
Filomat 40:4 (2026), 1411–1422
https://doi.org/10.2298/FIL2604411K

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Abstract. This paper explores new identities and relations for degenerate hyperharmonic numbers and
degenerate hyperharmonic polynomials, which are respectively a degenerate version of hyperharmonic
numbers and a polynomial extension of the degenerate hyperharmonic numbers. Key results include ex-
pressing degenerate hyperharmonic numbers and polynomials in terms of finite sums involving unsigned
degenerate Stirling numbers of the first kind, degenerate Bernoulli polynomials, and other related num-
bers. We also derive a recurrence relation for the degenerate hyperharmonic numbers and a closed-form
expression for an alternating sum involving degenerate harmonic numbers.

1. Introduction

The field of degenerate special numbers and polynomials, initially established by Carlitz’s foundational
work on degenerate Bernoulli and Euler polynomials (see [4]), has experienced a significant revival in recent
years (see [9, 11, 12, 14–22, 27]). This renewed interest has led to the exploration of several new structures,
notably the expansion of this inquiry to include transcendental functions, culminating in the development
of the degenerate gamma function (see [18]). Paper [26] investigates the degenerate gamma function by
using the complex delta function to establish a novel series representation. It also solves the relevant
fractional kinetic equation and derives new fractional transform equations through a novel representation.
This paper contributes to this line of research by presenting several new results concerning degenerate
hyperharmonic numbers, degenerate hyperharmonic polynomials, and related identities.

This paper is structured as follows: Section 1 reviews the essential concepts and notations relevant to
this study. We recall the definitions and properties of the degenerate exponentials, degenerate logarithms,
and degenerate Bernoulli polynomials βn,λ(x). We then introduce the degenerate Stirling numbers of the
first kind, unsigned degenerate Stirling numbers of the first kind

[n
k
]
λ
, and degenerate Stirling numbers of

the second kind
{n

k
}
λ
. The section continues by recalling the harmonic numbers, hyperharmonic numbers,

degenerate harmonic numbers Hn,λ, and degenerate hyperharmonic numbers H(r)
n,λ. Finally, we state the

binomial inversion relation.
Section 2 contains the principal results of this paper. We begin by recalling the generalized degenerate

harmonic numbers Hλ(n, r), a generalization of the degenerate harmonic numbers. Theorems in this section
establish various identities and relations:
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• Theorem 2.1 expresses H(r+1)
n+1,λ as a finite sum involving Hλ(n + 1, k).

• Theorem 2.2 derives an expression for the generating function
∑
∞

n=k−1
[n+1

k
]
λ

xn

n! .
Before proceeding, we introduce the degenerate hyperharmonic polynomials H(r)

n,λ(x).

• Theorem 2.3 shows that H(r)
n,λ(x) can be represented as a finite sum involving H(r)

k,λ and the falling factorial
(x)n−k.
• Theorem 2.4 provides an identity for H(r+1)

n+1,λ(λ) as a finite sum involving
[n+2

k+2
]
λ
.

• Theorem 2.5 derives a closed-form for the alternating sum
∑n

k=1(−1)k−1(n
k
)
Hk,λ.

• Theorem 2.6 expresses H(r+1)
n+1,λ as a finite sum involving Hk+1,λ.

• Theorem 2.7 proves the identity H(r+1)
n+1,λ = H(r+2)

n+1,λ −H(r+2)
n,λ , (n ≥ 1).

• Theorem 2.8 indicates H(1)
n+1,λ(x + λ) as a finite sum involving

[n+1
k+1

]
λ

and βk,λ(x).
• Theorem 2.9 finds an expression for the generating function

∑
∞

n=k−1
{n+1

k
}
λ

tn

n! .
• Theorem 2.10 shows that βn,λ(−r − λ) is a finite sum involving

{n+1
k+1

}
λ

and H(r+1)
k+1,λ.

• Theorem 2.11 and Theorem 2.12 find expressions respectively for H(1)
n,λ(x) and H(1)

n+1,λ(x).
As general references of this paper, we let the reader refer to [1, 6–8]. For the rest of this section, we recall
the facts that are needed throughout this paper.

For any nonzero λ ∈ R, the degenerate exponentials are defined by (see [10, 18, 26])

ex
λ(t) =

∞∑
n=0

(x)n,λ
tn

n!
, eλ(t) = e1

λ(t), (1)

where

(x)0,λ = 1, (x)n,λ = x(x − λ)(x − 2λ)
(
x − (n − 1)λ

)
, (n ≥ 1).

Note that lim
λ→0

ex
λ(t) = ext.

As the inverse relation of eλ(t), the degenerate logarithm is given by logλ(t) =
1
λ (tλ − 1). Then we note

that (see [9, 11, 15, 16, 19, 20, 27])

logλ(1 + t) =
∞∑

n=1

λn−1(1)n,1/λ
tn

n!
=

∞∑
n=1

(
λ − 1
n − 1

)
tn

n
, (2)

where
(x

n
)

denotes the binomial coefficient given by(
x
0

)
= 1,

(
x
n

)
=

x(x − 1) · · · (x − n + 1)
n!

, (n ≥ 1).

Note that lim
λ→0

logλ(1 + t) = log(1 + t).

It is well known that the degenerate Bernoulli polynomials are defined by Carlitz as (see [4])

t
eλ(t) − 1

ex
λ(t) =

∞∑
n=0

βn,λ(x)
tn

n!
. (3)

When x = 0, βn,λ = βn,λ(0), (n ≥ 0) are called the degenerate Bernoulli numbers.
Note that lim

λ→0
βn,λ(x) = Bn(x), (n ≥ 0), where Bn(x) are the ordinary Bernoulli polynomials given by (see

[6])

t
et − 1

ext =

∞∑
n=0

Bn(x)
tn

n!
.
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From (3), we note that (see [4])

βn,λ(x) =
n∑

k=0

(
n
k

)
βk,λ(x)n−k,λ, (n ≥ 0).

The degenerate Stirling numbers of the first kind S1,λ(n, k) are defined by (see [9, 11, 16, 19–21, 27])

(x)n =

n∑
k=0

S1,λ(n, k)(x)k,λ, (n ≥ 0), (4)

where

(x)0 = 1, (x)n = x(x − 1)(x − 2) · · · (x − n + 1), (n ≥ 1).

The unsigned degenerate Stirling numbers of the first kind are defined by
[n

k
]
λ
= (−1)n−kS1,λ(n, k), (n, k ≥ 0).

From (2), we note that

1
k!

logk
−λ

( 1
1 − t

)
=

1
k!

(
− logλ(1 − t)

)k
=

∞∑
n=k

[
n
k

]
λ

tn

n!
, (5)

where k is a nonnegative integer (see [11, 19, 20, 27]).
As the inversion relation of (4), the degenerate Stirling numbers of the second kind

{n
k
}
λ

are defined by

(x)n,λ =

n∑
k=0

{
n
k

}
λ

(x)k, (n ≥ 0). (6)

Thus, by (6), we get (see [11, 16, 19, 20, 27])

1
k!

(eλ(t) − 1)k =

∞∑
n=k

{
n
k

}
λ

tn

n!
, (k ≥ 0). (7)

Note that (see [6])

lim
λ→0

[
n
k

]
λ

=

[
n
k

]
, lim

λ→0

{
n
k

}
λ

=

{
n
k

}
,

where

1
k!

logk
( 1

1 − t

)
=

∞∑
n=k

[
n
k

]
tn

n!
,

1
k!

(
et
− 1

)k
=

∞∑
n=k

{
n
k

}
tn

n!
, (k ≥ 0). (8)

The harmonic numbers are defined by

H0 = 0, Hn = 1 +
1
2
+

1
3
+ · · · +

1
n
, (n ∈N). (9)

Thus, by (9), we get (see [3, 5, 13, 23, 24])

1
1 − t

log
( 1

1 − t

)
=

∞∑
n=1

Hntn.

Recently, Kim–Kim introduced the degenerate harmonic numbers given by (see [19])

H0,λ = 0, Hn,λ =
1
λ

n∑
k=1

(
λ
k

)
(−1)k−1 =

n∑
k=1

(
λ − 1
k − 1

)
(−1)k−1

k
, (10)
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where n is a positive integer. Note that

lim
λ→0

Hn,λ = Hn, (n ≥ 0).

From (10), we note that (see [9, 11, 15, 16, 21, 27])

1
1 − t

log
−λ

( 1
1 − t

)
=

∞∑
n=1

Hn,λtn, H0,λ = 0. (11)

In 1996, Conway and Guy introduced hyperharmonic numbers H(r)
n , (n, r ≥ 0), which are given by

H(r)
0 = 0, (r ≥ 0), H(0)

n =
1
n
, (n ≥ 1), H(r)

n =

n∑
k=1

H(r−1)
k , (n, r ≥ 1). (12)

Thus, by (12), we get (see [2, 7, 13])

1
(1 − t)r log

( 1
1 − t

)
=

∞∑
n=1

H(r)
n tn. (13)

Recently, Kim-Kim introduced the degenerate hyperharmonic numbers as (see [20])

H(r)
0,λ = 0, (r ≥ 0), H(0)

n,λ =
λn−1

n!
(−1)n−1(1)n,1/λ =

1
λ

(
λ
n

)
(−1)n−1, (n ≥ 1), (14)

and

H(r)
n,λ =

n∑
k=1

H(r−1)
k,λ , (n, r ≥ 1). (15)

From (14), we note that (see [9, 11, 16, 21, 27])

1
(1 − t)r log

−λ

( 1
1 − t

)
=

1
(1 − t)r

(
− logλ(1 − t)

)
=

∞∑
n=1

H(r)
n,λt

n. (16)

We recall the following binomial inversion relation (see [25]):

an =

n∑
k=1

(
n
k

)
(−1)k−1bk ⇐⇒ bn =

n∑
k=1

(
n
k

)
(−1)k−1ak. (17)

The following formulas will be used in several proofs:

(1 − t)−r =

∞∑
l=0

(
r + l − 1

r − 1

)
tl, (18)

logλ

( 1
1 − x

)
=

∞∑
n=1

(
λ + n − 1

n − 1

)
xn

n
, (19)

d
dt

eλ(t) = e1−λ
λ (t),

d
dt

logλ(t) = tλ−1. (20)
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2. Degenerate hyperharmonic polynomials and numbers

The generalized degenerate harmonic numbers are given by

1
1 − x

logr+1
−λ

( 1
1 − x

)
=

∞∑
n=r+1

Hλ(n, r)xn. (21)

We observe, by using (1), that the left hand side of (21) is equal to

∞∑
m=0

xm
∞∑

l0=1

(−1)l0−1

(
λ − 1
l0 − 1

)
xl0

l0

∞∑
l1=1

(−1)l1−1

(
λ − 1
l1 − 1

)
xl1

l1
· · ·

∞∑
lr=1

(−1)lr−1

(
λ − 1
lr − 1

)
xlr

lr
(22)

=

∞∑
n=r+1

n∑
l0+···+lr=r+1

(−1)l0−1(λ−1
l0−1

)
(−1)l1−1(λ−1

l1−1
)
· · · (−1)lr−1(λ−1

lr−1
)

l0l1l2 · · · lr
xn.

Thus, by (21) and (22), we get

Hλ(n, r) =
∑

r+1≤l0+···+lr≤n

(−1)l0−1(λ−1
l0−1

)
(−1)l1−1(λ−1

l1−1
)
· · · (−1)lr−1(λ−1

lr−1
)

l0l1l2 · · · lr
,

where n, r are integers with r ≥ 0, n ≥ r+1, and the sum runs over all positive integers l0, l1, . . . , lr, satisfying
r + 1 ≤ l0 + · · · + lr ≤ n.

The degenerate rising factorial sequence is given by

⟨x⟩0,λ = 1, ⟨x⟩n,λ = x(x + λ)(x + 2λ) · · ·
(
x + (n − 1)λ

)
, (n ≥ 1). (23)

From (21) and (23), we note that

∞∑
n=0

H(r+1)
n+1,λx

n (16)
=

log
−λ

(
1

1−x

)
x(1 − x)r+1 =

log
−λ

(
1

1−x

)
x(1 − x)

e−r
λ

(
logλ(1 − x)

)
(24)

(1)
=

log
−λ

(
1

1−x

)
x(1 − x)

∞∑
k=0

(−r)k,λ
1
k!

logk
λ(1 − x)

(5)
=

log
−λ

(
1

1−x

)
x(1 − x)

∞∑
k=0

⟨r⟩k,λ
k!

logk
−λ

( 1
1 − x

)
=

1
x

∞∑
k=0

⟨r⟩k,λ
k!

1
1 − x

logk+1
−λ

( 1
1 − x

)
=

1
x

∞∑
k=0

⟨r⟩k,λ
k!

∞∑
n=k+1

Hλ(n, k)xn

=

∞∑
k=0

⟨r⟩k,λ
k!

∞∑
n=k

Hλ(n + 1, k)xn

=

∞∑
n=0

n∑
k=0

⟨r⟩k,λ
k!

Hλ(n + 1, k)xn,

where r is a nonnegative integer.
Therefore, by (24), we obtain the following theorem.
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Theorem 2.1. For n, r ≥ 0, we have

H(r+1)
n+1,λ =

n∑
k=0

⟨r⟩k,λ
k!

Hλ(n + 1, k).

We note that

∞∑
n=k−1

[
n + 1

k

]
λ

xn

n!
=

∞∑
n=k

[
n
k

]
λ

xn−1

(n − 1)!
=

d
dx

∞∑
n=k

[
n
k

]
λ

xn

n!
(25)

(5)
=

d
dx

1
k!

logk
−λ

( 1
1 − x

)
(20)
=

1
(k − 1)!

(1 − x)λ

1 − x
logk−1
−λ

( 1
1 − x

)
.

Therefore, by (25), we obtain the following theorem.

Theorem 2.2. For k ∈N, we have

1
(k − 1)!

(1 − x)λ

1 − x
logk−1
−λ

( 1
1 − x

)
=

∞∑
n=k−1

[
n + 1

k

]
λ

xn

n!
. (26)

In view of (16), we define the degenerate hyperharmonic polynomials by

log
−λ

(
1

1−t

)
(1 − t)r (1 − t)x =

∞∑
n=1

H(r)
n,λ(x)tn, (r ≥ 0). (27)

When x = 0, H(r)
n,λ(0) = H(r)

n,λ, (n ≥ 1).

Thus, by (27), we get

H(r)
n,λ(x) =

n∑
k=1

H(r)
k,λ

(x)n−k

(n − k)!
(−1)n−k, (n ≥ 1), H(r)

0,λ(x) = 0. (28)

Therefore, by (28), we obtain the following theorem.

Theorem 2.3. For n ∈N and r ≥ 0, we have

H(r)
n,λ(x) =

n∑
k=1

H(r)
k,λ

(x)n−k

(n − k)!
(−1)n−k, H(r)

0,λ(x) = 0.
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From (26) and (27), we have

∞∑
n=0

H(r+1)
n+1,λ(λ)xn =

log
−λ

(
1

1−x

)
x(1 − x)r+1 (1 − x)λ =

(1 − x)λ log
−λ

(
1

1−x

)
x(1 − x)

e−r
λ

(
logλ(1 − x)

)
(29)

(1)
=

(1 − x)λ

x(1 − x)

∞∑
k=0

⟨r⟩k,λ
logk+1
−λ

(
1

1−x

)
k!

=
1
x

∞∑
k=0

⟨r⟩k,λ(k + 1)
logk+1
−λ

(
1

1−x

)
(k + 1)!

(1 − x)λ

1 − x

=
1
x

∞∑
k=0

⟨r⟩k,λ(k + 1)
∞∑

n=k+1

[
n + 1
k + 2

]
λ

xn

n!

=

∞∑
k=0

⟨r⟩k,λ(k + 1)
∞∑

n=k

[
n + 2
k + 2

]
λ

xn

(n + 1)!

=

∞∑
n=0

1
(n + 1)!

n∑
k=0

⟨r⟩k,λ(k + 1)
[
n + 2
k + 2

]
λ

xn.

Therefore, by (29), we obtain the following theorem.

Theorem 2.4. For n, r ≥ 0, we have

H(r+1)
n+1,λ(λ) =

1
(n + 1)!

n∑
k=0

⟨r⟩k,λ(k + 1)
[
n + 2
k + 2

]
λ

. (30)

Letting λ→ 0 in (30), we obtain

H(r+1)
n+1 =

1
(n + 1)!

n∑
k=0

rk(k + 1)
[
n + 2
k + 2

]
.

Now, we observe that
∞∑

n=1

n∑
k=1

(
n
k

)
Hk,λ(−1)k−1xn =

∞∑
k=1

Hk,λ(−1)k−1
∞∑

n=k

(
n
k

)
xn (31)

=

∞∑
k=1

Hk,λ(−1)k−1xk
∞∑

n=0

(
n + k

k

)
xn

(18)
=

∞∑
k=1

Hk,λ(−1)k−1xk
( 1

1 − x

)k+1

= −
1

1 − x

∞∑
k=1

Hk,λ

(
−x

1 − x

)k

(11)
= −

1
1 − x

1
1 + x

1−x
log
−λ

( 1
1 + x

1−x

)
= − log

−λ(1 − x) = logλ

( 1
1 − x

)
(19)
=

∞∑
n=1

(
λ + n − 1

n − 1

)
xn

n
.

Therefore, by (31), we obtain the following theorem.
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Theorem 2.5. For n ∈N, we have

1
n

(
λ + n − 1

n − 1

)
=

n∑
k=1

(−1)k−1

(
n
k

)
Hk,λ.

Moreover, by inversion we also have (see (17))

Hn,λ =

n∑
k=1

(−1)k−1

(
n
k

)
1
k

(
λ + k − 1

k − 1

)
.

We note that

∞∑
n=0

H(r+1)
n+1,λx

n (16)
=

log
−λ

(
1

1−x

)
(1 − x)r+1x

=
1
x

(1 − x)−r 1
1 − x

log
−λ

( 1
1 − x

)
(32)

(18)
=

1
x

∞∑
l=0

(
r + l − 1

r − 1

)
xl
∞∑

k=1

Hk,λxk

=
1
x

∞∑
n=1

n∑
k=1

(
r + n − k − 1

r − 1

)
Hk,λxn

=

∞∑
n=0

n+1∑
k=1

(
r + n − k

r − 1

)
Hk,λxn

=

∞∑
n=0

n∑
k=0

(
r + n − k − 1

r − 1

)
Hk+1,λxn.

Therefore, by (32), we obtain the following theorem.

Theorem 2.6. For n, r ≥ 0, we have

H(r+1)
n+1,λ =

n∑
k=0

(
n − k + r − 1

r − 1

)
Hk+1,λ.

Noting that H(r+2)
1,λ = H(r+1)

1,λ (see (15)), we have

∞∑
n=0

H(r+1)
n+1,λx

n (16)
=

log
−λ

(
1

1−x

)
x(1 − x)r+1 =

log
−λ

(
1

1−x

)
x(1 − x)r+2 −

x log
−λ

(
1

1−x

)
x(1 − x)r+2 (33)

(16)
=

∞∑
n=0

H(r+2)
n+1,λx

n
− x

∞∑
n=0

H(r+2)
n+1,λx

n

= H(r+2)
1,λ +

∞∑
n=1

(
H(r+2)

n+1,λ −H(r+2)
n,λ

)
xn.

Therefore, by (33), we obtain the following theorem.

Theorem 2.7. For n ∈N, we have

H(r+1)
n+1,λ = H(r+2)

n+1,λ −H(r+2)
n,λ .
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From (26) and (27), we have

∞∑
n=0

n∑
k=0

(−1)k

n!

[
n + 1
k + 1

]
λ

βk,λ(x)tn =

∞∑
k=0

(−1)kβk,λ(x)
∞∑

n=k

1
n!

[
n + 1
k + 1

]
λ

tn (34)

=

∞∑
k=0

(−1)kβk,λ(x)
1
k!

(1 − t)λ

1 − t
logk
−λ

( 1
1 − t

)
(5)
=

∞∑
k=0

βk,λ(x)
(1 − t)λ

1 − t
1
k!

logk
λ(1 − t)

=
(1 − t)λ

1 − t

∞∑
k=0

βk,λ(x)
logk
λ(1 − t)
k!

(3)
=

(1 − t)λ

1 − t
logλ(1 − t)

eλ
(

logλ(1 − t)
)
− 1

ex
λ

(
logλ(1 − t)

)
=

(1 − t)λ

1 − t
logλ(1 − t)
1 − t − 1

(1 − t)x =
log
−λ

(
1

1−t

)
t(1 − t)

(1 − t)λ+x

=
1
t

∞∑
n=1

H(1)
n,λ(λ + x)tn =

∞∑
n=0

H(1)
n+1,λ(x + λ)tn.

Therefore, by (34), we obtain the following theorem.

Theorem 2.8. For n ≥ 0, we have

1
n!

n∑
k=0

(−1)k
[
n + 1
k + 1

]
λ

βk,λ(x) = H(1)
n+1,λ(x + λ).

We note that

∞∑
n=k−1

{
n + 1

k

}
λ

tn

n!
=

∞∑
n=k

{
n
k

}
λ

tn−1

(n − 1)!
=

d
dt

∞∑
n=k

{
n
k

}
λ

tn

n!
(35)

(7)
=

1
k!

d
dt

(
eλ(t) − 1

)k (20)
=

1
(k − 1)!

(
eλ(t) − 1

)k−1
e1−λ
λ (t), (k ∈N).

Therefore, by (35), we obtain the following theorem.

Theorem 2.9. For k ≥ 1, we have

1
(k − 1)!

(
eλ(t) − 1

)k−1
e1−λ
λ (t) =

∞∑
n=k−1

{
n + 1

k

}
λ

tn

n!
. (36)

Letting λ→ 0 in (36) and using (8), we get the following recurrence relation for the Stirling numbers of
the second kind:{

n + 1
k

}
=

{
n

k − 1

}
+ k

{
n
k

}
, (n ≥ k).
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From (36), we have
∞∑

n=0

n∑
k=0

(−1)kk!
{

n + 1
k + 1

}
λ

H(r+1)
k+1,λ

tn

n!
=

∞∑
k=0

(−1)kk!H(r+1)
k+1,λ

∞∑
n=k

{
n + 1
k + 1

}
λ

tn

n!
(37)

=

∞∑
k=0

(−1)kk!H(r+1)
k+1,λ

1
k!

(
eλ(t) − 1

)k
e1−λ
λ (t)

= e1−λ
λ (t)

∞∑
k=0

H(r+1)
k+1,λ

(
1 − eλ(t)

)k

(16)
= e1−λ

λ (t)
− logλ

(
eλ(t)

)(
1 − eλ(t)

)
er+1
λ (t)

=
t

eλ(t) − 1
e−λ−r
λ (t)

(3)
=

∞∑
n=0

βn,λ(−r − λ)
tn

n!
.

Therefore, by (37), we obtain the following theorem.

Theorem 2.10. For n ≥ 0, we have

βn,λ(−r − λ) =
n∑

k=0

(−1)kk!
{

n + 1
k + 1

}
λ

H(r+1)
k+1,λ.

From (27), we note that

∞∑
n=1

H(1)
n,λ(x)tn =

log
−λ

(
1

1−t

)
1 − t

(1 − t)x (2),(18)
=

∞∑
k=1

(
λ − 1
k − 1

)
(−1)k−1

k
tk
∞∑

n=0

(
n − x

n

)
tn (38)

=

∞∑
k=1

(
λ − 1
k − 1

)
(−1)k−1

k

∞∑
n=k

(
n − x − k

n − k

)
tn

=

∞∑
n=1

n∑
k=1

(
λ − 1
k − 1

)
(−1)k−1

k

(
n − x − k

n − k

)
tn.

Therefore, by (38), we obtain the following theorem.

Theorem 2.11. For n ∈N, we have

H(1)
n,λ(x) =

n∑
k=1

(
λ − 1
k − 1

)
(−1)k−1

k

(
n − x − k

n − k

)
.

By (27), we get

∞∑
n=0

H(1)
n+1,λ(x)tn (16)

=
log
−λ

(
1

1−t

)
t(1 − t)

(1 − t)x =
1

1 − t

log
−λ

(
1

1−t

)
t(1 − t)

(1 − t)x+1 (39)

=

∞∑
k=0

H(1)
k+1,λ(x + 1)tk

∞∑
l=0

tl =

∞∑
n=0

n∑
k=0

H(1)
k+1,λ(x + 1)tn.

Therefore, by (39), we obtain the following theorem.

Theorem 2.12. For n ≥ 0, we have

H(1)
n+1,λ(x) =

n∑
k=0

H(1)
k+1,λ(x + 1).
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3. Conclusion

In this paper, we successfully investigated new properties and relationships for degenerate hyperhar-
monic numbers H(r)

n,λ and degenerate hyperharmonic polynomials H(r)
n,λ(x), significantly contributing to the

evolving field of degenerate special numbers and polynomials. Our primary findings established novel
identities, notably expressing these numbers and polynomials as finite sums involving unsigned degenerate
Stirling numbers of the first kind, degenerate Bernoulli polynomials and other related numbers. We also
derived a useful recurrence relation for H(r)

n,λ and provided a closed-form expression for an alternating sum
of degenerate harmonic numbers. These findings contribute to the expanding field of degenerate special
numbers and their applications.

We would like to continue to explore degenerate versions of many special numbers and polynomials
(see [9, 11, 12, 14–22, 27]), and find their applications to science, physics, engineering and mathematics (see
[26]).
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