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Abstract. The aim of this paper is to investigate the Hyers–Ulam stability of the Pexiderized Cauchy
functional equation on certain restricted domains in normed spaces. We also investigate the asymptotic
behavior and hyperstability of this equation and show how approximate solutions may lead to exact ones
under suitable conditions. The results obtained in this work extend and generalize several well-known
findings in the literature.

1. Introduction

The investigation of stability in functional equations began with a pivotal question posed by S. M. Ulam
[37] in 1940: “Given an approximately linear mapping f , when does a linear mapping T estimating f exist?” In the
next year, D. H. Hyers [16] provided the first affirmative answer in the context of Banach spaces, laying the
foundation for what is now recognized as Hyers–Ulam stability theory.

The field expanded significantly with contributions from various mathematicians. In 1950, T. Aoki [2]
extended Hyers’ results to additive mappings. In 1978, Th. M. Rassias [31] broadened these findings by
introducing an unbounded form of the Cauchy difference

∥C f (x, y)∥ ⩽ ε
(
∥x∥p + ∥y∥p

)
,

where C f (x, y) := f (x + y) − f (x) − f (y), ε > 0 and p ∈ [0, 1). This work has been instrumental in evolving
the Hyers–Ulam–Rassias stability theory, which remains fundamental in the study of functional equations.
A generalization of Rassias’ theorem was obtained by G.-L. Forti [14] in 1980.

In parallel, a major advance occurred in 1994 when P. Gǎvruta [15] introduced the concept of generalized
Hyers–Ulam–Rassias stability, further broadening the theory’s applicability. Over the decades, the stability
of functional equations has been extensively studied, leading to numerous generalizations and applications.
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Since then, many mathematicians have studied extensively the stability problems of several functional
equations. For further information on this area of research, we can refer the reader to [1, 3–13, 17, 20–22, 24–
29, 32, 34, 36].

Skof’s introduction of stability analysis within restricted domains marked a notable development,
demonstrating that inequalities governing the Cauchy equation remain stable under conditions such as
∥x∥ + ∥y∥ ⩾ d. This finding illustrated that local stability can imply global validity, a principle central to
ongoing research. Building on Skof’s insights, researchers like S. M. Jung, J. M. Rassias and J. M. Rassias
et al. explored stability problems in restricted domains for the Jensen functional equation [18], mixed type
functional equations [30] and Jensen type functional equations [33]. A unified conclusion emerged: for
mappings f : X→ Y between real normed and Banach spaces, the satisfaction of key inequalities for pairs
(x, y) where ∥x∥ + ∥y∥ ⩾ d guarantees their validity throughout the space X × X.

In 1983, F. Skof [35] resolved the Ulam stability problem for additive mappings within restricted domains.
Her theorem established that a mapping f : R→ E satisfying

∥C f (x, y)∥ ⩽ ε for |x| + |y| > d

admits a unique additive approximation A : R→ E with

∥ f (x) − A(x)∥ ⩽ 9ε for all x ∈ R,

where E is a Banach space and R is the set of real numbers. This result was crucial in characterizing
asymptotic behaviors, particularly illustrating the equivalence between the convergence of C f (x, y) to a
fixed z ∈ Y as ∥x∥ + ∥y∥ → ∞ and the exact condition C f (x, y) = z universally.

Recent advancements by Z. Kominek [23] further extended the stability results of the Jensen equation
across bounded and unbounded domains, while S. M. Jung et al. [21] dealt with the generalized Jensen
equation. Jung’s work [19] notably advanced the Hyers–Ulam stability for additive and quadratic equations,
paving the way for modern refinements in error bounds and domain generalizations.

The main purpose of this paper is to study the stability analysis of the Pexiderized Cauchy functional
equation f (x + y) = 1(x) + h(y) on certain restricted domains in a normed space. As an application, we
consider the asymptotic behavior and hyperstability results of this functional equation.

2. Main Results

Let X and Y be normed vector spaces. We denote Y as a Banach space. In [21], several results regarding
the stability of the Pexiderized Cauchy equation on the punctured space X0 = X \ {0} were established.
In this section, the stability of the Pexiderized Cauchy equation f (x + y) = 1(x) + h(y) is investigated and
studied within certain restricted domains. As applications of the obtained results, the asymptotic behavior
of the Pexiderized Cauchy equation is also examined. The results of this section complement and extend
those achieved in [21].

Theorem 2.1. Let f , 1, h : X→ Y be mappings satisfying

∥ f (x + y) − 1(x) − h(y)∥ ⩽ ε, min{∥x∥, ∥y∥} ⩾ d (2.1)

for some ε ⩾ 0 and d > 0. Then, there exists a unique additive mapping A : X→ Y such that

∥A(x) − f (x) + f (0)∥ ⩽ 12ε, x ∈ X, (2.2)
∥A(z) − 1(z) − A(a) + 1(a)∥ ⩽ 14ε, min{∥a∥, ∥z∥} ⩾ d, (2.3)
∥A(z) − h(z) + A(a) + h(−a)∥ ⩽ 14ε, min{∥a∥, ∥z∥} ⩾ d. (2.4)
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Moreover,

∥A(z) − 1o(z)∥ ⩽ 3ε, ∥z∥ ⩾ d,
∥A(z) − ho(z)∥ ⩽ 3ε, ∥z∥ ⩾ d,

where 1o and ho are the odd parts of 1 and h, respectively.

Proof. We use the symbol [s, t] to denote the substitution in which x and y in (2.1) are replaced by s and t,
respectively. Let a ∈ X such that ∥a∥ ⩾ d. The substitutions [x,−a], [a, y] and [a,−a] in (2.1) yield

∥ f (x − a) − 1(x) − h(−a)∥ ⩽ ε, ∥x∥ ⩾ d, (2.5)
∥ f (a + y) − 1(a) − h(y)∥ ⩽ ε, ∥y∥ ⩾ d, (2.6)
∥ f (0) − 1(a) − h(−a)∥ ⩽ ε. (2.7)

Adding (2.5) and (2.6), we get

∥ f (x − a) + f (a + y) − 1(x) − h(y) − 1(a) − h(−a)∥ ⩽ 2ε, min{∥x∥, ∥y∥} ⩾ d. (2.8)

Combining (2.1) and (2.8), we obtain

∥ f (x − a) + f (a + y) − f (x + y) − 1(a) − h(−a)∥ ⩽ 3ε, min{∥x∥, ∥y∥} ⩾ d. (2.9)

From (2.7) and (2.9) we obtain

∥ f (x − a) + f (a + y) − f (x + y) − f (0)∥ ⩽ 4ε, min{∥x∥, ∥y∥} ⩾ d. (2.10)

Letting x = 3a and y = a in (2.10) we obtain

∥2 f (2a) − f (4a) − f (0)∥ ⩽ 4ε.

Thus the recent inequality yields

∥ f (2x) − 2 f (x) + f (0)∥ ⩽ 4ε, ∥x∥ ⩾ d.

Hence∥∥∥∥∥∥∥ f (2n+1x)
2n+1 −

f (2mx)
2m +

n∑
k=m

f (0)
2k+1

∥∥∥∥∥∥∥ ⩽
n∑

k=m

ε

2k−1
(2.11)

for all ∥x∥ ⩾ d and n ⩾ m ⩾ 0. As a result, the sequence { f (2nx)
2n }

∞

n=1 forms a Cauchy sequence for ∥x∥ ⩾ d.
Consequently, it is also a Cauchy sequence for all x ∈ X. By the completeness of Y , we can define a mapping
A : X→ Y as

A(x) := lim
n→∞

f (2nx)
2n , x ∈ X.

It is clear that A(0) = 0 and A(2x) = 2A(x) for all x ∈ X. Let x, y, a ∈ X \ {0}. Then there exists m ∈ N such
that min{∥2nx∥, ∥2ny∥, ∥2na∥} ⩾ d for each n ⩾ m. By substituting x, y, and a with 2nx, 2ny, and 2na in (2.10),
dividing both sides of the resulting inequality by 2n, and using the definition of A, we obtain that

A(x − a) + A(a + y) = A(x + y), x, y, a ∈ X \ {0}. (2.12)

Letting x = −a and y = a in (2.12) and using A(0) = 0 and A(2a) = 2A(a), we infer that A is an odd mapping.
By setting a = 2x in (2.12), we derive

−A(x) + A(2x + y) = A(x + y), x, y ∈ X \ {0}. (2.13)
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It is evident that (2.13) remains valid for all x, y ∈ X. Now, substituting x with −x and y with 2x+ y in (2.13),
we obtain

A(x) + A(y) = A(x + y), x, y ∈ X.

Hence, A is additive on X. Setting m = 0 and taking the limit as n→∞ in (2.11), we derive∥∥∥A(x) − f (x) + f (0)
∥∥∥ ⩽ 4ε (2.14)

for all ∥x∥ ⩾ d. We now extend the inequality (2.14) to the entire space X. It is evident that inequality (2.14)
holds for x = 0. Let z , 0 be an element of X. We can select x, y, a ∈ X such that z = x + y, and satisfy the
condition

min{∥x∥, ∥y∥, ∥a∥, ∥x − a∥, ∥y + a∥} ⩾ d.

Thus, from (2.14), we conclude that∥∥∥A(x − a) − f (x − a) + f (0)
∥∥∥ ⩽ 4ε, (2.15)∥∥∥A(y + a) − f (y + a) + f (0)
∥∥∥ ⩽ 4ε. (2.16)

By adding (2.10), (2.15), and (2.16), we obtain

∥A(z) − f (z) + f (0)∥ ⩽ 12ε.

This establishes (2.2). To prove (2.3), let a, z ∈ X such that min{∥a∥, ∥z∥} ⩾ d. Then, by (2.2), we have

∥A(z − a) − f (z − a) + f (0)∥ ⩽ 12ε.

Adding this inequality to (2.5), and applying (2.7), we obtain (2.3). A similar argument can be used to
derive (2.4). From (2.2), we also conclude that A(x) = limn→∞

f (nx)
n for all x ∈ X. This completes the proof of

the uniqueness of A.
Additionally, suppose ∥z∥ ⩾ d. From inequalities (2.1) and (2.14), we have the following:

∥ f (2z) − 1(z) − h(z)∥ ⩽ ε,
∥1(−z) + h(z) − f (0)∥ ⩽ ε,
∥A(2z) − f (2z) + f (0)∥ ⩽ 4ε.

By adding these three inequalities together, we obtain

∥A(2z) − 1(z) + 1(−z)∥ ⩽ 6ε.

Since A(2z) = 2A(z), we deduce ∥A(z) − 1o(z)∥ ⩽ 3ε. A similar argument can be applied to show that
∥A(z) − ho(z)∥ ⩽ 3ε.

Theorem 2.2. Let f , 1, h : X→ Y be mappings satisfying

lim
min{∥x∥,∥y∥}→∞

∥ f (x + y) − 1(x) − h(y)∥ = 0. (2.17)

Then f is an affine mapping on X, meaning that f − f (0) is additive on X.

Proof. Let ε > 0 be any given real number. From (2.17), there exists a dε > 0 such that

∥ f (x + y) − 1(x) − h(y)∥ ⩽ ε, min{∥x∥, ∥y∥} ⩾ dε.
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According to Theorem 2.1, there exists an additive mapping Aε : X → Y (Y is the completion of Y) such
that

∥Aε(z) − f (z) + f (0)∥ ⩽ 12ε, z ∈ X.

Thus, for all x, y ∈ X, we have

∥ f (x + y) − f (x) − f (y) + f (0)∥ ⩽ ∥ f (x + y) − Aε(x + y) − f (0)∥
+ ∥Aε(x) − f (x) + f (0)∥ + ∥Aε(y) − f (y) + f (0)∥
⩽ 36ε.

Since ε > 0 is arbitrary, we conclude that

f (x + y) = f (x) + f (y) − f (0), x, y ∈ X.

Therefore, it follows that f − f (0) is additive on X.

The following example demonstrates that, based on the previous theorem, we cannot conclude that 1 or h
are affine.

Example 2.3. Let f , 1, h : R→ R be given by

f (x) = x + 2, 1(x) = 1 + x +
1

1 + |x|
, h(x) = 1 + x +

x
1 + x2 , x ∈ R.

It is clear that

lim
min{|x|,|y|}→∞

| f (x + y) − 1(x) − h(y)| = 0.

However, 1 and h are not affine mappings on R.

It is worth noting that Theorem 2.1 remains valid even when inequality (2.1) is considered for ∥x∥+ ∥y∥ ⩾ d.
However, in this case, a different and simpler proof can be provided, yielding better bounds than those
stated in Theorem 2.1. What follows generalizes Theorem 3 and Corollary 4 from [18], as well as Theorem
3.1 from [21].To clarify, Theorem 3 of [18] studied the Hyers-Ulam stability of the Jensen equation, while
Theorem 3.1 of [21] dealt with the Hyers-Ulam stability of a generalized Jensen equation on a restricted
domain. Both of these are special cases of the Pexiderized Cauchy functional equation considered in
Theorem 2.4. Similarly, Corollary 4 of [18] establishes the asymptotic behavior of additive mappings,
which is a special case of the asymptotic results for the Pexiderized Cauchy functional equation proved in
Corollary 2.5.

Theorem 2.4. Let f , 1, h : X→ Y be mappings satisfying

∥ f (x + y) − 1(x) − h(y)∥ ⩽ ε, ∥x∥ + ∥y∥ ⩾ d (2.18)

for some ε ⩾ 0 and d > 0. Then, there exists a unique additive mapping A : X→ Y such that

∥A(x) − f (x) + 1(0) + h(0)∥ ⩽ 9ε, x ∈ X, (2.19)
∥A(x) − 1(x) + 1(0)∥ ⩽ 8ε, x ∈ X, (2.20)
∥A(x) − h(x) + h(0)∥ ⩽ 8ε, x ∈ X. (2.21)

Proof. The substitutions [x, 0] and [0, y] in (2.18) yield

∥ f (x) − 1(x) − h(0)∥ ⩽ ε, ∥x∥ ⩾ d, (2.22)
∥ f (y) − 1(0) − h(y)∥ ⩽ ε, ∥y∥ ⩾ d. (2.23)
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Combining (2.18), (2.22) and (2.23), we obtain

∥ f (x + y) − f (x) − f (y) + 1(0) + h(0)∥ ⩽ 3ε, min{∥x∥, ∥y∥} ⩾ d. (2.24)

Thus,

∥ f (2x) − 2 f (x) + 1(0) + h(0)∥ ⩽ 3ε, ∥x∥ ⩾ d.

Hence∥∥∥∥∥∥∥ f (2n+1x)
2n+1 −

f (2mx)
2m +

n∑
k=m

1(0) + h(0)
2k+1

∥∥∥∥∥∥∥ ⩽
n∑

k=m

3ε
2k+1

(2.25)

for all ∥x∥ ⩾ d and n ⩾ m ⩾ 0. Using a similar reasoning as in the proof of Theorem 2.1, we can define the
mapping A : X→ Y by

A(x) := lim
n→∞

f (2nx)
2n , x ∈ X.

It is evident that A(0) = 0. Using (2.24) along with the definition of A, we conclude

A(x + y) = A(x) + A(y), x, y ∈ X \ {0}.

Since A(0) = 0, we deduce that A is an additive mapping on X. By setting m = 0 and taking the limit as n
approaches infinity in (2.25), we derive

∥A(x) − f (x) + 1(0) + h(0)∥ ⩽ 3ε, ∥x∥ ⩾ d. (2.26)

Let z ∈ X and choose x, y ∈ X such that z = x+ y and min{∥x∥, ∥y∥} ⩾ d. Using (2.24) and (2.26), we arrive at:

∥A(z) − f (z) + 1(0) + h(0)∥ ⩽ ∥A(x) − f (x) + 1(0) + h(0)∥
+ ∥A(y) − f (y) + 1(0) + h(0)∥
+ ∥ f (x) + f (y) − f (x + y) − 1(0) − h(0)∥
⩽ 9ε.

This establishes (2.19). Let x ∈ X and choose y ∈ X such that

min{∥y∥, ∥x + y∥} ⩾ d.

From (2.26), we derive the following inequalities:

∥A(x + y) − f (x + y) + 1(0) + h(0)∥ ⩽ 3ε, (2.27)
∥ f (y) − A(y) − 1(0) − h(0)∥ ⩽ 3ε. (2.28)

By summing (2.18), (2.27) and (2.28), we arrive at

∥A(x) + f (y) − 1(x) − h(y)∥ ⩽ 7ε.

Combining this result with (2.23), we establish (2.20). A similar reasoning can be applied to derive (2.21),
and the details are omitted for brevity.

As a direct application of Theorem 2.4, we now turn our attention to investigating the asymptotic behavior
of the Pexiderized Cauchy functional equation.
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Corollary 2.5. Let f , 1, h : X→ Y be mappings satisfying

lim
∥x∥+∥y∥→∞

∥ f (x + y) − 1(x) − h(y)∥ = 0. (2.29)

Then f , 1 and h are affine mappings on X.

Proof. Let ε > 0 be an arbitrary positive real number. From (2.29), there exists a constant dε > 0 such that

∥ f (x + y) − 1(x) − h(y)∥ ⩽ ε, ∥x∥ + ∥y∥ ⩾ dε.

Using Theorem 2.4, we can establish the existence of an additive mapping Aε : X→ Y (Y is the completion
of Y) that satisfies

∥Aε(x) − f (x) + 1(0) + h(0)∥ ⩽ 9ε, x ∈ X,
∥Aε(x) − 1(x) + 1(0)∥ ⩽ 8ε, x ∈ X,
∥Aε(x) − h(x) + h(0)∥ ⩽ 8ε, x ∈ X.

As a result, for any x, y ∈ X, the following inequality holds:

∥ f (x + y) − f (x) − f (y) + 1(0) + h(0)∥ ⩽ ∥ f (x + y) − Aε(x + y) − 1(0) − h(0)∥
+ ∥Aε(x) − f (x) + 1(0) + h(0)∥
+ ∥Aε(y) − f (y) + 1(0) + h(0)∥
⩽ 27ε.

Since ε > 0 is arbitrary, we deduce that

f (x + y) = f (x) + f (y) − 1(0) − h(0), x, y ∈ X.

This further implies that f (x + y) = f (x) + f (y) − f (0) for all x, y ∈ X. From this, it follows that f − f (0) is an
additive mapping on X, and thus f is affine on X. Using a similar approach, it can be shown that 1 and h
are also affine on X.

Theorem 2.6. Let f , 1, h : X→ Y be mappings satisfying

∥ f (x + y) − 1(x) − h(y)∥ ⩽ ε, ∥x + y∥ ⩾ d (2.30)

for some ε ⩾ 0 and d > 0. Then, there exists a unique additive mapping A : X→ Y such that

∥A(x) − f (x) + 1(0) + h(0)∥ ⩽ 3ε, ∥x∥ ⩾ d, (2.31)
∥A(x) − 1(x) + 1(0)∥ ⩽ 8ε, x ∈ X, (2.32)
∥A(x) − h(x) + h(0)∥ ⩽ 8ε, x ∈ X. (2.33)

Proof. By setting x = 0 and y = 0 separately in (2.30), we obtain the following inequalities:

∥ f (x) − 1(x) − h(0)∥ ⩽ ε, ∥x∥ ⩾ d, (2.34)
∥ f (y) − 1(0) − h(y)∥ ⩽ ε, ∥y∥ ⩾ d. (2.35)

By combining (2.30), (2.34) and (2.35), we arrive at

∥ f (x + y) − f (x) − f (y) + 1(0) + h(0)∥ ⩽ 3ε, min{∥x∥, ∥y∥, ∥x + y∥} ⩾ d.

Thus,

∥ f (2x) − 2 f (x) + 1(0) + h(0)∥ ⩽ 3ε, ∥x∥ ⩾ d.
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Hence∥∥∥∥∥∥∥ f (2n+1x)
2n+1 −

f (2mx)
2m +

n∑
k=m

1(0) + h(0)
2k+1

∥∥∥∥∥∥∥ ⩽
n∑

k=m

3ε
2k+1

(2.36)

for all ∥x∥ ⩾ d and n ⩾ m ⩾ 0. Using a similar reasoning as in the proof of Theorem 2.1, we can define the
mapping A : X→ Y by

A(x) := lim
n→∞

f (2nx)
2n , x ∈ X.

It is evident that A(0) = 0 and A(2x) = 2A(x) for all x ∈ X. It follows from (2.34) and (2.35) that

lim
n→∞

1(2nx)
2n = A(x), lim

n→∞

h(2nx)
2n = A(x), x ∈ X.

We now aim to prove that A is additive on X. From (2.30), we obtain

A(x + y) = A(x) + A(y), x, y ∈ X, x + y , 0. (2.37)

By setting y = −2x in (2.37), we conclude that A(−x) + A(x) = 0 for all x ∈ X \ {0}. Since A(0) = 0, it follows
that A is odd on X. Consequently, it follows that (2.37) holds true for every x, y ∈ X, which implies that the
mapping A is additive on X. By substituting m = 0 and allowing n to approach infinity in (2.36), we obtain
(2.31).

By adding inequality (2.31) to inequality (2.34), we arrive at

∥1(x) − A(x) − 1(0)∥ ⩽ 4ε, ∥x∥ ⩾ d. (2.38)

Similarly, using (2.31) and (2.35), we obtain

∥h(y) − A(y) − h(0)∥ ⩽ 4ε, ∥y∥ ⩾ d. (2.39)

Let x ∈ X and choose y ∈ X such that min{∥y∥, ∥x + y∥} ⩾ d. Using (2.31), we get

∥A(x + y) − f (x + y) + 1(0) + h(0)∥ ⩽ 3ε. (2.40)

By combining (2.30), (2.39) and (2.40), and applying the principle of additivity for A, we arrive at (2.32).
Similarly, one can use a comparable proof to establish (2.33), and we will omit the details.

Theorem 2.7. Let f , 1, h : X→ Y be mappings satisfying

lim
∥x+y∥→∞

∥ f (x + y) − 1(x) − h(y)∥ = 0. (2.41)

Then 1 and h are affine mappings on X.

Proof. Let ε > 0 be an arbitrary positive real number. Based on equation (2.41), we can find a constant dε > 0
such that

∥ f (x + y) − 1(x) − h(y)∥ ⩽ ε, ∥x + y∥ ⩾ dε.

By applying Theorem 2.6, there exists an additive mapping Aε : X→ Y (Y is the completion of Y) satisfying

∥A(z) − 1(z) + 1(0)∥ ⩽ 8ε, ∥A(z) − h(z) + h(0)∥ ⩽ 8ε, z ∈ X.

Consequently, for any x, y ∈ X, the following inequality holds:

∥1(x + y) − 1(x) − 1(y) + 1(0)∥ ⩽ ∥1(x + y) − Aε(x + y) − 1(0)∥
+ ∥Aε(x) − 1(x) + 1(0)∥ + ∥Aε(y) − 1(y) + 1(0)∥
⩽ 24ε.
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Since ε > 0 is arbitrary, we deduce that

1(x + y) = 1(x) + 1(y) − 1(0), x, y ∈ X.

This implies that 1 − 1(0) is an additive mapping on X, and therefore 1 is affine on X. A similar argument
shows that h is also affine on X.

The example below illustrates that, even when the conditions of Theorem 2.7 are satisfied, it does not
necessarily follow that f is affine.

Example 2.8. Consider the functions f , 1, h : R→ R defined as

f (x) = 3 + x +
1

1 + |x|
, 1(x) = 1 + x, h(x) = 2 + x, x ∈ R.

It is evident that

lim
|x+y|→∞

| f (x + y) − 1(x) − h(y)| = 0.

Nevertheless, f is not an affine function on R.

3. Hyperstability results

In this section, we discuss the hyperstability results for the functional equation introduced in Section 2.

Theorem 3.1. Let p, q, r, s < 0 and f , 1, h : X→ Y be mappings that satisfy the following inequality

∥ f (x + y) − 1(x) − h(y)∥ ⩽ ε(∥x∥p + ∥y∥q) + θ∥x∥r∥y∥s, x, y ∈ X \ {0} (3.1)

for some constants ε, θ ⩾ 0. Then, f is an affine mapping on X.

Proof. From inequality (3.1), we can deduce that

lim
min{∥x∥,∥y∥}→∞

∥ f (x + y) − 1(x) − h(y)∥ = 0.

Consequently, according to Theorem 2.2, we conclude that f must be an affine mapping on X.

Corollary 3.2. A mapping f : X → Y is additive on X if and only if there exist constants p, q, r, s < 0 and ε, θ ⩾ 0
such that

∥ f (x + y) − f (x) − f (y)∥ ⩽ ε(∥x∥p + ∥y∥q) + θ∥x∥r∥y∥s, x, y ∈ X \ {0}. (3.2)

Proof. It is clear that if f is an additive mapping on X, then the equation (3.2) holds true. Now, consider the
case where f fulfills the condition stated in (3.2). According to Theorem 3.1, the mapping f is classified as
an affine mapping on X. We define F(x) := f (x) − f (0) for all x ∈ X. Given that F is an additive mapping on
X, from (3.2), we can derive the following

∥ f (0)∥ = ∥F(x + y) − f (0) − F(x) + f (0) − F(y) + f (0)∥
= ∥ f (x + y) − f (x) − f (y)∥ ⩽ ε(∥x∥p + ∥y∥q) + θ∥x∥r∥y∥s

for all x, y ∈ X\{0}. This leads us to conclude that ∥ f (0)∥ ⩽ ε(∥x∥p+∥y∥q)+θ∥x∥r∥y∥s holds for any x, y ∈ X\{0}.
Consequently, we find that f (0) = 0, which indicates that f must indeed be an additive mapping on X.

Theorem 3.3. Let p < 0 and f , 1, h : X→ Y be mappings that satisfy the following inequality

∥ f (x + y) − 1(x) − h(y)∥ ⩽ ε∥x + y∥p, x + y , 0 (3.3)

for some constant ε ⩾ 0. Then 1 and h are affine mappings on X.
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Proof. From inequality (3.3), we can deduce that

lim
∥x+y∥→∞

∥ f (x + y) − 1(x) − h(y)∥ = 0.

Consequently, according to Theorem 2.7, we conclude that 1 and h must be affine mappings on X.

Corollary 3.4. A mapping f : X→ Y is additive on X if and only if there exist constants p < 0 and ε,⩾ 0 such that

∥ f (x + y) − f (x) − f (y)∥ ⩽ ε∥x + y∥p, x + y , 0. (3.4)

Proof. It is clear that if f is an additive mapping on X, then the equation (3.4) holds true. Now, consider the
case where f fulfills the condition stated in (3.4). According to Theorem 3.3, the mapping f is classified as
an affine mapping on X. We define F(x) := f (x) − f (0) for all x ∈ X. Given that F is an additive mapping on
X, from (3.4), we get

∥ f (0)∥ = ∥F(x + y) − f (0) − F(x) + f (0) − F(y) + f (0)∥
= ∥ f (x + y) − f (x) − f (y)∥ ⩽ ε∥x + y∥p

for all x, y ∈ X with x + y , 0. This leads us to conclude that ∥ f (0)∥ ⩽ ε∥x + y∥p holds for any x, y ∈ X with
x + y , 0. Consequently, we find that f (0) = 0, which indicates that f must indeed be an additive mapping
on X.
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