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Abstract. This paper deals with the stability of the intersection of a given evenly convex set X with the
solution set of a given linear system σ whose coefficients can be arbitrarily perturbed. More precisely, we
focus on the set of strong Slater points of σ in X, by analyzing firstly the case when X is a closed convex
set, and then the more general case when X is evenly convex. We shall establish dual characterizations for
the aforementioned set of strong Slater points by following well-known characterizations of the solution
set of a linear system. Finally, we apply our results to analyze the consistency of systems with both strict
and weak inequalities defined by lower semicontinuous convex functions.

1. Introduction

Stability in optimization is a fundamental concept that analyzes whether certain elements related to
a problem change when small perturbations are introduced into the model’s data. This analysis is cru-
cial in both theoretical and practical contexts, since in many real-world applications (such as economics,
engineering, or artificial intelligence) the data are often subject to uncertainty or noise.

In the seventies, Robinson [19] developed the first systematic studies on stability in linear systems,
analyzing how small perturbations in the data affected the solution set. Since then, numerous authors have
studied stability conditions for the feasible set [3, 4, 12, 13], the optimal value and the optimal set [5], the
uniqueness of optimal solution [16] or even the boundary of the feasible set [10] of an optimization problem.

In general, the study of stability of a linear system allows us to determine if the system remains consistent
(or inconsistent) under sufficiently small perturbations (due to either computing or measurement errors) of
the data. However, in most cases it is necessary to consider that some of the constraints of such a system
cannot be perturbed (e.g., the sign constraints). In such a case, it is useful to consider an exact constraint
set X which could represent either the solution set of the system formed by all the exact constraints or a
discrete subset of Rn (as Zn or {0, 1}n in integer or Boolean programming).
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In this paper we shall consider a non-empty evenly convex set [7] X ⊂ Rn which can be expressed as

X := {x ∈ Rn : ⟨at, x⟩ ≤ bt, t ∈W; ⟨at, x⟩ < bt, t ∈ S},

and a linear inequality system,

σ := {⟨at, x⟩ ≤ bt, t ∈ L}, (1)

where ⟨·, ·⟩ denotes the standard inner product in Rn, W, S and L are arbitrary pairwise disjoint index sets
(possibly infinite) such that W ∪ S , ∅, L , ∅ and the coefficients are given by two functions a : T→ Rn and
b : T→ R, being T :=W ∪ S∪ L and, at := a(t) and bt := b(t) for all t ∈ T. We denote by F and FX the solution
set of σ in Rn and X, respectively, that is,

F := {x ∈ Rn : ⟨at, x⟩ ≤ bt, t ∈ L}

and FX = F ∩ X. We say that σ is consistent (with respect to X) if FX , ∅.
In a more general context, with X an arbitrary non-empty set and σ possibly containing equality

constraints, [1] and [2] analyze the effect on FX of small changes in the coefficients of σ and generalize
different stability concepts studied in [11] and [14] for the classical setting, where X = Rn and σ contains
only inequality constraints.

If X ⊂ Rn is an arbitrary non-empty exact constraint set and the system σ in (1) is consistent (i.e.,
FX := F ∩ X , ∅), it is said that σ is stably consistent when it remains consistent under sufficiently small
perturbations of the data (see [1] and [11] for details about how the size of perturbations is measured).

In the classical context, where X = Rn, [11, Theorem 3.1] establishes six characterizations of the stably
consistent systems, including the so-called strong Slater condition. It is said that σ in (1) satisfies the strong
Slater condition if there exist x ∈ Rn and ε > 0 such that ⟨at, x⟩ + ε ≤ bt for all t ∈ L and, in such a case,
x is called a strong Slater point of σ. We shall denote by FSS the set of all the strong Slater points of σ.
Properties and geometry of the set FSS have been recently studied in [22], where it is also obtained a dual
characterization for the non-emptiness of this set (i.e., for the fulfillment of the strong Slater condition) in
terms of the data of σ, following similar characterizations provided for the solution set of a system.

In this paper, we analyze the stability of FX for the particular case in which X is an evenly convex set
(i.e., the intersection of a family of open halfspaces). More precisely, we focus on the set of strong Slater
points of σ in X, by analyzing firstly the case when X is a closed convex set, and then the more general case
when X is evenly convex.

The paper is organized as follows. Section 2 contains the necessary notation and some basic results on
convex as well as evenly convex sets to be used later. In addition, several results about the relationship
between stable consistency and the strong Slater condition, obtained in previous works, are gathered. In
Section 3, we analyze the strong Slater condition for linear systems with a closed convex constraint set,
obtaining dual characterizations, for both the solution set and the set of strong Slater points, in terms of the
data of σ and X. Moreover, we analyze conditions under which the set of strong Slater points of σ in X is
contained in a closed/open halfspace. Section 4 is devoted to extend the results in Section 3 to the case in
which the constraint set is evenly convex. Finally, Section 5 presents an application to systems with both
strict and weak inequalities defined by lower semicontinuous convex functions.

2. Preliminaries

We begin this section by introducing the notation and basic definitions used throughout the paper. As
usual in convex analysis (see, e.g., [17, 20]), for a non-empty set A ⊂ Rn we denote by conv A, cone A, affA
and dim A the convex hull of A, the convex cone generated by A and the origin, the affine hull of A and the
dimension of affA, respectively. We consider cone ∅ := {0n}where 0n is the zero vector inRn. ByR+ andR++
we denote the sets of non-negative and positive real numbers, respectively, beingR+A := {λx : λ ≥ 0, x ∈ A}
andR++A := {λx : λ > 0, x ∈ A} cones inRn with 0n ∈ R+A. The smallest convex cone containing A∪ {0n} is
cone A = R+ conv A. For an index set T, the space of generalized finite sequences, R(T), is the linear space
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of those functions λ : T → R whose support, suppλ := {t ∈ T : λt , 0}, is finite. The convex cone of the
non-negative generalized finite sequences is denoted by R(T)

+ . From the topological side, given A ⊂ Rn, we
denote by cl A, int A and rint A, the closure, the interior and the relative interior of A, respectively. The
Minkowski sum for sets is denoted in the usual way.

A set A ⊂ Rn is said to be evenly convex (see [7]) if it is the intersection of some family, possibly empty,
of open halfspaces. The evenly convex hull of a set A ⊂ Rn, denoted by eco A, is the smallest evenly convex
set which contains A, or equivalently, it is the intersection of all the open halfspaces containing A. From the
definition, given x ∈ Rn, x < eco A if and only if there exists z ∈ Rn such that ⟨z, x − x⟩ < 0 for all x ∈ A. In
particular,

0n < eco A if and only if {⟨x, z⟩ < 0, x ∈ A} is consistent. (2)

Further properties of the evenly convex hull operator are collected in [6, Chapter 1].
The next proposition recovers some results about the convex hull and the evenly convex hull of the

sum of certain sets. More precisely, statements (i), (ii) and (iii) can be found in [23, Theorem 4.12], [15,
Lemma 2.1] and [15, Proposition 2.2], respectively.

Proposition 2.1. Let A,B be non-empty sets in Rn. Then the following statements hold:

(i) conv(A + B) = conv A + conv B.

(ii) conv(A +R+B) = conv A + cone B.

(iii) eco(A +R+B) = eco(conv A + cone B).

Given two subsets C,D ⊂ Rn, C is said to be openly separated from D [18] if there exists an open halfspace
H = {x ∈ Rn : ⟨a, x⟩ < b} such that C ⊂ H and D ⊂ Rn

\H. Analogously, C is said to be closedly separated from
D if there exists a closed halfspace H = {x ∈ Rn : ⟨a, x⟩ ≤ b} such that C ⊂ H and D ⊂ Rn

\H. Thus, C is
openly separated from D if and only if D is closedly separated from C. Moreover, it is easy to prove that, if
D is a cone containing the origin, then C is openly separated from D if and only if there exists a ∈ Rn such
that ⟨a, x⟩ < ⟨a, y⟩ for all x ∈ C, y ∈ D (equivalently, ⟨a, x⟩ < 0 ≤ ⟨a, y⟩ for all x ∈ C, y ∈ D).

Proposition 2.2. Let C,D ⊂ Rn. Then, 0n < eco(C +R+D) if and only if −C is openly separated from R+D.

Proof. As R+D is a cone containing the origin, −C is openly separated from R+D if and only if there exists
a ∈ Rn such that ⟨a,−x⟩ < ⟨a, y⟩ for all x ∈ C, y ∈ R+D. Equivalently, we have that ⟨−a, x + y⟩ < 0, for all
x ∈ C, y ∈ R+D and, by (2), this condition characterizes 0n < eco(C +R+D).

As a consequence of Propositions 2.1 and 2.2, one has that 0n < eco(C + R+D) if and only if − conv C is
openly separated from cone D. A further straightforward consequence of Proposition 2.2 is the following
result.

Corollary 2.3. Let Ω ⊂ Rn+1. Then,

0n+1 < eco
(
(0n, 1) +R+Ω

)
if and only if (0n,−1) < cl coneΩ.

Proposition 2.4. Let A,B,C be non-empty sets in Rn. Then,

0n < eco
(
(A +R+C) ∪ B

)
if and only if 0n < eco

(
(A ∪ B) +R+C

)
.

Proof. (⇐) Clearly, A + R+C ⊂ (A ∪ B) + R+C and B ⊂ B + R+C ⊂ (A ∪ B) + R+C. Hence, (A + R+C) ∪ B ⊂
(A ∪ B) +R+C and so, eco

(
(A +R+C) ∪ B

)
⊂ eco

(
(A ∪ B) +R+C

)
. This shows that 0n < eco

(
(A ∪ B) +R+C

)
implies 0n < eco

(
(A +R+C) ∪ B

)
.

(⇒) Assume that 0n < eco
(
(A + R+C) ∪ B

)
. By (2), there exists z ∈ Rn such that ⟨z, x⟩ < 0 for all

x ∈ (A + R+C) ∪ B. Particularly, one has ⟨z, b⟩ < 0 for all b ∈ B, and ⟨z, a + δc⟩ < 0 for all a ∈ A, c ∈ C and
δ ≥ 0. It easily follows that ⟨z, c⟩ ≤ 0 for all c ∈ C. Then, ⟨z, b + δc⟩ < 0 for all b ∈ B, c ∈ C and δ ≥ 0, and so
⟨z, x⟩ < 0 for all x ∈ (A ∪ B) +R+C. This means, again in virtue of (2), that 0n < eco

(
(A ∪ B) +R+C

)
.
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Now we recall two polar operators in the literature. For a proper set A ⊂ Rn, we consider

A◦ := {y ∈ Rn : ⟨x, y⟩ ≤ 0, ∀x ∈ A},
Ae := {y ∈ Rn : ⟨x, y⟩ < 0, ∀x ∈ A},

assuming that Rn is the polar in the first sense of {0n} (and in the second sense of ∅), and conversely. The
set A◦ is a closed convex cone containing the origin, while Ae is an evenly convex cone omitting the origin.
Furthermore, one has A◦◦ = cl cone A, and so A = A◦◦ if and only if A is a closed convex cone. In the same
way, one has A = Aee if and only if A is an evenly convex cone omitting the origin.

We shall denote by F and FSS, the solution set and the set of strong Slater points of σ in (1), respectively,
that is,

F := {x ∈ Rn : ⟨at, x⟩ ≤ bt, t ∈ L},
FSS := {x ∈ Rn : ∃ ε > 0, ⟨at, x⟩ + ε ≤ bt, t ∈ L}.

Obviously, F is a closed convex set. Concerning the geometry of FSS, it has been recently studied in [22] joint
with further characterizations and properties of the set of strong Slater points. Moreover, for a consistent
system σ as in (1), [22, Proposition 3.5] establishes the equivalence between the strong Slater condition and
a geometrical condition depending on the coefficients of σ, recovering the following result which can be
found in [11, Theorem 3.1] and [1, Lemma 1].

Proposition 2.5. Given a consistent system σ as in (1), the following statements are equivalent to each other:

(i) σ is stably consistent.

(ii) σ satisfies the strong Slater condition.

(iii) 0n+1 < cl conv {(at, bt), t ∈ L}.

Given a non-empty set X ⊂ Rn, the system σ in (1) is said to satisfy the strong Slater condition with respect
to X if there exist x ∈ X (called strong Slater point) and ε > 0 such that

〈
at, x

〉
+ ε ≤ bt for all t ∈ L. We shall

denote by FX
SS the set of strong Slater points with respect to X, having that FX

SS = FSS ∩ X. Analogously,
Fcl X

SS = FSS ∩ cl X. From this definition, one has the following set containments:

FX
⊂ Fcl X

⊂ F

⊂ ⊂ ⊂

FX
SS ⊂ Fcl X

SS ⊂ FSS

(3)

In this context, in [1] the authors introduce a new geometrical condition, the so-called G-consistency, in order
to extend condition (iii) in Proposition 2.5 to the general case. It is said that σ is G-consistent if the condition

0n+1 < cl
(
K(X) + conv {(at, bt), t ∈ L}

)
holds, where K(X) :=

{
(ω, γ) ∈ Rn+1 : ⟨ω, x⟩ ≤ γ,∀x ∈ X

}
is a closed convex cone (the so-called weak dual cone

of X, when X is a closed convex set [8]). The following result, obtained from [1], establishes the relationships
between the stable consistency, the G-consistency and the strong Slater condition in this general setting.

Proposition 2.6. If FX , ∅, then the following statements hold:

(i) If σ is stably consistent, then σ is G-consistent.

(ii) If σ is G-consistent and X is convex, then Fcl X
SS , ∅.

(iii) If FX
SS , ∅, then σ is stably consistent.
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In the particular case that X is a closed convex set, it can be expressed as the solution set of a certain
linear system. For this case, the following characterization is obtained as a consequence of Proposition 2.6.

Corollary 2.7. Let X := {x ∈ Rn : ⟨at, x⟩ ≤ bt, t ∈ W}. If FX , ∅, then the following statements are equivalent to
each other:

(i) σ is stably consistent.

(ii) 0n+1 < cl (cone {(at, bt), t ∈W} + conv {(at, bt), t ∈ L}).

(iii) FX
SS , ∅.

Proof. We just need to show that the G-consistency of σ is equivalent to statement (ii). Since X = {x ∈
Rn : ⟨at, x⟩ ≤ bt, t ∈ W}, the nonhomogeneous Farkas Lemma for linear semi-infinite systems (see, e.g., [14,
Corollary 3.1.2]) establishes that

K(X) = cl cone{(at, bt), t ∈W; (0n, 1)}.

Then, since cone {(at, bt), t ∈W} ⊂ K(X), the G-consistency of σ implies condition (ii). Now, we prove the
converse implication. Indeed, if

0n+1 ∈ cl
(
K(X) + conv {(at, bt), t ∈ L}

)
= cl

(
cone{(at, bt), t ∈W; (0n, 1)} + conv {(at, bt), t ∈ L}

)
,

then there exist sequences {µk
}k∈N ⊂ R

(W)
+ , {γk

}k∈N ⊂ R+, {λk
}k∈N ⊂ R

(L)
+ with

∑
t∈L λ

k
t = 1 for every k ∈ N,

such that 0n+1 = lim
k→∞

∑
t∈W µ

k
t (at, bt) +

∑
t∈L λ

k
t (at, bt) + γk(0n, 1). Taking an arbitrary x ∈ FX, one gets

0 = ⟨0n+1, (x,−1)⟩ = lim
k→∞

∑
t∈W

µk
t (⟨at, x⟩ − bt) +

∑
t∈L

λk
t (⟨at, x⟩ − bt) − γk.

Therefore, lim
k→∞

∑
t∈W µ

k
t (⟨at, x⟩ − bt) = 0, lim

k→∞

∑
t∈L λ

k
t (⟨at, x⟩ − bt) = 0 and lim

k→∞
γk = 0. Hence,

0n+1 = lim
k→∞

∑
t∈W

µk
t (at, bt) +

∑
t∈L

λk
t (at, bt)

and so,
0n+1 ∈ cl (cone {(at, bt), t ∈W} + conv {(at, bt), t ∈ L}) ,

which concludes the proof.

Observe that we can recover Proposition 2.5 from the above result when X = Rn (taking (at, bt) = 0n+1
for all t ∈W).

3. Strong Slater condition with a closed convex constraint set

In this section we are interested in the analysis of the strong Slater condition of the linear system
σ := {⟨at, x⟩ ≤ bt, t ∈ L} introduced in (1) with a closed convex constraint set of the form

X := {x ∈ Rn : ⟨at, x⟩ ≤ bt, t ∈W}. (4)

In other words, we are interested on the set

FX
SS = {x ∈ R

n : ⟨at, x⟩ ≤ bt, t ∈W; ∃ ε > 0, ⟨at, x⟩ + ε ≤ bt, t ∈ L}.

Our objective is to obtain the counterpart for FX
SS of the well-known characterizations of FX, the solution set

of σwith respect to X.
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We firstly observe that FX is nothing else that the solution set of the linear system {⟨at, x⟩ ≤ bt, t ∈ T},
where T = L∪W. Throughout the paper, in order to shorten the notation, we associate to this linear system
the sets

CT := {(at, bt), t ∈ T} and
D := CT ∪ {(0n, 1)} ,

which allow to define two prominent cones in linear semi-infinite programming (see, e.g., [14]) associated
to that system, say the second order moment cone, defined by N := cone CT, and the characteristic cone, defined
by K := cone D, having that K = N +R+{(0n, 1)}. Applying the classical polarity operator to D, we get

D◦ = {(x, xn+1) ∈ Rn
×R : ⟨at, x⟩ + btxn+1 ≤ 0, t ∈ T; xn+1 ≤ 0}.

Next result summarizes several characterizations of the set FX of solutions of σwith respect to the closed
convex set X in (4).

Theorem 3.1 (Characterizations of FX). For x ∈ Rn, one has

x ∈ FX if and only if (x,−1) ∈ D◦.

Furthermore, the following statements are equivalent:

(i) σ is consistent with respect to X (i.e., FX , ∅).

(ii) There exists (x, xn+1) ∈ D◦ such that xn+1 , 0.

(iii) (0n,−1) < cl K.

(iv) (0n,−1) < cl N.

(v) 0n+1 < eco
(
(0n, 1) +R+CT

)
.

Proof. The first statement and the equivalence between (i), (ii) and (iii) follow from [22, Theorem 3.1] applied
to the system {⟨at, x⟩ ≤ bt, t ∈ T}. The equivalence between (iii) and (iv) follows from [14, Lemma 4.1],
whereas the equivalence between (iv) and (v) follows from Corollary 2.3.

Now, we associate to FX
SS the sets

C := C0
W ∪ C−1

L ∪ {(0n, 1,−1)} and
D := C ∪ {(0n, 0, 1)} ,

where C0
W := CW × {0} = {(at, bt, 0), t ∈W} and C−1

L := CL × {−1} = {(at, bt,−1), t ∈ L}. In this case, one has

D
◦ = {(x, xn+1, xn+2) ∈ Rn

×R ×R : ⟨at, x⟩ + btxn+1 ≤ 0, t ∈W;
⟨at, x⟩ + btxn+1 − xn+2 ≤ 0, t ∈ L;
xn+1 − xn+2 ≤ 0; xn+2 ≤ 0}.

Inspired by [21, 22] and proceeding similarly as in former lines, we will consider the following cones
associated to FX

SS, say N := coneC and K := coneD, having that K = N + R+{(0n, 0, 1)}. Now we are in
a position to establish corresponding characterizations of the set FX

SS of the strong Slater points of σ with
respect to the closed convex set X in (4).

Theorem 3.2 (Characterizations of FX
SS). For x ∈ Rn, one has

x ∈ FX
SS if and only if (x,−1,−ε) ∈ D◦ for some ε ∈ ]0, 1]. (5)

Furthermore, the following statements are equivalent:
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(i) σ satisfies the strong Slater condition with respect to X (i.e., FX
SS , ∅).

(ii) There exists (x, xn+1, xn+2) ∈ D◦ such that xn+2 , 0.

(iii) (0n, 0,−1) < clK .

(iv) (0n, 0,−1) < clN .

(v) 0n+2 < eco
(
(0n, 0, 1) +R+C

)
.

Proof. The first statement in (5) easily follows from the definition of FX
SS and the expression ofD◦.

[(i)⇔ (ii)] It is a straightforward consequence of (5).
[(ii)⇔ (iii)] Assume that xn+2 = 0 for all (x, xn+1, xn+2) ∈ D◦. In this case, since

⟨(0n, 0,−1), (x, xn+1, xn+2)⟩ = 0 ≤ 0,

for all (x, xn+1, xn+2) ∈ D◦, then one has that (0n, 0,−1) ∈ clK = D◦◦. Conversely, if (0n, 0,−1) ∈ clK = D◦◦,
then

−xn+2 = ⟨(0n, 0,−1), (x, xn+1, xn+2)⟩ ≤ 0

for all (x, xn+1, xn+2) ∈ D◦. Since xn+2 ≤ 0 for all (x, xn+1, xn+2) ∈ D◦, one concludes that xn+2 = 0 for all
(x, xn+1, xn+2) ∈ D◦.

Finally, the equivalence between (iii) and (iv) follows from [14, Lemma 4.1], whereas the equivalence
between (iv) and (v) follows from Corollary 2.3.

Observe that whenever X = {x ∈ Rn : ⟨0n, x⟩ ≤ 0} = Rn, Theorem 3.2 reduces to [22, Theorem 3.3].
Furthermore, we are not explicitly assuming in Theorem 3.2 the non-emptiness of FX to characterize the
existence of strong Slater points within X (the non-emptiness of FX

SS), although it is a condition which is
implicit as we can see in the following result.

Proposition 3.3. Let X be a closed convex set as in (4). The following statements are equivalent:

(i) FX
SS , ∅.

(ii) FX , ∅ and 0n+1 < cl conv(CL +R+CW).

Proof. [(i)⇒ (ii)] If FX
SS , ∅, then FX , ∅by (3). Now assume, on the contrary, that 0n+1 ∈ cl conv(CL+R+CW) =

cl(conv CL + cone CW). Then, there exist sequences {µk
}k∈N ⊂ R

(W)
+ , {λk

}k∈N ⊂ R
(L)
+ with

∑
t∈L λ

k
t = 1 for every

k ∈N, such that 0n+1 = lim
k→∞

∑
t∈W µ

k
t (at, bt) +

∑
t∈L λ

k
t (at, bt). Hence, one can write

(0n, 0,−1) = lim
k→∞

∑
t∈W

µk
t (at, bt, 0) +

∑
t∈L

λk
t (at, bt,−1),

and so (0n, 0,−1) ∈ clN . This implies by Theorem 3.2 that FX
SS = ∅ and so, a contradiction.

[(ii)⇒ (i)] If FX
SS = ∅, then (0n, 0,−1) ∈ clN by Theorem 3.2. Hence, there exist sequences {µk

}k∈N ⊂ R
(W)
+ ,

{λk
}k∈N ⊂ R

(L)
+ and {δk

}k∈N ⊂ R+ such that

(0n, 0,−1) = lim
k→∞

∑
t∈W

µk
t (at, bt, 0) +

∑
t∈L

λk
t (at, bt,−1) + δk(0n, 1,−1). (6)

If {δk
} is unbounded, then we may assume limk→∞ δk = +∞. Hence, from (6), one has

0n+2 = lim
k→∞

∑
t∈W

(δk)−1µk
t (at, bt, 0) +

∑
t∈L

(δk)−1λk
t (at, bt,−1) + (0n, 1,−1),
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which implies

(0n,−1) = lim
k→∞

∑
t∈W

(δk)−1µk
t (at, bt) +

∑
t∈L

(δk)−1λk
t (at, bt) ∈ cl N

and so, by Theorem 3.1, FX = ∅. Assume now that {δk
} is bounded. Then, it contains a convergent

subsequence and, for brevity, we write limk→∞ δk = δ ≥ 0. From (6), we have

0n+1 = lim
k→∞

∑
t∈W

µk
t (at, bt) +

∑
t∈L

λk
t (at, bt) + δk(0n, 1), (7)

1 = lim
k→∞

∑
t∈L

λk
t + δ

k. (8)

Since FX , ∅, for any x ∈ FX one has

0 = ⟨0n+1, (x,−1)⟩ = lim
k→∞

∑
t∈W

µk
t (⟨at, x⟩ − bt) +

∑
t∈L

λk
t (⟨at, x⟩ − bt) − δk.

Therefore, lim
k→∞

∑
t∈W µ

k
t (⟨at, x⟩ − bt) = 0, lim

k→∞

∑
t∈L λ

k
t (⟨at, x⟩ − bt) = 0 and δ = lim

k→∞
δk = 0. Taking this into

account in (7) and (8), we get that 0n+1 = lim
k→∞

∑
t∈W µ

k
t (at, bt) +

∑
t∈L λ

k
t (at, bt) and 1 = lim

k→∞

∑
t∈L λ

k
t . Since

γk :=
∑

t∈L λ
k
t > 0 for k large enough, then

0n+1 = lim
k→∞

∑
t∈W

(γk)−1µk
t (at, bt) +

∑
t∈L

(γk)−1λk
t (at, bt)

with
∑

t∈L (γk)−1λk
t = 1, which shows that 0n+1 ∈ cl(cone CW + conv CL).

Observe that, by applying Proposition 2.1(ii) to condition (ii) in Proposition 3.3, we recover the equiva-
lence between conditions (ii) and (iii) in Corollary 2.7.

As a consequence of Proposition 3.3 and Theorem 3.1, one has that FX
SS , ∅ if and only if (0n,−1) < cl N

and 0n+1 < cl conv(CL + R+CW), that is, in order to guarantee the fulfillment of the strong Slater condition
with respect to a closed convex set, one has to check two conditions in the space Rn+1. Theorem 3.2 shows
that these two conditions are indeed equivalent to a unique condition in the space Rn+2.

A weak or strict inequality is said to be a consequence (or a consequent relation) of the set FX
SS provided

that FX
SS is contained in the (closed or open) halfspace defined by such an inequality.

Proposition 3.4 (Consequent weak relations of FX
SS). Let (a, b) ∈ Rn

× R, and assume that FX
SS is non-empty.

Then, the following statements are equivalent:

(i) ⟨a, x⟩ ≤ b is a consequence of FX
SS.

(ii) (a, b, 0) ∈ clK .

(iii) (a, b) ∈ cl K.

(iv) ⟨a, x⟩ ≤ b is a consequence of FX.

Proof. [(i)⇒ (ii)] Assume that ⟨a, x⟩ ≤ b is a consequence of FX
SS, that is, FX

SS ⊂ {x ∈ R
n : ⟨a, x⟩ ≤ b}. We shall

prove that (a, b, 0) ∈ D◦◦ = clK . For that purpose, given (x, xn+1, xn+2) ∈ D◦, we distinguish two cases:

• Case 1: xn+1 ≤ xn+2 < 0. In this case, we see that
(

x
−xn+1
,−1, xn+2

−xn+1

)
∈ D

◦ where 0 < xn+2
xn+1
≤ 1. According

to Theorem 3.2, x := −1
xn+1

x ∈ FX
SS and so, by assumption,

〈
a, x

〉
≤ b, that is, ⟨a, x⟩ + bxn+1 ≤ 0.
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• Case 2: xn+1 ≤ xn+2 = 0. For x ∈ FX
SS, let ε ∈ ]0, 1] be such that (x,−1,−ε) ∈ D◦. Then,

(xλ, xλn+1, x
λ
n+2) := (1 − λ)(x, xn+1, 0) + λ(x,−1,−ε) ∈ D◦

for all λ ∈ ]0, 1[. Since xλn+1 ≤ xλn+2 < 0, the vector (xλ, xλn+1, x
λ
n+2) corresponds to the Case 1. Thus,

(1 − λ)(⟨a, x⟩ + bxn+1) + λ(
〈
a, x

〉
− b) = ⟨a, xλ⟩ + bxλn+1 ≤ 0

for all λ ∈ ]0, 1[. By taking limits when λ→ 0, one has ⟨a, x⟩ + bxn+1 ≤ 0.

Since ⟨a, x⟩ + bxn+1 ≤ 0 for all (x, xn+1, xn+2) ∈ D◦, then (a, b, 0) ∈ D◦◦ = clK .
[(ii)⇒ (iii)] It is a straightforward consequence of the definitions of the conesK and K.
[(iii)⇒ (iv)] It follows from [14, Corollary 3.1.2].
[(iv)⇒ (i)] It easily follows since FX

SS ⊂ FX.

We observe from the above result that the set of all the weak inequalities which are consequence of FX
SS,

coincides with the weak dual cone of its closure, FX. To see that cl FX
SS = FX whenever FX

SS is non-empty, we
firstly observe that

cl FX
SS = cl(FSS ∩ X) ⊂ cl FSS ∩ cl X = F ∩ X = FX

since X is closed and cl FSS = F (see [22, Lemma 2.1(i)]). Now, given x ∈ FX and x̃ ∈ FX
SS, it follows that

x = limλ↓0 xλ where xλ := λx̃ + (1 − λ)x ∈ FX
SS for all λ ∈ ]0, 1[. Thus, x ∈ cl FX

SS .

Proposition 3.5 (Consequent strict relations of FX
SS). Let (a, b) ∈ Rn

× R, and assume that FX
SS is non-empty.

Then, ⟨a, x⟩ < b is a consequence of FX
SS if and only if

(0n, 0,−1) ∈ cl cone (D∪ {(−a,−b, 0)}) .

Proof. Since FX
SS is non-empty, then the set containment FX

SS ⊂ {x ∈ R
n : ⟨a, x⟩ < b} is equivalent to

{x ∈ Rn : ⟨−a, x⟩ ≤ −b; ⟨at, x⟩ ≤ bt, t ∈W; ∃ ε > 0, ⟨at, x⟩ + ε ≤ bt, t ∈ L} = ∅,

and this is equivalent, by Theorem 3.2, to (0n, 0,−1) ∈ cl cone (D∪ {(−a,−b, 0)}).

Proposition 3.6. Let (a, b) ∈ Rn
× R, and assume that FX

SS is non-empty. If (a, b, c) ∈ clK for some c < 0, then
⟨a, x⟩ < b is a consequence of FX

SS.

Proof. Assume that (a, b, c) ∈ clK for some c < 0 and let x ∈ FX
SS. Since (x,−1,−ε) ∈ D◦ for some ε ∈ ]0, 1] by

Theorem 3.2, and clK = D◦◦, then〈
a, x

〉
− b <

〈
a, x

〉
− b − cε =

〈
(a, b, c), (x,−1,−ε)

〉
≤ 0.

Hence,
〈
a, x

〉
< b, and so FX

SS ⊂ {x ∈ R
n : ⟨a, x⟩ < b}.

As a consequence of the previous results, by considering the case X = Rn we recover [22, Proposi-
tions 3.6 and 3.7].

Corollary 3.7 (Consequent relations of FSS). Let (a, b) ∈ Rn
×R, and assume that FSS is non-empty. Then,

(i) ⟨a, x⟩ ≤ b is a consequence of FSS if and only if

(a, b, 0) ∈ cl cone{(at, bt,−1), t ∈ L; (0n, 1,−1); (0n, 0, 1)}.

(ii) ⟨a, x⟩ < b is a consequence of FSS if and only if

(0n, 0,−1) ∈ cl cone{(−a,−b, 0); (at, bt,−1), t ∈ L; (0n, 1,−1); (0n, 0, 1)}.
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4. Strong Slater condition with an evenly convex constraint set

In this section we are interested in the analysis of the strong Slater condition of the linear system
σ := {⟨at, x⟩ ≤ bt, t ∈ L} introduced in (1) with an evenly convex constraint set of the form

X := {x ∈ Rn : ⟨at, x⟩ ≤ bt, t ∈W; ⟨at, x⟩ < bt, t ∈ S}, (9)

whose closure, according to [9, Proposition 1.1], is

cl X = {x ∈ Rn : ⟨at, x⟩ ≤ bt, t ∈W ∪ S}. (10)

In other words, we are interested on the set

FX
SS = {x ∈ R

n : ⟨at, x⟩ ≤ bt, t ∈W; ⟨at, x⟩ < bt, t ∈ S; ∃ ε > 0, ⟨at, x⟩ + ε ≤ bt, t ∈ L}.

Proceeding as in Section 3, our objective is to obtain the counterpart for FX
SS of the well-known characteri-

zations of FX, the solution set of σwith respect to X.
Let T := L ∪W ∪ S. We firstly observe that FX is nothing else that the solution set of the linear system

{⟨at, x⟩ ≤ bt, t ∈ L ∪W; ⟨at, x⟩ < bt, t ∈ S}, whose consistency is equivalent to the consistency of the system

{⟨as + αav, x⟩ < bs + αbv, (s, v, α) ∈ S × (L ∪W) ×R+}. (11)

We associate to this system the set H := (CS + R+CL∪W) ∪ {(0n, 1)}. Applying the e-polarity operator to H,
we get

He = {(x, xn+1) ∈ Rn
×R : ⟨at, x⟩ + btxn+1 ≤ 0, t ∈ L ∪W;

⟨as, x⟩ + bsxn+1 < 0, s ∈ S; xn+1 < 0}.

Theorem 4.1 (Characterizations of FX). For x ∈ Rn, one has

x ∈ FX if and only if (x,−1) ∈ He.

Furthermore, the following statements are equivalent:

(i) σ is consistent with respect to X (i.e., FX , ∅).

(ii) He , ∅.

(iii) 0n+1 < eco H.

(iv) 0n+1 < eco(CS +R+CL∪W) and (0n,−1) < cl cone CT.

(v) 0n+1 < eco
(
(CS ∪ {(0n, 1)}) +R+CL∪W

)
.

Proof. The first statement and the equivalence between (i), (ii) and (iii) follow from [22, Theorem 3.2] applied
to the system in (11). The equivalence between (iii) and (iv) follows from [15, Lemma 3.1], whereas the
equivalence between (iii) and (v) follows from Proposition 2.4.

Remark 4.2. Observe that statement (iii) above can be equivalently written as 0n+1 < ecoR++H as a conse-
quence of (2). The set ecoR++H is precisely the so-called strict dual cone (see [8]) of the solution set of the
system in (11), provided that it is non-empty.

Now, we shall consider the set FS of Slater points of σ in (1), that is,

FS := {x ∈ Rn : ⟨at, x⟩ < bt, t ∈ L}.
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Obviously, FS is an evenly convex set such that FSS ⊂ FS ⊂ F. Further geometric properties and dual
characterizations for this set have been recently established in [22]. It is also natural to consider the set
FX

S := FS ∩ X. The following result, which is a straightforward consequence of Theorem 4.1, characterizes
the consistency of FX

S , which is equivalent to the consistency of the system

{⟨av + αaw, x⟩ < bv + αbw, (v,w, α) ∈ (S ∪ L) ×W ×R+},

in terms of the set H̃ := (CS∪L + R+CW) ∪ {(0n, 1)} defined from the coefficients of the system. In this case,
we observe that

H̃e = {(x, xn+1) ∈ Rn
×R : ⟨at, x⟩ + btxn+1 ≤ 0, t ∈W;

⟨as, x⟩ + bsxn+1 < 0, s ∈ S ∪ L; xn+1 < 0}.

Corollary 4.3 (Characterizations of FX
S ). For x ∈ Rn, one has

x ∈ FX
S if and only if (x,−1) ∈ H̃e.

Furthermore, the following statements are equivalent:

(i) σ satisfies the Slater condition with respect to X (i.e., FX
S , ∅).

(ii) H̃e , ∅.

(iii) 0n+1 < eco H̃.

(iv) 0n+1 < eco(CS∪L +R+CW) and (0n,−1) < cl cone CT.

(v) 0n+1 < eco
(
(CS∪L ∪ {(0n, 1)}) +R+CW

)
.

Next, proceeding as in the previous section, we associate to FX
SS the sets

C := C0
W ∪ C−1

L ∪ {(0n, 1,−1)},

H := (C0
S +R+C) ∪ {(0n, 0, 1)} ,

where C0
S := CS × {0} = {(at, bt, 0), t ∈ S}, C0

W := CW × {0} = {(at, bt, 0), t ∈ W} and C−1
L := CL × {−1} =

{(at, bt,−1), t ∈ L}. In this case, one has

H
e = {(x, xn+1, xn+2) ∈ Rn

×R ×R : ⟨at, x⟩ + btxn+1 < 0, t ∈ S;
⟨at, x⟩ + btxn+1 ≤ 0, t ∈W;
⟨at, x⟩ + btxn+1 − xn+2 ≤ 0, t ∈ L;
xn+1 − xn+2 ≤ 0; xn+2 < 0}.

Theorem 4.4 (Characterizations of FX
SS). For x ∈ Rn, one has

x ∈ FX
SS if and only if (x,−1,−ε) ∈ H e for some ε ∈ ]0, 1]. (12)

Furthermore, the following statements are equivalent:

(i) σ satisfies the strong Slater condition with respect to X (i.e., FX
SS , ∅).

(ii) H e , ∅.

(iii) 0n+2 < ecoH .

(iv) 0n+2 < eco(C0
S +R+C) and (0n, 0,−1) < cl cone(C0

S ∪ C).
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(v) 0n+2 < eco
(
(C0

S ∪ {(0n, 0, 1)}) +R+C
)
.

Proof. The equivalence in (12) easily follows from the definition of FX
SS and the expression ofH e.

[(i)⇔ (ii)] It is a straightforward consequence of (12).
[(ii)⇔ (iii)] Let (x, xn+1, xn+2) ∈ H e. If 0n+2 ∈ ecoH ⊂ H ee, then

⟨(0n, 0, 0), (x, xn+1, xn+2)⟩ < 0,

meaning 0 < 0 which is impossible. Thus, 0n+2 < ecoH . Conversely, if 0n+2 < ecoH , by (2), there exists
(x, xn+1, xn+2) such that ⟨(x, xn+1, xn+2) , (u, v,w)⟩ < 0 for all (u, v,w) ∈ H . Hence, (x, xn+1, xn+2) ∈ H e and so
H

e , ∅.
[(iii)⇔ (iv)] It follows from [15, Lemma 3.1].
[(iii)⇔ (v)] It is a consequence of Proposition 2.4.

According to Remark 4.2, statements (i) to (v) in the above Theorem are also equivalent to the condition
0n+2 < ecoR++H .

Proposition 4.5. Let X be an evenly convex set as in (9). The following statements are equivalent:

(i) FX
SS , ∅.

(ii) FX , ∅ and 0n+1 < cl conv(CL +R+CW∪S).

(iii) FX , ∅ and 0n+1 < cl(conv(CL ∪ {(0n, 1)}) + cone CW∪S).

Proof. [(i)⇒ (ii)] If FX
SS , ∅, then FX , ∅ and Fcl X

SS , ∅ by (3). As X is a non-empty evenly convex set defined
as in (9), by [9, Proposition 1.1], we have

cl X := {x ∈ Rn : ⟨at, x⟩ ≤ bt, t ∈W ∪ S}, (13)

and by applying Proposition 3.3, Fcl X
SS , ∅ implies 0n+1 < cl conv(CL +R+CW∪S).

[(ii) ⇒ (iii)] Assume that FX , ∅ and 0n+1 ∈ cl(conv(CL ∪ {(0n, 1)}) + cone CW∪S). Then, there exist
sequences {µk

}k∈N ⊂ R
(W∪S)
+ , {λk

}k∈N ⊂ R
(L)
+ and {δk

}k∈N ⊂ R+ with
∑

t∈L λ
k
t + δ

k = 1 for every k ∈ N, such
that 0n+1 = lim

k→∞

∑
t∈W∪S µ

k
t (at, bt) +

∑
t∈L λ

k
t (at, bt) + δk(0n, 1). As {δk

} is bounded, then it contains a convergent

subsequence and, for brevity, we write limk→∞ δk = δ ≥ 0. Then we have

0n+1 = lim
k→∞

∑
t∈W∪S

µk
t (at, bt) +

∑
t∈L

λk
t (at, bt) + δ(0n, 1), (14)

1 = lim
k→∞

∑
t∈L

λk
t + δ. (15)

If δ = 0, then (14) and (15) turn into 0n+1 = lim
k→∞

∑
t∈W∪S µ

k
t (at, bt) +

∑
t∈L λ

k
t (at, bt) and 1 = lim

k→∞

∑
t∈L λ

k
t . Since

γk :=
∑

t∈L λ
k
t > 0 for k large enough, then

0n+1 = lim
k→∞

∑
t∈W∪S

(γk)−1µk
t (at, bt) +

∑
t∈L

(γk)−1λk
t (at, bt)

with
∑

t∈L (γk)−1λk
t = 1, which shows that 0n+1 ∈ cl(cone CW∪S + conv CL) = cl conv(CL + R+CW∪S) and (ii)

fails.
If δ > 0, then (14) becomes

(0n,−1) = lim
k→∞

∑
t∈W∪S

δ−1µk
t (at, bt) +

∑
t∈L

δ−1λk
t (at, bt),
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which implies that (0n,−1) ∈ cl cone CT, being T = L ∪W ∪ S. By applying Theorem 3.1, we obtain that
Fcl X = ∅, which contradicts FX , ∅ and (ii) fails again.

[(iii) ⇒ (i)] On the one hand, if FX , ∅, by Theorem 4.1, one has 0n+1 < eco H = eco((CS + R+CL∪W) ∪
{(0n, 1)}) and so, by (2), there exists (u, v) ∈ Rn

× R such that ⟨(u, v), (x, xn+1)⟩ < 0 for all (x, xn+1) ∈ H. In
particular, ⟨(u, v), (0n, 1)⟩ = v < 0 and, by letting ũ := − u

v , one has that

⟨(ũ,−1), (as, bs) + λ(at, bt)⟩ < 0, (16)

for all s ∈ S, t ∈ L ∪W and λ ≥ 0. From (16), we obtain ⟨(ũ,−1), (as, bs)⟩ < 0 for all s ∈ S by letting λ = 0, and
⟨(ũ,−1), (at, bt)⟩ ≤ 0 for all t ∈ L ∪W, by taking limits when λ→∞ after dividing by λ.

On the other hand, if 0n+1 < cl(conv(CL∪{(0n, 1)})+ cone CW∪S), then there exist (α, β) ∈ Rn
×R and γ ∈ R

such that ⟨(α, β), (x, xn+1)⟩ ≤ γ < ⟨(α, β), (0n, 0)⟩ = 0, for all (x, xn+1) ∈ conv(CL∪{(0n, 1)})+cone CW∪S. Then, by
taking (α̃, β̃) := − 1

γ (α, β), we have ⟨(α̃, β̃), (x, xn+1)⟩ ≤ −1 < 0, for all (x, xn+1) ∈ conv(CL∪{(0n, 1)})+ cone CW∪S.

In particular, we have ⟨(α̃, β̃), (0n, 1)⟩ = β̃ < 0 and

⟨(α̃, β̃), (al, bl) + µ(at, bt)⟩ < 0, (17)

for all l ∈ L, t ∈ W ∪ S and µ ≥ 0. In the same way that in the previous case, we can obtain that
⟨(α̃, β̃), (al, bl)⟩ < 0 for all l ∈ L, and ⟨(α̃, β̃), (at, bt)⟩ ≤ 0 for all t ∈W ∪ S.

Now, by consider (a, b, c) := (ũ,−1, 0) + (α̃, β̃,−1), it is easy to prove that

⟨(a, b, c), (x, xn+1, xn+2)⟩ < 0

for all (x, xn+1, xn+2) ∈ H = (C0
S + R+C) ∪ {(0n, 0, 1)}, so that 0n+2 < ecoH by (2), and FX

SS , ∅ by Theorem
4.4.

Whenever X is a closed convex set (i.e., if S = ∅), then Proposition 3.3 follows as a consequence of
Proposition 4.5.

Next, we observe that if a linear system σ is consistent with respect to an evenly convex set X, then it
satisfies the strong Slater condition with respect to X if and only if it does with respect to its closure cl X,
i.e., if and only if σ is stably consistent (see Corollary 2.7).

Corollary 4.6. Let X be an evenly convex set as in (9). If FX , ∅, then FX
SS , ∅ if and only if Fcl X

SS , ∅.

Proof. If FX , ∅, by Proposition 4.5, we have the equivalence between FX
SS , ∅ and

0n+1 < cl conv(CL +R+CW∪S). (18)

Moreover, by (3), FX , ∅ implies Fcl X , ∅ which together with (18) is equivalent to Fcl X
SS , ∅ by (10) and

Proposition 3.3.

Although, under the assumption FX , ∅, the strong Slater conditions with respect to X and with respect
to cl X are equivalent, the sets FX

SS and Fcl X
SS may not coincide, as the following example illustrates.

Example 4.7. Let X := {(x1, x2) ∈ R2 : −x1 < 0, −x2 ≤ 0} and σ = {x1 + x2 ≤ t, t ∈ ]1, 2]}.
It is easy to see that F = {(x1, x2) ∈ R2 : x1 + x2 ≤ 1}. Since (0, 0) ∈ FSS and FSS , ∅ implies

int F = {(x1, x2) ∈ R2 : x1 + x2 < 1} ⊂ FSS ⊂ F

(see [22, Lemma 2.1]), we need to check whether the points in the line r = {(α, 1 − α) : α ∈ R} are strong
Slater points or not. For each α ∈ R, the points (α, 1 − α) are not strong Slater points since, for every ε > 0,
one has 1 + ε > t for t ∈ ]1,min{1 + ε, 2}[. Consequently, FSS = int F.

In this case, cl X = R2
+, Fcl X = conv{(0, 0), (1, 0), (0, 1)}, Fcl X

SS = Fcl X
\(conv{(1, 0), (0, 1)}) and FX

SS =

Fcl X
SS \(conv{(0, 0), (0, 1)}), so that Fcl X

SS , FX
SS (see Figure 1).
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Figure 1: The sets Fcl X
SS and FX

SS associated to σ in Example 4.7.

Now, we analyze the consequent relations of FX
SS under the assumption of the even convexity of the

constraint set X.

Proposition 4.8 (Consequent weak relations of FX
SS). Let (a, b) ∈ Rn

× R, and assume that FX
SS is non-empty.

Then, ⟨a, x⟩ ≤ b is a consequence of FX
SS if and only if it is a consequence of Fcl X

SS .

The proof of this result is straightforward. We then refer to Proposicion 3.4 for further equivalent
statements of consequent weak relations of FX

SS.

Proposition 4.9 (Consequent strict relations of FX
SS). Let (a, b) ∈ Rn

× R, and assume that FX
SS is non-empty.

Then, ⟨a, x⟩ < b is a consequence of FX
SS if and only if

0n+2 ∈ eco
(
(C0

S ∪ {(0n, 0, 1)}) +R+(C ∪ {(−a,−b, 0)})
)
.

Proof. Since FX
SS is non-empty, then ⟨a, x⟩ < b is a consequence of FX

SS (i.e., FX
SS ⊂ {x ∈ R

n : ⟨a, x⟩ < b}) is
equivalent to

{x ∈ Rn : ⟨−a, x⟩ ≤ −b; ⟨at, x⟩ ≤ bt, t ∈W; ⟨at, x⟩ < bt, t ∈ S; ∃ ε > 0, ⟨at, x⟩ + ε ≤ bt, t ∈ L} = ∅.

And this is equivalent, by Theorem 4.4, to 0n+2 ∈ eco
(
(C0

S ∪ {(0n, 0, 1)}) +R+(C ∪ {(−a,−b, 0)})
)
.

Proposition 4.10. Let (a, b) ∈ Rn
×R, and assume that FX

SS is non-empty. If

0n+1 ∈ eco
(
(CS∪L +R+(CW ∪ {(−a,−b)})) ∪ {(0n, 1)}

)
, (19)

then ⟨a, x⟩ < b is a consequence of FX
SS.

Proof. Assume that (19) holds. Then, by Theorem 4.1, this means that the system

{⟨at, x⟩ < bt, t ∈ L; ⟨at, x⟩ < bt, t ∈ S; ⟨at, x⟩ ≤ bt, t ∈W; ⟨a, x⟩ ≥ b}

is not consistent. This implies that if x ∈ FX
S := FS ∩ X with FS := {x ∈ Rn : ⟨at, x⟩ < bt, t ∈ L}, then ⟨a, x⟩ < b.

Since ∅ , FX
SS ⊂ FX

S , one gets that ⟨a, x⟩ < b is a consequence of FX
SS.



M.M.L. Rodrı́guez, J. Vicente-Pérez / Filomat 40:4 (2026), 1189–1205 1203

5. Application to systems with convex inequalities

Now we apply the former results to provide necessary and sufficient conditions for the consistency of
systems with both strict and weak inequalities of the form

τ := { ft(x) ≤ 0, t ∈W; ft(x) < 0, t ∈ S}, (20)

determined by proper lower semicontinuous convex functions ft : Rn
→ RwhereR := R∪{±∞}. This kind

of systems were analyzed in [8] in the context of set containments.
For a function f : Rn

→ R, its effective domain is dom f := {x ∈ Rn : f (x) < +∞} and its epigraph is
epi f := {(x, r) ∈ Rn+1 : f (x) ≤ r}. The Legendre-Fenchel conjugate of f is the function f ∗ defined, for every
x∗ ∈ Rn, by f ∗(x∗) = supx∈Rn {⟨x∗, x⟩ − f (x)}. If f is a proper lower semicontinuous convex function, then
f = f ∗∗.

We observe that the solution set of τ is not necessarily evenly convex (even when S is a singleton).

Example 5.1. Consider the functions f1(x) = x2
1 + x2

2 − 1 defined on R2 and f2(x) = x1 −
√

x2 defined on its
effective domain dom f2 = {(x1, x2) ∈ R2 : x2 ≥ 0}. Both functions are proper lower semicontinuous convex
(it is easy to see that their lower level sets are closed and convex), and so fi = f ∗∗i for i = 1, 2. We shall
consider the system

τ = { f1(x) ≤ 0, f2(x) < 0}.

Since f ∗1 (y) = ∥y∥
2

4 + 1 and

f ∗2 (y) =
{

−1
4y2
, if y1 = 1, y2 < 0,

+∞, otherwise,

one has that X := {x ∈ R2 : f1(x) ≤ 0} = {x ∈ R2 : y1x1 + y2x2 ≤
∥y∥2

4 + 1, y ∈ R2
} and

{ f2(x) < 0} = {∃ ε > 0, f2(x) + ε ≤ 0} = {∃ ε > 0, x1 + y2x2 + ε ≤
−1
4y2
, y2 < 0}.

Therefore, the solution set of τ coincides with the set of strong Slater points of the linear system {x1 − tx2 ≤
1
4t , t > 0} with respect to the closed convex set X, say FX

SS, which is not an evenly convex set. Observe that
the open separation property from outside points fails at the origin, having that (0, 0) ∈ (eco FX

SS)\FX
SS (see

Figure 5.1).

Figure 2: The solution set of τ.

Theorem 5.2 (Necessary and sufficient conditions for the consistency of τ). Let ft : Rn
→ R be proper lower

semicontinuous convex functions for all t ∈W ∪ S. Consider the following statements:
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(i) (0n, 0,−1) < cl cone
[( ⋃

t∈W
epi f ∗t × {0}

)
∪

(⋃
t∈S

epi f ∗t × {−1}
)
∪ {(0n, 1,−1)}

]
;

(ii) τ = { ft(x) ≤ 0, t ∈W; ft(x) < 0, t ∈ S} is consistent;

(iii) 0n+1 < eco
[
{{epi f ∗t , t ∈ S} +R+{epi f ∗t , t ∈W}} ∪ {(0n, 1)}

]
.

Then, one has (i)⇒ (ii)⇒ (iii).

Proof. [(i) ⇒ (ii)] According to Theorem 3.2(iv), (i) is equivalent to say that the system {⟨a, x⟩ ≤ b, (a, b) ∈
epi f ∗t , t ∈ S} satisfies the strong Slater condition with respect to the closed convex set given by the solution
set of the linear system {⟨a, x⟩ ≤ b, (a, b) ∈ epi f ∗t , t ∈ W}. Hence, there exist x ∈ Rn and ε ∈ ]0, 1] such that
⟨a, x⟩ ≤ f ∗t (a) + δ for all δ ∈ R+, a ∈ dom f ∗t , t ∈W, and

⟨a, x⟩ + ε ≤ f ∗t (a) + δ

for all δ ∈ R+, a ∈ dom f ∗t , t ∈ S. Thus, ft(x) = f ∗∗t (x) ≤ 0 for all t ∈ W and ft(x) < ft(x) + ε = f ∗∗t (x) + ε ≤ 0 for
all t ∈ S, which shows that τ is consistent.

[(ii)⇒ (iii)] If τ is consistent, then there exists x ∈ Rn such that

⟨a, x⟩ − f ∗t (a) ≤ f ∗∗t (x) = ft(x) < 0

for all a ∈ dom f ∗t , t ∈ S, and
⟨a, x⟩ − f ∗t (a) ≤ f ∗∗t (x) = ft(x) ≤ 0

for all a ∈ dom f ∗t , t ∈ W. Thus, the linear system {⟨a, x⟩ ≤ b, (a, b) ∈ epi f ∗t , t ∈ W} is consistent with respect
to the evenly convex set X = {x ∈ Rn : ⟨a, x⟩ < b, (a, b) ∈ epi f ∗t , t ∈ S} and so, by Theorem 4.1(iii), statement
(iii) holds.

As a straightforward consequence of this result we obtain [22, Theorem 5.2].
We observe that, in Theorem 5.2, the epigraphs of the functions f ∗t , t ∈ W ∪ S, can be replaced by their

corresponding graphs. Furthermore, one has that, if for every t ∈ S there exists a compact set Ct ⊂ Rn+1

such that ft(·) = max{⟨a, ·⟩ − b : (a, b) ∈ Ct} and for every t ∈ W there exists a set Dt ⊂ Rn+1 such that
ft(·) = sup{⟨a, ·⟩ − b : (a, b) ∈ Dt}, then the system τ is consistent if and only if

0n+1 < eco [{{Ct, t ∈ S} +R+{Dt, t ∈W}} ∪ {(0n, 1)}] .

The proof of this fact follows easily from Theorem 4.1(iii), since, for every t ∈ S, ft(x) < 0 if and only if
⟨a, x⟩ < b for all (a, b) ∈ Ct, and, for every t ∈W, ft(x) ≤ 0 if and only if ⟨a, x⟩ ≤ b for all (a, b) ∈ Dt.

We conclude by pointing out that, whenever the functions ft, for all t ∈ S, in Theorem 5.2 are linear, then
one has that:

• Statement (ii) is equivalent to the existence of Slater points of the linear inequality system σ := {⟨at, x⟩ ≤
bt, t ∈ S}with respect to the closed convex set X := {x ∈ Rn : ft(x) ≤ 0, t ∈W}.

• Statement (i) is equivalent, by Theorem 3.2(iii), to the existence of strong Slater points of σwith respect
to the set X rewritten as {x ∈ Rn : ⟨a, x⟩ ≤ b, (a, b) ∈ epi f ∗t , t ∈W}.

• In this framework, statements (ii) and (iii) are equivalent in virtue of Theorem 4.1. However, (i) and
(ii) are not equivalent in general.

To see the last statement, consider the linear system σ = {s1x ≤ s2, (s1, s2) ∈ S} where S = {s ∈ R2 : s1 ≥

0, s2 ≥ 0, s1 + s2 , 0}, and the constraint set X = {x ∈ R : x ≤ 1}. It is easy to check that FX = F = ] − ∞, 0],
FX

S = FS = ] −∞, 0[ (the set of Slater points of σ with respect to X) and FX
SS = FSS = ∅. Thus, condition (ii) in

Theorem 5.2 holds, but condition (i) fails.
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[22] M.M.L. Rodrı́guez, J. Vicente-Pérez, Duality for sets of strong Slater points, Set-Valued Var. Anal. 31 (2023), 10.
[23] V. Soltan, Lectures on Convex Sets, World Scientific Publishing, Singapore, 2020.


