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The Pexiderized Cauchy functional equation on restricted domains and
its asymptotic properties
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Abstract. The aim of this paper is to investigate the Hyers-Ulam stability of the Pexiderized Cauchy
functional equation on certain restricted domains in normed spaces. We also investigate the asymptotic
behavior and hyperstability of this equation and show how approximate solutions may lead to exact ones

under suitable conditions. The results obtained in this work extend and generalize several well-known
findings in the literature.

1. Introduction

The investigation of stability in functional equations began with a pivotal question posed by S. M. Ulam
[37] in 1940: “Given an approximately linear mapping f, when does a linear mapping T estimating f exist?” In the
next year, D. H. Hyers [16] provided the first affirmative answer in the context of Banach spaces, laying the
foundation for what is now recognized as Hyers—Ulam stability theory.

The field expanded significantly with contributions from various mathematicians. In 1950, T. Aoki [2]

extended Hyers’ results to additive mappings. In 1978, Th. M. Rassias [31] broadened these findings by
introducing an unbounded form of the Cauchy difference

ICf e Il < e (1P + llylP),

where Cf(x,y) == f(x +y) — f(x) = f(y), ¢ > 0 and p € [0,1). This work has been instrumental in evolving
the Hyers-Ulam-Rassias stability theory, which remains fundamental in the study of functional equations.
A generalization of Rassias’ theorem was obtained by G.-L. Forti [14] in 1980.

In parallel, a major advance occurred in 1994 when P. Gavruta [15] introduced the concept of generalized
Hyers—-Ulam-Rassias stability, further broadening the theory’s applicability. Over the decades, the stability
of functional equations has been extensively studied, leading to numerous generalizations and applications.
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Since then, many mathematicians have studied extensively the stability problems of several functional
equations. For further information on this area of research, we can refer the reader to [1, 3-13, 17, 2022, 24—
29, 32, 34, 36].

Skof’s introduction of stability analysis within restricted domains marked a notable development,
demonstrating that inequalities governing the Cauchy equation remain stable under conditions such as
|lx]| + [lyll > d. This finding illustrated that local stability can imply global validity, a principle central to
ongoing research. Building on Skof’s insights, researchers like S. M. Jung, J. M. Rassias and J. M. Rassias
et al. explored stability problems in restricted domains for the Jensen functional equation [18], mixed type
functional equations [30] and Jensen type functional equations [33]. A unified conclusion emerged: for
mappings f : X — Y between real normed and Banach spaces, the satisfaction of key inequalities for pairs
(x, y) where [|x|| + |||l > d guarantees their validity throughout the space X x X.

In 1983, E. Skof [35] resolved the Ulam stability problem for additive mappings within restricted domains.
Her theorem established that a mapping f : R — E satisfying

ICf(x, yll <e forlx|+ |yl >d
admits a unique additive approximation A : R — E with
If(x) —A(x)]| <9¢ forallx e R,

where E is a Banach space and R is the set of real numbers. This result was crucial in characterizing
asymptotic behaviors, particularly illustrating the equivalence between the convergence of Cf(x,y) to a
fixed z € Y as ||x|| + |lyll = oo and the exact condition Cf(x, y) = z universally.

Recent advancements by Z. Kominek [23] further extended the stability results of the Jensen equation
across bounded and unbounded domains, while S. M. Jung et al. [21] dealt with the generalized Jensen
equation. Jung’s work [19] notably advanced the Hyers—Ulam stability for additive and quadratic equations,
paving the way for modern refinements in error bounds and domain generalizations.

The main purpose of this paper is to study the stability analysis of the Pexiderized Cauchy functional
equation f(x + y) = g(x) + h(y) on certain restricted domains in a normed space. As an application, we
consider the asymptotic behavior and hyperstability results of this functional equation.

2. Main Results

Let X and Y be normed vector spaces. We denote % as a Banach space. In [21], several results regarding
the stability of the Pexiderized Cauchy equation on the punctured space Xy = X \ {0} were established.
In this section, the stability of the Pexiderized Cauchy equation f(x + y) = g(x) + h(y) is investigated and
studied within certain restricted domains. As applications of the obtained results, the asymptotic behavior
of the Pexiderized Cauchy equation is also examined. The results of this section complement and extend
those achieved in [21].

Theorem 2.1. Let f,g,h : X — &% be mappings satisfying

If(x +y) — g(x) —h(y)ll < &, min{lx], llyll} > d 21

for some € > 0 and d > 0. Then, there exists a unique additive mapping A : X — % such that

IAGx) - f(x) + fONl <126, x€X, 2.2)
A(z) = g(z) = A(a) + g(@)ll < 14¢,  minfllall, 1211} > d, (2.3)
IA(z) — h(z) + Aa) + h(-a)ll < 14¢, min{|jall, ||z[l} > d. (2.4)
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Moreover,
lA(z) = g2l < 3e, Izl > 4,
lA(z) — ho(2)Il < 3¢, Izl > d,

where g, and h, are the odd parts of g and h, respectively.

Proof. We use the symbol [s, t] to denote the substitution in which x and y in (2.1) are replaced by s and ¢,
respectively. Let a € X such that ||a|| > d. The substitutions [x, —a], [4, y] and [a, —a] in (2.1) yield

If(x—a) = g(x) —h(-a)ll < e, |Ixll >4, (2.5)
If@+y) —g@—-hyll<e lyl=>d, (2.6
1£(0) — g(a) — h(-a)ll < ¢ (2.7)
Adding (2.5) and (2.6), we get
If(x = a) + fla+y) = g(x) = h(y) — g(a) = h(=a)ll < 2¢,  min{||x]], llyll} > d. (2.8)
Combining (2.1) and (2.8), we obtain
lf(x—a)+ fa+y) — f(x+y) — g(a) — h(—a)ll < 3¢, min{lx]|, |lyll} > d. (29)
From (2.7) and (2.9) we obtain
Ifx—a) + fla+y) - fx+y) — fO) < 4e, min{lixll, lyll} > d. (2.10)

Letting x = 34 and y = a in (2.10) we obtain
I12f(2a) — f(4a) — FO)I| < 4e.

Thus the recent inequality yields
I1f(2x) = 2f(x) + fO)ll < 4e, |lx]| > d.

Hence

n
&
<

Lz (2.11)
=m

on+l 2k+1

f(2n+1x) f(zmx) n f(O)
— zm + kZ‘

for all |lx|| > d and n > m > 0. As a result, the sequence {@};"21 forms a Cauchy sequence for ||x|| > 4.

Consequently, it is also a Cauchy sequence for all x € X. By the completeness of %', we can define a mapping
A:X—> % as

2"
A(x) = lim L&)
n—00 2”
It is clear that A(0) = 0 and A(2x) = 2A(x) for all x € X. Let x,y,a € X \ {0}. Then there exists m € IN such
that min{|[2"x(l, [[2"y]|, [|]2"all} > d for each n > m. By substituting x, y, and a with 2"x, 2"y, and 2"a in (2.10),
dividing both sides of the resulting inequality by 2", and using the definition of A, we obtain that

, xeX.

Ax—a)+Ala+y)=Alx+y), xyacX\{0} (2.12)

Letting x = —a and y = a in (2.12) and using A(0) = 0 and A(2a) = 2A(a), we infer that A is an odd mapping.
By setting a = 2x in (2.12), we derive

“AX)+AQx+y)=Alx+y), xyeX\{0}. (2.13)
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It is evident that (2.13) remains valid for all x, ¥ € X. Now, substituting x with —x and y with 2x + y in (2.13),
we obtain

Ax)+Aly) =Ax+y), xyeX
Hence, A is additive on X. Setting m = 0 and taking the limit as # — oo in (2.11), we derive
lAG) - ) + £O)| < 4 (2.14)

for all ||x|| > d. We now extend the inequality (2.14) to the entire space X. It is evident that inequality (2.14)
holds for x = 0. Let z # 0 be an element of X. We can select x, y,2 € X such that z = x + y, and satisfy the
condition

min{{lxll, llyll, llall, llx — all, lly + all} > d

Thus, from (2.14), we conclude that
A —a) = fx —a) + £(0)|| < 4e, (2.15)
Ay +a) = f(y +a) + £(0)]| < 4e. (2.16)
By adding (2.10), (2.15), and (2.16), we obtain
1A@z) = f(2) + fOl < 12e.
This establishes (2.2). To prove (2.3), let 4,z € X such that min{||a||, ||z|l} > 4. Then, by (2.2), we have
lA(z —a) - f(z—a) + FO)|| < 12¢.

Adding this inequality to (2.5), and applying (2.7), we obtain (2.3). A similar argument can be used to
fx)

derive (2.4). From (2.2), we also conclude that A(x) = lim,—,
the uniqueness of A.
Additionally, suppose ||z|| > d. From inequalities (2.1) and (2.14), we have the following;:

for all x € X. This completes the proof of

1/(22) = 9(z) = h(2)ll < &,
l9(=2) + h(z) = fO)ll < &,
1A(22) - f(22) + fO)Il < 4e.

By adding these three inequalities together, we obtain
lA(2z) — g(z) + g(=2)I| < 6e.

Since A(2z) = 2A(z), we deduce ||A(z) — g,(2)ll < 3e. A similar argument can be applied to show that
lA(z) = ho(2)Il < Be. O

Theorem 2.2. Let f,g,h : X — Y be mappings satisfying

i oo 1f(x +y) = g(x) = h(y)ll = 0. (2.17)

Then f is an affine mapping on X, meaning that f — f(0) is additive on X.
Proof. Let € > 0 be any given real number. From (2.17), there exists a d. > 0 such that

If(x+y) —g() —h(WIl < &, minfllx]], [lyll} > d.
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According to Theorem 2.1, there exists an additive mapping A, : X — % (¥ is the completion of Y) such
that

lA:(z) — f(z) + fO)l| <126, z€eX.
Thus, for all x, y € X, we have

lf(x+y) = fx) = f) + fFOIl < MIf(x + y) — Ac(x + y) = fO)]
+1A:(x) = f(x) + fFOIl + 1A (y) — f(y) + fO)I
< 36¢.

Since ¢ > 0 is arbitrary, we conclude that
fx+y) = fx)+ f(y) - f(0), xyeX
Therefore, it follows that f — f(0) is additive on X. [J

The following example demonstrates that, based on the previous theorem, we cannot conclude that g or i
are affine.

Example 2.3. Let f,9,h: R — R be given by

fX)=x+2, gx)=1+x+ hx)=1+x+ xeR.

1 X
1+ x| 1+ 2’

It is clear that

lim  |f(x+y)—g(x) —h(y)l = 0.

min({|x],|yl}— oo
However, g and h are not affine mappings on R.

It is worth noting that Theorem 2.1 remains valid even when inequality (2.1) is considered for [|x|| + ||yl > d
However, in this case, a different and simpler proof can be provided, yielding better bounds than those
stated in Theorem 2.1. What follows generalizes Theorem 3 and Corollary 4 from [18], as well as Theorem
3.1 from [21].To clarify, Theorem 3 of [18] studied the Hyers-Ulam stability of the Jensen equation, while
Theorem 3.1 of [21] dealt with the Hyers-Ulam stability of a generalized Jensen equation on a restricted
domain. Both of these are special cases of the Pexiderized Cauchy functional equation considered in
Theorem 2.4. Similarly, Corollary 4 of [18] establishes the asymptotic behavior of additive mappings,
which is a special case of the asymptotic results for the Pexiderized Cauchy functional equation proved in
Corollary 2.5.

Theorem 2.4. Let f,g,h : X — & be mappings satisfying

If(x+y)—g(x) —hll <&, llxl+Illyll >4 (2.18)

for some € > 0 and d > 0. Then, there exists a unique additive mapping A : X — % such that

lA(x) — f(x) + g(0) + h(0)]| < 9¢, x€X, (2.19)
IA(x) — g(x) + g(0)]| < 8¢, x€X, (2.20)
lA(x) — h(x) + h(0)|| < 8¢, x€X. (2.21)

Proof. The substitutions [x, 0] and [0, y] in (2.18) yield

I1f(x) = g(x) = h(O)]

g Xl >4, (2.22)
Ilf(y) — 9(0) = h(y)| >d

I
I<e iyl (2.23)

<€
¢
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Combining (2.18), (2.22) and (2.23), we obtain
If(x+y) = f(¥) = f(y) + 9(0) + h(O)Il < 3¢, minflx]], |lyll} > d. (2.24)
Thus,
1/(2x0) = 2f(x) + g(0) + h(O)I| < 3¢, |lx|| > d

Hence

n

3e
Z o (2.25)

k=m

f@™lx) f (2’“ Z 9(0) + h(0)

on+l 2k+1

for all ||x]| > d and n > m > 0. Using a similar reasoning as in the proof of Theorem 2.1, we can define the
mapping A : X — % by

Ax) 1= tim L&

n—ooo 2N

e X.

It is evident that A(0) = 0. Using (2.24) along with the definition of A, we conclude
Alx+y) = Ax) + A(y), xye€X\{0}.

Since A(0) = 0, we deduce that A is an additive mapping on X. By setting m = 0 and taking the limit as »
approaches infinity in (2.25), we derive

IA(x) = f(x) + g(0) + h(O)Il < B¢, |Ix|| > d. (2.26)
Let z € X and choose x, y € X such that z = x + y and min{||x]|, |[yll} > d. Using (2.24) and (2.26), we arrive at:

lA(z) = f(2) + g(0) + ROl < IA(x) = f(x) + g(0) + h(O)I|
+[IA(y) = f(y) + 9(0) + R(O)I|
+1If () + f(y) — f(x +y) — g(0) — h(O)]
< 9e.

This establishes (2.19). Let x € X and choose y € X such that
min{[|yll, llx + yll} > d
From (2.26), we derive the following inequalities:

lA(x +y) — f(x +y) + g(0) + h(0)|
If(y) = A(y) — 9(0) — h(0)|

By summing (2.18), (2.27) and (2.28), we arrive at

<3¢, (2.27)
< 3e. (2.28)

|
|
lAG) + f(y) — g(x) — h(y)ll < 7e

Combining this result with (2.23), we establish (2.20). A similar reasoning can be applied to derive (2.21),
and the details are omitted for brevity. [

As a direct application of Theorem 2.4, we now turn our attention to investigating the asymptotic behavior
of the Pexiderized Cauchy functional equation.
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Corollary 2.5. Let f,g,h : X — Y be mappings satisfying

If(x +y) — g(x) = h(y)ll = 0. (2.29)

i
IIll-+Hlyll—c0
Then f, g and h are affine mappings on X.

Proof. Let € > 0 be an arbitrary positive real number. From (2.29), there exists a constant d, > 0 such that

If(x+y) = g() -l <&, lxll + Iyl > de.

Using Theorem 2.4, we can establish the existence of an additive mapping A, : X — # (¥ is the completion
of Y) that satisfies

lA:(x) = f(x) + g(0) + h(O)l| < 9¢, x€X,
lA:(x) — g(x) + g(0)l| < 8¢, x€X,
A (x) = h(x) + hO)| < 8¢, x€X.

As a result, for any x, y € X, the following inequality holds:

IfCx+ ) = f(x) = f(y) + 90) + Ol < [If (x + y) — Ae(x + y) — g(0) — h(O)]
+ |A:(x) = f(x) + g(0) + h(0)||
+1A:(y) = f(y) + 9(0) + L0}l

< 27e.

Since ¢ > 0 is arbitrary, we deduce that

fx+y) = f)+ f(y) —g(0) —h(0), xyeX

This further implies that f(x + ) = f(x) + f(y) — f(0) for all x, y € X. From this, it follows that f — f(0) is an
additive mapping on X, and thus f is affine on X. Using a similar approach, it can be shown that g and &
are also affineon X. 0O

Theorem 2.6. Let f,g,h : X — & be mappings satisfying
If@x+y) —g() -kl <&, lx+yll>d (2.30)

for some € > 0 and d > 0. Then, there exists a unique additive mapping A : X — % such that

lAQx) — f(x) + g(0) + h(O)I| < 3Be, Ixll > d, (2.31)
lA(x) — g(x) + gO)ll < 8¢, x€X, (2.32)
lA(x) — h(x) + BO)| < 8¢, xe€ X (2.33)

Proof. By setting x = 0 and y = 0 separately in (2.30), we obtain the following inequalities:

Il (x) = g(x) = h(0)]
If(y) = 9(0) = h(y)|

By combining (2.30), (2.34) and (2.35), we arrive at

<eg x|l =4, (2.34)
<eg  yll =4 (2.35)

|
|
lf(x+y) = f(x) = f(y) + g9(0) + hO)Il < 3e, min{]lx[], |[yll, llx + ylI} > 4.
Thus,
If(2x) = 2f(x) + g(0) + h(O)l < 3¢, lIx|l > 4.
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Hence

n

3¢
<) 5 (2.36)

k=m

2n+1 2k+1

fRU)FR™M) N (0) +h(0)
[ +;_

for all [|x]| > d and n > m > 0. Using a similar reasoning as in the proof of Theorem 2.1, we can define the
mapping A : X = % by

2]1
A(x) := ’}1_{1;10 f(znx)’ xeX.
It is evident that A(0) = 0 and A(2x) = 2A(x) for all x € X. It follows from (2.34) and (2.35) that
271 h 211
im 229 _ A, 1im "9 g, vex
n—oo 2N n—oco 2N

We now aim to prove that A is additive on X. From (2.30), we obtain
Ax+y)=Ax)+Aly), xyeX x+y=+0. (2.37)

By setting y = —2x in (2.37), we conclude that A(—x) + A(x) = 0 for all x € X\ {0}. Since A(0) = 0, it follows
that A is odd on X. Consequently, it follows that (2.37) holds true for every x, y € X, which implies that the
mapping A is additive on X. By substituting m = 0 and allowing n to approach infinity in (2.36), we obtain
(2.31).

By adding inequality (2.31) to inequality (2.34), we arrive at

llg(x) — A(x) — gO)Il < 4e, Ixl| > 4d. (2.38)
Similarly, using (2.31) and (2.35), we obtain

Ih(y) — A(y) — hO)Il < 4¢, Iyl > d. (2.39)
Let x € X and choose vy € X such that min{||yl|, |lx + yll} > 4. Using (2.31), we get

IAG+y) = f(x + ) + 9(0) + Ol < 3e. (2.40)

By combining (2.30), (2.39) and (2.40), and applying the principle of additivity for A, we arrive at (2.32).
Similarly, one can use a comparable proof to establish (2.33), and we will omit the details. [

Theorem 2.7. Let f,g,h : X — Y be mappings satisfying
lim [If(x+y) - g(x) = h(y)ll = 0. (2.41)

[lx+yl|—o0
Then g and h are affine mappings on X.

Proof. Let ¢ > 0be an arbitrary positive real number. Based on equation (2.41), we can find a constantd, > 0
such that

IfCc+y) —g() —hyli <&, llx+yll > de.

By applying Theorem 2.6, there exists an additive mapping A, : X — % (% is the completion of Y) satisfying
lA(z) — g(z) + gO)Il < 8¢, ||A(z) — h(z) + h(0)|| < 8¢, ze€X.

Consequently, for any x, y € X, the following inequality holds:

llg(x + y) — g(x) — g(y) + gO)I < llg(x + y) — Ac(x +y) — g(O)l|
+ 1A (x) = g(x) + gO)I| + |Ac(y) — g(y) + g(O)]]
< 24e.
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Since ¢ > 0 is arbitrary, we deduce that

gx+y) =gx) +9(y)—90), xyeX

This implies that g — g(0) is an additive mapping on X, and therefore g is affine on X. A similar argument
shows that & is also affineon X. 0O

The example below illustrates that, even when the conditions of Theorem 2.7 are satisfied, it does not
necessarily follow that f is affine.

Example 2.8. Consider the functions f,g,h : R — IR defined as

fxX)=3+x+ gx)=1+x h(x)=2+x x€eR

1
1+ x|
It is evident that

lim |f(x+y)—g(x) - h(y)l = 0.

|x+y|—>oo

Nevertheless, f is not an affine function on R.

3. Hyperstability results
In this section, we discuss the hyperstability results for the functional equation introduced in Section 2.
Theorem 3.1. Letp,q,1,s <0and f,g,h: X — Y be mappings that satisfy the following inequality
I1f(x +y) = g(x) = h(WIl < e(lxl” + [lyll7) + Ollxllyl’,  x,y € X\ {0} G.1)
for some constants €,0 > 0. Then, f is an affine mapping on X.

Proof. From inequality (3.1), we can deduce that

lim — If(x +y) — g(x) = h(y)ll = 0.

min{]lx(|[[yll}—eo
Consequently, according to Theorem 2.2, we conclude that f must be an affine mapping on X. [

Corollary 3.2. A mapping f : X — Y is additive on X if and only if there exist constants p,q,1,s <0and ¢,6 > 0
such that

1+ y) = f() = fFWI < el +1Iyll) + Ol Iyl x, v € X\ {0} (3.2)

Proof. ltis clear that if f is an additive mapping on X, then the equation (3.2) holds true. Now, consider the
case where f fulfills the condition stated in (3.2). According to Theorem 3.1, the mapping f is classified as
an affine mapping on X. We define F(x) := f(x) — f(0) for all x € X. Given that F is an additive mapping on
X, from (3.2), we can derive the following

IFQO)Il = IF(x + y) = f(0) = F(x) + f(0) — F(y) + f(O)ll
=f(x+y) = f() = fFWI < e(lxll” + [Iyll7) + Ollxl" My

forall x, y € X\{0}. This leads us to conclude that||f(0)I| < e(llxII" +1Iyl)+Ollx|["llyl° holds for any x, y € X\{0}.
Consequently, we find that f(0) = 0, which indicates that f must indeed be an additive mapping on X. O

Theorem 3.3. Letp <Qand f,g,h : X — Y be mappings that satisfy the following inequality
If(x+y) —gCx) —hWI <ellx+yll, x+y#0 (3.3)

for some constant € > 0. Then g and h are affine mappings on X.
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Proof. From inequality (3.3), we can deduce that

lim If(x +y) - g(x) = h(y)ll = 0.

llx+yll—co
Consequently, according to Theorem 2.7, we conclude that g and & must be affine mappings on X. O

Corollary 3.4. A mapping f : X — Y is additive on X if and only if there exist constants p < 0 and €,> 0 such that

If(x+y) — f@x) = fFWI < ellx+yllP, x+y=#0. (3.4)

Proof. Itis clear that if f is an additive mapping on X, then the equation (3.4) holds true. Now, consider the
case where f fulfills the condition stated in (3.4). According to Theorem 3.3, the mapping f is classified as
an affine mapping on X. We define F(x) := f(x) — f(0) for all x € X. Given that F is an additive mapping on
X, from (3.4), we get

£ = [IF(x + y) = £(0) = F(x) + £(0) = F(y) + f(O)I
=fx+y) - ) = fFWIl < ellx + yIP

for all x, y € X with x + y # 0. This leads us to conclude that ||f(0)|| < €llx + y|I” holds for any x, y € X with
x + y # 0. Consequently, we find that f(0) = 0, which indicates that f must indeed be an additive mapping
onX. O
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