex constraint set

In this section we are interested in the analysis of the strong Slater condition of the linear system
o := {{a, x) < by, t € L} introduced in (1) with an evenly convex constraint set of the form

X:={xeR":{a,x)<b, t € W;{a;,x) <b;, t€S}, 9)
whose closure, according to [9, Proposition 1.1], is
dX={xeR":{a,x)<b, te WUS}. (10)
In other words, we are interested on the set
Fi ={xeR":{a;,x) <by, t € W{a,x) <by, t€S; e >0,(a,xy+e < by, t €L

Proceeding as in Section 3, our objective is to obtain the counterpart for F§; of the well-known characteri-
zations of FX, the solution set of ¢ with respect to X.

Let T := LU W U S. We firstly observe that F¥X is nothing else that the solution set of the linear system
{ag, x) < by, t € LU W; {ay, x) < by, t € S}, whose consistency is equivalent to the consistency of the system

{(as + aa,, x) < bs + aby, (s,v,a) € S X (LU W) X R, }. (11)

We associate to this system the set H := (Cs + R Cruw) U {(0s,1)}. Applying the e-polarity operator to H,
we get

H® ={(x,x,41) € R" X R :{a;, x) + byxp11 <0, t € LUW;
(as, x) + bsxy41 <0, 8 €S; X441 <O}

Theorem 4.1 (Characterizations of FX). Forx € R", one has
x € FX ifand only if (x,~1) € H".
Furthermore, the following statements are equivalent:
(i) o is consistent with respect to X (i.e., FX # ).
(i) H® # 0.
(iif) Opt1 ¢ ecoH.
(iv) 0,41 ¢ eco(Cs + R, Cruw) and (0, —1) ¢ cl cone Cr.
(©) Oui1 ¢ eco((Cs U (0, D) + Ry Crow).

Proof. The first statement and the equivalence between (i), (if) and (iii) follow from [22, Theorem 3.2] applied
to the system in (11). The equivalence between (iii) and (iv) follows from [15, Lemma 3.1], whereas the
equivalence between (iif) and (v) follows from Proposition 2.4. [

Remark 4.2. Observe that statement (iii) above can be equivalently written as 0,41 ¢ ecolR,,H as a conse-
quence of (2). The set ecoR,,H is precisely the so-called strict dual cone (see [8]) of the solution set of the
system in (11), provided that it is non-empty.

Now, we shall consider the set Fs of Slater points of ¢ in (1), that is,

Fs:={xeR": {a;,x) < by, t € L}.
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Obviously, Fs is an evenly convex set such that Fss € Fs C F. Further geometric properties and dual
characterizations for this set have been recently established in [22]. It is also natural to consider the set
F¥ := Fs N X. The following result, which is a straightforward consequence of Theorem 4.1, characterizes

the consistency of F§, which is equivalent to the consistency of the system

{(a, + aay, x) < by + aby, (v,w,a) € (SUL) X WX IR,},

in terms of the set H := (Csur + R4Cw) U {(04, 1)} defined from the coefficients of the system. In this case,

we observe that

HE = {(x, Xp41) € R" X R : (a1, %) + b1 <O, t € W;
(a5, x) + bsx,01 <0,s€ SUL; x,41 <0}.

Corollary 4.3 (Characterizations of F§). For x € R", one has
X € FX ifand only if (X, -1) € H'.
Furthermore, the following statements are equivalent:
(i) o satisfies the Slater condition with respect to X (i.e., F§ # 0).

(ii) He # 0.

(iii) 0,41 € eco H.

(1v) 0,41 ¢ eco(Csur + Ry Cw) and (0, —1) ¢ cl cone Cr.

(©) Ot ¢ eco((Csur U (0, 1)) + R, Cyy).

Next, proceeding as in the previous section, we associate to Fé(s the sets

C = C?/V U Czl U {(Onl 1/ _1)}/
7’{ = (Cg + R+C) U {(On/ 0/ 1)} ’

where Cg = Cs X {0} = {(a;,b:,0),t € S}, Cg\/ = Cw X {0} = {(a1,b:,0),t € W} and Czl = Cp x{-1} =

{(a;, by, —1),t € L}. In this case, one has

HE = {(x, Xp11, Xns2) €E R" X R X R :{a;, x) + bixyp1 <0, t€S;
(a;, x) + bixy1 <0, teW;
(at, x) + bixys1 — X0 <0, t€L;
X+l — Xna2 < 0; X0 <0}

Theorem 4.4 (Characterizations of FX.). For x € R", one has
X € FX; ifand only if (X, -1, —¢) € H° for some £ €]0,1].
Furthermore, the following statements are equivalent:
(i) o satisfies the strong Slater condition with respect to X (i.e., Fa # 0).
(it) H® #0.
)
)

(iii) Opip ¢ ecoH.

0
(iv) 0442 & eco(Cy + R.C) and (0,,0,-1) ¢ clcone(C3 U C).

(12)
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(v) Onsz ¢ eco((C3 U {(0,,0,1)}) + R,C).

Proof. The equivalence in (12) easily follows from the definition of F§; and the expression of H°.
[(}) & (ii)] It is a straightforward consequence of (12).
[(@) & (iii)] Let (x, X141, Xp12) € HE. If 0,40 € ecoH C H*, then

<(OTLI O/ 0)/ (x/ x?’l+1/ xn+2)> < 0/

meaning 0 < 0 which is impossible. Thus, 0,42 ¢ ecoH. Conversely, if 0,,20 ¢ ecoH, by (2), there exists
(x, X441, Xpan) such that {(x, x,411, X42), (4,0, w)) < 0 for all (u,v,w) € H. Hence, (x,x,41, Xn12) € H° and so
He + 0.

[(iii) & (iv)] It follows from [15, Lemma 3.1].

[(iii) © (v)] It is a consequence of Proposition 2.4. [

According to Remark 4.2, statements (i) to (v) in the above Theorem are also equivalent to the condition
0n+2 ¢ eco R++7‘{.

Proposition 4.5. Let X be an evenly convex set as in (9). The following statements are equivalent:
N X
(i) Fg5 # 0.
(it) FX # 0 and 0,41 € clconv(Cr + R, Cypyus).
(iii) FX # 0 and 0,41 ¢ cl(conv(Cy U {(0,,1)}) + cone Cyyus).

Proof. [(i) = (i)] If Fé(s # 0, then FX # (0 and Fglsx # 0 by (3). As X is a non-empty evenly convex set defined
as in (9), by [9, Proposition 1.1], we have

X :={xeR": {a,x)< b, te WUS}, (13)

and by applying Proposition 3.3, FngX # 0 implies 0,11 ¢ clconv(Cr + R+Cwuys).
[(i) = (iii)] Assume that FX # @ and 0,,1 € cl(conv(Cy U {(0,,1)}) + cone Cus). Then, there exist
sequences {1 }en C IRErWUS), {(AYen © ]Rﬂf) and {6"ken € Ry with Yiep AF + 65 = 1 for every k € N, such

that 0,41 = ]}im Yiewus [u’t‘(at, by) + Yier /\’f(ut, by) + 6%(0,,,1). As {6*} is bounded, then it contains a convergent

subsequence and, for brevity, we write limj_, & =6 > 0. Then we have

Opst = lim Y pif(ar, b))+ ) Aba b) + 5(0,, 1), (14)
teWus teL
1= lim Z AF 45, (15)
oL

If 6 = 0, then (14) and (15) turn into 0,41 = I}im Yrewus b (ar, by) + Yiep Af(ar, by) and 1 = I}im YL AF. Since
Y% := Yyep AF > 0 for k large enough, then
Ouir = lim )" A e, b) + ) 057 A b

teWus teL

with Y, (yk)’lA’t‘ = 1, which shows that 0,11 € cl(cone Cyys + conv Cp) = clconv(Cy + R, Cwys) and (if)
fails.
If 6 > 0, then (14) becomes

O =1) = lim Y 57 ufa,b) + ) 67 Ay, by),

teWuSs teL
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which implies that (0,, —1) € clconeCr, being T = L U WU S. By applying Theorem 3.1, we obtain that
FX = @, which contradicts FX # @ and (i) fails again.

[(iii) = (i)] On the one hand, if FX # 0, by Theorem 4.1, one has 0,11 ¢ ecoH = eco((Cs + R,Cruw) U
{(0,, 1}) and so, by (2), there exists (1,v) € R” X R such that {(&,v), (x, x,+1)) < O for all (x,x,4+1) € H. In
particular, ((1,v),(0,,1)) = v < 0 and, by letting u := -4, one has that

<(Fl’7/ _1)/ (ﬂs, bs) + /\(at/ bf)> < 0/ (16)
forallse€S,t € LUW and A > 0. From (16), we obtain ((1, —1), (a5, bs)) < 0 for all s € S by letting A = 0, and

((u,-1), (a;, b))y < 0 forall t € L UW, by taking limits when A — co after dividing by A.

On the other hand, if 0,11 ¢ cl(conv(Cr, U {(0,, 1)}) + cone Cwys), then there exist (o, f) € R* xR and y € R
such that (La, B), (x, xn41)) < ¥ <A(a, ﬁ)L(On,O» =0, forall (x, x,+1) € conv(CrU{(0,, 1)})+cone Cyus. Then, by
taking (a, B) := —%(a, B), we have ((a, B), (x, X4+1)) < —1 < 0, for all (x, x,,41) € conv(Cr U{(0,, 1)}) + cone Cyyus.

In particular, we have ((EZ,E), 0,,1)) = ﬁ~< 0 and

(@, B), (a1, by) + u(ar, by)) <0, (17)

foralll € L, t € WUS and y > 0. In the same way that in the previous case, we can obtain that
((a,B), (a,by)y < 0 foralll € L, and {(«, B), (at, by)) <O forallt € WU S.

Now, by consider (a,b,c) := (u,-1,0) + (a, E, —1), it is easy to prove that
<(ﬂ, b/ C)I (x/ le+1/ xn+2)> < 0

for all (x, X,41, X442) € H = (C3 + R,C) U {(0,,0,1)}, so that 04> ¢ ecoH by (2), and F; # 0 by Theorem
44. OO

Whenever X is a closed convex set (i.e., if S = 0), then Proposition 3.3 follows as a consequence of
Proposition 4.5.

Next, we observe that if a linear system ¢ is consistent with respect to an evenly convex set X, then it
satisfies the strong Slater condition with respect to X if and only if it does with respect to its closure cl X,
i.e., if and only if ¢ is stably consistent (see Corollary 2.7).

Corollary 4.6. Let X be an evenly convex set as in (9). If FX # 0, then FX, # 0 if and only if FSX # 0.

Proof. 1f FX # 0, by Proposition 4.5, we have the equivalence between F§; # 0 and

0n+1 ¢ cl COI’IV(CL + ]R+CWU5). (18)

Moreover, by (3), FX # 0 implies F'X #  which together with (18) is equivalent to FEX # 0 by (10) and
Proposition 3.3. O

Although, under the assumption FX # 0, the strong Slater conditions with respect to X and with respect
X

to cl X are equivalent, the sets Fg, and Fglsx may not coincide, as the following example illustrates.
Example 4.7. Let X := {(x1,x2) € R?>:—x; <0, —x,<0land o= {x1 + x» < ¢t, t €]1,2]}.
It is easy to see that F = {(x1,x2) € R? : x1 + x, < 1}. Since (0,0) € Fss and Fss # 0 implies

intF = {(x1,x) € R®:x;+x, <1} CcFgs C F

(see [22, Lemma 2.1]), we need to check whether the points in the line r = {(a,1 — @) : a € R} are strong
Slater points or not. For each a € IR, the points (a, 1 — ) are not strong Slater points since, for every ¢ > 0,
onehas 1+ ¢ >tfort€]l, min{l + ¢,2}[. Consequently, Fss = int F.

In this case, X = R}, FIX = conv{(0,0),(1,0),(0,1)}, F&X = F¥\(conv{(1,0),(0,1)}) and F =

F¢X\(conv{(0,0), (0,1)}), so that F{X # FX (see Figure 1).
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(0,1)¢ (0,1) 0

(0,0) (1,0) (0,0) (1,0)

cl X

Figure 1: The sets Fg;™ and Fg(s associated to ¢ in Example 4.7.

Now, we analyze the consequent relations of F3; under the assumption of the even convexity of the
constraint set X.

Proposition 4.8 (Consequent weak relations of ng)' Let (a,b) € R" X R, and assume that Ff@(s is non-empty.

Then, {a,x) < bis a consequence of FX; if and only if it is a consequence of F&.

The proof of this result is straightforward. We then refer to Proposicion 3.4 for further equivalent
statements of consequent weak relations of Fi.

Proposition 4.9 (Consequent strict relations of FY.). Let (a,b) € R" X R, and assume that F%; is non-empty.
Then, {a,x) < b is a consequence of Fi; if and only if

0us2 € eco ((CZ U {(0,,0,1)}) + R, (C U {(-a,~b,0)})).

Proof. Since Fé(s is non-empty, then {a,x) < b is a consequence of F?S (i-e., Fé(s C{xeR":{ax)<b}is
equivalent to

{xeR": (—a,x) < =b; {as,x) < b, t e W, {as,x) <b;, t€S; Je>0,{ap,xy+e<b, telL}=0.

And this is equivalent, by Theorem 4.4, to 0,42 € eco ((Cg U {(0,,0,1)}) + R.(CU {(-a,-b, O)})). O

Proposition 4.10. Let (a,b) € R" X R, and assume that FX; is non-empty. If

On1 € eco ((Csur + Ry(Cw U {(=a,=b)1) U {04, 1)}), (19)
then {a,x) < b is a consequence of F.
Proof. Assume that (19) holds. Then, by Theorem 4.1, this means that the system
{ay, x) <, t € L;{a, x) < by, t € S;{a, x) <b, t € W;{a,x) > b}

is not consistent. This implies that if X € F? := Fs N X with Fg := {x € R" : {a;,x) < b;,t € L}, then {(a,x) < b.
Since 0 # F3; C F{, one gets that (a,x) < bis a consequence of F§,. [
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5. Application to systems with convex inequalities

Now we apply the former results to provide necessary and sufficient conditions for the consistency of
systems with both strict and weak inequalities of the form

= {fi(x) <0t € W; fi(x) <0,t€ S}, (20)

determined by proper lower semicontinuous convex functions f; : R” — R where R := RU {+oo}. This kind
of systems were analyzed in [8] in the context of set containments.

For a function f : R” — R, its effective domain is dom f := {x € R" : f(x) < +oo} and its epigraph is
epi f := {(x,r) € R"! : f(x) < r}. The Legendre-Fenchel conjugate of f is the function f* defined, for every
x* € R", by f*(x) = sup, . {{x", x) — f(x)}. If f is a proper lower semicontinuous convex function, then
f — f*)&.

We observe that the solution set of 7 is not necessarily evenly convex (even when S is a singleton).

Example 5.1. Consider the functions fi(x) = x7 + x3 — 1 defined on R? and f,(x) = x; — v/x; defined on its
effective domain dom f, = {(x1,x2) € R? : x, > 0}. Both functions are proper lower semicontinuous convex
(it is easy to see that their lower level sets are closed and convex), and so f; = f* for i = 1,2. We shall
consider the system

T={fi(x) <0, foa(x) < 0}.

Since f;( y
1(y) =3 +1and

=L ify =11, <0
" — 4y, 1wy Y2 !
) { +o0, otherwise,

one has that X := {x e R?: f1(x) <0} = {x € R?: y1x1 + 1oxp < % +1,y € R*} and

() <0} ={Fe>0, LX) +e<0}={Fe>0,x1 + yoxs + € < 5,y2<0}.
2

Therefore, the solution set of T coincides with the set of strong Slater points of the linear system {x; — tx; <
ﬁ,t > 0} with respect to the closed convex set X, say Fé(s, which is not an evenly convex set. Observe that
the open separation property from outside points fails at the origin, having that (0,0) € (eco FX)\F&; (see
Figure 5.1).

X
Fgs

Figure 2: The solution set of 7.

Theorem 5.2 (Necessary and sufficient conditions for the consistency of 7). Let f; : R" — R be proper lower
semicontinuous convex functions for all t € WU S. Consider the following statements:
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(@) (0,,0,-1) ¢ clcone [( U epi f; x {O}) U (U epi f; X {—1}) U {(0,,1, —1)}];
teW teS
(i) T ={fi(x) <0,t € W; fi(x) <0, t € S} is consistent;

(iii) 01 ¢ eco [{{epi f;,t € S} + R.fepi f;,t € W} U {(0,, D}]
Then, one has (i) = (if) = (iii).

Proof. [(i) = (ii)] According to Theorem 3.2(iv), (i) is equivalent to say that the system {(a,x) < b,(a,b) €
epi f/, t € S} satisfies the strong Slater condition with respect to the closed convex set given by the solution
set of the linear system {a,x) < b, (a,b) € epi f;,t € W}. Hence, there exist x € R" and € € ]0, 1] such that
(a,x) < fi(@)+6forall6 € Ry,a € domf;,t € W,and

@axy+e< fi@a)+06

forall6 € Ry,a € dom f;, t € S. Thus, fi(x) = f*(x) < Oforallt € Wand f,(x) < fi(x) + & = f"(x) + € < 0 for
all t € S, which shows that 7 is consistent.

[(i]) = (@ii)] If 7 is consistent, then there exists x € IR" such that
(a,x) = fi(@) < f7 (%) = fi(x) <0

foralla € domf;,t €S, and

(a,%) = fi@) < f7(x) = fix) <0

for all a € dom f;, t € W. Thus, the linear system {¢a,x) < b, (a,b) € epi f;,t € W} is consistent with respect
to the evenly convex set X = {x € R" : (a,x) < b, (a,b) € epi f;,t € S} and so, by Theorem 4.1(iii), statement
(iii) holds. O

As a straightforward consequence of this result we obtain [22, Theorem 5.2].

We observe that, in Theorem 5.2, the epigraphs of the functions f;, t € WU S, can be replaced by their
corresponding graphs. Furthermore, one has that, if for every t € S there exists a compact set C; ¢ R"*!
such that fi() = max{{a,") — b : (a,b) € C;} and for every t € W there exists a set D; C R"*! such that
fi(-) = supf{(a,-) — b : (a,b) € Dy}, then the system 7 is consistent if and only if

Ons1 € eco [{{Cy, £ € S} + R {Dy, t € WH U {(0,, D}

The proof of this fact follows easily from Theorem 4.1(iii), since, for every t € S, fi(x) < 0 if and only if
(a,xy < bforall (a,b) € C, and, for every t € W, fi(x) < 0if and only if (a,x) < b for all (a,b) € D;.

We conclude by pointing out that, whenever the functions f;, forall t € S, in Theorem 5.2 are linear, then
one has that:

e Statement (ii) is equivalent to the existence of Slater points of the linear inequality system o := {{(a;, x) <
by, t € S} with respect to the closed convex set X := {x e R" : fi(x) <0,t € W}.

e Statement (i) is equivalent, by Theorem 3.2(iii), to the existence of strong Slater points of o with respect
to the set X rewritten as {x € R" : {a,x) < b, (a,b) € epi f;,t € W}.

¢ In this framework, statements (ii) and (iii) are equivalent in virtue of Theorem 4.1. However, (i) and
(if) are not equivalent in general.

To see the last statement, consider the linear system o = {s;x < s5,(s1,52) € S} where S = {s € R?: s >
0,52 > 0,51 + s, # 0}, and the constraint set X = {x € R : x < 1}. It is easy to check that FX=F =]-00,0],
Fé( = Fg =] = o0, 0[ (the set of Slater points of o with respect to X) and F?S = Fss = (0. Thus, condition (ii) in
Theorem 5.2 holds, but condition (i) fails.
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