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Abstract. In this paper, a new class of quantum algebras is constructed. It is a Hopf superalgebra and an
extension of the quantized enveloping superalgebra of osp(1, 2). For these algebras, the Harish-Chandra
homomorphism are obtained. All simple modules for an arbitrary parameter q are determined up to
isomorphism.

Introduction

It is well known that the usual quantum enveloping algebra Uq(sl2) of the simple Lie algebra sl2 has
several generalizations. It has been extensively studied recently (see [5], [8]-[10]). Liu [8] introduced a
new Hopf algebra sltq,z(2) by adding an extra central element z to Uq(sl2) with extensive relations. Then he
found a family of new universal R-matrices for sltq,z(2) and proved that sltq,z(2) is a charmed Hopf algebra.
In [5] the quantum algebras Uq( f (K)) were introduced and their finite-dimensional representations were
investigated. Thereafter, in [9], the author explicitly constructed irreducible representations of the quantum
groups Uq( fm(K)), a special case of Uq( f (K)). Recently, Wu [10] introduced a new generalization of Uq(sl2)
by adding central generators J, J−1. The structures and representations of these generalized algebras were
obtained and classified, respectively. We point out that the algebra introduced in [8] was generalized to the
general case for finite dimensional simple Lie algebras (see [10, 11]).

In the case of Lie superalgebras, the situation becomes more complex except the quantum superalgebra
Uq(osp(1, 2n)). The examples related to this topics are given in [12, 13]. The results in [12] state that there is a
natural connection between finite-dimensional representations of Uq(osp(1, 2n)) and those of the quantum
algebra Uq(so(2n + 1)). The integrable representations of Uq(osp(1, 2n)) were explored in [13]. Among
Uq(osp(1, 2n)), the quantum superalgebra Uq(osp(1, 2)) is the most simple one and of particular interesting.
Several results for Uq(osp(1, 2)), such as those on its representations, center or scenter, have been explored
and described. See for example [1]-[4]. In [4] a new quantum algebra Uq(osp(1, 2, f )), a generalization of
Uq(osp(1, 2)) by the idea in [5], was constructed, its center is also characterized.
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In the present paper, we concern a quantum superalgebra U := Uq(osp(1, 2, c)), which is a generalization
of Uq(osp(1, 2)) by the way in [8, 10]. This quantum algebra shares many similar properties with the
quantum superalgebras Uq(osp(1, 2)). However, the algebra is more extensive, and the corresponding
results are more abundant. Similar to the idea in [10], the comultiplication and the counit can be equipped
with U to ensure that it is a Hopf superalgebra. Then the Harish-Chandra homomorphism is explored.
Finally, its finite-dimensional simple modules without any assumption on the parameter q are determined.
The results show that not all finite dimensional modules are completely reducible, even if q is not a root of
unity.

The paper is organized as follows. In Section 1, we give the definition and some basic results of the
generalized quantum algebra U := Uq(osp(1, 2, c)). It is shown that U is a Noetherian Hopf superalgebra
without non-zero divisors. In Section 2, the centre of U and the Harish-Chandra homomorphism are
obtained. In Section 3, we classify all simple U-modules when q is not a root of unity. An example
is given to show that not all finite dimensional modules are completely reducible. This means that the
representation theory is unlike the representations of the classic quantum superalgebra Uq(osp(1, 2)). In
Section 4, all simple U-modules are constructed and classified in the case when q is a d-th primitive root of
unity.

Throughout, we denote byK the algebraically closed field with characteristic zero. The parameter q ∈ K
is non-zero, q2 , 1, andN = {0, 1, 2, · · · }.

1. Preliminaries

First, let us introduce some notations.
For any integer n and v ∈ K, v , 0,±1, we set

[n]v =
vn
− v−n

v − v−1 = vn−1 + vn−3 + · · · + v−n+3 + v−n+1.

Let [0]v! = 1 and for k > 0, define
[k]v! = [1]v[2]v · · · [k]v.

For any integers 0 ≤ k ≤ n, let [
n
k

]
v
=

[n]v!
[k]v![n − k]v!

.

For v = q, we denote [n] = [n]q for the simplicity.

Definition 1.1. The algebra U = Uq(osp(1, 2, c)) is generated by E, F, K, K−1, c, and c−1, with the relations:

KK−1 = K−1K = 1, cc−1 = c−1c = 1, (1)
cx = xc, for x = E,F,K,K−1, (2)
KEK−1 = qE, KFK−1 = q−1F, (3)

EF + FE =
K − K−1cr

q − q−1 , r ∈ Z. (4)

Set t =
√

q i, and

[K; c; m]t =
tmK − t−mK−1cr

q − q−1 .

For m, n ∈ Z, it is straightforward to see that

EmKn = q−mnKnEm, FmKn = qmnKnFm, (5)
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EFm
− (−1)mFmE =

Fm−1

q − q−1

[
q−m + (−1)m−1

q−1 + 1
K −

qm + (−1)m−1

q + 1
K−1cr

]
. (6)

In fact, (6) can be written as

EFm
− (−1)mFmE = (−1)m−1[m]tFm−1[K; c; 1 −m]t. (7)

Similarly, the following relations hold in U:

EmF − (−1)mFEm =

[
q−m + (−1)m−1

q−1 + 1
K −

qm + (−1)m−1

q + 1
K−1cr

]
Em−1

q − q−1 , (8)

and hence

EmF − (−1)mFEm = (−1)m−1[m]t[K; c; 1 −m]tEm−1. (9)

Now we apply the Ore extensions to describe the PBW basis of U. For the concept of Ore extension, the
readers can refer to [6].

Proposition 1.2. The algebra U is Noetherian and has no zero divisors and the set

{EiF jKlcs
| i, j ∈N, l, s ∈ Z}

is a basis of U.

Proof. Let A0 = K[K,K−1, c, c−1]. Then A0 is Noetherian with no zero divisor and {Klcs
| l, s ∈ Z} is a basis

of A0. Consider the automorphism α1 of A0 determined by α1(K) = qK, α1(c) = c, and the corresponding
Ore extension A1 = A0[F, α1, 0], we have A1 has a basis consisting of the monomials {F jKlcs

| j ∈N, l, s ∈ Z}.
It is easy to prove that A1 is the algebra generated by F, F−1, K, K−1, c, c−1 satisfying the relations
FK = qKF, Fc = cF. It follows that A1 is Noetherian and has no zero divisor.

We define

α2(F jKlcs) = (−1) jq−lF jKlcs,

δ(cs) = δ(Kl) = 0, δ(F jKlcs) =
(
EF j
− (−1) jF jE

)
Klcs,

where j > 0 and l, s ∈ Z. It is straightforward to check that α2 is an automorphism of A1 and δ is an
α2-derivation of A1. Therefore, we have the Ore extension A2 = A1[E, α2, δ] and A2 is Noetherian with no
zero divisor. The set {EiF jKlcs

| i, j ∈ N, l, s ∈ Z} is a basis of A2. On the other hand, the following relations
hold in A2:

EK = α(K)E + δ(K) = q−1KE,

Ec = α(c)E + δ(c) = cE,

EF = α(F)E + δ(F) = −FE +
K − K−1cr

q − q−1 .

Hence, A2 is isomorphic to U and U has the required properties.

Recall that a super bialgebra A is defined to be a super vector space together with four maps m : A⊗A −→
A, u : K −→ A, ∆ : A −→ A ⊗ A, and ε : A −→ K enjoying the following axioms:

1. (A, m, u) is a Z2−graded associative algebra with multiplication m and unit u;
2. (A, ∆, ε) is a super coalgebra with comultiplication ∆ and counit ε;
3. The maps ∆ and ε are morphisms of algebras.
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If there exists aK-map S ∈ HomK(A,A) such that∑
(a)

a1S(a2) =
∑
(a)

S(a1)a2 = ε(a)1, for any a ∈ A,

A is called a Hopf superalgebra and S is said to be the antipode of A. Note that the multiplication of A ⊗A
satisfies

(a1 ⊗ b1)(a2 ⊗ b2) = (−1)p(a2)p(b1)a1a2 ⊗ b1b2,

where ai, bi ∈ A (i = 1, 2), and p : A −→ {0, 1} is the map of graded degree. The antipode S : A −→ A is a
graded anti-morphism

S(a1a2) = (−1)p(a2)p(a1)S(a2)S(a1)

for homogenous elements a1, a2 ∈ A.
One can see that U is a Z2-graded algebra with the map of graded degree defined by

p(EiF jKlcs) = i + j mod 2.

Define the maps
∆(K) = K ⊗ K, ∆(c) = c ⊗ c,

∆(E) = c−r
⊗ E + E ⊗ Kcr,∆(F) = K−1c2r

⊗ F + F ⊗ c−r,

ε(K) = ε(c) = 1, ε(E) = ε(F) = 0,

and
S(E) = −EK−1, S(F) = −KFc−r, S(c) = c−1, S(K) = K−1.

We have

Theorem 1.3. The relations above endow U with a Hopf superalgebra.

Proof. The proof is straightforward and we give the sketch here. Firstly, one should check that the maps
∆ and ε keeps the relations (1)-(4), hence they can be extended to the algebraic homomorphisms of U.
Secondly, we should show (U,∆, ε) is a coalgebra. Finally, we show that S keeps the relations (1)-(4) from U
into Uopp and that the identities ∑

(x)

x1S(x2) =
∑
(x)

S(x1)x2 = ε(x)1

hold for x = E, F, K, K−1, c−1.

2. The centre and Harish-Chandra homomorphism

In this section, we always assume that q is not a root of unity, and we explore the centre of U :=
Uq(osp(1, 2, c)).

It is obvious that U has another gradation: U is a Z−graded algebra with

deg K±1 = deg c±1 = 0, deg E = 1, deg F = −1.

Let

Um =

∑
i,l,s

KFiKlEi+mcs
| i,m ∈N; s, l ∈ Z

 .
In particular,

U0 =

∑
i,l,s

KFiKlEics
| i ∈N; s, l ∈ Z

 .
Then U =

⊕
m∈Z

Um.

Firstly, we set U0 = K[K,K−1, c, c−1] and denote the centre of U by Z(U).
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Lemma 2.1. Elements of Z(U) belong to U0.

Proof. Let
x =

∑
xm ∈ Z(U),

where the summation is finite and xm ∈ Um. Then we have

x = KxK−1 =
∑
m∈Z

qmxm =
∑
m∈Z

xm,

which implies that qm = 1, and m = 0 and x ∈ U0 since q is not a root of the unity.

By Lemma 2.1, any element z ∈ Z(U) has a unique form z =
∑

some i∈N
FihiEi, where hi ∈ U0. For 0 , x ∈ K and

f (K, c) ∈ U0, we define an algebra isomorphism γx : U0
−→ U0 as γx( f (K, c)) = f ((xK), c), which is denoted

by γx f .

Lemma 2.2. The element x =
∑

i∈N
FihiEi

∈ Z(U) if and only if

hi = (−1)i[i + 1]t[K; c;−i]thi+1 + (−1)iγq−1 hi, for all i ∈N. (10)

Proof. If x =
∑

i∈N
FihiEi

∈ Z(U), then

Ex =
∑
i∈N

EFihiEi =
∑
i∈N

(
(−1)i−1[i]tFi−1[K; c; 1 − i]t + (−1)iFiE

)
hiEi

=
∑
i∈N

[i + 1]tFi[K; c;−i]thi+1Ei+1 +
∑
i∈N

(−1)iFiγq−1 hiEi+1 = xE

=
∑
i∈N

FihiEi+1.

Hence the relation (10) holds.
Conversely, if (10) holds, then Ex = xE,Fx = xF and Kx = xK for any x ∈ U0. Hence x ∈ Z(U).

By Proposition 1.2 and Lemma 2.2, h1, h2, · · · are uniquely determined by h0.
Now, if 0 , h2 ∈ K, in particular h2 = 1, we see that hi = 0 for all i > 2 by (10). In this case, let us

determine h0, h1.
By (10) we have

h0 − γq−1 h0 =
K − K−1cr

q − q−1 h1,

h1 + γq−1 h1 =
q−1K − qK−1cr

q − q−1 h2 −
K − K−1cr

q − q−1 h2 =
K + K−1cr

(t − t−1)2 h2 +
q−1K + qK−1cr

(t − t−1)2 h2.

Assume that 0 , h2 ∈ K, we can choose

h1 =
K + K−1cr

(t − t−1)2 h2.

It yields that

h0 − γq−1 h0 =
K − K−1cr

q − q−1 h1 =
qK2 + q−1K−2c2r

(q − q−1)2(t − t−1)2 h2 −
q−1K2 + qK−2c2r

(q − q−1)2(t − t−1)2 h2.

Thus

h0 =
qK2 + q−1K−2c2r

(q − q−1)2(t − t−1)2 h2.
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Thus, if we fix that h2 = 1 ∈ K, we get that

Cq = F2E2 + F
K + K−1cr

(t − t−1)2 E +
qK2 + q−1K−2c2r

(q − q−1)2(t − t−1)2 .

The element Cq is called the quantum Casimir element.
Let π be the map from U0 to U0 defined by

π(
∑
i∈N

FihiEi) = h0, for all hi ∈ U0.

Then π is a linear projection and an algebra homomorphism, which is called the Harish-Chandra homo-
morphism. It is obvious that

kerπ = K
〈
FiKtEics

| i ∈N − {0}, t, s ∈ Z
〉

is an ideal of U0. In fact, each element z ∈ U0 can be written as π(z) +
∑
i>0

FihiEi.

Lemma 2.3. π |Z(U) is injective from Z(U) to U0.

Proof. Suppose that u =
∑
i≥0

FihiEi
∈ Z(U), and note that π(u) = h0.

If π(u) = 0, then h0 = 0, and hence hi = 0 for all i ≥ 1 by Lemma 2.2. Hence u = 0 and π|Z(U) is
injective.

Let us fix (λ, α) with λα , 0 and considerK-vector space V(λ, α) with a basis {vi | i ∈N}. For n ≥ 0, set

Kvn = (−1)nλt−2nvn, cvn = α
2vn, (11)

Evn+1 = (−1)n t−nλ − tnλ−1α2r

q − q−1 vn, Ev0 = 0, (12)

Fvn = [n + 1]tvn+1. (13)

It is straightforward to see that V(λ, α) is a U-module with the above relations. Such a U-module V(λ, α) is
called a Verma module of (highest) weight (λ, α) and a (highest) weight vector v0.

Recall that π(x) is in fact a Laurent polynomial in K, c. We denote π(z)(λ, α2) the value at K = λ, c = α2.

Lemma 2.4. Let V(λ, α) be the Verma module of weight (λ, α). Then for any central element z of U and v ∈ V(λ, α),
we have zv = π(z)(λ, α2)v.

Proof. Let v0 be the highest weight vector of V(λ, α) and z a central element of U: z = π(z) +
∑
i>0

FihiEi where

hi ∈ U0. Since Ev0 = 0, cv0 = α2v0,Kv0 = λv0, we get zv0 = π(z)(λ, α2)v0. If v is an arbitrary element in
V(λ, α), then v = xv0 for some x ∈ U, and hence zv = zxv0 = π(z)(λ, α2)v.

Lemma 2.5. Suppose that z ∈ Z(U) and (γt−1 ◦ π)(z) =
∑
i∈Z

aiKi, where ai ∈ K[c, c−1] has at most finite many

non-zero monomials. Then ai = 0 if i is odd.

Proof. By the assumption, we write π(z) =
∑
i∈Z

aitiKi. Now we choose h j ∈ U0, such that

z =
∑
i∈Z

aitiKi +
∑
j>0

F jh jE j.
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For any λ, α ∈ K∗ = K − {0}, and the Verma module V(λ, α), z acts on V(λ, α) as a scalar ai(α2)tiλi, where
ai(α2) is the value of ai at c = α2. For simplicity, we write ai for ai(α2). If λ = αrtn−1, then

∑
i∈Z

aitiλi =
∑
i∈Z

aitniαir.

By the relations (11) and (20), we have

Kvn = (−1)nλt−2nvn = (−1)nt−n−1αrvn,

Evn = (−1)n−1 t1−nλ − tn−1λ−1α2r

q − q−1 vn−1

= (−1)n−1 t1−nαrtn−1
− tn−1α−rt−n+1α2r

q − q−1 vn−1

= 0.

Thus there exists a submodule of V(αrtn−1, α) which is isomorphic to V((−1)nαrt−n−1, α), and z acts on the two
modules as the same scalar multiplication. Note that z acts on V((−1)nαrt−n−1, α) as scalar multiplication by∑

i∈Z

(−1)niait−ni−iαirti =
∑
i∈Z

(−1)niaiα
irt−ni,

we have ∑
i∈Z

aitniαir =
∑
i∈Z

(−1)niaiα
irt−ni =

∑
i∈Z

(−1)−nia−iα
−irtni.

If we choose a even number n, then
∑
i∈Z

(aiαir
− a−iα−ir)tni = 0. If we choose an odd number n, then∑

i∈Z
(aiαir

− (−1)ia−iα−ir)tni = 0. Both of them have infinite many roots tn. Therefore, aiαir
− a−iα−ir = 0 and

aiαir
− (−1)ia−iα−ir = 0 for all i. It follows that aiαir = 0, and hence ai = ai(α2) = 0 for any α if i is odd.

Theorem 2.6. Suppose that q is not a root of unity. Then the centre Z(U) of U is a commutative algebra generated
by the elements Cq, c, c−1 over the field K, and the restriction of Harish-Chandra homomorphism to Z(U) is an
isomorphism onto the subalgebra ofK[K,K−1, c, c−1] generated by c, c−1, and qK2 + q−1K−2c2r.

Proof. Firstly, assume that n = 2m(m ≥ 1), we consider the Verma module V(tn−1αr, α) for α , 0. By the
relations (11) and (20), Evn = 0, Kvn = t−n−1αrvn. vn is the highest weight vector of weight (tn−1αr, α).
By Lemma 2.4, a central element z acts on the module generated by vn as the multiplication by scalar
π(z)(t−n−1αr, α2), but since vn is in V(tn−1αr, α), the element z also acts as the scalar π(z)(tn−1αr, α2). Thus

π(z)(t−n−1αr, α2) = π(z)(tn−1αr, α2), (14)

where α , 0 and n = 2m > 0(m = 1, 2, 3, · · · ).
Suppose that π(z) = P(K,K−1, c, c−1), (14) implies that

P(tn−1αr, t−n+1α−r, α2, α−2) = P(t−n−1αr, tn+1α−r, α2, α−2). (15)

Let ψα(x) = P(t−1αrx, tα−rx−1, α2, α−2). By (15), ψα(tn) = ψα(t−n) for all n = 2m(m = 1, 2, 3, · · · ). Hence we
can write ψα(x) =

∑
i≥0

ai(α)(x + x−1)i, where ai(α) ∈ K[α, α−1]. Therefore

ψα(tα−rK) =
∑
i≥0

ai(α)
(
tα−rK + t−1αrK−1)i = P(K,K−1, c, c−1

)
.

Since P(K,K−1, (−α)2, (−α)−2) = P(K,K−1, α2, α−2), we have∑
i≥0

ai(α)(tα−rK + t−1αrK−1)i =
∑
i≥0

ai(−α)(t(−α)−rK + t−1(−α)rK−1)i,

That is ∑
i≥0

ai(α)α−ri(tK + t−1α2rK−1)i =
∑
i≥0

ai(−α)(−α)−ir(tK + t−1(−α)2rK−1)i,
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which implies that ai(α)α−ri = ai(−α)(−α)−ir. We can write ai(α) = αirbi(α2), where bi(α2) ∈ K[α, α−1].
Therefore ∑

i≥0

bi(α2)(tK + t−1α2rK−1)i = P(K,K−1, α2, α−2).

Consequently,

π(z) =
∑
i≥0

ci(c, c−1)(tK + t−1K−1cr)i,

where ci(c, c−1) =
∑

finite sum

aici
∈ K[c, c−1] and i ∈ Z. Moreover, ci(c, c−1) = 0 for all odd numbers i by Lemma

2.5. So

π(z) =
∑
2 j≥0

c2 j(c, c−1)(−1) j(qK2 + q−1K−2c2r
− 2cr) j

=
∑
2 j≥0

c2 j(c, c−1)(−1) j
j∑

i=0

di(c)(qK2 + q−1K−2c2r)i

=
∑
i≥0

fi(c, c−1)(qK2 + q−1K−2c2r)i,

where di(c) ∈ K[c], fi(c, c−1) ∈ K[c, c−1].
LetZ be the subalgebra ofK[K,K−1, c, c−1] generated by c, c−1, and qK2 + q−1K−2c2r. For any f ∈ Z, note

that
f =

∑
finite sum

ai jci(qK2 + q−1K−2c2r) j, i ∈ Z, j ∈N.

The map π, which enjoys

π(c) = c, π(c−1) = c−1, π(Cq) =
qK2 + q−1K−2c2r

(q − q−1)2(t − t−1)2 ,

is a surjective map obviously from Z(U) to the subalgebraZ. Henceπ|Z(U) from Z(U) toZ is an isomorphism
by Lemma 2.3. Consequently, Z(U) is a commutative algebra generated by the central elements Cq, c, c−1

(with cc−1 = c−1c = 1). It is remarked that Cq, c are algebraic independent by Proposition 1.2.

3. Representations when q is not a root of unity

In this section, we always assume that q is not a root of unity. All finite-dimensional simple U-modules
are determined.

Let V be a U−module. For (λ, α) ∈ (K∗)2, we set

Vλ,α = {v ∈ V | Kv = λv, cv = α2v}.

The pair (λ, α) is called a weight of V if Vλ,α , 0. Here, the action cv = α2v is possible since c is a central
element andK is an algebraic closed field.

It is obvious that EVλ,α
⊆ Vqλ,α and FVλ,α

⊆ Vq−1λ,α.

Definition 3.1. Let V be a U-module and (λ, α) ∈ (K∗)2. If Ev = 0, Kv = λv and cv = α2v, then 0 , v ∈ V is a
highest weight vector of weight (λ, α). And a U-module V is the highest weight module of highest weight (λ, α) if V
is generated by the highest weight vector of weight (λ, α).
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The analogous proof of [6, Proposition VI.3.3] shows that any non-zero finite-dimensional U-module
contains a highest weight vector on which E and F acting are nilpotent. Thus, any simple finite-dimensional
U-module is generated by the highest weight vector. Now assume that v ∈ V is a highest weight vector of
weight (λ, α). Set v0 = v and vp =

1
[p]t!

Fpv for p > 0, then

Kvp = q−pλvp, cvp = α
2vp,Fvp−1 = [p]tvp,

and

Evp = (−1)p−1 t1−pλ − tp−1λ−1α2r

q − q−1 vp−1, (16)

where t =
√

q i.
Let V be a finite-dimensional U-module generated by a highest weight vector v of weight (λ, α). The

vectors {vp | p ≥ 0} are defined as above. By the assumption, there is an integer n such that vn , 0 and
vn+1 = 0. By (16), we obtain vm = 0 for all m > n and vm , 0 for all m ≤ n. Since

0 = Evn+1 = (−1)n t−nλ − tnλ−1α2r

q − q−1 vn,

we have λ2 = t2nα2r, which implies that λ = εtnαr, where ε = ±1.

Theorem 3.2. Suppose that q is not a root of unity, and V is a finite-dimensional U-module generated by a highest
weight vector v of weight (λ, α). Then

1. λ = εtnαr, where ε = ±1 and n is determined by dimV=n + 1;
2. Let vp =

1
[p]t!

Fpv, the set {v0, v1, ..., vn} is a basis of V;
3. The action of K on V is diagonalizable with (n + 1) distinct eigenvalues

{εtnαr,−εtn−2αr, · · · , (−1)n−1εt−n+2αr, (−1)nεt−nαr
},

and c acts on V by α2;
4. Any other highest weight vector in V is a scalar multiple of v and is of weight (λ, α);
5. V is simple.

Proof. The proof of (1)-(3) is easy.
(4) Let v′ be another highest weight vector in V. It is an eigenvector for the action of K and c, hence it is

a scalar multiple of some vector vi. But the vector vi is killed by E if and only if i = 0. The result follows.
(5) Let V′ be a non-zero U-submodule of V and 0 , v′ ∈ V′. Without loss of generality, we assume that

v′ is a highest weight vector. Thus, v′ is a non-zero scalar multiple of v. Hence V = V′ and V is simple.

Theorem 3.2 implies that, up to isomorphism, there exist two isoclasses of simple U-modules of dimen-
sion n + 1, which are generated by highest weight vectors v of weight (εtnαr, α). We denote this module by
Vε,n,α. The action of U on Vε,n,α is as follows:

Kvp = (−1)ptn−2pεαrvp, cv = α2vp, Fvp−1 = [p]tvp, (17)

Evp = (−1)pεαr [n − p + 1]t

t + t−1 vp−1. (18)

The following example implies that not all finite-dimensional representations are completely reducible.

Example 3.3. Let V be a 2-dimensional vector space with a basis {v1, v2}. Define

E · vi = F · vi = 0, i = 1, 2;

K · v1 = εα
rv1, K · v2 =

1
2
εrαr−2βv1 + εα

rv2,

c · v1 = α
2v1, c · v2 = βv1 + α

2v2,

where β ∈ K∗. Then V is indecomposable but not simple.
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Proof. Indeed, the matrices of generators E,F, K and c acting on the basis v1, v2 are

ME =MF = 0, Mc =

(
α2 β
0 α2

)
, MK = εα

r−2

(
α2 1

2 rβ
0 α2

)
,

respectively.
It is easy to see that

MKMc =McMK, M2
K =Mcr , and MK,Mc are invertible.

This implies that V is a U-module. Furthermore, V is not simple since V contains a proper submodule
Kv1. V is indecomposable since MK and Mc can not be diagonalizable simultaneously. Of course, it is not
semisimple.

Define

C = Cq +
t2 + t−2

(q − q−1)2(t − t−1)2α
2r
∈ Z(U),

where

Cq = F2E2 + F
K + K−1cr

(t − t−1)2 E +
qK2 + qK−2c2r

(q − q−1)2(t − t−1)2

is the quantum Casimir element of U.
Let v0 ∈ Vε,0,α, we see that

Cv0 = F2E2v0 + F
K + K−1cr

(t − t−1)2 Ev0 +
qK2 + qK−2c2r

(q − q−1)2(t − t−1)2 v0 +
t2 + t−2

(q − q−1)2(t − t−1)2α
2rv0

=
qλ2 + qλ−2α4r

(q − q−1)2(t − t−1)2 v0 +
t2 + t−2

(q − q−1)2(t − t−1)2α
2rv0

= 0.

In general, if dim Vε′,n,α > 1, choosing the highest weight vector vn ∈ Vε′,n,α, we have

C · vn = F2E2vm + F
K + K−1cr

(t − t−1)2 Evn +
qK2 + qK−2c2r

(q − q−1)2(t − t−1)2 vn +
t2 + t−2

(q − q−1)2(t − t−1)2α
2rvn

=

(
−t2n+2α2r

− t−2n−2α2r

(q − q−1)2(t − t−1)2 +
t2 + t−2

(q − q−1)2(t − t−1)2α
2r
)

vn , 0.

The last step is due to that q and t are not roots of unity. This implies that for all v ∈ Vε′,n,α,

C · v =
(
−t2n+2α2r

− t−2n−2α2r

(q − q−1)2(t − t−1)2 +
t2 + t−2

(q − q−1)2(t − t−1)2α
2r
)

v , 0.

Suppose that V′ is a simple submodule of V with dim V′ > 1, and dim V/V′ = 1. We claim that there
exists a one-dimensional module V2 such that V = V′ ⊕ V2.

Indeed, V/V′ has weight (εαr, α) and let

C = Cq +
t2 + t−2

(q − q−1)2(t − t−1)2α
2r.

Since C acts by zero on V/V′, we have CV ⊆ V′. On the other hand, C acts on V′ as some scalar β , 0.
Hence β−1

C|V′ is the identity on V′ and therefore is a projector of V to V′. This projector is U-linear since C
is central. Let V2 = ker(β−1

C), one has V = V′ ⊕ V2.
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4. Representations when q is a root of unity

Let
Sq = q

1
2 K − q−

1
2 K−1cr

− ηFE,

where η = (q
1
2 + q−

1
2 )(q − q−1), Sq is called the Scasimir element of U. The Scasimir element Sq is useful for

exploring the representations of U in the case that q is a root of unity. It is straightforward to check that

SqF = −FSq, SqE = −ESq, SqK = KSq, S
2
q − 2cr =

(
q − q−1

)2 (
t − t−1

)2
Cq. (19)

Let q be a d-th primitive root of unity (d > 2), and

e =
{

d, if d is even;
2d, if d is odd; e′ =

{
d
2 , if d is twice an odd integer;
e, otherwise.

It is easy to see that e is always even, qe = 1 and [e]q = 0. Also, [e′]q = 0 and −q is the e′-th root of unity.

Lemma 4.1. 1. The elements Ee,Fe and Ke belong to the center of U.
2. If d is twice an odd integer, then

Ee′F = −FEe′ , Fe′E = −EFe′ , KEe′ = −Ee′K, KFe′ = −Fe′K.

Proof. The proof is straightforward.
(1) For example, since

EeF − FEe =

[
q−e + (−1)e−1

1 + q−1 K −
qe + (−1)e−1

1 + q
K−1cr

]
Ee−1

q − q−1 = 0,

and KEeK−1 = (KEK−1)e = (qE)e = qeEe = Ee. So Ee belongs to the center of U.
(2) Similarly,

Ee′F + FEe′ =

[
q−e′ + (−1)e′−1

1 + q−1 K −
qe′ + (−1)e′−1

1 + q
K−1cr

]
Ee′−1

q − q−1 = 0.

Here we use the fact that qe′ = −1 and (−1)e′−1 = 1.

Recall that if V is a finite-dimensional simple U-module, then EndU(V) = K. This means that the central
element acting on V is scalar.

Considering the Verma module V(λ, α) of U with a basis {vi | i ∈N}:

Kvn = (−1)nλt−2nvn, cvn = α
2vn,

Evn+1 = (−1)n t−nλ − tnλ−1α2r

q − q−1 vn, Ev0 = 0,

Fvn = [n + 1]tvn+1,

Proposition 4.2. Keeping notations as above. Then we have

Sqv0 = bv0, Sqvp = (−1)pbvp,

for some b ∈ K and all 0 ≤ p ≤ n.
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Proof. Let

b = q
1
2λ − q−

1
2λ−1α2r

∈ K.

Since v0 is the highest weight vector of Vε,n,α, we have

Sqv0 = q
1
2 Kv0 − q−

1
2 K−1crv0 − ηFEv0 =

(
q

1
2λ − q−

1
2λ−1α2r

)
v0 = bv0.

Therefore,
Sqvp = SqFpv0 = (−1)pFp

Sqv0 = (−1)pFpbv0 = (−1)pbvp.

The result follows.

Lemma 4.3. There is no finite-dimensional simple U-module of dimension greater than e.

Proof. Suppose that V is a U-module V of dimension greater than e. Then there exists a non-zero submodule
of dimension less than or equal to e.

If d is even, then c,K
d
2Sq, Ee,Fe belong to the center of U, and thus K,K

d
2Sq, c,Ee,Fe commute with each

other.
If d is odd, then c,Ee,Fe belong to the center of U, and K, c,Sq,Ee,Fe commute with each other.
In any case, by the knowledge of linear algebras there exists a non-zero vector v ∈ V such that

Kv = λv, cv = α2v, Sqv = cv, Eev = ϱv, and Fev = bv,

where ϱ, b ∈ K and c is determined by ϱ, b.
Two cases should be discussed.
Case 1. If Fev = 0, then there exists a integer 0 ≤ ℓ < e such that Fℓv , 0 and Fℓ+1v = 0. Replacing v

by Fℓv, without loss of generality, we can assume that Fv = 0. In this case, we claim that the subspace V′

spanned by v,Ev, · · · ,Ee−1v is a submodule of V.
To see this, it is enough to check that V′ is stable under the action of E,F,K, c. It is obvious for E,K, c. For

example, if ℓ < e − 1, then E(Eℓv) = Eℓ+1v ∈ V′ and E(Ee−1v) = Eev = av ∈ V′. Finally, V′ is stable under the
action of F. Indeed, recall that

FEℓ = (−1)ℓEℓF + [ℓ]t[K; c; 1 − ℓ]tEℓ−1, for all ℓ > 0.

Therefore, we have

FEℓv = (−1)ℓEℓFv + [d]t[K; c; 1 − ℓ]tEℓ−1v

= [ℓ]t
qℓ−1t1−ℓλ − q1−ℓtℓ−1λ−1α2r

q − q−1 Eℓ−1v ∈ V′, for all ℓ > 0.

Case 2. If Fev = bv , 0 for some b , 0, then the space V′ spanned by v,Fv, · · · ,Fe−1v is a submodule of
V. To see this, it is enough to check that V′ is stable under the actions of E,F,K, c.

Indeed, it is obvious that V′ is stable under the actions of F,K and c. To see that V′ is stable under the
action of E, we recall that

Sq = q
1
2 K − q−

1
2 K−1cr

− ηFE,

where η = (q
1
2 + q−

1
2 )(q − q−1). Note that SqFe−1v = (−1)e−1cFe−1v, we get

Ev = b−1EFev = b−1(EF)Fe−1v

= b−1
[

K − K−1cr

q − q−1 −
1
η

(q
1
2 K − q−

1
2 K−1cr

− Sq)
]

Fe−1v

=
(
b−1 f

)
Fe−1v,
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where

f =
q1−eλ − qe−1λ−1α2r

q − q−1 −
1
η

(
q

3
2−eλ − q−

3
2+eλ−1α2r + (−1)e−1c

)
. (20)

That is

c = (−1)e

ab −
η
(
q1−eλ − qe−1λ−1α2r

)
q − q−1 +

(
q

3
2−eλ − q−

3
2+eλ−1α2r

) ,
where a = b−1 f . For any 0 ≤ ℓ ≤ e − 1, we have

EFℓ+1v = (−1)ℓ[ℓ + 1]tFℓ[K; c;−ℓ]tv + (−1)ℓ+1Fℓ+1Ev

= (−1)ℓ
(
[ℓ + 1]t

t−ℓλ − tℓλ−1α2r

q − q−1 − f
)

Fℓv.

This implies that V′ is stable under the action of E.
The proof is finished.

Recall that q is a d-th primitive root of unity (d > 2). Let Wλ,α,a be a d-dimensional U-module with the
basis {v0, v1, · · · , vd−1}. The action of U is given by

Kvp = qpλvp, cvp = α
2vp,

Evp = vp+1, Evd−1 = av0;

Fvp+1 = [p + 1]t
qpt−pλ − q−ptpλ−1α2r

q − q−1 vp, Fv0 = 0,

where 0 ≤ p < d − 1. Obviously, the matrix of F under the basis v0, · · · , vd−1 can not be diagonalizable, and
Wλ,α,a is indecomposable. In particular, Wλ,α,a is simple if a , 0.

Let Wλ,α,a,b be a d-dimensional U-module with the basis {v0, v1, · · · , vd−1}. The action of U is given by

Kvp = q−pλvp, cvp = α
2vp,

Evp+1 = (−1)p
(
[p + 1]t

t−pλ − tpλ−1α2r

q − q−1 − ab
)

vp, and Ev0 = avd−1,

Fvp = vp+1, and Fvd−1 = bv0,

where 0 ≤ p < d − 1. If b , 0, the matrices of E and F under the basis v0, · · · , vd−1 can not be diagonalized
simultaneously, and Wλ,α,a,b is indecomposable. In particular, Wλ,α,a,b is simple if b , 0.

Theorem 4.4. Any non-zero finite-dimensional simple U-module up to isomorphism is one of the following lists:

1. Vε,n,α, 0 ≤ n ≤ e′ − 1;
2. Wλ,α,a, a , 0;
3. Wλ,α,a,b, b , 0.

Proof. By Lemma 4.3, the dimension of a simple U-module V is less than e or equal to e.
Recall that Vε,n,α is a U-module with another basis v0, · · · , vp = Fpv0, · · · , vn = Fnv0. The actions on this

basis can be written as

Kvp = (−1)ptn−2pεαrvp, cv = α2vp,

Fvp−1 = vp, Fvn = 0,

Ev0 = 0, Evp = (−1)pεαr [p]t[n − p + 1]t

t + t−1 vp−1,

where v0 is the highest weight vector of Vε,n,α for 0 ≤ p ≤ n.
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If n ≥ e′, then Vε,n,α is not simple since ve′ , · · · , vn span a proper submodule of Vε,n,α.
If n < e′, it is easy to see that Vε,n,α is simple.
Now we suppose that V is a simple U-module with dimV = ℓ ≤ e. By the proof of Lemma 4.3, we see

that V with a basis {v0, v1, · · · , vℓ−1} has to be the following forms:

Kvp = qpλvp, cvp = α
2vp,

Evp = vp+1, and Evℓ−1 ∈ V;

Fvp+1 = [p + 1]t
qpt−pλ − q−ptpλ−1α2r

q − q−1 vp, Fv0 = 0,

for some λ, where 0 ≤ p < ℓ − 1.
Let Evℓ−1 =

∑
0≤i≤ℓ−1

aivi. Since KEvℓ−1 = qℓλEvℓ−1, we have

qℓλ
∑

0≤i≤ℓ−1

aivi = λ
∑

0≤i≤ℓ−1

qiaivi.

It deduces that vℓ = Evℓ−1 = 0 or Evℓ−1 , 0.
In the previous case, we have

[ℓ]t
qℓ−1t−(ℓ−1)λ − q−(ℓ−1)tℓ−1λ−1α2r

q − q−1 = 0.

Hence
tℓ − t−ℓ = 0 or qℓ−1t−(ℓ−1)λ − q−(ℓ−1)tℓ−1λ−1α2r = 0.

So, ℓ = d is even, or ℓ = d
2 is odd, and hence d is a twice an odd integer, or ℓ = 2d when d is odd; or

λ = εq−(ℓ−1)tℓ−1αr. Hence, ℓ = e′ or λ = εq−(ℓ−1)tℓ−1αr(1 ≤ ℓ < e′). Therefore, we get the simple modules
V = Vε,n,α for 0 ≤ n ≤ e′ − 1 up to isomorphism as the proof of Theorem 3.2.

In the latter case, if ℓ < e, then ℓ = d is an odd number, and we must have that Evℓ−1 = av0 for a , 0. In
this case, we get a simple U-module of dimension d:

Kvp = qpλvp, cvp = α
2vp,

Evp = vp+1, Evd−1 = av0 (a , 0);

Fvp+1 = [p + 1]t
qpt−pλ − q−ptpλ−1

q − q−1 αrvp, Fv0 = 0,

where 0 ≤ p < d − 1, which is just Wλ,α,a, a , 0.
By Lemma 4.3, V is of basis {v0, v1, · · · , ve−1}with

Kvp = qpλvp, cvp = α
2vp,

Evp = vp+1, Eve−1 = av0;

Fvp+1 = [p + 1]t
qpt−pλ − q−ptpλ−1α2r

q − q−1 vp, Fv0 = 0

where 0 ≤ p < e − 1.
If d is odd, then e = 2d, then V is not simple since {v0+vd, v1+d+1, · · · , vd−1+ve−1} span a simple submodule

Wλ,α,a of V with the dimension d.
So, we can assume that ℓ = d = e is even. If Fvi , 0 for all 1 ≤ i ≤ e − 1, hence λ , εqi−1t1−iαr, then

V =Wλ,α,a is simple. Indeed, we can choose another basis{
y0 = ve−1, y1 = Fy0, · · · , ye−1 = Fe−1y0

}
and we have

K · yp = λ
′q−pyp, Eyp+1 = κpyp, Fye−1 = 0,
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for some λ′ , 0, κp , 0, and 0 ≤ p ≤ e − 1 by the assumptions. Let

v =
∑
some i

aiyi , 0, where ai , 0.

Then we have
Kl
· v =

∑
some i

aiλ
′lq−liyi.

Choosing suitable numbers l, we can rewrite yi as a combination of Kl
·v by Cramer’s Rule and Vandermonde

determinant. In particular, y0 can be generated by v overK[K,K−1, c, c−1]. So Wλ,α,a = U · v is simple.
If Fvi = 0 for some 1 ≤ i ≤ e − 1, then λ = εqi−1t1−iαr, Wλ,α,0 is not simple since the space spanned by

vi, vi+1, · · · , ve−1 is its proper submodule. But if a , 0, even if λ = εqi−1t1−iαr, Wλ,α,a is still simple by the
analogous statements as above. Consequently, Wλ,α,a, (a , 0) is simple whenever d is even or odd.

If Fev = bv for some b , 0, then V is spanned by linearly independent vectors v,Fv, · · · ,Fe−1v. Let v0 = v
and vp = Fpv0(0 ≤ p ≤ e − 1). Then

Kvp = q−pλvp, cvp = α
2vp, Eev0 = ϱv0, and Fve−1 = bv0,

where ϱ, b ∈ K.
We get that

Ev0 = b−1EFev0 = b−1(EF)Fe−1v

= b−1

[
K − K−1cr

q − q−1 −
1
η

(q
1
2 K − q−

1
2 K−1cr

− Sq)
]

Fe−1v

=
(
b−1 f

)
ve−1 := ave−1,

where a = b−1 f , hence f = ab, and f as in (20).
For any 0 ≤ p < e − 1, we have

Evp+1 = EFp+1v0 = (−1)p[p + 1]tFp[K; c;−p]tv0 + (−1)p+1Fp+1Ev0

= (−1)p
(
[p + 1]t

t−pλ − tpλ−1α2r

q − q−1 − f
)

Fpv0

= (−1)p
([

p + 1
]

t
t−pλ − tpλ−1α2r

q − q−1 − ab
)

vp.

Hence V:

Kvp = q−pλvp, cvp = α
2vp,

Evp+1 = (−1)p
(
[p + 1]t

t−pλ − tpλ−1α2r

q − q−1 − ab
)

vp, and Ev0 = ave−1,

Fvp = vp+1, and Fve−1 = bv0,

where 0 ≤ p < e − 1.
If d is odd, then e = 2d, V is not simple since {v0 + vd, v1 + vd+1, · · · , vd−1 + ve−1} span a simple submodule

Wλ,α,a,b of dimension d.
If d is even, then e = d, and V =Wλ,α,a,b is simple by the analogous statement as the previous cases.
The results are followed.
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