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Abstract. We introduce the concept of statistical Dunford-Pettis operators in this paper, which extend the
classical notion of Dunford-Pettis operators into the domain of statistical convergence. These operators are
defined on Banach spaces by their ability to map sequences that converge weakly in a statistical sense into
sequences that converge statistically. The exploration includes the properties of these operators and their
connections to other operator classes, such as statistically continuous and statistically compact operators.
Furthermore, we examine the behavior of the adjoint operators associated with the statistical Dunford-Pettis
operators.

1. Introduction on Dunford-Pettis Operators

This study focuses on Dunford-Pettis operators, a crucial concept in functional analysis concerning the
preservation of weak convergence under linear transformations between Banach spaces. These operators
have broad applications across various fields, including functional analysis, probability theory, optimiza-
tion, measure theory, Riesz spaces, and partial differential equations [2, 12, 17, 19, 24]. The origin of
Dunford-Pettis operators lies in the work of Dunford and Pettis [13], who demonstrated that weakly com-
pact operators on L1(µ) map weakly convergent sequences to norm convergent sequences. Grothendieck
[18] formalized this property by defining Dunford-Pettis operators as those exhibiting this behavior. Sub-
sequent research has expanded upon this foundation. Sanchez [25] introduced almost Dunford-Pettis
operators, later refined by Wnuk [26]. Aliprantis and Burkinshaw defined weak Dunford-Pettis operators
[1, 2], while Aqzzouz and Bouras investigated properties of positive weak Dunford-Pettis operators on
Banach lattices [4] and introduced order Dunford-Pettis operators [5]. H’michane et al. studied weak∗

Dunford-Pettis operators [14, 20]. The study of Dunford-Pettis operators remains an active area of re-
search [8, 11, 19, 24]. This paper aims to define Dunford-Pettis operators by using statistical convergence.
Specifically, we introduce the concept of statistical Dunford-Pettis operators by employing weak statistical
convergence within Banach spaces, as defined in [10].
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mkkaslan@gmail.com (Mehmet Küçükaslan)
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Ünlü Eroğlu ), https://orcid.org/0000-0002-3183-3123 (Mehmet Küçükaslan)
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Weak convergence is a fundamental concept in the study of normed spaces, particularly relevant in the
context of Dunford-Pettis operators. It offers a powerful and versatile tool for analyzing normed spaces
and their duals, often providing advantages over the direct use of norm convergence. Let (U, ∥ · ∥) denote
a normed space. The norm dual of U, denoted by U′, is defined as the space of all continuous linear
functionals fromU to R:

U
′ := { f | f :U → R is a continuous linear functional}.

The set of all linear operators between normed spacesU andV is denoted byL(U,V). In this context, the
term operator will be used as a shorthand for a linear operator.

Definition 1.1. Let (U, ∥ · ∥) be a normed space and (un) be a sequence inU. The sequence (un) is said to converge
weakly to u ∈ U, denoted by un

w
−→u, if for every f ∈ U′, we have f (un)→ f (u) in R.

Definition 1.2. An operator P ∈ L(U,V) between Banach spacesU andV is a Dunford-Pettis operator if, for any

sequence (un) inU, un
w
−→u implies P(un)

∥·∥V
−−−→ P(u).

It is well-established that norm convergence implies weak convergence. Consequently, every Dunford-
Pettis operator is norm continuous. However, the converse is not generally true because every Banach
space without the Schur property contains a weakly convergent sequence that does not converge in norm.

Dunford-Pettis operators have demonstrated considerable utility across multiple disciplines. However,
to the best of our knowledge, there has been no research examining these operators within the statistical
convergence. The concept of the statistical convergence was introduced by Fast in 1951 [15], which gen-
eralizes the classical convergence by emphasizing the asymptotic density of terms in a sequence, rather
than their individual behavior throughout the sequence (cf. [6, 7, 21–23]). We remind the fundamental
tools related to statistical convergence. Let J be a subset of the positive integers N. The natural density (or
asymptotic density) of J, denoted by δ(J), is defined as

δ(J) = lim
n→∞

1
n
|{ j ≤ n : j ∈ J}|,

provided this limit exists, where | · | denotes the cardinality of a set. For a detailed exposition on natural
density, we refer the reader to [16]. A sequence (un) in a normed space (U, ∥ · ∥U) is said to be statistically
convergent to u ∈ U, denoted by un

st
−→u, if for every ε > 0,

lim
n→∞

1
n
|{ j ≤ n : ∥u j − u∥U ≥ ε}| = 0.

A sequence (un) in a normed space (U, ∥ · ∥U) is statistically bounded (or st-bounded) if there exists a positive
constant R > 0 such that

δ({n ∈ N : ∥un∥U > R}) = 0

(cf. [3]). In this paper, ℓ∞(U) and ℓst
∞(U) denote the sets of all norm-bounded and statistically bounded

sequences inU, respectively. It is clear that ℓ∞(U) ⊆ ℓst
∞(U) for any normed spaceU, and this inclusion is

strict. The reverse inclusion does not hold in general. Consider the sequence (un) in R defined by

un =

n, if n is prime,
n+1

n , if n is not prime.

This sequence is statistically bounded, i.e., (un) ∈ ℓst
∞(R), but it is not norm-bounded.

Definition 1.3. [9] Let P ∈ L(U,V). Then P is called:

(i) statistically bounded if P(ℓst
∞(U)) ⊆ ℓst

∞(V);
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(ii) statistically continuous if un
st
−→θ inU implies P(un) st

−→θ inV;

(iii) statistically compact if it maps statistically bounded sequences inU to statistically convergent sequences inV;

(iv) weakly statistically continuous if un
wst
−−→ u implies P(un)

wst
−−→ P(u).

The key concept of weak statistical convergence is then defined based on [10].

Definition 1.4. A sequence (un) in a normed spaceU is weakly statistically convergent to u, denoted by un
wst
−−→u, if

for every f ∈ U′, the sequence ( f (un − u)) is statistically convergent to θ in R.

It is important to note that every subsequence of a weakly convergent sequence is also weakly conver-
gent. On the other hand, statistical convergence of a sequence typically leads to the existence of a convergent
subsequence whose indices possess a systematic density of one, provided the chosen density definition is
appropriate. For a detailed examination of the conditions under which a sequence has an st-convergent
subsequence, we refer to [23].

Remark 1.5. A sequence that is weakly statistically convergent does not necessarily possess a weakly convergent
subsequence. Specifically, let (un) be a weakly statistically convergent sequence. By definition, for every f ∈ U′,
the sequence f (un − u) must be statistically convergent in R. However, for any given f ∈ U′, one can identify a
subsequence of (un) that converges with respect to f . Importantly, if f is replaced by another functional 1 ∈ U′, the
resulting convergent subsequence may differ. Consequently, the subsequences obtained vary depending on the choice
of f , indicating the absence of a single, universal subsequence of (un) that converges for all f ∈ U′. Therefore, the
weak statistical convergence of (un) does not ensure the existence of a single subsequence that is weakly convergent
with respect to every functional inU′.

Lemma 1.6. Let (U, ∥ · ∥) represent a normed space. The following properties related to convergence in this context
are valid:

(i) If a sequence (un) within U converges weakly to some u ∈ U, then the sequence is also weakly statistically
convergent to u.

(ii) If a sequence (un) inU is statistically convergent to an element u ∈ U, then it follows that (un) is also weakly
statistically convergent to u.

(iii) Suppose (un) is a weakly statistically convergent sequence inU, and (un j ) is a subsequence of (un) such that the
set of indices {n j : j ∈ N} has natural density equal to one. Then, the subsequence (un j ) is also weakly statistically
convergent to the same limit.

(iv) A weakly statistically convergent sequence in U possesses a unique weak statistical limit. This uniqueness is
guaranteed by the Hahn-Banach theorem.

Remark 1.7. As demonstrated in [10, Exam.2.2], the reverse implication of Lemma 1.6 (i) does not generally hold;
that is, a sequence that is weakly statistically convergent does not necessarily converge weakly. Likewise, the converse
of Lemma 1.6 (ii) fails to hold in general.

Theorem 1.8. Let (U, ∥ · ∥) be a normed space and (un) be a sequence inU. Then un
wst
−−→u if and only if there exists

a sequence (vn) inU such that un = vn for almost all n (i.e., the set {n ∈ N : un , vn} has natural density zero) and
vn

wst
−−→u.

Proof. Assume that un
wst
−−→u holds in U. We need to construct a sequence (vn) that satisfies the required

properties. A simple choice suffices: define vn = un for all n. In this case, the set {n : un , vn} is an empty
set, and hence it is clear that it has density zero. Moreover, it follows from vn = un that vn

wst
−−→u.

We assume the existence of a sequence (vn) inU such that un = vn for almost all n and vn
wst
−−→u. To prove

that un
wst
−−→u, we need to verify that for any f ∈ U′, the sequence f (un − u) is statistically convergent to zero



A. Aydın et al. / Filomat 40:4 (2026), 1389–1400 1392

in R. From the assumption vn
wst
−−→u, it follows that for any f ∈ U′, the sequence f (vn − u) is statistically

convergent to zero in R. Specifically, for any ε > 0, we have

δ({n : | f (vn − u)| ≥ ε}) = 0.

Additionally, since un = vn for almost all n, we know that δ(A) = 0, where A := {n : un , vn}. Next, consider
the set B := {n : | f (un − u)| ≥ ε}. Our goal is to show that δ(B) = 0. We decompose B into the union of two
subsets:

B = (B ∩ A) ∪ (B ∩ Ac).

Since A has density zero, any subset of A also has density zero, so δ(B∩A) = 0. For n ∈ Ac, we have un = vn.
Consequently, if n ∈ B ∩ Ac, then

| f (un − u)| = | f (vn − u)| ≥ ε.

This implies that B ∩ Ac is a subset of {n : | f (vn − u)| ≥ ε}, which has density zero. Therefore, δ(B ∩ Ac) = 0.
Since B is the union of two sets of density zero, it follows that B itself has density zero:

δ(B) = δ(B ∩ A) + δ(B ∩ Ac) = 0 + 0 = 0.

Thus, f (un − u) is statistically convergent to zero in R for any f ∈ U′. Hence, un
wst
−−→u.

Corollary 1.9. Let (U, ∥ · ∥) be a normed space. If a sequence (un) inU possesses a dense subsequence that is weakly
statistically convergent to some u ∈ U, then the sequence (un) itself is weakly statistically convergent to u.

Theorem 1.10. Let (U, ∥ · ∥) be a normed space, and let (un) be a sequence inU such that un
wst
−−→u for some u ∈ U.

If (unk ) is a subsequence of (un) such that

lim inf
n→∞

|K(n)|
n
> 0,

where K(n) = {nk ≤ n : k ∈ N}, then (unk ) is also weakly statistically convergent to u.

Proof. Suppose un
wst
−−→u. This means that for every f ∈ U′ and every ε > 0, we have

lim
n→∞

1
n
|{k ≤ n : | f (uk) − f (u)| ≥ ε}| = 0.

Consider the subsequence (unk ). Let Aε = {k ∈ N : | f (uk)− f (u)| ≥ ε}. Since un
wst
−−→u, we have limn→∞

1
n |{k ≤ n :

k ∈ Aε}| = 0. For any n ∈ N, the set of indices in the subsequence satisfying the condition is the intersection
of K(n) and Aε:

{nk ≤ n : | f (unk ) − f (u)| ≥ ε} = K(n) ∩ Aε ⊆ {k ≤ n : k ∈ Aε}.

We can rewrite the ratio of the cardinality as follows:

|{nk ≤ n : | f (unk ) − f (u)| ≥ ε}|
|K(n)|

=
|K(n) ∩ Aε|

n
·

n
|K(n)|

≤
|{k ≤ n : | f (uk) − f (u)| ≥ ε}|

n
·

n
|K(n)|

.

Let δ = lim infn→∞
|K(n)|

n . By the hypothesis, δ > 0. Thus, there exists N0 such that for all n > N0, |K(n)|
n > δ2 ,

which implies n
|K(n)| <

2
δ . Since the first factor on the right-hand side converges to 0 because of un

wst
−−→u, and

the second factor is bounded, we obtain:

lim sup
n→∞

|{nk ≤ n : | f (unk ) − f (u)| ≥ ε}|
|K(n)|

= 0.

Consequently, the natural density of the set {k ∈ N : | f (unk )− f (u)| ≥ ε} is zero. Therefore, we get unk

wst
−−→u.
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Corollary 1.11. Let (U, ∥·∥) be a normed space and (un) be a sequence inU. The following statements are equivalent:

(i) un
wst
−−→u.

(ii) Every subsequence (unk ) of (un) with lim infn→∞
|K(n)|

n > 0, where K(n) = {nk ≤ n : k ∈ N}, is weakly statistically
convergent to u.

(iii) Every dense subsequence of (un) is weakly statistically convergent to u.

Proof. (i)⇒ (ii): This follows directly from Theorem 1.10.
(ii) ⇒ (iii): Assume that the condition (ii) holds. If ũ = (unk ) is a dense subsequence of (un), then

the set of indices K(n) = {nk ≤ n : k ∈ N} has natural density 1, i.e., δ(K(n)) = 1. This implies that
lim infn→∞

|K(n)|
n = 1 > 0. Thus, by (ii), ũ is weakly statistically convergent to u.

(iii) ⇒ (i): Assume that (iii) holds. Since (un) is a subsequence of itself (and trivially dense in itself), it
follows from (iii) that (un) is weakly statistically convergent to u.

The remainder of this paper is organized as follows: Section 2 introduces the concept of statistical
Dunford-Pettis operators and explores their relationships with other classes of operators. Section 3 presents
the main results concerning statistical Dunford-Pettis operators.

2. Statistical Dunford-Pettis

In this section, we define the concept of statistical Dunford-Pettis operators and establish fundamental
results related to these operators. The Dunford-Pettis property characterizes operators that transform weak
convergence of sequences into norm convergence on Banach spaces.

Similarly, statistical Dunford-Pettis operators can be defined as follows:

Definition 2.1. Let P ∈ L(U,V) be an operator between Banach spaces. Then, P is called statistical Dunford-
Pettis if un

wst
−−→u inU implies P(un) st

−→P(u) inV.

Throughout this paper, C(U,V), Cst(U,V), Bst(U,V), Kst(U,V), and DPst(U,V) represent the sets of all
continuous, statistical continuous, statistical bounded, statistical compact, and statistical Dunford-Pettis
operators between normed spaces U and V, respectively, unless otherwise specified. We have some
observation in the following remark.

Remark 2.2.

(i) A Dunford-Pettis operator does not have to be a statistical Dunford-Pettis operator because a statistically weakly
convergent sequence may not have a weakly convergent subsequence; see Remark 1.5. Furthermore, the reverse
implication is also not guaranteed in general.

(ii) It follows from Eberlein-Šmulian theorem that a compact operator with a reflexive Banach space domain is a
statistical Dunford-Pettis operator. However, the reverse is not necessarily true.

(iii) There is no direct connection between Kst(U,V) and DPst(U,V).

(iv) If dim(U) < ∞, then we have DPst(U,V) = Cst(U,V) because weak statistical convergence implies statistical
convergence in finite dimensions; see [10, Thm.2.3(iii)].

Example 2.3. Consider the Banach spacesU := ℓ1 andV := ℓ∞, and let P : ℓ1 → ℓ∞ be the canonical embedding
operator, defined as:

P(w) := (sk(w))∞k=1

for each w := (wn) ∈ ℓ1, where sk(w) =
∑k

i=1 wi. Here, P(w) is the sequence of partial sums of the sequence w.
We will show that P is a statistical Dunford-Pettis operator. Take a sequence (un) := (u1, · · · ,un, · · · ) denoted by
un := (u1

n,u2
n, · · · ) ∈ ℓ1 for each n such that it is weakly statistically convergent to z := (z1, z2, · · · ) ∈ ℓ1. That is, for
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every f ∈ ℓ′1 (where ℓ′1 = ℓ∞), the sequence f (un) is statistically convergent to f (z) in R. On the other hand, to prove
that P(un) is statistically norm-convergent to P(z), we need to show the existence of the following limit;

lim
n→∞

1
n
|{m ≤ n : ∥P(um) − P(z)∥ ≥ ε}| = 0

for all ε > 0. For a fixed m, the norm of the difference between P(um) and P(z) is

∥P(um) − P(z)∥ = sup
k
|sk(um) − sk(z)|.

Since sk(um) =
∑k

i=1 ui
m and sk(z) =

∑k
i=1 zi, then we have

sk(um) − sk(z) =
k∑

i=1

ui
m −

k∑
i=1

zi =

k∑
i=1

(ui
m − zi).

Thus, we get |sk(um) − sk(z)| =
∣∣∣∑k

i=1(ui
m − zi)

∣∣∣. On the other hand, since (un) is weakly statistically convergent to z,
for any f ∈ ℓ′1 we have

lim
n→∞

1
n

∣∣∣{m ≤ n : | f (um) − f (z)| ≥ ε
}∣∣∣ = 0.

In particular, this holds for the specific linear functionals fk(w) :=
∑k

i=1 wi for all w ∈ ℓ1. Thus, for each k, the sequence
(sk(un)) converges to sk(z) statistically. It means that we have

lim
n→∞

1
n
|{m ≤ n : |sk(um) − sk(z)| ≥ ε}| = 0.

Therefore, we obtain that P(un) converges to P(z) in ℓ∞ statistically.

Proposition 2.4. For any Banach spacesU andV, the inclusion DPst(U,V) ⊆ Cst(U,V) holds.

Proof. Let P ∈ DPst(U,V) be an arbitrary element and consider any arbitrary sequence (un) inU such that
un

st
−→u holds. It follows from Lemma 1.6 that we have un

wst
−−→u inU because statistical convergence implies

weak statistical convergence. Now, since P ∈ DPst(U,V), the weak statistical convergence un
wst
−−→u in U

implies P(un) st
−→P(u) inV. This fact completes the proof.

By applying Proposition 2.4 and [9, Thm.3.4], we get the following result.

Corollary 2.5. The inclusion DPst(U,V) ⊆ Bst(U,V) holds for any Banach spacesU andV.

Theorem 2.6. DPst(U,V) is a linear space.

Proof. To start with, it is evident that DPst(U,V) is a subset of L(U,V) which is a vector space of all linear
operators fromU toV. Now, suppose that P and R belong to the set DPst(U,V) and (un) is a sequence in
U such that un

wst
−−→ 0. Then, for any ε > 0, we have

δ({k ≤ n : ∥Puk∥ >
ε
2
}) = 0 and δ({k ≤ n : ∥Ruk∥ >

ε
2
}) = 0.

On the other hand, the inequality ∥(P + R)uk∥ = ∥Puk + Ruk∥ ≤ ∥Puk∥ + ∥Ruk∥ gives the following inclusion

{k ≤ n : ∥(P + R)uk∥ > ε} ⊆ {k ≤ n : ∥Puk∥ >
ε
2
} ∪ {k ≤ n : ∥Ruk∥ >

ε
2
}.

Thus, the monotonicity of the natural density implies δ({k ≤ n : ∥(P + R)uk∥ > ε}) = 0, indicating P + R ∈
DPst(X,Y).
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Next, take any scalar α ∈ R. Then, we have ∥(αP)(uk)∥ = ∥αP(uk)∥ = |α| ∥Puk∥. If α = 0, then it is clear that
(αP)(uk) = θV, where θV is the zero vector inV. Now, assume that α , 0. We obtain

{k ≤ n : ∥(αP)(uk)∥ > ε} = {k ≤ n : ∥Puk∥ >
ε

|α|
}.

Hence, δ({k ≤ n : ∥(αP)uk∥ > ε}) = 0 holds for both cases. This implies that αP belongs to the set
DPst(U,V).

Theorem 2.7. LetU,V andW be Banach spaces and P ∈ DPst(U,V). Then, R◦P ∈ DPst(U,W) holds for every
R ∈ Cst(V,W).

Proof. Consider an arbitrary sequence (un) inU such that un
wst
−−→θ. Since P(un) st

−→θ inV, and R is statistically
continuous, it follows that the sequence (R ◦ P)(un) = R(P(un)) also converges statistically to zero in W.
This conclusion is supported by the linearity of both R and P. Therefore, R ◦ P is an element of the space
DPst(U,W).

It is clear that Theorem 2.7 is applied directly whenever the operator R is continuous from V to W.
Moreover, we observe the following result.

Proposition 2.8. Let U be a Banach space, and suppose that P ∈ DPst(U). Then, Pn
∈ DPst(U) holds for any

n ∈ N.

We note that a Banach space is characterized by the Schur property if all weakly convergent sequences are
norm convergent. Nevertheless, wst-convergence in a Schur space does not necessarily entail st-convergence.
Therefore, we propose the following definition.

Definition 2.9. A Banach spaceU is said to possess the statistical Schur property if every wst-convergent sequence
is statistical norm convergent, i.e., un

wst
−−→u implies that un

st
−→u inU.

Question 2.10. Is there an example of a Banach space that possesses the statistical Schur property but lacks the
classical Schur property?

By considering the definition of the statistical Schur property, we observe the following result.

Proposition 2.11. DPst(U,V) = Cst(U,V) holds for Banach spacesU andVwheneverU has the statistical Schur
property.

Proof. We have the inclusion DPst(U,V) ⊆ Cst(U,V) by Proposition2.4. For the reverse part, let P ∈
Cst(U,V) and take any sequence (un) in U satisfying un

wst
−−→u. Since U has the statistical Schur property,

un
st
−→u. Because of our assumption on P, we get P(un) st

−→P(u) which is the desired one.

Theorem 2.12. The Banach space ℓ1 possesses the statistical Schur property.

Proof. Let (un) = (uk
1, · · · ,u

k
n, · · · )

wst
−−→w := (w1,w2, . . .) be a sequence in ℓ1. That is, for any sequence v :=

(vk) ∈ ℓ∞, we have

< v,un >=< (vk), (uk
n) >=

∞∑
k=1

vkuk
n

st
−→
n

∞∑
k=1

vkwk =< v,w >

holds in R as n→∞. Now, consider the sequence v = (ek) in ℓ∞, where ek = (0, 0, . . . , 1, 0, 0, . . .) with 1 in the
k-th position and 0 elsewhere. Then, we obtain that

< v,un >=< (ek), (uk
n) >= uk

n
st
−→
n
< ek,w >= wk
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is true as n→ ∞. It shows that weak statistical convergence implies statistical pointwise convergence, i.e.,

uk
n

st
−→
n

wk for each fixed k. Our aim is to show that

∥un − w∥ =
∞∑

k=1

|uk
n − wk|

st
−→
n

0

is satisfied in R. For any ε > 0, we can choose N such that
∑
∞

k=N+1 |wk| <
ε
2 because of w ∈ ℓ1. Now, for each

1 ≤ k ≤ N, we know that uk
n

st
−→
n

wk as n → ∞, and hence there exists Nk ∈ N such that δ({n ∈ N : |uk
n − wk| ≥

ε
2Nk
}) = 0. Let take N0 := max{N,N1,N2, . . . ,NN}. Then, for n > N0, we have

∥un − w∥ =
∞∑

k=1

|uk
n − wk| =

N∑
k=1

|uk
n − wk| +

∞∑
k=N+1

|uk
n − wk|.

On the other hand, the second term of the last equality can be bounded as;

∞∑
k=N+1

|uk
n − wk| ≤

∞∑
k=N+1

|uk
n| +

∞∑
k=N+1

|wk|.

Since un ∈ ℓ1 for all n, the tail
∑
∞

k=N+1 |u
k
n| can be made arbitrarily small by choosing a sufficiently large N.

Thus, for n > N0, we have:

∥un − w∥ ≤
N∑

k=1

|uk
n − wk| + ε.

Now, consider the set A = {n ∈ N : ∥un − w∥ ≥ ε}. If n ∈ A and n > N0, then we have
∑N

k=1 |u
k
n − wk| ≥

ε
2 . This

implies that for at least one k ∈ {1, 2, . . . ,N}, we have |uk
n − wk| ≥

ε
2N . Therefore, we get

A ⊆
N⋃

k=1

{n ∈ N : |uk
n − wk| ≥

ε
2N
}.

Since the union of finitely many sets of density zero has density zero, we conclude that δ(A) = 0.

3. Main Results

In the next result, we show that statistical Dunford-Pettis operators are continuous in the following
sense.

Proposition 3.1. Statistical Dunford-Pettis operators preserve weak statistical convergence.

Proof. Assume P ∈ DPst(U,V) for Banach spaces U and V, and un
wst
−−→u in U. Since P is a statistical

Dunford-Pettis operator, we have P(un) st
−→P(u) in V. By Lemma 1.6 (ii), it follows that P(un) is weakly

statistically convergent to P(u). Therefore, we conclude that every statistical Dunford-Pettis operator is
weakly statistically continuous.

Recall from [9, Thm.4.4] that a statistical compact operator is also a statistical continuous operator. In
this context, we present the following result concerning weak statistical convergence.

Theorem 3.2. If all st-compact operators from a Banach spaceU into a Banach spaceV are norm continuous, then
every statistically compact operator fromU intoV is weakly statistically continuous.
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Proof. Let P : U → V be an st-compact operator, and let (un) be a sequence in U such that un
wst
−−→u. By

[10, Cor. 2.9], the sequence (un) is st-bounded inU. Since P is st-compact, the sequence (P(un)) converges
statistically to some v ∈ V. Moreover, Lemma 1.6 (ii) implies that (P(un)) is weak statistical convergent to v.

It is enough to show that v = P(u). To see this, let f ∈ V′ be arbitrary. As P(un)
wst
−−→ v, we have

f (P(un)) st
−→ f (v) in R. Define 1 : U → R by 1(z) = f (P(z)) for all z ∈ U. The linearity of P and f

implies the linearity of 1. Furthermore, the continuity of P (assumed in the theorem statement) and
the continuity of f ensure the continuity of 1. Hence, 1 ∈ U′. Since un

wst
−−→u and 1 ∈ U′, we obtain

1(un) = f (P(un)) st
−→ 1(u) = f (P(u)). Thus, for any f ∈ V′, we have both f (P(un)) st

−→ f (v) and f (P(un)) st
−→ f (P(u)).

By the uniqueness of the statistical limit, we conclude that f (v) = f (P(u)) for all f ∈ V′. Finally, the Hahn-
Banach theorem implies that v = P(u). This establishes that P(un)

wst
−−→P(u), as desired.

Theorem 3.3. If every st-compact operator from a Banach spaceU into a Banach spaceV is norm continuous, then
the set of statistical compact operators from U into V is contained within the class of statistical Dunford–Pettis
operators.

Proof. Assume that P :U →V is a statistical compact operator. We aim to demonstrate that P is a statistical
Dunford-Pettis operator. Let (un) be a sequence inU such that un

wst
−−→u. By [10, Cor. 2.9], if a sequence in

a normed space converges weakly statistically, then it is necessarily statistically bounded. Hence, (un) is a
statistically bounded sequence in U. Since P is a statistical compact operator, P(un) st

−→ v for some v ∈ V.
Following the argument in the proof of Theorem 3.2, we can establish that v = P(u). Therefore, we conclude
that P(un) st

−→P(u), as desired.

Recall that a bounded operator between Banach spaces is said to be weakly compact if the image under
any bounded subset is relatively weakly compact.

Theorem 3.4. Let P : U → V be an operator between two Banach spaces. If P is a statistical Dunford-Pettis
operator, then the composition PR is st-compact for each statistical compact operator R : W → U, whereW is an
arbitrary Banach space.

Proof. Let P be a statistical Dunford-Pettis operator and R : W → U be a statistical compact operator.
Suppose that (un) is an st-bounded sequence inW. Since R is statistically compact, the sequence (R(un))
converges statistically to some u ∈ U. This implies that (R(un)) also converges weakly statistically to
u because statistical convergence implies weak statistical convergence by Lemma 1.6. By the statistical
Dunford-Pettis property of P, (P(R(un))) converges statistically to P(u) in V. Therefore, the operator PR
takes st-bounded sequences in W and maps them to statistically convergent sequences in V, thereby
making it a statistical compact operator.

Recall that the adjoint operator of a bounded linear operator P :U →V between normed spaces is the
map P′ : V′ → U′ defined by (P′ f )(u) := f (Pu) for all f ∈ V′. Furthermore, the canonical map from a
normed spaceU to its second dualU′′ is often referred to as the canonical embedding or canonical isometry.
This map, denoted by φ :U →U′′, is defined by

φ(u)( f ) = f (u)

for all u ∈ U and f ∈ U′.

Theorem 3.5. Let φ : U → U′′ be a surjective canonical embedding for a normed spaceU and ( fn) be a sequence
inU′. Then, we have fn

wst
−−→ f inU′ iff φ(u)( fn) st

−→φ(u)( f ) holds for all u ∈ U.

Proof. Suppose that fn
wst
−−→ f inU′. This means that the sequence F( fn) is statistically convergent to F( f ) for

all F ∈ U′′. By the definition of the canonical embedding φ, we have φ(u) ∈ U′′ for each u ∈ U. Therefore,
we have

φ(u)( fn) st
−→φ(u)( f )
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for all u ∈ U.
We assume now that φ(u)( fn) st

−→φ(u)( f ) for all u ∈ U. This means that for each u ∈ U and any ε > 0, we
have

δ({k ≤ n : |φ(u)( fk) − φ(u)( f )| ≥ ε}) = 0.

By considering the surjectivity of the canonical embedding φ, every F ∈ U′′ is of the form F = φ(u) for
some u ∈ U. This means that for any F ∈ U′′, there exists u ∈ U such that F( f ) = φ(u)( f ) = f (u) is satisfied
for all f ∈ U′. Thus, for any F ∈ U′′, we have F( fn − f ) = fn(u)− f (u) st

−→ 0 in R. Therefore, we conclude that
fn

wst
−−→ f inU′.

Theorem 3.6. Let P ∈ DPst(U,V) be norm continuous and P′ : V′ → U′ be the adjoint operator of P. Then, the
following statements hold:

(i) P′(1) is statistical Dunford-Pettis operator for every 1 ∈ V′;

(ii) P′ is a statistical Dunford-Pettis operator if fn
wst
−−→ f inV′ implies fn(v) st

−→ f (v) for all v ∈ V.

Proof. (i) Let 1 ∈ V′ be arbitrary. We aim to show that P′(1) is a statistical Dunford-Pettis operator. Consider
a sequence (un) inU such that un

wst
−−→u. This implies that for any f ∈ U′, f (un) st

−→ f (u) holds. Now, examine
the sequence (P′(1)(un)). By using the definition of the adjoint operator, we obtain

P′(1)(un) = 1(P(un)).

Since P is a statistical Dunford-Pettis operator, we know that P(un) st
−→P(u) inV. As 1 is a continuous linear

functional onV and from [9] we have C(V,R) ⊆ Cst(V,R), it follows that 1(P(un)) st
−→ 1(P(u)). Hence, P′(1)

is a statistical Dunford-Pettis operator.
(ii) To prove that P′ is a statistical Dunford-Pettis operator, let ( fn) be a sequence inV′ such that fn

wst
−−→ f

inV′. This implies that fn(v) st
−→ f (v) for all v ∈ V. Now, consider P′( fn)(u) = fn(P(u)) for any u ∈ U. Since

P(u) ∈ V for each u ∈ U, it follows that fn(P(u)) st
−→ f (P(u)). Thus, P′( fn) st

−→P′( f ) in U′. Therefore, P′ is a
statistical Dunford-Pettis operator.

Definition 3.7. Let P ∈ L(U,V) and (Pn) be a sequence in DPst(U,V) for Banach spacesU andV. Then (Pn) is
said to be statistically convergent to P if Pn(u) st

−→P(u) holds inV for all u ∈ U.

Theorem 3.8. If a sequence (Pn) in DPst(U,V) converges statistically to P ∈ L(U,V), then P is a statistical
Dunford-Pettis operator.

Proof. Let (um) be any sequence in U such that um
wst
−−→u for some u ∈ U. Since each Pn is a statistical

Dunford-Pettis operator, we have Pn(um) st
−→Pn(u) inV for each n. If we consider the following inequality:

∥P(um) − P(u)∥ ≤ ∥Pn(um) − P(um)∥ + ∥Pn(um) − Pn(u)∥ + ∥Pn(u) − P(u)∥

then, we have

{m ≤ n : ∥P(um) − P(u)∥ > ε} ⊆ {k ≤ n : ∥Pk(um) − P(um)∥ >
ε
3
}

∪ {m ≤ k : ∥Pn(um) − Pn(u)∥ >
ε
3
}

∪ {k ≤ n : ∥Pk(u) − P(u)∥ >
ε
3
}.

Since Pn(u) st
−→P(u) for all u ∈ U, we have δ

(
{k ≤ n : ∥Pk(um) − P(um)∥ > ε

3 }
)
= 0 and δ

(
{k ≤ n : ∥Pk(u) −

P(u)∥ > ε
3 }
)
= 0. Furthermore, since Pn is a statistical Dunford-Pettis operator for each n, we also have

δ
(
{m ≤ k : ∥Pn(um) − Pn(u)∥ > ε

3 }
)
= 0. As a result, we conclude that δ

(
{m ≤ n : ∥P(um) − P(u)∥ > ε}

)
= 0,

which implies that P is a statistical Dunford-Pettis operator.
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Although the concept of a Cauchy sequence is well-defined in normed spaces, the definition of a
statistically Cauchy sequence does not have a universally accepted standard. To provide clarity, we
introduce the most commonly used definition of statistical Cauchy sequences in this paper.

Definition 3.9. [16] A sequence (un) is called a statistically Cauchy sequence in a normed space U if, for every
ε > 0, there exists a number nε ∈ N such that

lim
n→∞

1
n

∣∣∣{k < n : ∥uk − unε∥ ≥ ε}
∣∣∣ = 0.

Definition 3.10. [10] A sequence (un) in a normed space U is called weakly statistically Cauchy if the sequence
( f (un)) is a statistically Cauchy sequence for every f ∈ U′.

Theorem 3.11. Let P ∈ L(U,V) be an operator between Banach spaces such thatU is reflexive. Then, the following
statements hold.

(i) If P is a statistical Dunford-Pettis, then it maps weakly statistically Cauchy sequences to statistically Cauchy
sequences.

(ii) If P is a weakly statistically continuous operator and it maps weakly statistically Cauchy sequences to statistically
Cauchy sequences, then it is a statistical Dunford-Pettis operator.

Proof. (i) Let P ∈ DPst(U,V) and assume that (un) is a weakly statistically Cauchy sequence in U. By
[10, Thm.2.7], since U is a reflexive Banach space, it follows that (un) is weakly statistically convergent
in U. Furthermore, because P is a statistical Dunford-Pettis operator, P(un) is statistically convergent.
Consequently, [9, Thm.5.2] ensures that P(un) is also a statistically Cauchy sequence.

(ii) Assume that P(un) is a statistically Cauchy sequence in V whenever (un) is weakly statistically
Cauchy in U. Consider an arbitrary sequence (un) in U that is weakly statistically convergent to u, i.e.,
un

wst
−−→u. Consequently, (un) is also a weakly statistically Cauchy sequence in U [10, p.5]. Therefore, it

follows that P(un) is a statistically Cauchy sequence inV. SinceV is a Banach space, [9, Thm.5.4] implies
that P(un) is statistically convergent to some element v ∈ V. Additionally, because P is a weakly statistically
continuous operator, we have P(un)

wst
−−→P(u) inV. Thus, we conclude that P(u) = v. As a result, P is shown

to be a statistical Dunford-Pettis operator.

Corollary 3.12. Let U be a reflexive Banach space. If P ∈ DPst(U,V), then P maps weakly Cauchy sequences to
statistically Cauchy sequences.

Theorem 3.13. LetU andV be Banach spaces such that ℓ1 does not embed intoU. Then every statistical Dunford-
Pettis operator fromU toV is compact.

Proof. Let P : U → V be a statistical Dunford-Pettis operator. Take a bounded subset B of U. Consider
a sequence (vn) in P(B), and so there exists a sequence (un) in B such that vn = P(un) for all n. It follows
from the Rosenthal ℓ1-Theorem that (un) has a weakly Cauchy subsequence denoted by (unk ) as ℓ1 does not
embed into U. Since (unk ) is weakly Cauchy, it follows that (unk ) is weakly statistically convergent. This
is because for any f ∈ U′, the sequence ( f (unk )) is a Cauchy sequence in R, and every Cauchy sequence
in R is statistically convergent. Since P is a statistical Dunford-Pettis operator, we have P(unk )

st
−→P(u) inV

for some u ∈ U. By the definition of statistical convergence, there exists a subsequence of (P(unk )), which
we denote as (P(unkj

)), that converges in norm to P(u). Thus, we have shown that for any sequence (vn) in
P(B), there exists a subsequence (vnkj

) = (P(unkj
)) that converges in norm. This implies that P(B) is relatively

compact inV. Therefore, P is a compact operator.
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