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Abstract. In this paper, a new class of quantum algebras is constructed. It is a Hopf superalgebra and an

extension of the quantized enveloping superalgebra of osp(1,2). For these algebras, the Harish-Chandra

homomorphism are obtained. All simple modules for an arbitrary parameter q are determined up to
isomorphism.

Introduction

It is well known that the usual quantum enveloping algebra U,(sl>) of the simple Lie algebra sl, has
several generalizations. It has been extensively studied recently (see [5], [8]-[10]). Liu [8] introduced a
new Hopf algebra SI;,Z (2) by adding an extra central element z to U,(sl>) with extensive relations. Then he

found a family of new universal R-matrices for sI;,Z(Z) and proved that sltqlz (2) is a charmed Hopf algebra.
In [5] the quantum algebras U,(f(K)) were introduced and their finite-dimensional representations were
investigated. Thereafter, in [9], the author explicitly constructed irreducible representations of the quantum
groups U,(f(K)), a special case of U,(f(K)). Recently, Wu [10] introduced a new generalization of U,(sl>)
by adding central generators ], J'. The structures and representations of these generalized algebras were
obtained and classified, respectively. We point out that the algebra introduced in [8] was generalized to the
general case for finite dimensional simple Lie algebras (see [10, 11]).

In the case of Lie superalgebras, the situation becomes more complex except the quantum superalgebra
U, (osp(1,2n)). The examples related to this topics are given in [12, 13]. The results in [12] state that there is a
natural connection between finite-dimensional representations of U,(osp(1,2n)) and those of the quantum
algebra U,(so(2n + 1)). The integrable representations of U,(osp(1,2n)) were explored in [13]. Among
U,(osp(1,2n)), the quantum superalgebra U,(osp(1, 2)) is the most simple one and of particular interesting.
Several results for U,(osp(1,2)), such as those on its representations, center or scenter, have been explored
and described. See for example [1]-[4]. In [4] a new quantum algebra U,(osp(1,2, f)), a generalization of
U,(osp(1,2)) by the idea in [5], was constructed, its center is also characterized.
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In the present paper, we concern a quantum superalgebra U := U,(osp(1, 2, c)), which is a generalization
of U,(osp(1,2)) by the way in [8, 10]. This quantum algebra shares many similar properties with the
quantum superalgebras U,(osp(1,2)). However, the algebra is more extensive, and the corresponding
results are more abundant. Similar to the idea in [10], the comultiplication and the counit can be equipped
with U to ensure that it is a Hopf superalgebra. Then the Harish-Chandra homomorphism is explored.
Finally, its finite-dimensional simple modules without any assumption on the parameter g are determined.
The results show that not all finite dimensional modules are completely reducible, even if g is not a root of
unity.

The paper is organized as follows. In Section 1, we give the definition and some basic results of the
generalized quantum algebra U := U,(osp(1,2,¢)). It is shown that U is a Noetherian Hopf superalgebra
without non-zero divisors. In Section 2, the centre of U and the Harish-Chandra homomorphism are
obtained. In Section 3, we classify all simple U-modules when g is not a root of unity. An example
is given to show that not all finite dimensional modules are completely reducible. This means that the
representation theory is unlike the representations of the classic quantum superalgebra U,(osp(1,2)). In
Section 4, all simple U-modules are constructed and classified in the case when g is a d-th primitive root of
unity.

Throughout, we denote by K the algebraically closed field with characteristic zero. The parameter q € K
is non-zero, > # 1,and N = {0,1,2,--- }.

1. Preliminaries

First, let us introduce some notations.
For any integer n and v € K, v # 0, 1, we set
ot —p "

[n], = —=0""+0
V=0

(ORI S

Let [0],! = 1 and for k > 0, define
klo! = (11121, - - - [K],.

For any integers 0 < k <, let

n| _ [n],!
k| [kl!n —klo!

For v = g, we denote [1n] = [n], for the simplicity.

Definition 1.1. The algebra U = Uy(osp(1,2, ) is generated by E, F, K, K™', ¢, and ™', with the relations:

KK'=K'K=1, ccl=cle=1, 1
cx = xc, forx = E,F K, K™, 2)
KEK™' =gE, KFK!'=g7'F, (©)
_w—1lar
EF+FE:%JEZ. (4)
Sett = 4/7i,and
MK — tmefl r
[K;c;m]; = —_1C
q-q

For m, n € Z, it is straightforward to see that

EMKTl — q—mnKnEm’ FmKH — qﬂanl’lle (5)
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EF" — (-1)"F"E = F_m:l qqurl(;ll)le 7 ;(:)ml K‘lcr]. (6)
In fact, (6) can be written as

EF" — (-1)"F"E = (=1)" ' [m,F" '[K; ¢; 1 — m],. 7)
Similarly, the following relations hold in U:

E"F — (~1)"FE" = [q_mq:(;ll)m_l k-1 ;(:)m_l K‘lc’] qE_m;l, ®)
and hence

E"F — (-1)"FE™ = (-1)""'[m),[K; c; 1 — m],E™". 9)

Now we apply the Ore extensions to describe the PBW basis of U. For the concept of Ore extension, the
readers can refer to [6].

Proposition 1.2. The algebra U is Noetherian and has no zero divisors and the set
[E'FK'¢ |i,j €N, s € Z)
is a basis of U.

Proof. Let Ap = K[K, K™, ¢, c!]. Then Ay is Noetherian with no zero divisor and {K'c® | I,s € Z} is a basis
of Ag. Consider the automorphism a; of Ay determined by a1(K) = gK, ai(c) = ¢, and the corresponding
Ore extension Ay = Ao[F, a1,0], we have A; has a basis consisting of the monomials {FIK!'¢® | jeN,l s e Z).
It is easy to prove that A; is the algebra generated by F, F1 K K1, ¢ ¢! satisfying the relations
FK = gKF, Fc = cF. It follows that A; is Noetherian and has no zero divisor.

We define

a(FIK'e®) = (-1)ig7'FiK! s,

5(c) = 5(K) =0, S(FK'e) = (EF - (-1)PE)K'c,
where j > 0 and [,s € Z. It is straightforward to check that a, is an automorphism of A; and 6 is an
ar-derivation of A;. Theljefore, we have the Ore extension A, = A1[E, a», 6] and A, is Noetherian with no
zero divisor. The set {E'F/K'¢® | i, j€NN,I,s € Z} is a basis of Ay. On the other hand, the following relations
hold in Aj:

EK = a(K)E + 6(K) = g 'KE,
Ec = a(c)E + 6(c) = cE,
K-K¢
q-qt

Hence, A; is isomorphic to U and U has the required properties. [J

EF = a(F)E + 5(F) = —-FE +

Recall that a super bialgebra A is defined to be a super vector space together with four mapsm : AQA —
A u: K—A A:A— A®A, and ¢ : A — K enjoying the following axioms:

1. (A, m, u) is a Z,—graded associative algebra with multiplication m and unit u;
2. (A, A, €)is a super coalgebra with comultiplication A and counit ¢;
3. The maps A and ¢ are morphisms of algebras.
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If there exists a K-map S € Homg(A, A) such that

Z a15(ap) = Z S(ar)a, = €(a)l, foranya € A,
(@) (@)

A is called a Hopf superalgebra and S is said to be the antipode of A. Note that the multiplication of A ® A
satisfies
(1 ®b1)(@2 ® b) = (~1)"*Wara, @ bibs,

wherea;, b€ A(i=1, 2),andp: A — {0, 1} is the map of graded degree. The antipode S: A — Aisa
graded anti-morphism
S(maz) = (—1y*WS(a5)S(ar)
for homogenous elements a1, a, € A.
One can see that U is a Z,-graded algebra with the map of graded degree defined by
p(EFK'¢)=i+j mod 2.
Define the maps
A(K) = K®K, Alc)=c®c,
AE)=c"®E+E®Kd,AF)=K '@ ®F+F®c”,
e(K)=¢e(c) =1,¢e(E) = ¢(F) =0,

and
S(E) = —EK™', S(F) = =KFc™", S(¢) = ¢!, S(K) = K™".

We have
Theorem 1.3. The relations above endow U with a Hopf superalgebra.

Proof. The proof is straightforward and we give the sketch here. Firstly, one should check that the maps
A and ¢ keeps the relations (1)-(4), hence they can be extended to the algebraic homomorphisms of U.
Secondly, we should show (U, A, ¢€) is a coalgebra. Finally, we show that S keeps the relations (1)-(4) from U

into U°PP and that the identities
Y 1S(x) = Y SGa)xa = ()1
() (%)

holdforx=E, F K K1, ¢l. O

2. The centre and Harish-Chandra homomorphism

In this section, we always assume that g is not a root of unity, and we explore the centre of U :=
U,(osp(1,2, ).
It is obvious that U has another gradation: U is a Z—graded algebra with

deg K*! = degc*! =0, degE =1, degF = —1.
Let
Uy = {Z KFKE*™¢ |i,meN; sl Z}.
ils
In particular,
Up = {Z KFKEC |ieN;s,le Z}.
ils

Then U = 6P U,,.
meZ.

Firstly, we set U° = K[K, K™}, ¢, c"!] and denote the centre of U by Z(U).
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Lemma 2.1. Elements of Z(U) belong to U.
Proof. Let

X = Z X € Z(U),
where the summation is finite and x,, € U,,,. Then we have

x=KxK!= Z q"xy = Z X,

mezZ. meZ
which implies that 4" = 1, and m = 0 and x € U since q is not a root of the unity. [J

By Lemma 2.1, any element z € Z(U) has a unique formz =}, Fii,El, where h; € UY. For 0 # x € K and

some I€EIN

f(K, c) € U°, we define an algebra isomorphism y, : U* — U° as y.(f(K, ¢)) = f((xK), ¢), which is denoted
by yxf.

Lemma 2.2. The element x = Y, FhE' € Z(U) if and only if
ieN

hi = (1)l + 14[K; & =ilihia + (—1)'y by, foralli € N. (10)

Proof. Ifx = Y, FILE' € Z(U), then
ieN

Ex = Z EFWE = Z (D LF K ¢ 1 = il + (1) FE) I
ieN ieN
- Z[i + 1F[K; ¢; —i] i E*Y + Z(—1)l’P"yq4hiEi+1 = xE
ieEN ieN
= Y FmE™.
ieN

Hence the relation (10) holds.
Conversely, if (10) holds, then Ex = xE, Fx = xF and Kx = xK for any x € Up. Hence x € Z(U). O

By Proposition 1.2 and Lemma 2.2, hy, hy, - - - are uniquely determined by hy.
Now, if 0 # hy € K, in particular /1, = 1, we see that i; = 0 for all i > 2 by (10). In this case, let us
determine hy, hy.

By (10) we have
K-Kt¢
ho—ygrho = ———hy,
q g—q1
-1 —1or o 1. -1 —1 .7
q K-gK ¢ K-K¢c K+Kc g 'K+gK'c
h ahp = hy — = .
A e R e () R Ve Ol
Assume that 0 # h, € K, we can choose
I = K+K‘1c’h
It yields that
e — v ik _ K_K—lcrh _ qK2+q71K72C27 ~ q71K2+qK72C2r
B B N T D (S A (R R S e S
Thus

B qK2+q—1K—2C2r L
T @ E-tR

0
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Thus, if we fix that i, = 1 € K, we get that
K+ K1l . qKZ + q—lK—ZCZr
=12 q-g (-t
The element C; is called the quantum Casimir element.
Let 7t be the map from Uy to U° defined by

C,=FE*+F

n(Z FlE") = hy, for all h; € U°.
ieN

Then 7t is a linear projection and an algebra homomorphism, which is called the Harish-Chandra homo-
morphism. It is obvious that

ker 7 = K(FfoEics lie N—-1{0t5s¢e Z>

is an ideal of Uj. In fact, each element z € U can be written as 7t(z) + Y, F/iE'.
i>0

Lemma 2.3. 7t |z is injective from Z(U) to UC.
Proof. Suppose that u = Y, Fl,E' € Z(U), and note that 7t(u) = hy.
i20
If n(u) = 0, then hy = 0, and hence h; = 0 for all i > 1 by Lemma 2.2. Hence u = 0 and |z is

injective. [J

Let us fix (A, @) with Aa # 0 and consider K-vector space V(A, a) with a basis {v; | i € IN}. For n > 0, set

Kv, = (-1)"At?"0,, cv, = a’v,, 11
FA — tn/\—l 2r

Evyq = (—1)”7_1&07,, Evy =0, (12)

Fo, = [n+1]ivp41. (13)

It is straightforward to see that V(A, ) is a U-module with the above relations. Such a U-module V(A, a) is
called a Verma module of (highest) weight (A, @) and a (highest) weight vector vp.
Recall that 7t(x) is in fact a Laurent polynomial in K, c. We denote 7(z)(A, a?) the value at K = A, c = a?.

Lemma 2.4. Let V(A, a) be the Verma module of weight (A, &). Then for any central element z of U and v € V(A, av),
we have zv = 11(z)(A, a?)v.

Proof. Let vy be the highest weight vector of V(A, @) and z a central element of U: z = 7t(z) + Y, F'l;E' where
>0

hi € U°. Since Evy = 0,cvy = vy, Kvg = Avy, we get zvy = 1(z)(A, a?)vy. If v is an arbitrary element in

V(A, @), then v = xv, for some x € U, and hence zv = zxvy = n(z)(A, a®)v. O

Lemma 2.5. Suppose that z € Z(U) and (y1 o m)(z) = Y. a;K', where a; € K[c,c'] has at most finite many
i€Z
non-zero monomials. Then a; = 0 if i is odd.

Proof. By the assumption, we write 7t(z) = Zi a;#’K’. Now we choose j € U°, such that
1€

z=) atK+ ) FiyE.

i€Z >0
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For any A,a € K* = K - {0}, and the Verma module V(A, a), z acts on V(A, a) as a scalar a;(@*)t'A’, where

a;(a?) is the value of 4; at ¢ = a2. For simplicity, we write a; for a;(a2). If A = &'t""1, then Y ait'A’ = Y a;t"a™.
i€Z i€Z

By the relations (11) and (20), we have

Ko, = (-=1)"At7"0, = (-1)"t""a,,
B tl_nA _ tn—lA—1a2r
Ev, = (-1)"! P -1
tl—nartn—l _ tn—la—rt—n+1a2r
= (_1)n—1 ) Un-1
q-9
= 0.

Thus there exists a submodule of V(a't"~!, &) which is isomorphic to V((-1)"a’t "1, @), and z acts on the two

modules as the same scalar multiplication. Note that z acts on V((—1)"a’t "1, a) as scalar multiplication by

Z(_l)niait—ni—iairti — Z(_l)niaiairt—ni’

i€Z ieZ

Z gl = Z(_l)m’aiairt—ni _ Z(_l)—nia_ia—irtni.

ieZ i€Z i€Z

we have

If we choose a even number 7, then Y (ag;a" — a_,a”")t" = 0. If we choose an odd number 7, then
i€Z
Y (@i’ — (=1)'a_;a"")#" = 0. Both of them have infinite many roots #". Therefore, a;a'" — a_,a™" = 0 and
i€Z.
aa" — (=1)a_ja~" = 0 for all i. It follows that a;a’" = 0, and hence 4; = a;(@?) = 0 for any a if i isodd. O

Theorem 2.6. Suppose that q is not a root of unity. Then the centre Z(U) of U is a commutative algebra generated
by the elements Cy,c,c™' over the field K, and the restriction of Harish-Chandra homomorphism to Z(U) is an
isomorphism onto the subalgebra of K[K, K71, ¢, c™!] generated by ¢, ¢!, and gK* + g~ 1K=2c?".

Proof. Firstly, assume that n = 2m(m > 1), we consider the Verma module V(#""'a", @) for & # 0. By the
relations (11) and (20), Ev, = 0, Kv, = " 'a’v,. v, is the highest weight vector of weight (#"'a’, ).
By Lemma 2.4, a central element z acts on the module generated by v, as the multiplication by scalar
n(z)(t"a’, a?), but since v, is in V(t"'a’, @), the element z also acts as the scalar 7t(z)(t"'a’, @?). Thus
n@)(E" 7, 0?) = n@) (", o), (14)
wherea #0andn=2m>0m=1,2,3,--).
Suppose that 7(z) = P(K, K™}, ¢, ¢™1), (14) implies that
P(tn—lar, t—n+1a—r, aZ, 0(_2) — P(t—n—lar, tn+1a—r, aZ/ 0(_2). (15)
Let ,(x) = P(t '’ x, ta"x71, a%, a72). By (15), Yo (t") = Yo(t™") for all n = 2m(m = 1,2,3,---). Hence we

can write 1, (x) = Y, ai(a)(x + x71)!, where a;(@) € K[, a™']. Therefore
i20

Va(ta™K) = Z a;i(a) (ta‘rK + 1KY = P(K, K}, c, c_l).
0
Since P(K, K71, (-=a)?, (-a)™?) = P(K, K™, a?, %), we have
Z ai(@)(ta K + 1’ KLY = Z ai(—a)(H=a) K + £ (~a) KLY,
=0 i20

That is A A A ‘
Y a@a (K + KT = ) a(-a)(-a) (K + 17 ()P KT,

i>0 i>0
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which implies that a;(@)a™ = a;(-a)(—a)™". We can write a;(a) = a”"bi(a?), where b;j(a?) € Kla,a™'].
Therefore

2:MMXK+fﬂﬁK”Y=HKK4ﬂ{Mﬂ

>0
Consequently,
ni(z) = Z ci(c, (K + 1K1Y,
=0
where c;i(c,c™!) = Y, aic’ € K[c,c"!] and i € Z. Moreover, c;(c,c™!) = 0 for all odd numbers i by Lemma
25. S0 e
@) = Y ele, (1)K +qT KM - 2c)

220

/
= Y oe )1 Y di@K? +q7 K2

2720 i=0
= Y Ao DK+ K2,
i>0
where d;(c) € Kl[c], fi(c,c™?) € K[c,c'].

Let Z be the subalgebra of K[K, K™, ¢, c"!] generated by ¢, ¢!, and gK* + g7 'K2c?. For any f € Z, note
that
f= Z aiic'(@K* + g 'K2c¥), i€Z,jeN.
finite sum

The map 7, which enjoys

qKZ + q—lK—ZCZr
(=g P -1

n(c) = ¢, n(c?) =, n(C,) =

is a surjective map obviously from Z(U) to the subalgebra Z. Hence 7|z from Z(U) to ZZ is an isomorphism
by Lemma 2.3. Consequently, Z(U) is a commutative algebra generated by the central elements C,, ¢, ¢!
(with cc™ = ¢”'¢ = 1). It is remarked that C,, c are algebraic independent by Proposition 1.2. [J

3. Representations when g is not a root of unity

In this section, we always assume that g is not a root of unity. All finite-dimensional simple U-modules
are determined.
Let V be a U-module. For (A, @) € (K*)?, we set

VM = (v e V| Kv = Av,cv = a’v).

The pair (A, @) is called a weight of V if V1 # 0. Here, the action cv = a?v is possible since c is a central
element and K is an algebraic closed field.

It is obvious that EVA® C Vi1 and FVAe C Vi 'Ae,

Definition 3.1. Let V be a U-module and (A, @) € (K*)*. IfEv =0, Kv = Avand cv = a®v, then 0 # v € Visa
highest weight vector of weight (A, o). And a U-module V is the highest weight module of highest weight (A, at) if V
is generated by the highest weight vector of weight (A, av).
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The analogous proof of [6, Proposition VI.3.3] shows that any non-zero finite-dimensional U-module

contains a highest weight vector on which E and F acting are nilpotent. Thus, any simple finite-dimensional

U-module is generated by the highest weight vector. Now assume that v € V is a highest weight vector of
1

weight (A, a). Set vp = vand v, = WFPU forp > 0, then

Kyp = q_pAUp, CUp = D[ZUP, FUp—l = [p]tvp/
and
tl_pA _ tp—l/\—]azr
q-q'

Ev, = (<1y! oy (16)

where t = 4/7i.

Let V be a finite-dimensional U-module generated by a highest weight vector v of weight (A, @). The
vectors {v, | p > 0} are defined as above. By the assumption, there is an integer n such that v, # 0 and
Un+1 = 0. By (16), we obtain v,, = 0 for all m > n and v,, # 0 for all m < n. Since

A — A L2
q-q7*

we have A2 = "q%  which implies that A = ¢"a’, where ¢ = +1.

0=Evy4q = (_1)11

nr

Theorem 3.2. Suppose that q is not a root of unity, and V is a finite-dimensional U-module generated by a highest
weight vector v of weight (A, &). Then

1. A = et"a’, where € = £1 and n is determined by dimV=n + 1;
2. Letv, = ﬁl—"’”v, the set {vg, v1, ..., vy} is a basis of V;
3. The action of K on V is diagonalizable with (n + 1) distinct eigenvalues

{é‘fn r’ _etn—Zarl . (_1)n—1€t—n+2ar, (_1)ngt—nar}’

and c acts on V by a?;
4. Any other highest weight vector in V is a scalar multiple of v and is of weight (A, a);
5. Vs simple.

Proof. The proof of (1)-(3) is easy.
(4) Let v’ be another highest weight vector in V. It is an eigenvector for the action of K and ¢, hence it is
a scalar multiple of some vector v;. But the vector v; is killed by E if and only if i = 0. The result follows.
(5) Let V’ be a non-zero U-submodule of V and 0 # v’ € V’. Without loss of generality, we assume that
v’ is a highest weight vector. Thus, v’ is a non-zero scalar multiple of v. Hence V = V’ and V is simple. [J

Theorem 3.2 implies that, up to isomorphism, there exist two isoclasses of simple U-modules of dimen-
sion n + 1, which are generated by highest weight vectors v of weight (et"a”, &). We denote this module by
Vena- The action of U on V., 4 is as follows:

Kov, = (—1)pt”*2”sayv,,, = azvp, Foy_1 = [plivy, 17)
[1’1 — p + 1],}
EUV = (—1)”60/va_1. (18)

The following example implies that not all finite-dimensional representations are completely reducible.
Example 3.3. Let V be a 2-dimensional vector space with a basis {v1, v,}. Define
E-vi=F-v;,=0, i=1,2
K-v; =¢ea'vi, K-vp = %sro/’zﬁvl +ea'vy,
c-v=a’v, cvy= Bo1 + vy,

where § € K*. Then V is indecomposable but not simple.
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Proof. Indeed, the matrices of generators E, F, K and ¢ acting on the basis v1, v, are

a? S a2 Ly
Mg = My =0, Mcz(o e
respectively.
It is easy to see that

MxM, = MMk, Mi = M, and Mg, M. are invertible.

This implies that V is a U-module. Furthermore, V is not simple since V contains a proper submodule
Kuv,. V is indecomposable since Mg and M, can not be diagonalizable simultaneously. Of course, it is not
semisimple. []

Define
2472

(q—q Xt -t1)? o e 2,

C=Cy+

where
K+K1¢ gK? + gK=2c¥

— r2r2
R R R

is the quantum Casimir element of U.
Let vy € V0,4, we see that

K+ Kt gK? + gK2c> 2+ 172
— F2E2 F 2r
co B e P () M PR T
gA? + gA~2a 2+t o
= o yram by L ety pras rU L
q@—q (-t (@—g ) @E-t1)

= 0

In general, if dim V., , > 1, choosing the highest weight vector v, € V¢ ,, o, we have

=17 KZ + K—Z 2r 2 -2
C-v, = F2E20m+FK+K1C2Evn+ 1 12 C120n+ tl-;t 12(12%"
t—t1 (G@—g -t (q-q')(E-t1)
B _t2n+2a2r _ t—2n—2a2r N tZ + t—Z aZr o 20
RN e e e R R e E (T D A

The last step is due to that g and ¢ are not roots of unity. This implies that forallv € Vo o,

_t2n+2a27 _ t—2n—2a27’ t2 + t—2
C-v= + a
@@-g -t (q-g ) -t")
Suppose that V' is a simple submodule of V with dim V’ > 1, and dim V/V’ = 1. We claim that there

exists a one-dimensional module V; such that V = V' & V.
Indeed, V/V’ has weight (ea”, @) and let

2’)7) # 0.

N 2 +172 o
B A

c=cC

Since C acts by zero on V/V’, we have CV C V’. On the other hand, C acts on V' as some scalar § # 0.
Hence B7'Cly- is the identity on V’ and therefore is a projector of V to V’. This projector is U-linear since C
is central. Let V, = ker(87!C), onehas V = V' @ V,.
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4. Representations when g is a root of unity

Let
S, = q%K - q_%K‘lc’ —nFE,

where n = (g7 +q72)(g — g7V, S, is called the Scasimir element of U. The Scasimir element S, is useful for
exploring the representations of U in the case that g is a root of unity. It is straightforward to check that

2 2
S;F =-FS,, S;E=-ES,, SK=KS, S2-2=(q-q7") (t-t7") C,. (19)
Let g be a d-th primitive root of unity (4 > 2), and

. d, if d is even; o = g, if d is twice an odd integer;
~ | 24, ifdis odd; “ ] e, otherwise.

It is easy to see that e is always even, g° = 1 and [e]; = 0. Also, [¢’]; = 0 and —g is the ¢’-th root of unity.

Lemma4.1. 1. The elements E¢, F° and K° belong to the center of U.
2. If d is twice an odd integer, then

E‘F = —FE¢, F’'E = —-EF®, KE® = —E°K, KF® = -F°K.

Proof. The proof is straightforward.
(1) For example, since

-4 (=1 e—1 e+ (-1 e—1 e—1
pepoppe = [T CV A CDT | BT
1+g71 1+¢ g—q!
and KE°K™! = (KEK™)* = (gE)° = q°E® = E°. So E¢ belongs to the center of U.
(2) Similarly,
, , —e’ + (=1 e —1 e’ + (=1 e'—1 e’ —1
prpeppe o [T CD A HCDT | BT
L+q7! L+q q-q!

Here we use the fact that g = —land (-1)°1=1. O

Recall that if V is a finite-dimensional simple U-module, then End;(V) = K. This means that the central
element acting on V is scalar.
Considering the Verma module V(A, ) of U with a basis {v; | i € N}:

Kv, = (-1)"At?"0,, cv, = a’v,,
A =t AT
q-q!

Fo, = [n+1]i0441,

Evyy1 = (_1)11 Un, Evg =0,

Proposition 4.2. Keeping notations as above. Then we have
Syv0 = bvy, Syvp, = (=1)boy,

forsomeb e Kandall0 <p < n.
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Proof. Let
b= q%A - q_%)\_lazr e K.
Since vy is the highest weight vector of V , ., we have
So0 = q%KUQ - q’%K’lc’vo —nFEvy = (q%)\ - q’%)\’laz’) vy = boy.

Therefore,
Syvp = SgFPvg = (=1VFPSyvg = (=1’ F'bug = (=1)bo,.

The result follows. [J
Lemma 4.3. There is no finite-dimensional simple U-module of dimension greater than e.

Proof. Suppose that V is a U-module V of dimension greater than e. Then there exists a non-zero submodule
of dimension less than or equal to e.

If d is even, then c, K%Sq, E¢, F® belong to the center of U, and thus K, K%Sq, ¢, E¢, F* commute with each
other.

If d is odd, then ¢, E°, F® belong to the center of U, and K, ¢, S;, E¢, F* commute with each other.

In any case, by the knowledge of linear algebras there exists a non-zero vector v € V such that

Kv = Av, cv = a?v, S,v =cv, E°v = gv, and F’v = bo,

where g,b € K and c is determined by g, b.

Two cases should be discussed.

Case 1. If v = 0, then there exists a integer 0 < ¢ < ¢ such that Ffo # 0 and F**'v = 0. Replacing v
by F‘v, without loss of generality, we can assume that Fo = 0. In this case, we claim that the subspace V’
spanned by v, Ev, - -+, E*"'v is a submodule of V.

To see this, it is enough to check that V’ is stable under the action of E, F, K, c. It is obvious for E, K, c. For
example, if £ < e — 1, then E(E‘v) = E*'v € V' and E(E*"'v) = E°0 = av € V'. Finally, V' is stable under the
action of F. Indeed, recall that

FE! = (<1)’E’F + [€}/[K; ;1 — €},E*", for all £ > 0.

Therefore, we have
FE%v = (-1)'E‘Fo+ [dl[K;c;1 - €],E 0
{’—1t1—€/\ _ 1—€tt’—1)\—1a27
(1, T_
q9-4
Case 2. If F°v = bv # 0 for some b # 0, then the space V’ spanned by v, Fo, --- ,F*"!v is a submodule of
V. To see this, it is enough to check that V"’ is stable under the actions of E, F, K, c.

Indeed, it is obvious that V’ is stable under the actions of F, K and c. To see that V’ is stable under the
action of E, we recall that

Elw e V7, forall € > 0.

S, = ¢?K - ¢ K¢ - nFE,
where 1 = (g% +q72)(q — 7). Note that S;F*~10 = (—1)°*"1cF*"'0, we get
Ev = b 'EFv=0b"YEF)F* v
1 [K - K¢
94"
(b—lf) Fe—lv,

—%(q%K—q_;K_1 -8, oy
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where
l—eA _ e—l/\—la2r 1 5 5 ~ ~
f=1 q_”’q_l -5 A g it v ). (20)
That is
1-e e—11-1,2r
Mg A =g A" 5
¢ = (=1) {ab _ ( - q_l ) + (q%—eA _ q—2+e/\—1a2r)] ,

wherea = b f. Forany 0 < £ < e -1, we have

EFf*% = (=D + 11, FK; ¢;—€lv + (-1 FEv

-y _ -1 ,2r
(-1)¢ ([€+ 1]t% - f) Flo.

This implies that V” is stable under the action of E.
The proof is finished. [J

Recall that g is a d-th primitive root of unity (d > 2). Let W, », be a d-dimensional U-module with the
basis {vg, v1,- -+ ,v4-1}. The action of U is given by
Kv, = ¢’ Av,,  cv, = a’vp,
Ev, =vpy1,  Evg1 = avy;
gPtPA — g PP A o
q=q!
where 0 < p < d — 1. Obviously, the matrix of F under the basis vy, - - -, v4-1 can not be diagonalizable, and

W a4 is indecomposable. In particular, W, o, is simple if a # 0.
Let W) o4 be a d-dimensional U-module with the basis {vg, v1,- -+ ,v4-1}. The action of U is given by

va+1 =[p+1]; Op, Foyy =0,

_ P _ 2
Kv, = q77 vy, vy = AUy,
FPA — A L
_ -1
q
Fu, = vp41, and Fug_y = boy,

Evy1 = (1P ([p + 11 - ab) vp, and Evg = av,_y,

where 0 < p <d-1. If b # 0, the matrices of E and F under the basis vy, - -+ ,v4-1 can not be diagonalized
simultaneously, and W) , .5 is indecomposable. In particular, W, 445 is simple if b # 0.

Theorem 4.4. Any non-zero finite-dimensional simple U-module up to isomorphism is one of the following lists:
1. Vena,0<n<e -1;
2. Waga, a#0;
3. Wagap b#0.

Proof. By Lemma 4.3, the dimension of a simple U-module V is less than e or equal to e.
Recall that V, , , is a U-module with another basis vy, -+ ,v, = FFvy, -+ ,v, = F'vg. The actions on this
basis can be written as
Ko, = (—1)”t”‘2psarvp, = azvp,
Fo,1 = vy, Fu, =0,
[pliln —p +1];
f+ 1
where vy is the highest weight vector of V. ,,, for 0 < p < n.

Evg =0, Evp = (-1)Pea’ Up-1,
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If n > ¢, then V,, o is not simple since vy, - - - , v, span a proper submodule of V., 4.
If n < ¢, it is easy to see that V, , , is simple.
Now we suppose that V is a simple U-module with dimV = ¢ < e. By the proof of Lemma 4.3, we see
that V with a basis {vy, v1, - - - , v,-1} has to be the following forms:
Kv, = g/ Avy,,  cvp = azvp,
Ev, = vpy1, and Evp1 € V;
FtPA— g PA 0

Fo 1 =[p+1]; — Uy, Fovg =0,
! q-q7! !
for some A, where 0 <p < {—-1.
LetEvpy = Y, a;v;. Since KEvp—y = g°AEv,_1, we have
0<i<t-1
q[)\ Z a;v; = A Z qiaivi.
0<i<l-1 0<i<t-1

It deduces that v; = Evy_1 = 0 or Eve_q # 0.
In the previous case, we have

qt’—lt—(t’—l) A— q—(t’—l)té’—l A-1la2r
q-q!

[£]:

Hence
t€ _ t—[ — 0 or q[—lt—([—l)A _ q—(f—l)t[—l/\—lah — O'

So, { = dis even, or { = % is odd, and hence d is a twice an odd integer, or { = 2d when d is odd; or

A = eq @EV1g" Hence, £ = ¢ or A = eq V7107 (1 < € < ¢'). Therefore, we get the simple modules
V =Vena for 0 <n <e —1up to isomorphism as the proof of Theorem 3.2.

In the latter case, if £ < ¢, then £ = d is an odd number, and we must have that Ev,_ 1 = avy fora # 0. In
this case, we get a simple U-module of dimension d:

Kv, = g’ Av,,  cvp = azvp,
Ev, =vpy1,  Evgq =avp (a #0);

PEPA — g PP AL
va+1 = [p + 1]fq q-— Z*l a"vp, FUO = 0[

where 0 < p <d -1, which is just Wy 44, a # 0.
By Lemma 4.3, V is of basis {vg, v1,- -, v.—1} with

Kv, = g’ Av,,  cvp = azvp,

Evy = 0py1,  EU.1 = avg;

PPN — g PPA 0
q—q"

Fopy =[p+1]; vy, Fop=0
where0 <p <e-1.

If dis odd, then e = 2d, then V is not simple since {vg +v4, V14441, * , V-1 +0Ve-1} Span a simple submodule
W . of V with the dimension d.

So, we can assume that { = d = eis even. If Fo; # O forall 1 <i < e—1, hence A # egq' =1t~
V = Wy 4. is simple. Indeed, we can choose another basis

a’, then

{yo =01, Y1 = FYo, -+, Yeu1 = Fe_lyo}

and we have
K- Y = )\/q—pyp/ E]/p+1 = KplYp, Fy..1 =0,
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for some A’ # 0, x, # 0, and 0 < p < e — 1 by the assumptions. Let

v= Z a;y; # 0, where a; # 0.

some 1

Kv= Z a) g7y,

some 1

Then we have

Choosing suitable numbers |, we can rewrite ; as a combination of K'-v by Cramer’s Rule and Vandermonde
determinant. In particular, o can be generated by v over K[K, K',¢,c . SoWy,, =U-vis simple.

If Fo; = 0 for some 1 < i <e—1, then A = g~ 't'"'a’, W, ,0 is not simple since the space spanned by
Vi, Vit1, "+ ,Ve—1 15 its proper submodule. But if a # 0, even if A = sqi‘ltl‘ia’, W) a4 is still simple by the
analogous statements as above. Consequently, W, , 4, (@ # 0) is simple whenever d is even or odd.

If Ffv = bu for some b # 0, then V is spanned by linearly independent vectors v, Fv, - - - JFe v Letvy =
and v, = FPyo(0 < p < e —1). Then

Kv, = g7 Av,, cv, = azv,,, Efvy = gvy, and Fov,_1 = boy,

where g,b € K.
We get that

Evy = b 'EFv, =b Y(EF)FF v
_ [K -K'le 1

q-q' 1
= (b7f)ver == avey,

where a = b~!f, hence f = ab, and f as in (20).
Forany 0 <p <e—1, we have

(q%K - q_%K_lcr - Sq)] o

Evpn = EP*log = (1)[p + 11FP[K; ¢; —pliwo + (-1)P P+ Evg
= (1 ([p A AT f) Fro,
q-9
= (=1 ([P +1], mq__t—p;llaw - ab) 0p.
Hence V:

Kv, = 7P Avy, cop = azvp,
FPA — A I
Evyq = (1) ([P 11—
r q-q7"
Fo, = vp41, and Fo,1 = boy,

- ab) vp, and Evg = av,1,

where0 <p <e-1.

If d is odd, then e = 2d, V is not simple since {vg + v4, V1 + V441, - -+ , Va-1 + U1} Span a simple submodule
Wi aap Of dimension d.

If d is even, thene = d, and V = W, ,,; is simple by the analogous statement as the previous cases.

The results are followed. O
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