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Abstract. We introduce the concept of statistical Dunford-Pettis operators in this paper, which extend the
classical notion of Dunford-Pettis operators into the domain of statistical convergence. These operators are
defined on Banach spaces by their ability to map sequences that converge weakly in a statistical sense into
sequences that converge statistically. The exploration includes the properties of these operators and their
connections to other operator classes, such as statistically continuous and statistically compact operators.
Furthermore, we examine the behavior of the adjoint operators associated with the statistical Dunford-Pettis
operators.

1. Introduction on Dunford-Pettis Operators

This study focuses on Dunford-Pettis operators, a crucial concept in functional analysis concerning the
preservation of weak convergence under linear transformations between Banach spaces. These operators
have broad applications across various fields, including functional analysis, probability theory, optimiza-
tion, measure theory, Riesz spaces, and partial differential equations [2, 12, 17, 19, 24]. The origin of
Dunford-Pettis operators lies in the work of Dunford and Pettis [13], who demonstrated that weakly com-
pact operators on L;(u) map weakly convergent sequences to norm convergent sequences. Grothendieck
[18] formalized this property by defining Dunford-Pettis operators as those exhibiting this behavior. Sub-
sequent research has expanded upon this foundation. Sanchez [25] introduced almost Dunford-Pettis
operators, later refined by Wnuk [26]. Aliprantis and Burkinshaw defined weak Dunford-Pettis operators
[1, 2], while Agzzouz and Bouras investigated properties of positive weak Dunford-Pettis operators on
Banach lattices [4] and introduced order Dunford-Pettis operators [5]. H'michane et al. studied weak”
Dunford-Pettis operators [14, 20]. The study of Dunford-Pettis operators remains an active area of re-
search [8, 11, 19, 24]. This paper aims to define Dunford-Pettis operators by using statistical convergence.
Specifically, we introduce the concept of statistical Dunford-Pettis operators by employing weak statistical
convergence within Banach spaces, as defined in [10].
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Weak convergence is a fundamental concept in the study of normed spaces, particularly relevant in the
context of Dunford-Pettis operators. It offers a powerful and versatile tool for analyzing normed spaces
and their duals, often providing advantages over the direct use of norm convergence. Let (U, || - ||) denote
a normed space. The norm dual of U, denoted by U’, is defined as the space of all continuous linear
functionals from U to R:

U ={f| f: U — Risa continuous linear functional}.

The set of all linear operators between normed spaces U and V is denoted by .L(U, V). In this context, the
term operator will be used as a shorthand for a linear operator.

Definition 1.1. Let (U, || - ||) be a normed space and (u,,) be a sequence in U. The sequence (u,) is said to converge
weakly to u € U, denoted by u, — u, if for every f € U’, we have f(u,) — f(u) in R.

Definition 1.2. An operator P € L(U,V) between Banach spaces U and V is a Dunford-Pettis operator if, for any

sequence (u,) in U, u, Su implies P(u,) LA P(u).

It is well-established that norm convergence implies weak convergence. Consequently, every Dunford-
Pettis operator is norm continuous. However, the converse is not generally true because every Banach
space without the Schur property contains a weakly convergent sequence that does not converge in norm.

Dunford-Pettis operators have demonstrated considerable utility across multiple disciplines. However,
to the best of our knowledge, there has been no research examining these operators within the statistical
convergence. The concept of the statistical convergence was introduced by Fast in 1951 [15], which gen-
eralizes the classical convergence by emphasizing the asymptotic density of terms in a sequence, rather
than their individual behavior throughout the sequence (cf. [6, 7, 21-23]). We remind the fundamental
tools related to statistical convergence. Let | be a subset of the positive integers N. The natural density (or
asymptotic density) of |, denoted by 6(]), is defined as

.1 .
6() = lim —|{j <n:je]i,
provided this limit exists, where | - | denotes the cardinality of a set. For a detailed exposition on natural
density, we refer the reader to [16]. A sequence (u,) in a normed space (U, || - |l¢/) is said to be statistically
st .
convergent to u € U, denoted by u,, — u, if for every € > 0,

lim S0 < n: luj - ully > )] = 0.

n—oo 1

A sequence (u,) in a normed space (U, || - ||¢/) is statistically bounded (or st-bounded) if there exists a positive
constant R > 0 such that
o({n € N : luylley > R}) =0

(cf. [3]). In this paper, £o(U) and €5L(U) denote the sets of all norm-bounded and statistically bounded
sequences in U, respectively. It is clear that £e(U) C €3£ (U) for any normed space U, and this inclusion is
strict. The reverse inclusion does not hold in general. Consider the sequence (u,) in R defined by

2L if n is not prime.

{n, if n is prime,
Uy =
This sequence is statistically bounded, i.e., (u,) € €5 (R), but it is not norm-bounded.

Definition 1.3. [9] Let P € L(U,V). Then P is called:
(i) statistically bounded if (¢ (U)) C L5 (V);
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(ii) statistically continuous if u, Joimu implies P(u,) L0inV;
(iii) statistically compact if it maps statistically bounded sequences in U to statistically convergent sequences in V;
(iv) weakly statistically continuous if u, — u implies P(u,) — P(u).

The key concept of weak statistical convergence is then defined based on [10].

Definition 1.4. A sequence (u,,) in a normed space U is weakly statistically convergent to u, denoted by w, — u, if
for every f € U, the sequence (f(u, — u)) is statistically convergent to 0 in R.

It is important to note that every subsequence of a weakly convergent sequence is also weakly conver-
gent. On the other hand, statistical convergence of a sequence typically leads to the existence of a convergent
subsequence whose indices possess a systematic density of one, provided the chosen density definition is
appropriate. For a detailed examination of the conditions under which a sequence has an st-convergent
subsequence, we refer to [23].

Remark 1.5. A sequence that is weakly statistically convergent does not necessarily possess a weakly convergent
subsequence. Specifically, let (u,) be a weakly statistically convergent sequence. By definition, for every f € U’,
the sequence f(u, — u) must be statistically convergent in R. However, for any given f € U’, one can identify a
subsequence of (u,) that converges with respect to f. Importantly, if f is replaced by another functional g € U’, the
resulting convergent subsequence may differ. Consequently, the subsequences obtained vary depending on the choice
of f, indicating the absence of a single, universal subsequence of (u,) that converges for all f € U’. Therefore, the
weak statistical convergence of (u,) does not ensure the existence of a single subsequence that is weakly convergent
with respect to every functional in U’

Lemma 1.6. Let (U, || - ||) represent a normed space. The following properties related to convergence in this context
are valid:

(i) If a sequence (u,) within U converges weakly to some u € U, then the sequence is also weakly statistically
convergent to u.

(ii) If a sequence (u,) in U is statistically convergent to an element u € U, then it follows that (u,) is also weakly
statistically convergent to u.

(iii) Suppose (uy) is a weakly statistically convergent sequence in U, and (uy;) is a subsequence of (u,) such that the
set of indices {n; : j € N} has natural density equal to one. Then, the subsequence (uy,) is also weakly statistically
convergent to the same limit.

(iv) A weakly statistically convergent sequence in U possesses a unique weak statistical limit. This uniqueness is
guaranteed by the Hahn-Banach theorem.

Remark 1.7. As demonstrated in [10, Exam.2.2], the reverse implication of Lemma 1.6 (i) does not generally hold;
that is, a sequence that is weakly statistically convergent does not necessarily converge weakly. Likewise, the converse
of Lemma 1.6 (ii) fails to hold in general.

Theorem 1.8. Let (U, || - |[) be a normed space and (u,) be a sequence in U. Then u, 2 if and only if there exists
a sequence (vy) in U such that u, = vy, for almost all n (i.e., the set {n € N : u,, # v,} has natural density zero) and

Wit
Oy — U.

Proof. Assume that 1, —5 u holds in U. We need to construct a sequence (v,) that satisfies the required
properties. A simple choice suffices: define v, = u, for all n. In this case, the set {n : u, # v,} is an empty

set, and hence it is clear that it has density zero. Moreover, it follows from v, = u, that v, MEN)
We assume the existence of a sequence (v,,) in Y such that u, = v, for almost all # and v, 4 u. To prove
that u, 5 u, we need to verify that for any f € U’, the sequence f(u, — u) is statistically convergent to zero
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in R. From the assumption v, —5 1, it follows that for any f € U’, the sequence f(v, — u) is statistically
convergent to zero in R. Specifically, for any ¢ > 0, we have

o(n :1f(wy —u) = €}) = 0.

Additionally, since u, = v, for almost all n, we know that 6(A) = 0, where A := {n : u, # v,}. Next, consider
the set B := {n : |f(u, — u)| > €}. Our goal is to show that 6(B) = 0. We decompose B into the union of two
subsets:
B=(BNA)U(BNA".

Since A has density zero, any subset of A also has density zero, so 5(BNA) = 0. For n € A°, we have u, = v,.
Consequently, if n € BN A¢, then

If (un — )| = |f(0n —u)l > €.
This implies that B N A is a subset of {n : |f(v, — u)| > €}, which has density zero. Therefore, 5(B N A) = 0.
Since B is the union of two sets of density zero, it follows that B itself has density zero:

0B)y=6(BNA)+06(BNA)=0+0=0.
Thus, f(u, — u) is statistically convergent to zero in R for any f € U’. Hence, u, —>u. [

Corollary 1.9. Let (U, || - ||) be a normed space. If a sequence (u,) in U possesses a dense subsequence that is weakly
statistically convergent to some u € U, then the sequence (u,) itself is weakly statistically convergent to u.

Theorem 1.10. Let (U, || - ||) be a normed space, and let (u,) be a sequence in U such that u, 50 for some u € U.
If (1) is a subsequence of (u,) such that

K
liminf —l ()l >

n—o0 n

0,

where K(n) = {ny < n:k € N}, then (u,,) is also weakly statistically convergent to u.

Proof. Suppose u, %, . This means that for every f € U’ and every ¢ > 0, we have
.1
lim ~{{k < n: | f(u) - f@)] = el = 0.

Consider the subsequence (i, ). Let A. = {k € N : [f(ux)— f(u)| > €}. Since uy, 2 4, we have limy,_ o0 %I{k <n:
k € A}l = 0. For any n € N, the set of indices in the subsequence satisfying the condition is the intersection
of K(n) and A,:

e <me|f(uy)— fW)l>el=Km)NA Clk<n:keAl

We can rewrite the ratio of the cardinality as follows:

[t < n:|f(un) — f@) 2 €}l [Km)NA| n

IK(n)| n |K(n)|
- lk<n:|f(u) - f@)l=ell n
B n [K ()|
[K(n)| [K(n)l o

Let 6 = liminf, o . By the hypothesis, 6 > 0. Thus, there exists Ny such that for all n > Ny, == > 3,

n
which implies w5 < 2. Since the first factor on the right-hand side converges to 0 because of u, % u, and

the second factor is bounded, we obtain:
Wk < m e |f(un) — fW)] = €l

lim sup K] =0.

Consequently, the natural density of the set {k € N : |f(,,)— f(u)| > ¢} is zero. Therefore, we get i, —> u. []
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Corollary 1.11. Let (U, ||-||) be a normed space and (u,) be a sequence in U. The following statements are equivalent:
(i) uy—5u.

[K(m)|
n

(ii) Every subsequence (i1, ) of (u,) with im inf, o
convergent to u.

> 0, where K(n) = {ny < n : k € N}, is weakly statistically

(iii) Every dense subsequence of (u,) is weakly statistically convergent to u.

Proof. (i) = (ii): This follows directly from Theorem 1.10.
(if) = (ifi): Assume that the condition (if) holds. If # = (u,,) is a dense subsequence of (u,), then

the set of indices K(n) = {ny < n : k € N} has natural density 1, i.e., 6(K(n)) = 1. This implies that
K@)

liminf, e =1 > 0. Thus, by (ii), # is weakly statistically convergent to u.
(iif) = (i): Assume that (iii) holds. Since (u,) is a subsequence of itself (and trivially dense in itself), it
follows from (iii) that (u,) is weakly statistically convergent tou. O

The remainder of this paper is organized as follows: Section 2 introduces the concept of statistical
Dunford-Pettis operators and explores their relationships with other classes of operators. Section 3 presents
the main results concerning statistical Dunford-Pettis operators.

2. Statistical Dunford-Pettis

In this section, we define the concept of statistical Dunford-Pettis operators and establish fundamental
results related to these operators. The Dunford-Pettis property characterizes operators that transform weak
convergence of sequences into norm convergence on Banach spaces.

Similarly, statistical Dunford-Pettis operators can be defined as follows:

Definition 2.1. Let P € L(U,V) be an operator between Banach spaces. Then, P is called statistical Dunford-
Pettis if i, —5 u in U implies P(u,) > P(u) in V.

Throughout this paper, C(U, V), Co(U,V), Bo(U,V), Ka(U,V), and DPs(U, V) represent the sets of all
continuous, statistical continuous, statistical bounded, statistical compact, and statistical Dunford-Pettis
operators between normed spaces U and V, respectively, unless otherwise specified. We have some
observation in the following remark.

Remark 2.2.

(i) A Dunford-Pettis operator does not have to be a statistical Dunford-Pettis operator because a statistically weakly
convergent sequence may not have a weakly convergent subsequence; see Remark 1.5. Furthermore, the reverse
implication is also not guaranteed in general.

(i) It follows from Eberlein-Smulian theorem that a compact operator with a reflexive Banach space domain is a
statistical Dunford-Pettis operator. However, the reverse is not necessarily true.

(iii) There is no direct connection between Ky (U, V) and DPy (U, V).

(iv) If dim(U) < oo, then we have DPy(U, V) = Co(U, V) because weak statistical convergence implies statistical
convergence in finite dimensions; see [10, Thm.2.3(iii)].

Example 2.3. Consider the Banach spaces U := €1 and V := €, and let P : {1 — (., be the canonical embedding
operator, defined as:

P(w) := (sk(w))2

for each w := (w,) € 1, where sp(w) = Y w;. Here, P(w) is the sequence of partial sums of the sequence w.
We will show that P is a statistical Dunford-Pettis operator. Take a sequence (u,) := (u1,+-- , Uy, --) denoted by
U, = (ul,uz,---)et for each n such that it is weakly statistically convergent to z := (z1,z2,--+) € £1. That is, for
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every f € ] (where {] = ), the sequence f(u,) is statistically convergent to f(z) in R. On the other hand, to prove
that P(u,) is statistically norm-convergent to P(z), we need to show the existence of the following limit;

lim % {m <n:||P(u,)—P@)||>¢e}l|=0
forall € > 0. For a fixed m, the norm of the difference between P(u,,) and P(z) is

IP(um) = PN = sup Isk(ttm) = sk(2)].

Since () = Y., ul, and s(z) = Y5, zi, then we have

k k

i) 52 = Yy~ Yz =

k
(ulm - Zi)-
i=1 i=1 i=1

Thus, we get |si(uy) — sk(z)| = |Zf=1(ufn - z,-)|. On the other hand, since (u,) is weakly statistically convergent to z,
forany f € ] we have

lim % ltm <n:|f(un) - f2) > €}| = 0.

In particular, this holds for the specific linear functionals fi(w) = Z;‘zl w; forallw € £y. Thus, for each k, the sequence
(sk(un)) converges to s(z) statistically. It means that we have

.1
Lim = [{m <1+ [si(um) = s(2)] 2 e} = 0.

Therefore, we obtain that P(u,) converges to P(z) in €« statistically.
Proposition 2.4. For any Banach spaces U and V, the inclusion DPy(U,V) C Co(U, V) holds.

Proof. Let P € DPy(U,V) be an arbitrary element and consider any arbitrary sequence (u,) in U such that
1, 5 1 holds. It follows from Lemma 1.6 that we have u, —5 u in U because statistical convergence implies
weak statistical convergence. Now, since P € DP(U, V), the weak statistical convergence u, S uin U
implies P(uy,) N P(u) in V. This fact completes the proof. [J

By applying Proposition 2.4 and [9, Thm.3.4], we get the following result.
Corollary 2.5. The inclusion DPy(U,V) C By (U, V) holds for any Banach spaces U and V.

Theorem 2.6. DPy(U, V) is a linear space.

Proof. To start with, it is evident that DPy(U, V) is a subset of L(U, V) which is a vector space of all linear
operators from U to V. Now, suppose that P and R belong to the set DPy(U, V) and (u,) is a sequence in

U such that u, 50. Then, for any ¢ > 0, we have

5tk < 1 |Pugll > %}) =0 and S(fk <n:||Rugll > %}) - 0.

On the other hand, the inequality [|(P + R)uyl| = |[Puy + Ru|| < [|Pugl| + [|Rukl| gives the following inclusion

tk<n:lI(P+Rull > e} Clk<n: ||Pugll > g} Utk < (IRigll > g}.

Thus, the monotonicity of the natural density implies 6({k < n : ||(P + R)ul| > €}) = 0, indicating P + R €
DP4(X,Y).
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Next, take any scalar @ € R. Then, we have [[(aP)(ux)ll = llaP(u)ll = |a| [[Pull. If @ = 0, then it is clear that
(aP)(uy) = Oy, where Oy is the zero vector in V. Now, assume that & # 0. We obtain
e

fh< s I@PY@oll > e = (k< - WPl > 1

}.

Hence, 6(fk < n : |[(aP)ugll > €}) = 0 holds for both cases. This implies that aP belongs to the set
DPy(U,V). O

Theorem 2.7. Let U,V and ‘W be Banach spaces and P € DPy (U, V). Then, R o P € DPy (U, W) holds for every
Re Cst((V, (W)

Proof. Consider an arbitrary sequence (i) in U such that u, —5 6. Since P(i,) % 0inV,and Ris statistically
continuous, it follows that the sequence (R o P)(u,) = R(P(u,)) also converges statistically to zero in “W.
This conclusion is supported by the linearity of both R and P. Therefore, R o P is an element of the space
DPy(U,W). O

It is clear that Theorem 2.7 is applied directly whenever the operator R is continuous from V to “W.
Moreover, we observe the following result.

Proposition 2.8. Let U be a Banach space, and suppose that P € DPy(U). Then, P" € DPy(U) holds for any
ne€N.

We note that a Banach space is characterized by the Schur property if all weakly convergent sequences are
norm convergent. Nevertheless, ws;-convergence in a Schur space does not necessarily entail st-convergence.
Therefore, we propose the following definition.

Definition 2.9. A Banach space U is said to possess the statistical Schur property if every wy-convergent sequence

. .. . W, . . st .
is statistical norm convergent, i.e., i, — u implies that u, — u in U.

Question 2.10. Is there an example of a Banach space that possesses the statistical Schur property but lacks the
classical Schur property?

By considering the definition of the statistical Schur property, we observe the following result.

Proposition 2.11. DPy(U,V) = Co(U, V) holds for Banach spaces U and V whenever U has the statistical Schur
property.

Proof. We have the inclusion DPy(U,V) € Cyu(U,V) by Proposition2.4. For the reverse part, let P €
Co(U, V) and take any sequence (i) in U satisfying u, —5 u. Since U has the statistical Schur property,

Uy %, 1. Because of our assumption on P, we get P(u,,) SN P(u) which is the desired one. [

Theorem 2.12. The Banach space €1 possesses the statistical Schur property.

Proof. Let (u,) = (u’{,m ,u’,ﬁ,-~-)ﬁ>w := (wy,ws,...) be a sequence in ¢;. That is, for any sequence v :=
(vx) € €, we have

(o8]

(o)
k kst
<, Uy >=< (vg), (Uy) >= Ukl — VW =< U, W >
n
k=1 k=1

holds in R as 7 — oco. Now, consider the sequence v = (¢g) in {o, where ¢, = (0,0, ...,1,0,0,...) with 1 in the
k-th position and 0 elsewhere. Then, we obtain that

t
<01, >=< (ep), (@) >= 1k 5 <o, w >=wy
n
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is true as n — oo. It shows that weak statistical convergence implies statistical pointwise convergence, i.e.,

k

Uy

LN wy. for each fixed k. Our aim is to show that
n

(e8]

st
i = wll = Y =] 550
k=1

is satisfied in R. For any ¢ > 0, we can choose N such that Y ;> lwil < 5 because of w € £1. Now, for each

1 <k <N, we know that u’fi N wy as n — oo, and hence there exists N € N such that 6({n € N : Iu’,‘, —wy| =
n

Lk}) = 0. Let take Ny := max{N, N1, N, ...,Ny}. Then, for n > Ny, we have

2N,
0 N 0
k k k
o = ol = Y ik =gl = ) ik =l + Yl — e,
k=1 k=1

k=N+1
On the other hand, the second term of the last equality can be bounded as;
Yok —wd< Y wkl+ Y il
k=N+1 k=N+1 k=N+1

Since u, € ¢; for all n, the tail Y\, [u%] can be made arbitrarily small by choosing a sufficiently large N.
Thus, for n > Ny, we have:

N

k ,

[lu, —w|| < E [y, — wi| + €.
k=1

Now, consider theset A = {n € N : |lu, — w|| > ¢}. If n € A and n > Ny, then we have Z,il [uf —wy| > 5. This
implies that for at least one k € {1,2,...,N}, we have Iu’; — wi| > 55 Therefore, we get

N
k- £
Agg{nehxl.lun wkIZZN}.

Since the union of finitely many sets of density zero has density zero, we conclude that 6(A) =0. O

3. Main Results

In the next result, we show that statistical Dunford-Pettis operators are continuous in the following
sense.

Proposition 3.1. Statistical Dunford-Pettis operators preserve weak statistical convergence.

Proof. Assume P € DPy(U,V) for Banach spaces U and V, and u, 24 in U. Since P is a statistical

Dunford-Pettis operator, we have P(u,) S—t>P(u) in V. By Lemma 1.6 (ii), it follows that P(u,) is weakly
statistically convergent to P(u). Therefore, we conclude that every statistical Dunford-Pettis operator is
weakly statistically continuous. [

Recall from [9, Thm.4.4] that a statistical compact operator is also a statistical continuous operator. In
this context, we present the following result concerning weak statistical convergence.

Theorem 3.2. If all st-compact operators from a Banach space U into a Banach space V are norm continuous, then
every statistically compact operator from U into V is weakly statistically continuous.
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Proof. Let P : U — <V be an st-compact operator, and let (1,) be a sequence in U such that u, —5u. By
[10, Cor. 2.9], the sequence (u,) is st-bounded in U. Since P is st-compact, the sequence (P(u,)) converges
statistically to some v € V. Moreover, Lemma 1.6 (ii) implies that (P(u,)) is weak statistical convergent to v.

It is enough to show that v = P(u). To see this, let f € V' be arbitrary. As P(u,) 4 v, we have

f(P(un))s—t>f(v) in R. Define g : U — R by g(z) = f(P(z)) for all z € U. The linearity of P and f
implies the linearity of g. Furthermore, the continuity of P (assumed in the theorem statement) and

the continuity of f ensure the continuity of g. Hence, g € U’. Since u, 2 4 and g € U, we obtain

g(uy) = f(P(un)) s—t>g(u) = f(P(u)). Thus, forany f € V’, wehaveboth f(P(u,)) s—t>f(v) and f(P(uy)) S—t>f(P(u)).
By the uniqueness of the statistical limit, we conclude that f(v) = f(P(u)) for all f € V’. Finally, the Hahn-

Wit

Banach theorem implies that v = P(u). This establishes that P(u,) — P(u), as desired. [

Theorem 3.3. If every st-compact operator from a Banach space U into a Banach space V is norm continuous, then
the set of statistical compact operators from U into V is contained within the class of statistical Dunford—Pettis
operators.

Proof. Assume that P : U — V is a statistical compact operator. We aim to demonstrate that P is a statistical

Wit

Dunford-Pettis operator. Let (1,) be a sequence in U such that u, — u. By [10, Cor. 2.9], if a sequence in
a normed space converges weakly statistically, then it is necessarily statistically bounded. Hence, (1) is a

statistically bounded sequence in U. Since P is a statistical compact operator, P(u,) 4 v for some v € V.
Following the argument in the proof of Theorem 3.2, we can establish that v = P(u). Therefore, we conclude

that P(u,) N P(u), as desired. O

Recall that a bounded operator between Banach spaces is said to be weakly compact if the image under
any bounded subset is relatively weakly compact.

Theorem 3.4. Let P : U — V be an operator between two Banach spaces. If P is a statistical Dunford-Pettis
operator, then the composition PR is st-compact for each statistical compact operator R : W — U, where W is an
arbitrary Banach space.

Proof. Let P be a statistical Dunford-Pettis operator and R : W — U be a statistical compact operator.
Suppose that (u,) is an st-bounded sequence in ‘W. Since R is statistically compact, the sequence (R(u,))
converges statistically to some u € U. This implies that (R(u,)) also converges weakly statistically to
u because statistical convergence implies weak statistical convergence by Lemma 1.6. By the statistical
Dunford-Pettis property of P, (P(R(u,))) converges statistically to P(u) in V. Therefore, the operator PR
takes st-bounded sequences in ‘W and maps them to statistically convergent sequences in V, thereby
making it a statistical compact operator. [J

Recall that the adjoint operator of a bounded linear operator P : U — V between normed spaces is the
map P’ : V' — U defined by (P’ f)(u) := f(Pu) for all f € V’. Furthermore, the canonical map from a
normed space U to its second dual U"” is often referred to as the canonical embedding or canonical isometry.
This map, denoted by ¢ : U — U”, is defined by

Pu)(f) = fu)
forallu e U and f € U'.

Theorem 3.5. Let ¢ : U — U" be a surjective canonical embedding for a normed space U and (f,) be a sequence

in U'. Then, we have f, ~5 f in U’ iff p(u)(f,) 4 @W)(f) holds for all u € U.

Proof. Suppose that f, — f in U’. This means that the sequence F(f,) is statistically convergent to F(f) for
all F € U”. By the definition of the canonical embedding ¢, we have (1) € U"” for each u € U. Therefore,
we have

)(f) = @u)(f)
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forall u € U. .
We assume now that ¢(u)(f,) 5 @(u)(f) for all u € U. This means that for each u € U and any ¢ > 0, we
have

o(tk < n : lp)(fi) — p()(f)l = €}) = 0.

By considering the surjectivity of the canonical embedding ¢, every F € U" is of the form F = ¢(u) for
some u € U. This means that for any F € U”, there exists u € U such that F(f) = p(u)(f) = f(u) is satisfied

forall f € U’. Thus, for any F € U”, we have F(f, — f) = fu(u) — f(u) 2, 0in R. Therefore, we conclude that
fi=5finU. O

Theorem 3.6. Let P € DPy(U,V) be norm continuous and P’ : V' — U’ be the adjoint operator of P. Then, the
following statements hold:

(i) P'(g) is statistical Dunford-Pettis operator for every g € V’;
(i) P’ is a statistical Dunford-Pettis operator if f, ~> f in V' implies f,(v) 5 f) forallveV.

Proof. (i) Let g € V' be arbitrary. We aim to show that P’(g) is a statistical Dunford-Pettis operator. Consider
a sequence () in U such that u, 2 . This implies that for any f € U’, f(u,) SN f(u) holds. Now, examine
the sequence (P’(g)(1,)). By using the definition of the adjoint operator, we obtain

P'(g)(un) = g(P(un))-

Since P is a statistical Dunford-Pettis operator, we know that P(u,) SN P(u)in V. As g is a continuous linear

functional on V and from [9] we have C(V,R) € Cy(V, R), it follows that g(P(u,)) N g(P(u)). Hence, P’'(g)
is a statistical Dunford-Pettis operator.

(ii) To prove that P’ is a statistical Dunford-Pettis operator, let (f;) be a sequence in V"’ such that f, — f
in V’. This implies that f,(v) N f(@) for all v € V. Now, consider P’(f,)(1) = f,(P(1)) for any u € U. Since
P(u) € V for each u € U, it follows that f,(P(u)) S—t>f(P(u)). Thus, P'(f,) S—t>P’(f) in U’. Therefore, P’ is a
statistical Dunford-Pettis operator. [

Definition 3.7. Let P € L(U,V) and (P,) be a sequence in DPy(U, V) for Banach spaces U and V. Then (P,) is
said to be statistically convergent to P if P,(u) = P(u) holds in <V forallu e U.
Theorem 3.8. If a sequence (Py,) in DPy(U,V) converges statistically to P € L(U,V), then P is a statistical
Dunford-Pettis operator.
Proof. Let (1) be any sequence in U such that u, —5 u for some u € U. Since each P, is a statistical
Dunford-Pettis operator, we have P, (u,,) SN P, (1) in V for each n. If we consider the following inequality:
IP(um) — Pl < 1Py (utm) — P(um)ll + [Pn(tim) — Pr(u)ll + [|Pn(u) — P(u)l|
then, we have
€
(m < 0 IPGu) = Pl > €} €k <2 IPkGtn) = Pl > 5)
€
U fm < ke 1P (um) = Pu)ll > 31
e
U {k < n 2 |[Pe(u) — PQu)ll > 5}-

Since P, (u) = P(u) for all u € U, we have 5({k < n : [|Pe(itn) — P(un)ll > £}) = 0 and 6({k < n : ||Pe(u) —

P > %}) = 0. Furthermore, since P, is a statistical Dunford-Pettis operator for each #n, we also have

6({m < k:||IPu(uy) — Py(u)l] > %}) = 0. As a result, we conclude that 6({m < n:||P(uy) — Pu)|| > e}) =0,

which implies that P is a statistical Dunford-Pettis operator. [
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Although the concept of a Cauchy sequence is well-defined in normed spaces, the definition of a
statistically Cauchy sequence does not have a universally accepted standard. To provide clarity, we
introduce the most commonly used definition of statistical Cauchy sequences in this paper.

Definition 3.9. [16] A sequence (u,) is called a statistically Cauchy sequence in a normed space U if, for every
& > 0, there exists a number n, € N such that

lim = |tk < llux = ua || > €}| = 0.

n—oo 1

Definition 3.10. [10] A sequence () in a normed space U is called weakly statistically Cauchy if the sequence
(f (un)) is a statistically Cauchy sequence for every f € U'.

Theorem 3.11. Let P € L(U,V) be an operator between Banach spaces such that U is reflexive. Then, the following
statements hold.

(i) If P is a statistical Dunford-Pettis, then it maps weakly statistically Cauchy sequences to statistically Cauchy
sequernces.

(ii) If P is a weakly statistically continuous operator and it maps weakly statistically Cauchy sequences to statistically
Cauchy sequences, then it is a statistical Dunford-Pettis operator.

Proof. (i) Let P € DPy(U,V) and assume that (1,) is a weakly statistically Cauchy sequence in U. By
[10, Thm.2.7], since U is a reflexive Banach space, it follows that (u,) is weakly statistically convergent
in U. Furthermore, because P is a statistical Dunford-Pettis operator, P(u,) is statistically convergent.
Consequently, [9, Thm.5.2] ensures that P(u,) is also a statistically Cauchy sequence.

(if) Assume that P(u,) is a statistically Cauchy sequence in V whenever (u,) is weakly statistically
Cauchy in U. Consider an arbitrary sequence (u,) in U that is weakly statistically convergent to u, i.e.,
u, =5 u. Consequently, (u,) is also a weakly statistically Cauchy sequence in U [10, p.5]. Therefore, it
follows that P(u,) is a statistically Cauchy sequence in V. Since V is a Banach space, [9, Thm.5.4] implies
that P(u,) is statistically convergent to some element v € V. Additionally, because P is a weakly statistically
continuous operator, we have P(u,) MEN P(u) in V. Thus, we conclude that P(u) = v. As a result, P is shown
to be a statistical Dunford-Pettis operator. [J

Corollary 3.12. Let U be a reflexive Banach space. If P € DPy(U,V), then P maps weakly Cauchy sequences to
statistically Cauchy sequences.

Theorem 3.13. Let U and V be Banach spaces such that €1 does not embed into U. Then every statistical Dunford-
Pettis operator from U to V is compact.

Proof. Let P : U — V be a statistical Dunford-Pettis operator. Take a bounded subset B of U. Consider
a sequence (v,) in P(B), and so there exists a sequence (#,) in B such that v, = P(u,) for all n. It follows
from the Rosenthal ¢;-Theorem that (1,) has a weakly Cauchy subsequence denoted by (u,,) as {; does not
embed into U. Since (u,,) is weakly Cauchy, it follows that (u,,) is weakly statistically convergent. This
is because for any f € U’, the sequence (f(uy,,)) is a Cauchy sequence in R, and every Cauchy sequence

in R is statistically convergent. Since P is a statistical Dunford-Pettis operator, we have P(u,,) % P(u) in V
for some u € U. By the definition of statistical convergence, there exists a subsequence of (P(u,,)), which
we denote as (P(”nki))/ that converges in norm to P(u). Thus, we have shown that for any sequence (v,,) in

P(B), there exists a subsequence (Unk].) = (P(Mnk]. )) that converges in norm. This implies that P(B) is relatively
compact in V. Therefore, P is a compact operator. [
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