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Convergence of approximations for the tracking problem in nonlinear
optimization
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aKyrgyz-Turkish Manas University, 720044, Bishkek, Kyrgyzstan

Abstract. In the paper the tracking problem in non-linear optimization of oscillatory processes described by
integro-differential equations involving a Fredholm integral operator was researched. The study primarily
focuses on the convergence of approximate solutions to the exact one. External and boundary effects are
modeled as scalar functions of several variables with a non-linear dependence on vector control influences.
Special attention is devoted to examining the influence of the Fredholm integral operator on the convergence
rate of approximate solutions. Sufficient conditions providing the convergence of approximate solutions of
the nonlinear optimization problem to the exact solution are established.

1. Introduction

The tracking problem occupies a central position in numerous applied and theoretical studies related
to control systems, robotics, navigation, computer vision, biomedical engineering, and other fields [1, 2, 3].
At its core lies the necessity to monitor the evolution of a dynamic system in real time. The most general
formulation requires determining control actions or parameters that ensure the system follows a specified
trajectory or adapts to observed data — directly linking the tracking problem to optimization methods.

Historically, the tracking problem gained significant development in the mid-20th century within the
framework of state estimation and filtering techniques, such as the Kalman filter [10]. These methods relied
on linear models and Gaussian noise, which provided analytical simplicity but limited their applicability.
Over time, it became evident that most real-world systems exhibit pronounced non-linear characteristics
and require consideration of constraints and prior knowledge, leading to a shift towards non-linear and
numerical optimization methods.

Modern approaches to solving the tracking problem increasingly rely on nonlinear optimization meth-
ods. These approaches allow for the consideration of nonlinear dynamics, various types of noise, and
the integration of complex prior knowledge about the system’s behavior. Different aspects of the tracking
problem in both linear and nonlinear optimization have been investigated by many authors [4, 5, 6].

In the paper [2], the tracking problem was studied in the context of nonlinear vector optimization
of oscillatory processes described by integro-differential partial differential equations. Scalar functions
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Email address: elmira.abdyldaeva@manas.edu.kg (Elmira Abdyldaeva)
ORCID iD: https://orcid.org/0000-0002-3874-9055 (Elmira Abdyldaeva)



E. Abdyldaeva / Filomat 40:4 (2026), 1401–1410 1402

describing external and boundary effects are nonlinear with respect to several control inputs. It was
established that this problem has a number of specific characteristics. In particular, the components of the
optimal distributed and boundary vector controls satisfy a system of equalities and are determined as the
solution to a system of nonlinear integral equations. An algorithm for constructing a solution to the tracking
problem has been developed, and sufficient conditions for its unique solvability have been established.

This paper addresses issues related to the construction of approximate solutions for a tracking problem
and analyzes their convergence, as previously studied in [2]. The aim of the present research is to investigate
the influence of a Fredholm integral operator on the processes of constructing and analyzing the convergence
of approximate solutions. It is demonstrated that the presence of an integral operator in the boundary value
problem necessitates the development of three distinct types of approximations for the optimal process:
approximations utilizing the resolvent of the integral operator’s kernel, approximations based on optimal
controls, and finite-dimensional approximations. Accordingly, three types of approximations of the minimal
value of the functional are also considered. Sufficient conditions for the convergence of the aforementioned
approximations are established, including the convergence of distributed and boundary vector optimal
controls, all three types of optimal process approximations, and approximations of the minimal value of
the functional.

2. On the solvability of the tracking problem in non-linear optimization

Consider the tracking problem in nonlinear optimization of oscillatory processes described by integro-
differential equations. We need to minimize an integral functional

J[ū(t, x), ϑ̄(t, x)] =
∫ T

0

∫
Q

[V(t, x) − ξ(t, x)]2 dxdt

+

∫ T

0

[
α

∫
Q

h[t, x, ū(t, x)]dx + β
∫
γ

b[t, x, ϑ̄(t, x)]dx
]

dt, α, β > 0,

(1)

on the set of solutions to the boundary value problem

Vtt(t, x) − AV(t, x) = λ
∫ T

0
K(t, τ)V(τ, x)dτ + f [t, x, ū(t, x)], x ∈ Q ⊂ Rn, 0 < t < T, (2)

V(0, x) = ψ1(x), Vt(0, x) = ψ2(x), x = (x1, x2, . . . , xn) ∈ Q, (3)

ΓV(t, x) ≡
n∑

i,k=1

aik(x)Vxk (t, x) cos(δ, xi) + a(x)V(t, x) = p[t, x, ϑ̄(t, x)], x ∈ γ, 0 < t < T. (4)

Here, the function V(t, x), defined on the domain QT = Q × (0,T] describes the state of the controlled
oscillatory process and is the sought function. Q is a bounded domain in the n-dimensional Euclidean
space Rn with a piecewise smooth boundary γ.

A is an elliptic operator defined by the formula

AV(t, x) =
n∑

i, j=1

(ai j(x)Vx j (t, x))xi − c(x)V(t, x), ai, j(x) = a j,i(x),
n∑

i, j=1

ai j(x)αiα j ≥ c0

n∑
i=1

α2
i , c0 > 0,
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a(x) ≥ 0, c(x) ≥ 0 are known measurable functions; Function K(t, τ), which is the kernel of Fredholm
integral operator, is defined on domain D = {0 ≤ t ≤ T, 0 ≤ τ ≤ T} and belongs to Hilbert space of
square-integrable functions in H(D), i.e., it satisfies the condition∫ T

0

∫ T

0
K2(t, τ)dτdt = K0 < ∞, K(t, τ) ∈ H(D); (5)

λ is a parameter; the function ψ1(x) ∈ H1(Q) characterizes the initial state of the controlled process at
the initial time, ψ2(x) ∈ H(Q) is an initial velocity of the points of the controlled object; H1(Q) is a first-
order Sobolev space; H(Q) is a Hilbert space of square-integrable functions defined on the given domain;
The given function ξ(t, x), defined on domain H(QT), describes the desired state of the controlled process
throughout the entire time of the interval control; The vector δ represents the outward normal originating
from the point x ∈ γ; T is a fixed moment of time corresponding to the end of the control period.

The scalar function f [t, x, ū(t, x)] models the influence of an external source and is a non-linear scalar
function of the vector-valued distributed control ū(t, x) = (u1(t, x), ...,ur(t, x)) ∈ Hr(QT) which belongs to
the functional space Hr(QT) = H(QT) × ... × H(QT) with a norm ∥ū(t, x)∥2Hr(QT) =

∫
Q

∑r
i=1 ū2

i (t, x)dxdt. Such
dependence reflects the complex nature of the interaction between the external influence and the internal
parameters of the controlled process, and requires the use of non-linear analysis methods in the formulation
and solution of the optimal control problem.

The scalar function p[t, x, ϑ̄(t, x)] describes the influence of a boundary source and depends non-linearly
on the vector-valued boundary control ϑ̄(t, x) = (ϑ1(t, x), ..., ϑm(t, x)) ∈ Hm(γT), which belongs to a functional
space Hm(γT) = H(γT) × ... ×H(γT) and ∥ϑ̄(t, x)∥2Hm(γT) =

∫
γ

∑m
i=1 ϑ̄

2
i (t, x)dxdt.

In equation (1), h[t, x, ū(t, x)] and b[t, x, ϑ̄(t, x)] are given scalar functions that are strictly convex with
respect to their respective vector arguments ū(t, x) and ϑ̄(t, x). The convexity of these functions ensures the
convexity of the functional (1), which, in turn, guarantees the uniqueness of the optimal controls. This fact
plays a crucial role in establishing the existence and uniqueness of a complete solution to the optimization
problem.

The algorithm for constructing the complete solution to the considered nonlinear optimization problem
is described in detail in [2] and is formalized as a triple((

ū(t, x), ϑ̄(t, x)
)
, V0(t, x), J[ū0(t, x), ϑ̄0(t, x)]

)
,

where
(
ū(t, x), ϑ̄(t, x)

)
represents a pair of vector-valued optimal controls; V0(t, x) denotes the corresponding

optimal process that satisfies the integro-differential dynamics of the system; and J[ū0(t, x), ϑ̄0(t, x)] is the
minimal value of the given integral functional attained under all constraints of the problem.

Here, we present the main results of [2], which will be used in the study of the convergence of approxi-
mate solutions to the tracking problem.

1) The distributed vector optimal control ū0(t, x) and the boundary vector optimal control ϑ̄0(t, x) are
defined by following formulas

ū0(t, x) = (u0
1(t, x), ...,u0

r (t, x)),

u0
i (t, x) = φi[t, x, θ0

1(t, x), α], i = 1, 2, ..., r,

ϑ̄0(t, x) = (ϑ0
1(t, x), ..., ϑ0

m(t, x)),

ϑ0
i (t, x) = υi(t, x, θ0

2(t, x), β], i = 1, 2, ...,m,

(6)

where φi[t, x, θ0
1(t, x), α] and υi(t, x, θ0

2(t, x), β] are known functions, and the vector function

θ(0)(t, x) =

θ(0)
1 (t, x), x ∈ Q,
θ(0)

2 (t, x), x ∈ γ,
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is the unique solution of the operator equation

θ(t, x) = F0[θ(t, x)] +W(t, x, λ). (7)

and the solution of this operator equation is defined as the limit θ(0)(t, x) = limn→∞ θ(n)(t, x) of vector
functions

θ(n)(t, x) =

θ(n)
1 (t, x), x ∈ Q,
θ(n)

2 (t, x), x ∈ γ,

which determined by the method of successive approximations, as solutions of operator equations

θ(n)(t, x) = F0[θ(n−1)(t, x)] +W(t, x, λ), n = 1, 2, 3, ... (8)

and satisfy the estimate

∥θ(0)(t, x) − θ(n)(t, x)∥H(Q̄T) ≤
Cn(α, β)

1 − C(α, β)
∥F0(θ(0)(t, x)) +W(t, x, λ) − θ0(t, x)∥H(Q)×H(γT), (9)

C(α, β) = 4T2

1 +
λ2K0T2(

λ1 − |λ|
√

K0T2
)2

 √
f 2
0φ

2
0(α)r2 + p2

0υ
2
0(β)m2

√√
∞∑

n=1

1
λ2

n
. (10)

2) The optimal process V0(t, x) is determined by following formula

V0(t, x) =
∞∑

n=1

(
λ

∫ T

0
Rn(t, x, λ)a0

n(s)ds + a0
n(s)

)
zn(x), (11)

a0
n(t) = ψ1n cosλnt +

ψ2n

λn
sinλnt

+
1
λn

∫ T

0
sinλn(t − τ)

(∫
Q

f [t, x, ū0(t, x)]zn(x)dx +
∫
γ

p[t, x, ϑ̄]zn(x)dx
)

dτ.
(12)

3) The minimum value of the functional J[ū0(t, x), ϑ̄0(t, x)] is determined by the formula

J[ū0[t, x, ϑ̄0(t, x)] =
∫ T

0

∫
Q

[
V0(t, x) − ξ(x)

]2
dxdt

+

∫ T

0

[
α

∫
Q

h[t, x, ū0(t, x)]dx + β
∫
γ

b[t, x, ϑ̄0(t, x)]dx
]

dt,

α, β > 0.

(13)

3. Approximations of the complete solution of the tracking problem

The main problem of this work is to study the approximate solutions to the tracking problem (1)–(4) in
nonlinear optimization and to analyze their convergence. As the complete solution of the tracking problem
is the triple(

(ū0(t, x), ϑ̄0(t, x)), V0(t, x), J[ū0(t, x), ϑ̄0(t, x)]
)

consisting of the optimal control, the optimal process, and the minimum value of the functional, we will
consider approximations of each of these components separately.
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3.1. Convergence of approximations of vector optimal controls

The approximate solution of operator equation (7) is used as an approximation in the construction of
optimal controls. By substituting the obtained θ(k)(t, x) into equations (5) and (6), we obtain approximate
values of the vector optimal controls. Thus, the following approximations are formulated:

k-th approximations of distributed vector control:

ū(k)(t, x) = (u1(t, x), ...,ur(t, x)),

u0
i (t, x) = φi[t, x, θ

(k)
1 (t, x), α], i = 1, 2, ..., r,

φ̄[t, x, θ(k)
1 (t, x), α] =

(
φ1[t, x, θ(k)

1 (t, x), α], ..., φk[t, x, θ(k)
1 (t, x), α]

)
.

(14)

k-th approximations of vector boundary control:

ϑ̄(k)(t, x) = (ϑ(k)
1 (t, x), ..., ϑ(k)

m (t, x)),

ϑ(k)
i (t, x) = υi(t, x, θ

(k)
2 (t, x), β], i = 1, 2, ...,m,

ῡ[t, x, θ(k)
2 (t, x), β] =

(
υ1[t, x, θ(k)

2 (t, x), β], ..., υk[t, x, θ(k)
2 (t, x), β]

)
.

(15)

Lemma 3.1. k-th approximations of the distributed and boundary vector controls, obtained under the conditions of
tracking problem (1)-(4), converge to the optimal distributed and boundary vector controls, respectively, in the norms
of the Hilbert spaces Hk(QT) and Hk(γT).

Proof. The convergence of the k-th approximation of distributed vector control follows from the following
inequality:

∥ū0(t, x) − ū(k)(t, x)∥2H(Q̄T) = ∥φ̄[t, x, θ0
1(t, x), α] − φ̄[t, x, θ(k)

1 (t, x), α]∥2Hk(QT)

≤ φ2
0(α)

(
Ck(α, β)

1 − C(α, β)
∥F0[θ(0)(t, x)] +W(t, x, λ) − θ(k)(t, x)∥H(Q̄T)

)2

→ 0, k→∞.

The convergence of the k-th approximation of the boundary vector control follows from the following
inequality:

∥ϑ̄0(t, x) − ϑ̄(k)(t, x)∥2H(γ̄T) = ∥ῡ[t, x, θ0
2(t, x), β] − ῡ[t, x, θ(k)

2 (t, x), β]∥2Hk(γT)

≤ υ2
0(β)

(
Ck(α, β)

1 − C(α, β)
∥F0[θ(0)(t, x)] +W(t, x, λ) − θ(k)(t, x)∥H(γ̄T)

)2

→ 0, k→∞.

3.2. Approximations of the optimal process and their convergence

The presence of an integral operator in the boundary value problem (2)-(4) leads to the need to identify
three main types of approximations of the optimal process, due to the specific structure of the integro-
differential problem of nonlinear optimization:

1) Resolvent approximations of the optimal process and their convergence

Definition 3.2. A truncated series of the form

Rq
n(t, s, λ) =

q∑
i=1

λi−1Kn,i(t, s), n = 1, 2, 3, ..., (16)

is called the q-th approximation of the resolvent Rn(t, s, λ) of the kernel K(t, x) for each fixed n = 1, 2, 3, ....
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Definition 3.3. A function defined by the formula

V(q)(t, x) =
∞∑

n=1

(
λ

∫ T

0
Rq

n(t, s, λ)a0
n(s)ds + a0

n(t)
)

zn(x), n = 1, 2, 3, ...,

is called a q-th approximation or a "resolvent" approximation of the optimal process corresponding to each fixed value
of n = 1, 2, 3, ....

Lemma 3.4. "Resolvent" approximations V(q)(t, x) of the optimal process V0(t, x), obtained under the conditions of
the tracking problem (1)-(4), converge to the optimal process in the norm of the corresponding Hilbert space.

Proof. By direct calculations establish the relation

∥V0(t, x) − V(q)(t, x)∥2H(QT) ≤ λ
2

 |λ|
√

T2K0

λn


1 −

1

ln
|λ|
√

K0T2

λ2
1


2

× 3

∥ψ1(x)∥2H(Q) +
1
λ2

1

∥ψ2(x)∥2H(Q) +
2
λ2

1

T
[
∥ f [t, x, ū0(t, x]∥2H(QT) + ∥p[t, x, ϑ̄0(t, x)]∥2H(γT)

]
= (Cq(λ))2

 |λ|
√

K0T2

λ1

2q

,

Cq(λ) =

1 −
1

ln
|λ|
√

K0T2

λ2
1


×

{
3

∥ψ1(x)∥2H(Q) +
1
λ2

1

∥ψ2(x)∥2H(Q) +
2
λ2

1

T
[
∥ f [t, x, ū0(t, x)]∥2H(QT) + ∥p[t, x, ϑ̄0(t, x)]∥2H(γT)

] } 1
2
.

That is, the following inequality holds,

∥V0(t, x) − V(q)(t, x)∥2H(QT) ≤ (Cq(λ))2

 |λ|
√

K0T2

λ1

q

→ 0, q→∞,

as
|λ|
√

K0T2

λ1
< 1, from which, due to the fulfilment of the condition, the assertion of the lemma follows

directly.

2) q, k-th approximations of the optimal process and their convergence

Definition 3.5. The functions defined by the formula

Vq
k(t, x) =

∞∑
n=1

(
λ

∫ T

0
Rq

n(t, x, λ)a(k)
n (s)ds + a(k)

n (s)
)

zn(x), (17)

is called a q, k-th approximations of the optimal process with respect to the controls, where ūk(x) is k-th approximation
of the vector distributed control and ūk(x) is a k-th approximation of vector boundary control.

Lemma 3.6. Under the conditions of the nonlinear optimization problem (1)-(4), the q, k-th approximations V(q)
k (t, x)

of the optimal process converge to the corresponding intermediate approximations V(q)(t, x) as k → ∞ for any fixed
q = 1, 2, 3, ... in the norm of the corresponding space H(QT).
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Proof. The assertion of the lemma follows directly from the following relation

∥V(q)(t, x) − V(q)
k (t, x)∥2H(QT) ≤ 4T

1 +
λ2T2K0(

λ1 − |λ|
√

K0T2
)2

×
×

∞∑
n=1

1
λ2

n

(
f 2
0 ∥ū0(t, x) − ū(k)(t, x)∥2H(QT) + p2

0∥ϑ̄0(t, x) − ϑ̄(k)(t, x)∥2H(γT)

)
→ 0, k→∞, q = 1, 2, 3, ....

3) Finite-dimensional approximations of the optimal process and their convergence

Definition 3.7. The functions defined by the following formulas

Vq
k,r(t, x) =

r∑
n=1

(
λ

∫ T

0
Rq

n(t, x, λ)a(k)
n (s)ds + a(k)

n (t)
)

zn(x), (18)

are called q, k, l-th approximations, or finite-dimensional approximations of the optimal process.

Lemma 3.8. Under the conditions of the boundary value problem (2)-(4), the finite-dimensional approximations of
the optimal process converge to the corresponding intermediate approximations Vq

k(t, x) as r → ∞, for any fixed
q, k = 1, 2, 3, ..., in the norm of the space H(QT).

Proof. The assertion of the lemma follows directly from the relation

∥V(q)
k (t, x) − V(q)

k,r (t, x)∥2H(QT)

≤ 6T

1 +
λ2T2K0(

λ1 − |λ|
√

K0T2
)2


 ∞∑

n=1

ψ2
1n +

1
λ1

∞∑
n=1

ψ2
2n +

∞∑
n=r+1

∫ T

0

(∫
Q

f [τ, x, ū(k)(t, x)]zndx
)2

dτ

+

∞∑
n=r+1

∫ T

0

(∫
γ

p[τ, x, ϑ̄k(t, x)]zndx
)2

dτ

→ 0, r→∞, q, k = 1, 2, 3, ....

and this holds due to the convergence of the remainder terms of the corresponding convergent series for
each fixed q, k.

4) Convergence of finite-dimensional approximations to the optimal process

Theorem 3.9. Let the following conditions be satisfied:

1. The functions of the external and boundary effects satisfy the Lipschitz condition on the functional variables (on
the controls)

∥ f [η, ξ, û(η, ξ)] − f [η, ξ, ũ(η, ξ)]∥2H(QT) ≤ f 2
0 ∥û(η, ξ) − ũ(η, ξ)∥2H(QT), f 2

0 = const,

∥p[η, ξ, ϑ̂(η, ξ)] − p[η, ξ, ϑ̃(η, ξ)]∥2H(QT) ≤ p2
0∥ϑ̂(η, ξ) − ϑ̃(η, ξ)∥2H(QT), p2

0 = const.

2. Intermediate vector functions φ̄[t, x, θ1(t, x), α], x ∈ Q, and ῡ[t, x, θ2(t, x), β], x ∈ γ, satisfy the Lipschitz
condition for functional variables:

∥φ̄[t, x, θ̂1(t, x), α] − φ̄[t, x, θ̃1(t, x), α]∥H(QT) ≤ φ0(α)∥θ̂1(t, x) − θ̃1(t, x)∥H(QT), φ0(α) > 0,

∥ῡ[t, x, θ̂2(t, x), β] − ῡ[t, x, θ̃2(t, x), β]∥H(QT) ≤ υ0(β)∥θ̂2(t, x) − θ̃2(t, x)∥H(QT), υ0(β) > 0.
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3. With respect to the parameters of the nonlinear optimization problem (1)-(4), the inequality holds

C(α, β) = 4T2

1 +
λ2K0T2(

λ1 − |λ|
√

K0T2
)2

 √
f 2
0φ

2
0(α)r2 + p2

0υ
2
0(β)m2

√√
∞∑

n=1

1
λ2

n
< 1.

Then the finite-dimensional approximations V(q)
k,l (t, x) of the optimal process under the conditions of tracking

problem (1)-(4) converge to the optimal process V0(t, x) for q, k, l→∞ in the space norm H(QT).

Proof. Based on Lemmas 1-4, the assertion of the theorem follows from the relation:

∥V0(t, x) − V(q)
k,l (t, x)∥H(QT) ≤ ∥V0(t, x) − V(q)(t, x)∥H(QT) + ∥V(q)(t, x) − V(q)

k (t, x)∥H(QT)

+ ∥V(q)
k (t, x) − V(q)

k,l (t, x)∥H(QT) → 0, q, k, l→∞.

3.3. Approximations of the minimum value of the functional and their convergence
The minimum value of the functional (1) in accordance with the approximations of the optimal process

has three different types of approximations: resolvent approximations of the minimum value of the func-
tional, q, k-th approximations of the minimum value of functional, finite-dimensional approximations of
the minimum value of the functional.

1) Resolvent approximations of the minimum value of the functional and their convergence
q-th resolvent approximations of the minimum value of the functional, taking into account the resolvent

approximations of the optimal process, are calculated by the formulas

J(q)[ū0(t, x), ϑ̄0(t, x)] =
∫ T

0

∫
Q

[
V(q)(t, x) − ξ(t, x)

]2
dxdt

+

∫ T

0

[
α

∫
Q

h(t, x, ū0(t, x)) dx + β
∫
γ

b(t, x, ϑ̄0(t, x)) dx
]

dt.
(19)

Lemma 3.10. Under the conditions of the nonlinear optimization problem (1)-(4), the resolvent approximations
J(q)[ū0(t, x), ϑ̄0(t, x)] of the minimal value of the functional converge to the exact minimal value J[ū0(t, x), ϑ̄0(t, x)] for
q→∞ in the norm of real numbers space R.

Proof. The assertion follows directly from the inequality:

∣∣∣J[ū0(t, x), ϑ̄0(t, x)] − J(q)[ū0(t, x), ϑ̄0(t, x)]
∣∣∣ ≤ ∣∣∣∣∣∣

∫ T

0

∫
Q

[
V0(t, x) − ξ(t, x)

]2
dxdt −

∫ T

0

∫
Q

[Vq(t, x) − ξ(t, x)]2 dxdt

∣∣∣∣∣∣
≤

∥∥∥V0(t, x) − Vq(t, x) − 2ξ(t, x)
∥∥∥

H(QT)

∥∥∥V0(t, x) − Vq(t, x)
∥∥∥

H(QT)

→ 0, q→∞.

2) q, k-th approximations of the minimal value of the functional and their convergence
q, k-th approximations of the minimal value of the functional are determined by following formulas:

J(q)
k [ū(k)(t, x), ϑ̄(k)(t, x)] =

∫ T

0

∫
Q

[
V(q)

k (t, x) − ξ(t, x)
]2

dxdt

+

∫ T

0

[
α

∫
Q

h(t, x, ū(k)(t, x))dx + β
∫
γ

b(t, x, ϑ̄(k)(t, x)) dx
]

dt,

α, β > 0.

(20)
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Lemma 3.11. Under the conditions of the nonlinear optimization problem (1)-(4), the q, k-th approximations
J(q)
k [ū(k)(t, x), ϑ̄(k)(t, x)] of the minimal value of the functional converge to the q-th approximations J(q)[ū0(t, x), ϑ̄0(t, x)]

for k→∞ for all fixed q = 1, 2, 3, . . ., in the norm of real numbers space R.

Proof. The assertion follows from the relation:∣∣∣∣J(q)[ū0(t, x), ϑ̄0(t, x)] − J(q)
k [ū0(t, x), ϑ̄0(t, x)]

∣∣∣∣ ≤
≤

∥∥∥∥V(q)(t, x) − V(q)
k (t, x) − 2ξ(t, x)

∥∥∥∥
H(QT)

∥∥∥Vq
k(t, x) − Vq(t, x)

∥∥∥
H(QT)

+ αh0

∥∥∥ū0(t, x) − ūk(t, x)
∥∥∥

H(QT)
+ βb0

∥∥∥ϑ̄0(t, x) − ϑ̄k(t, x)
∥∥∥

H(γT)

→ 0, k→∞.

3) Convergence of finite-dimensional approximations of the minimal value of the functional
According to formulas (19) and (24), finite-dimensional approximations of the minimal value of the

functional are calculated using following formulas:

J(q)
k,r [ū(k)(t, x), ϑ̄(k)(t, x)] =

∫ T

0

∫
Q

[
V(q)

k,r (t, x) − ξ(t, x)
]2

dxdt

+

∫ T

0

[
α

∫
Q

h(t, x, ū(k)(t, x))dx + β
∫
γ

b(t, x, ϑ̄(k)(t, x)) dx
]

dt,

α, β > 0.

(21)

Lemma 3.12. Under the conditions of tracking problem (1)-(4), finite-dimensional approximations J(q)
k,r [ū(k)(t, x), ϑ̄(k)(t, x)]

of the minimal value of the functional converge to the corresponding q, k-th approximations J(q)
k [ū(k)(t, x), ϑ̄(k)(t, x)] for

r→∞ for all fixed q, k = 1, 2, 3, . . ., in the norm of numerical space R of real numbers.

Proof. According to formulas (66) and (67), we obtain:∣∣∣∣J(q)
k

[
ū0(t, x), ϑ̄0(t, x)

]
− J(q)

k,r [ū0(t, x), ϑ̄0(t, x)]
∣∣∣∣ ≤

≤

∥∥∥∥V(q)
k (t, x) − V(q)

k,r (t, x) − 2ξ(t, x)
∥∥∥∥

H(QT)

∥∥∥∥Vq
k(t, x) − Vq

k,r(t, x)
∥∥∥∥

H(QT)

→ 0, r→∞, q, k = 1, 2, 3, . . . ,

which confirms the validity of the lemma.

Theorem 3.13. Let the conditions of Theorem 1 be satisfied. Then finite-dimensional approximations J(q)
k,r [ū(k)(t, x),

ϑ̄(k)(t, x)] of the minimal value of the functional under the conditions of tracking problem (1)-(4) converge to the
minimal value J[ū(0)(t, x), ϑ̄(0)(t, x)] of functional for q, k, r→∞ in the norm of numerical space R of real numbers.

Proof. Based on Lemmas 8-10, the assertion follows from:∣∣∣∣J [ū0(t, x), ϑ̄0(t, x)
]
− J(q)

k,r [ū0(t, x), ϑ̄0(t, x)]
∣∣∣∣ ≤

≤

∣∣∣∣J [ū0(t, x), ϑ̄0(t, x)
]
− J(q)

[
ū0(t, x), ϑ̄0(t, x)

]∣∣∣∣+
+

∣∣∣∣J(q)[ū0(t, x), ϑ̄0(t, x)] − J(q)
k [ū0(t, x), ϑ̄0(t, x)]

∣∣∣∣+
+

∣∣∣∣J(q)
k [ū0(t, x), ϑ̄0(t, x)] − J(q)

k,r [ū0(t, x), ϑ̄0(t, x)]
∣∣∣∣

→ 0, q, k, r→∞.
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4. Conclusion

In this paper, we have investigated the convergence of various types of approximations for the tracking
problem in nonlinear optimization of oscillatory processes described by integro-differential equations with
a Fredholm integral operator. The main results can be summarized as follows:

1. We established sufficient conditions for the convergence of approximations of vector optimal controls
(distributed and boundary) to their exact values in the corresponding Hilbert spaces.

2. Three types of approximations for the optimal process were analyzed: - Resolvent approximations
based on the kernel of the integral operator - Approximations with respect to optimal controls - Finite-
dimensional approximations

3. Corresponding approximations for the minimal value of the functional were studied and their
convergence was proved.

4. The key technical tools included: - Method of successive approximations - Estimates in Sobolev and
Hilbert spaces - Analysis of resolvent convergence

The results obtained can be applied to various problems of optimal control for distributed parameter
systems with integral terms in the dynamics. Future research directions may include: - Extension to
stochastic systems - Consideration of more general nonlinearities - Development of numerical algorithms
based on the proposed approximations - Applications to specific physical systems described by integro-
differential equations
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