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Completely J-positive (bi-)linear maps on Krein spaces and their Choi
J-matrices
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Abstract. In this paper, we consider completely J-positive linear maps and (p, g, )-J-positive bilinear maps
for p, g, € N in the Krein space setting. We investigate relations between completely J-positive (bi-)linear
maps and their Choi [-matrices. We prove that the dual cone of the set of completely J-positive linear
maps, under a bilinear J-pairing, coincides with itself. Several characterizations of various J-positivity of
bilinear maps are proved, including the one in terms of the J-positivity of the corresponding Choi [-matrices.
Finally, we introduce a notion of a partial J-positivity of bilinear maps to clarify the relationship between
J-positivity of bilinear maps and J-positivity of their linearization.

1. Introduction

The Krein space is an important generalization of Hilbert spaces where the inner product is not necessar-
ily positive definite. Krein spaces provide a natural framework for understanding mathematical problems
involving indefinite metrics, which arise in various areas of physics and engineering. For example, Krein
spaces are used in the study of differential equations, operator theory, and quantum field theory. Moreover,
Krein spaces have played an important role in the local formulation of gauge quantum field theories, where
locality and covariance of the gauge fields are incompatible with positivity of the inner product. Krein
space structure allows for deeper insights into the spectral properties of operators, stability of dynamical
systems, and the formulation of physical theories with indefinite energy or probability.

A Krein space K is a Hilbert space equipped with an indefinite inner product that can be decomposed
into a direct sum K = K. & K_of two Hilbert spaces, one with a positive definite inner product and
one with a negative definite inner product. In a Krein space, the fundamental symmetry is a self-adjoint,
unitary operator that connects the indefinite inner product of the Krein space with a positive definite
inner product, which we will denote by J. That is, the operator | = P, — P_ can be defined, where P,
are orthogonal projections onto K, so that the indefinite inner product have the connection as follows;
[-,-I; = {J,-). The symmetry symmetry | is central to the structure and analysis of Krein spaces, which
generalize Hilbert spaces by introducing an indefinite inner product. A classical example of a Krein space
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is the four dimensional spacetime used in special relativity where the indefinite inner product is given by

[(x0, x1, X2, %3), (Yo, Y1, Y2, Y3)]] = XoYo — X1Y1 — X2Y2 — X3Y3

and J = diag(1,-1,-1,-1).

In the Krein spaces framework, spectral theory, Fredhom theory and numerical ranges have been studied
in [1-3] and such a study is applicable for the investigation of the spectra of non-hermitian operators with
PT symmetry. When passing to Krein spaces, the adjoint of a matrix with respect to the indefinite metric
is defined through a J-metric and is used for the construction of states and quantum channels. A quantum
J-channel is a structure-preserving transformation compatible with indefinite metrics, extending the usual
framework of quantum information to Krein spaces and provides a general setting for the theory of quantum
information by means of tools arising from operators theory on Krein spaces. Felipe-Sosa and Felipe [6]
introduced the notions of J-states and quantum J-channels on matrix algebras and the author [9] established
the equivalence of Kraus J-decompositions and Choi J-matrices and discussed the entanglement breaking
condition of quantum J-channels.

We first consider completely J-positive linear maps and define (p, g, 7)-/-positive bilinear maps for
p,q,r € N in the Krein space setting. In section two, we review the Choi J-matrices associated with linear
maps and define a bilinear [-pairing of two linear maps using the corresponding Choi J-matrices. We
investigate relations between completely J-positive (bi-)linear maps and their Choi J-matrices. Using a
bilinear J-pairing of two linear maps, we observe that the dual cone of the set of completely J-positive
linear maps with respect to a bilinear J-pairing coincide with itself. This self-duality mirrors properties of
classical positive semidefinite cones and underscores the intrinsic symmetry in J-positivity frameworks.
We prove the equivalence of complete J-positivity of a linear map between matrix algebras and J-positivity
of Choi J-matrix associated to the matrix satisfying the Choi J-correspondence. In the third section, several
characterizations of various J-positivity of bilinear maps are proved, including the one in terms of the
J-positivity of the corresponding Choi J-matrices. Finally, we introduce a notion of a partial J-positivity
of bilinear maps to clarify the relationship between [-positivity of bilinear maps and J-positivity of their
linearization.

2. Completely J-positive linear maps and Choi J-matrices

Let K be a Hilbert space with a positive definite inner product (-, -) and | be a fundamental symmetry,
ie. ] =] =]'. Wedenoteby [,-]; = (J -,-) the indefinite inner product induced by J. We say that the pair
(K, ]) is a Krein space with an indefinite inner product [+, -];, or simply a Krein space. Let B(K) be the set
of bounded linear operators on K and K" (n > 2) be the direct sum of n-copies of a Hilbert space K. We
denote by (K", J") the Krein space with an indefinite inner product

Doyle = (" y) = Y i yd = Y[ yil)
i=1 i=1
where [" = diag(J,...,]) € Mu(B(K)) and x = (x1,...,%,), ¥y = (Y1,-..,Yyn) € K". Throughout this paper,
(%, Ji) (i = 1,2) denote Krein spaces with indefinite inner products [, -];,, unless specified otherwise
Let @ be a linear map from B(K;) into B(K;) and n > 2 be a positive integer. The n-fold amplification
of @ is the map ®" := id, ® ® : M,,(C) ® B(K1) — M,,(C) ® B(Kz), which is given by applying ® an element
by an element to each matrix over B(%K}), that is,

O([T;]) = [&(Tij)] for [Tij] € My (B(%71)).

For eachi = 1,2, we denote by B(T)* the set of all Ji-positive bounded linear operators T on a Krein space
%G, ie.,
0 <[Tx,x]j, :=(JiTx,x), forallx € K.

Definition 2.1. Let @ : B(%1) — B(K2) be a linear map.
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(i) @ is J-positive if D(B(K1)*) € B(K)*.
(ii) For each n > 2, @ is n-J-positive if
D" (M (B(K1)Y™) € Mu(B(K2))*
where M, (B(K;))* = B(‘Ki”)/ * is the set of all J-positive linear operators on the Krein space (K", JI').
(iii) @ is completely J-positive (or simply, |-CP) if ® is n-]-positive for all n € IN.
For a linear map @ : B(%) — B(K>), let ¥ : B(K:) — B(K>) be a linear map defined by
W(T) = ®(iT) for T € B(%q).
Then we have that, for each n € IN and (T}j) € M,,(8(%1))
WH((Tij) = (W(Tj) = (2©(1 Tiy) = LO"(J7(Ti)),

so that W"(-) = J;®"(J{ -). Thus, we observe that a linear map @ : B(K;) — B(K>) is completely positive if
and only if the map W : B(K;) — B(K) given by V() = [,D(J;+) is completely [-positive. In particular, if
Ki=F=Kand J; = = ] and if ®(JT) = JO(T) for all T € B(K), we see that @ is completely positive
if and only if it is completely J-positive. In [9], the author has proved a Stinespring type theorem for
completely J-positive linear maps as follows: if W : B(K;) — B(Ky) is completely J-positive, there exist a
Krein space (K, J), a *-representation 7 : B(K;) — B(K) and a bounded linear operator V : K; — K such
that
W(T) = V*n(T)V, (T e B(%K1)

where | = 1i(J;) and V# = [,V*]. If, in addition, W(J;) = J», then V is an isometry.

Remark 2.2. Kraus [10] proved that ¢ : M,,(C) — M,,(C) is completely positive if and only if

€
P(X) = Z VIXVi, X €M,(C) (1)
i=1

with m X n complex matrices V; € My, ,(C). This expression (1) is called a Kraus decomposition. Moreover, it is
known that the followings are equivalent:

(i) ¢ is completely positive.
(ii) ¢ has a Kraus decomposition (1).
(iii) the Choi matrix Cy is positive (semi-definite) where Cy is given by

m m

Co= Y e @ le) = (ida® qi))( Y e e,-]-) € M(C) ® M,,(C) )

i,j=1 ij=1
with the canonical matrix units {e;;} in M,,(C). O

In this section, we denote by Ms = M,,(C) (Mp = M,(C), respectively) the set of all m X m complex
matrices (the set of all n X n complex matrices, respectively), unless specified otherwise. We denote by J4
the fundamental symmetry in M4 which induces an indefinite inner product on K, = C”. Similarly, Jp
denotes the fundamental symmtry in Mp.

For an m X n complex matrix V, we denote

Vs = JpV*]a € My u(C).



J. Heo / Filomat 40:4 (2026), 1449-1462 1452

Let V3,...,Vy be in M, ,(C) and we consider an elementary map 1) : My — Mp of the form
3
P(X) = Z VXV, X eMa. 3)
i=1

Then such a map ¢ is completely J-positive. Conversely, any completely J-positive linea map from M, into
Mg is of the form (3) (see [9] for details). We say that the decomposition (3) is the Kraus [-decomposition of 1.

Definition 2.3. [9] Let ¢ : My — Mp be a linear map. We define C{P by

m m

C{P = Z eij ® Y(Jaeij) = (ida ® IP)( Z eij ® ]Aeij) € My ® Mp 4)

ij=1 ij=1
where {e;j :1,j = 1,...,m} is the set of canonical matrix units in Ma. The matrix C{# is called the Choi J-matrix of .

The author [9] have showed that a linear map 1) : My — Mp is completely [-positive if and only if the
Choi J-matrix C{P is In ® Jp-positive in M4 ® Mpg. We say that a linear map ¢ : My — Mg is a quantum
J-channel if ¢ is completely J-positive and trace preserving. Then a quantum J-channel ¢ : My — Mp maps
quantum J-states into quantum J-states [9]. Here, a quantum J-state p means that Jp is a quantum state

Paulsen and Shultz [12] considered the matrix

Cp = Z ai; ® P(a;) = (ida ® ¢)( Zm" ai; ® aij) € My ® Mg (5)

i,j=1 ij=1

which is replaced matrix units in (2) by a basis A = {a;;} of Ma. Let Cu (Cj, respectively) be the linear

map sending each matrix unit e;; to a; (zzl.T]., respectively) where T denotes the transpose). We define
Mgy :=Cy o CQTI € L(M,) where L(M,) is the set of all linear maps from M, into M,. For a given V € My, let
Ady : Mg — My be defined by

Ady(X) = V'XV.
They [12] proved that if My = Ady for some V € My, then ¢ : My — Mp is completely positive if and only
if Cg is a positive semi-definite matrix in M4 ® Mp.

More generally, Kye [11] has considered the question what happens when we replace the matrix }.; ; ;;®e;;
in (2) by another matrix & € M, ® My, to define

cg = (ida ® ¢)(E) € Ma ® Mp.

For example, if & = ), 4, @b € Ma®M,, then we have that Cg = Y ®¢(by). For the matrix By = Zi,j a;;®a;;

associated to some basis U = {a;;}, we have Cg = Ci‘".

Definition 2.4. [11] We say that a matrix & € My ® Mg satisfies the Choi correspondence when the complete
positivity of a linear map ¢ : My — Mp is equivalent to the positivity of the matrix Ci € Ma ® Mp.

Remark 2.5. Let ¢ : Mg — My be a linear map.

1. Definition 2.4 says that Cy, satisfies the Choi correspondence if and only if the complete positivity of p : Ca — Cp
implies the complete positivity of ¢ o 1 : C4 — Cp for all B.

2. Kye [11] proved that the Choi matrix Cy, € My ® Mg satisfies the Choi correspondence if and only if { is of the
form Ady for some nonsingular matrix V.€ M.
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We define a bilinear pairing on the matrix algebra M4 or Mg as

(a,b) := Tr(ab") = Zaijbij for a = (a;), b = (byj)
0

where bT denotes the transpose of b. Using their Choi matrices [4], the bilinear pairing of two linear maps
¢, ¢ : My — Mp is defined by

(@,9) = (C, Cy) = Tean(CoCh) = ) Tra(len)y(e)).
ij

For a linear map ¢ : M — Mg, its adjoint map ¢* : Mg — Mj is defined by
(a,¢*(b))a :== (¢(a),b)p foralla € My, b € Mp.

Then, it is clear that (¢, ) = (", 7).
We similarly define the bilinear |-pairing of two linear maps ¢, : My — Mp as follows;

@)y = (C}, C}) = Tras(CH(C))")
It is clear that we have the following identities;

L (@, 9)) = Ly Tra(@(aci)(Jaei)") for &, € L(Ma, My),
2. (¢,9)) = (o My, o M) for ¢,y € L(My, Mg),
3. ((Pz ] @1,1,[))] = ((pl,¢; o IP)] for ¢1 € L(MA,MB), (Pz S L(MB,Mc) and l,ll (S L(MA,Mc)

where M is the left multiplication map on My by J4.

Let K be a subset of L(M4, Mp) where L(Ma, Mp) is the set of all linear maps from M, into Mp. We denote
by K/ the J-dual cone of K which is the set of all linear maps ¢ € L(My, Lp) satisfying (¢, 1); > 0 forall ¢ € K.
Here the cone means that ¢ € K/ = A¢ € K/ forany A > 0 and ¢1, ¢ € Kl = ¢1 + ¢ € K. Tt is well
known that (K')/ is the smallest closed convex cone in L(M, Lp) containing the set K. In particular, if Kis a
closed and convex subset in L(My, Lg), then K = (K/)/.

Proposition 2.6. If 0 : Mg — Mg is a linear isomorphism and K C L(Ma, Mg) is a convex cone, then we have that
(0*oK)Y =07l oK wherec* o K={0"0o¢:p €K}.

Proof. We have that

Ye(@ oK) & (,0"0p); 20 forallp €K
& (0oyY,¢); 20 forallpeK

= vpeoltok.
This completes the proof. O

We denote by J-CP[M,4, Mg] the set of all completely J-positive linear maps from M, into Mp. It is clear
that the set [-CP[M4, Mg] is a closed convex cone in L(M_y, Lg).

Proposition 2.7. Assume that Jp is a fundamental symmetry in Mg such that g = ]| where J} is the transpose of
Js. Then J-CP[Ma, Mg] = J-CP[Ma, Mz}
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Proof. For any ¢, € J-CP[My, M5], we have that
(6,9) = () =Te (")
= Tr((14 ® J5)* - C}(C,)")

=Te((a @ ), - (4 ®T5)C)) ) 2 0

where the last inequality follows from the fact that (In ® | B)Cé) and (I ® ]B)C{/) are positive semi-definite.
This implies that J-CP[Ma, Mg] C J-CP[Ma, M.

Similarly, we see that J-CP[Ma, Mg) C (J-CP[Ma, Mp)') Since J-CP[M4, Mg] is a closed convex cone in
L(Ma, Lg), wehave that J-CP[Ms, Mg] = (J-CP[Ma, Mg]'), so that we get the reverse inclusion J-CP[M4, M) C
J-CP[Ma, M3]. O

In the remaining of this section, we discuss a variant of the Choi [-matrix as a variant of Choi matrix
was studied in [11]. Let % = {a;;} be a basis of M4 and ¢ : M4 — Mp be a linear map. We define a variant of
the Choi [-matrix of ¢ associated to 2 as follows:

CZH = Z a;ij ® ¢(Jaaij) = (ida ® @)( Z aij ® ]A”ij) € Ma®Msp. ©)
i,j=1 ij=1

Similarly, for a matrix E = )., ax ® by we define

ClF = (ida ® 9)[(a ® J4)E] = ; ax ® b(Jaby).
If By = ), ; aij ® a;; where {a;;} is a basis of My, then C{;:Z[ = CZAQE‘H‘ Let & = {e;j} be the canonical matrix units

in My, F = {fij} be another matrix units in M4 and w be the unitary matrix such that w'e;jw = f;; for all 7, j.
For a linear map ¢ : My — Mp, we have that

C =Y f@pUafi) = ), wew® p(law'esw)
i,j ij

= Adw®[( Z Eij ® qi) o M] o Adw(elj))
ij
= Aduwei(Cpomjord,)
Remark 2.8. Let ¢ : My — Mp be a linear map and k = min{m,n} € N. If ¢ : My — Mp is defined by
Y(-) = Jep(Ja-), then the followings are equivalent;
¢ is completely [-positive.
¢ is k-J-positive.
C{p = Copom; 18 L4 ® [p-positive.
Y is completely positive.
Y is k-positive.
Clp = CMIB"‘POM/A is positive.

ook w0

The following definition is an J-analogue of Definition 2.4 and it has some properties similar to the Choi
correspondence.

Definition 2.9. (cf. [11]) A matrix E € M ® M satisfies the Choi J-correspondence when the complete J-positivity
of a linear map ¢ : Ma — Mp is equivalent to the I ® Jp-positivity of the Choi [-matrix C{f of ¢ associated to E.
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We observe that & € M4 ® M, satisfies the Choi J-correspondence if the complete J-positivity of a linear
map ¢ : Mg — Mp is equivalent to the I4 ® [z-positivity of the Choi [-matrix Cé’f foranym > 1. If 2 = C{p
is the Choi J-matrix of a linear map 1) : Mgy — M, then we have that

Cr = (ids ® 9)[ (14 ® J4)C) |

= (ids©9)|(1a @ 0| Y, e @ v(lacy))
=)@ cp(IAwAe,'j))w

= Z]L 6 ® (¢ 0 My, o ¥)(Jaei)

- é];oM/Aow

where M, is the left multiplication map on M4 by J4. This observation gives the following proposition.

Proposition 2.10. For any linear map  : My — Ma, the Choi [-matrix C{P satisfies the Choi [-correspondence
if and only if the complete [-positivity of a linear map ¢ : Mo — Mp is equivalent to the complete [-positivity of
¢ oMj, oy foranym > 1.

3. Complete J-positivity of bilinear maps

In this section, we will denote unless specified otherwise. Let B(Ka) (B(Kp), B(Kc), resp.) be the
set of all bounded linear operators on the Krein space Ka (Kp, Kc, resp.). When J4 (Jp, resp.) is a
fundamental symmetry in B(K4) (B(K3z), resp.), let J4 ® Jp be a fundamental symmetry of B(Ks) ® B(K3).
Let i : B(Ka) X B(Kp) — B(Kc) be a bilinear map and ¢ : B(Ka) ® B(Kp) — B(Kc) be its linearization
given by Y(a ®b) := (a, b).

For any p,q € IN, we define a bilinear map 4 : Mp(B(Ka)) X My(B(Kp)) — My (B(Kc)) by

(], bl = [(@, ba)| € Myg(B(KC))

for [a;j] € My(B(Ka)), [bu] € My(B(Kp)). Moreover, the linearization of a bilinear map 1 is completely
positive if and only if the following statement

[a;5] € My(BK))*, [l € My(B(Kz))" = yq([if], [bul) € Miy(BKC)*

holds for every p,q = 1,2, .... This notion of (p, g)-fold amplification is different from the notion introduced
by Christensen and Sinclair [5] which is related to the definition of matrix multiplication.

In [7], Han and Kye introduced the (p, g, )-positivity of a bilinear map and classified tri-partite entan-
glement which include various kinds of bi-separability. A bilinear map ¢ : B(Ka) X B(Kp) — B(Kc) is
(p,q,r)-positive if for any [a;;] € M,(B(Ka))", [bu] € My(B(K3p))" and S € M, ,;, we have

S[w(ay, bu)|S* € MABKC))* ?)

where M, denotes the r X pg matrix algebra over C.

We denote by B(K4)'* the set of all J-positive elements in B(%4) and by ]Z := I, ® J4 the fundamental
symmetry in M,(B(K4)) where I, is the identity matrix in M,, which induces an indefinite inner product
on the Hilbert space C7 ® K. Let MP(B(WA))] * be the set of all J-positive elements in M,(B(K4)). If
[a,-]-]’f,].:1 € MP(B(?(A))]’r forp =1,2,..., thenwesee that ]Z [a;;] = [Jaaij]is positive semi-definite in M, (B(K4)).

In this section we introduce the analogue of (p, g, )-positivity in the Krein space setting.
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Definition 3.1. Let ¢ : B(Ka) X B(Kp) — B(Kc) be a bilinear map and let p,q,r € N.

1.  is J-positive if we have (a, b) € B(Kc)'* for any a € B(Ka)*™ and b € B(Kp)'*.
2. Y is (p,q,r)-]-positive if for any [aij] € My(B(Ka))*, [bi] € My(B(Kp))* and S € M, g, we have that

ST pa(lai), [b))S* = S[Jcw(@ij, bu)|S* € MAB(KC)* ®
where M, denotes the set of all r X pg complex matrices.
Remark 3.2. Let ¢ : B(K4) X B(Kp) — B(Kc) be a bilinear map. For simplicity, we assume that Ka, Kp and Kc
are all finite dimensional.
1. The (1,1, 1)-J-positivity of ¢ implies thej—positivity of Y.

2. If 1 is J-positive, then the linearization  is (J4 ® Jp, Jc)-positive.
3. The linearization of a bilinear map 1, , is defined by

Ppog([ai] ® (b)) 1= ([, [bial) = [(ai, b)),

S0 that 1’;,,@, is the map from M,(B(Ka)) ® My(B(K3)) into My, (B(Kc)) where

molnl, ~ aolul,

[llij]i,j ® [bkl]k,l = [aif ® [bkl]k,l]i,f -

ap ® [bkl]k,l o Ay ® [bkl]k,l

can be regarded as an element in Mpy(B(Ka) ® B(Kp)).
4. If a bilinear map 1y : My(B(Ka)) X My(B(Kp)) = Myy(B(Kc)) is J-positive, then the linearization Jp@,q is
(]Z ® ]q,]’éq)-positive linear.
5. We denote by i, the r-th amplification of U, so that the linear map {, : My(B(K4)) ©MA(B(Kz)) — MAB(Kc))
is given by 1?,([% ® bij]) = [1;5(01‘]‘ ® bij)]. After shuffling and identifying M,(B(Ka)) ® My(B(K3)) with
M,y (B(Ka) ® B(Kp)), we can see 1;5,,@,1 = Jpq.
Proposition 3.3. Let 1 : B(Ka) x B(Kp) — B(Kc) be a bilinear map. For any p,q € IN, the followings are
equivalent:

(i) For any [a;j] € My(B(Ka))* and [bu] € M,(B(Kp)B)'*, we have

Upq([ai], [bu]) € Myg(B(KC))™.

(ii)  is (p, q,7)-J-positive for eachr = 1,2, ...
(iii)  is (p, q,7)-]J-positive for some v > pq.
(iv) 1V is (p, q, pq)-J-positive.

Proof. (i) = (ii) Let [a;j] € M,(B(Ka)Y* and [by] € My(B(K5))*. By assumption, we have that
[ (@i, bu)| € Mu(BEK)* = [Jcw(ais, bi)| € Myy(BEKC))*,
which implies that S[]Cyb(aij, bkl)]S* € M,(B(Kc))" for all ¥ € N and any r X pg matrix S € M, ;.

(if) = (iii) is clear.
(iii) = (iv) For any [a;;] € Mp(B(Ka))'*, [bu] € My(B(Kp))* and S € M,,;, we observe that

(S[]c'#(aij/bkz)]S* OPW—M):( S )[]C 1/1(aij,bkz)] (S* Opq,r—pq)/

Or—papg Or—pqg Or-pa
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which is positive semi-definite in M,(B(Kc)). Here, My, is the set of all pg X pg-matrices over C and Oy,
is the m X n-matrix whose entries are all 0. Thus, S []Clp(aij, bkl)]S* is positive semi-definite, so that ¢ is
(p, q,pq)-]-positive.

(iv) = (i) By assumption, we have
S[Jcy(aij, b ]S € Myp(B(KC))*

for all [a;j] € My(B(Ka))*, [bial € Mg(B(K3))* and S € M,,. By putting S = I, we obtain that [lp(aij, bk[)] €
My (B(Ke))*. O

Corollary 3.4. Let ¢ : B(Ka) X B(Kp) — B(Kc) be a bilinear map and let p € IN.
(i) Y is (1, p, p)-J-positive if and only if the linear map ;1 : Mp — Mc given by

ap(b) := ¢(a, b)

is p-(J, Jc)-positive for any a € B(K)*.
(i) ¢ is (p, 1, p)-J-positive if and only if the linear map {, : Ma — Mc given by

Yu(a) == P(a, b)
is p-(Ja, Jc)-positive for any b € B(Kg)'*.
Proof. The proofs of (i) and (ii) immediately follow from Proposition 3.3. [

Remark 3.5. Recall that a linear map ¢ : B(Ka) — B(Kz) is (Ja, Jp)-positive if and only if the map ¢ given by
¢1(-) := Jsp(Ja-) is positive. Similarly, we can observe that a bilinear map 1 : B(Ka) X B(Kp) — B(Kc) is [-positive
if and only if the bilinear map y; given by (-, -) := Jep(Ja-, Jp-) is positive. [

4. The Choi J-matrix associated with a bilinear map

In [7], the the Choi-Jamiolkowski isomorphism between a bilinear map and its Choi matrix was ob-
served and the authors proved the equivalence of (p,q, r)-positivity for a bilinear map and the positive
semidefiniteness of its Choi matrix. In this section, I introduce the J-analogue of the Choi matrix associted
to a bilinear map and prove the equivalent conditions with (p, g, )-J-positivity of bilinear maps on matrix
algebras.

Definition 4.1. Let M4, Mp and Mc be matrix algebras which are not necessarily of same size and Ja, [ and Jc be
their fundamental symmetries, respectively. The Choi J-matrix C{/} of a bilinear map 1 : Ma X Mg — Mc is defined

by
C{J, = Z Z eij ® fu ® Y(Jaeij, Jpfu) € Ma ® Mp ® Mc
=1 ki=1

where {e;;} and { fu} are canonical matrix units of Ma and Mp, respectively.

In the remaining of this section, let M4, Mg and Mc be m X m, n X n and I X I-matrix algebras, respectively
where m,n,| are natural numbers. We will sometimes regard a matrix in M, (or M) as an operator in
B(Ka) (or B(Kp)) for some finite dimensional Krein space Ka (or Kp), especially when multiplying block
matrices with scalar matrices.

If [aij]z =1 € M,(Ma)* and [bkl]Z,lzl € M,(Mg)'* are J-positive semidefinite, then we have that [4;; ® by] €
M,(Ms ® Mg)* since

(Ja ® J)'[ai; ® by] = [Jaaij ® Jbx] € Mpg(Ma ® Mp)*.



J. Heo / Filomat 40:4 (2026), 1449-1462 1458

Let S be an mn X [-matrix in M,,,; and put Sl = JcS'(Ja ® Jp) € M m. We define a bilinear map
ll)é : Ma X Mg — M associated with S and S/ by

Vh@,b) =5 @®@b)S = JcS'(Jaa ® J5b)S, (a € Ma,b € Mp). 9)

We see that l,bé satisfies (1) in Proposition 3.3. Indeed, for any [a;;] € M,(Ma)'* and any [by] € M,(Mg)/*, we
have
Whpalaii), bul) = [0k, )| = [JcS Uagi; @ Jsbu)S] € Myg(Mc)*.

By Proposition 3.3, the bilinear map z,bé is (p, q,1)-J-positive for all p, g, € IN.

We denote by {|i)} a canonical basis vector in K4 = C" or Kz = C", which may be understood as a
column vector. For any vector K, we can write the ket notation |a), so that |a) = }.*; a;]i). The adjoint of a
ket |a) is denoted by a bra (a|, which is a row vector whose entries are obtained by complex conjugation of
entries of |a), that is, (a| = (a1, ..., an).

Proposition 4.2. Let Ip{g : Ma X Mp — Mc be the bilinear map associated with S and S where S is an mn X1 complex
matrix. The Choi [-matrix C{# , of the bilinear map l,Dé is (Ia ® Ip) ® Jc-positive semidefinite and (In ® Ip) ® Jc - C{p ;s
S S

a positive rank one matrix.

Proof. Let {e;j} and {fi} be canonical matrix units of M4 and M3, respectively. Then we compute the Choi

J-matrix C{P , as follows;
S

ijpg = Z Z eij ® fir ® Y(Jacij, J5 fu)

i,j=1k]=1

= Z Z €ij ®fkl ® S](]Aeij ®]Bfkl)s

i,j=1 k=1

- Z Z eij ® fu ® JcS*(eij ® fu)S

i,j=1k]=1

m n
= Z Z 01 )01l ® Jcls (s

i,j=1 k=1

where [v;x) = [i) ® [k) € Ka ® Kp and I}, ) = §*|vix) € Kc. We have that

m n
h@l)®jc-Cl =) ) ool ®1s,)4s
S

i,j=1k]=1

mn mmn *
- [Z 03 ® |s:,k>] Y linels)y| .

ik=1 jl=1

which is a positive matrix of rank one whose range vector is given by Y.1\" [vix) ®1s7,). O
Remark 4.3. In the proof of Proposition 4.2, we observe that

C{P’ =(a®I®]Jc) Cys = Cjeys

S

where s : Ma X Mp — Mc is a bilinear map given by Ys(a,b) = S*(a®b)S. O

Theorem 4.4. Let ¢ : Ma X Mg — Mc be a bilinear map. The followings are equivalent:
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(i) the following holds for any p,q € IN;
if [aij] € My(Ma)'* and [by] € My(Mg)*, then llfp,q([ﬂij], [bkl]) € Mpy(Mc)'™*.
(ii) Y is (p, q,1)-]-positive for each p,q,r € IN.
(iii) 1 is (m,n, mn)-J-positive.
(iv)  satisfies (i) for p = mand q = n.
(v) the Choi [-matrix C{p of Y is In ® Ig ® Jc-positive.

(vi) thereare mnxl-matrices S such thaty =Y ; 1/121_ where 1/); : MaxMp — Mc is given by gbé)_(a, b) = Sj](a®b)Sj.
Proof. (i) & (ii) and (iii) & (iv) have already proved in Proposition 3.3.

(iv) = (v) Assume that i satisfies (i) for p = m and q = n. For [a;;] € M,,(M4)* and [by] € M,,(Mp)*, we
write

gl = ) ej@®a; € My ®Ma, [byl = ) fu®bu € M, @Mp,
ij=1 k=1

Thus, we have that

n

[IP(ﬂij, bkl)] = Z eij ® fu ® Y(aij, ).

m
ij=1ki=1
We observe that ]X[ai]'] = []Aa,-]-] € 1\/1,,1(]\/.[,4)]Jr and ]g[bkl] = [Jgbu] € Mn(MB)H. Since Z?j:] eij ® ejj and
Y=t fu ® fu are positive, the Choi J-matrix

n

C{P = Z Z €ij ® fu ® P(Jaeij, Jpfu) = [lP(]Aeij/ ]Bfkl)]

i,j=1kI=1
is I ® Ig ® Jc-positive.

(v) = (vi) If the Choi J-matrix C{P of Yis Iy ® Iz ® J-positive, then [n ®Ip®]c)- C{P is positive semidefinite
in My ® Mp® Mc. By the spectral decomposition, the matrix (I4 ®Ip®Jc)- C{u is the sum of rank one positive
semidefinite matrices. We define a bilinear map ¢ : Ma X Mg — Mc by

¢C, ) =Jc-Y(Ja, I
Since [4®IzQJc)- C{p = Cy is positive semidefinite, we observe that ¢ is of the form }’ F ¢s; where each §; is
amn X I-matrix and ¢s;(a, b) = S}(a ®b)S;j (a € My, b € Mp). Thus, we obtain that {(Ja-, Jp) = Z]- Jec - ¢s() ).
For any a € M4 and b € Mg, we have that

W@, b) =Y Jo- s,(Jaa, Jsb) = Y JcSi(Ja ® J5)(a @b)S;
j j
= 2 Slaeb)s; = 2 ¢l @b).
i j
(6) = (1) We consider a bilinear map % given by (9) for some matrix S € M,;,,,(C). Let [a;;] € M,,(MA)] +
and [by] € Mq(MB)]Jr be J-positive. Then we see that [Jaa;;] € M,(Ma)* and [Jgbu] € My(Mp)* and that
|[wh(@i, )| = (g ® J) Uy @ S)' [ Ja ® Jsbia (g ® S).
Since (I ®S)"[Jaai; ® Jsbu |(1, ® S) is positive semidefinite, [} (aij, bu)| is Iy ® Jc-positive in Myy(Mc). Since

Y=Y 1{1; for some S; € M,;,,,(C),

ll)p,q([ﬂij], [bkl]) = Z [I,Dé/(ﬂij/ bkl)]

j
is I,; ® Jc-positive, which completes the proof. [J
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Let B(Kp) be the set of bounded linear operators on a finite dimensional Krein space K. We consider
the product between [w;;] € M,(C) and [b;;] € M,(B(K3)) given by

o] D] =[] ][] = Y )

where wb and bw denote the product between a scalar w € C and an operator b € B(K3p). Since ]Z is the
operator diagonal matrix in M,(8(Kp)) with each diagonal entry Jp, we observe that Jpw;; = w;;Jp for each
scalar w;j, so that ]g[w,-]-] = [wij]]g. By the associative law of matrix products, we have that

Taleos] o] [wos] =[] [Tbi] - o] (10

for all [w;;] € M,(C) and [b;j] € M,(B(K3)).
In the following proposition, we will identify 8(K4), B(Kz) and B(Kc) with M4, Mp and Mc, respectively.

Proposition 4.5. For any p € IN, a bilinear map ¢ : B(Ka) x B(Kg) — B(Kc) is (p, p, 1)-]-positive if and only if
the following holds;

P
[a] € My(BEKW)", [b] € My(BEKR)* = Y lay, byj) € B (an

i,j=1
Proof. If a bilinear map ¢ is (p,p, 1)-J-positive, then for all S € M ,2(C), [a;j] € M,,(B(?(A))“ and [by] €
M,(B(Kg))'*, we have
S[Jcy(aij, bu)|S” € BKe)*
Let {e; : 1 < j < p} be a canonical basis of C” written as column vectors. We denote by e]r the transpose of e;,
that is, a row vector, so that 5 := (¢] - - e; ) € M ,2(C). Thus, we have that

p 2!
Je Z Y(aij, bij) = (ef -+ e;)[]CEb(aij/ bkl)] = S[ICIP(ﬂij, bkl)]S*
ij=1 e
is positive semidefinite in B(K¢), which implies that Z‘f]’:l Y(ajj, bjj) is Jc-positive in B(Kc).
Conversely, assume that (11) holds. We take any element V € M, ,»(C) with
V= (01,1, 01,2/ ,Z)l,pz).

We denote by V= [51]] the p X p-matrix whose entries are given by E'j = U1i-1)p+j, that is,

011 01,2 o Oy
~ O1,p+1 O1,p+2 o ULy
V= [Z)j]'] = . .

OLpp-1+1  Olpp-1)+2  *°°  Opp2-

For any [b;;] € MP(B(‘KB))] *, we observe that ]g . ?[bij]v* is positive semidefinite in M,(8(Kp)).
Let {¢; : 1 < j < p} be the canonical basis of C?, written as column vectors. Then we can decompose
V € My ,2(C) as follows;

V=(e e - - =(el e, ®V)

1%
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where e]T is the transpose of e;, which is a row vector. We observe that
[bij] € My(B(Kp))* = V[byj]V" € My(B(K))".
For any elements [a;;] € M,(B(Ka))'* and [by] € M,(B(K3))'*, we have that
V[]C%U(“ijf bkl)]V* =(ef ) ® v)[IC'vb(aij/ bkl)](lp V) (e] - )

= (ef -+ )ly ® V(I ® J0)[ (@i, bi) (1, @ V)'(e] -+ )"

= (e} -+ )T, ® JO) Iy ® V)| (@i, bi) [(h, @ VY'(ef -+ ¢)"

= (ef -+ )l ® JN)Wpep((aiy) @ VbRV )(ef -+ e

€1

= (ef -+ ep)[Jcylai, by)]

Ep

p
=Jc Y ¥iai by).
=
Since [bj] = Vb1V is Jh-positive in M,(B(K3)) by (10), It follows from the assumption (11) that ¢ is
(p,p,1)-J-positive. [
Definition 4.6. Let 1 : B(Ka) X B(Kp) — B(Kc) be a bilinear map and let p,q,r € N.

1. 1 is partial J-positive if Y(a, b) € Mg' forany a € B(Ka)* and b € B(Kg)*.
2. ¢ is partial (p, q,)-]-positive if

STy q(1aij), [bu])S" = S[Jct(ai, bu)|S" € MA(B(KC))*
for any [a;;] € My(B(Ka))*, [bul € My(B(Kp))* and S € M, 4(C).

Proposition 4.7. A bilinear map 1 : M,(C) X B(Kp) — B(Kc) is partial (p,p,1)-]-positive if and only if the
linearization 1 : My(B(Kp)) — Mc is ( J%, Jc)-positive.

Proof. Suppose that ¢ is partial (p, p, 1)-J-positive. Let {e;; : 1 < i, j < p} be the set of canonical matrix units
in M,(C). Since [eii]Z 1 € M,(M,(Q)) is positive semidefinite, it follows from the definition that for any
(b1} .y € Mp(B(Kz)™,

ij=1
n
Y i bi) = Swp(lei), [bul)S" € BEK)™*
i1
where § = (el --- e;) € M ,2(C) with a canonical basis {e; : 1 < i < p} in €. Thus, for any [b,-]-]fj:1 €
M, (B(K3))'* we have that

n

{ﬁ(]g[bij]) = 1:[;( Z e ® ]Bbij) = Zn: 93(6’1]' ® ]Bbij) = i Y(eij, Jbij),

ij=1 ij=1 ij=1

which is Jc-positive in B(K¢). This implies that 12; is ( ]g, Jc)-positive.
Conversely, assume that the linearization 1’; : Mp(B(Kp)) — B(Kc) is (J&., Jo)-positive. For any [a;] €
M,(M,(C))*, [bu] € M,g(f?(?’(g))Fr and S € My 2(C), we observe that

S([aij] © [bu])S" € Mp(B(Kp))
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is JL-positive. Hence we have that

S ([aif), [ba)S* = Sppep([ai] ® [bia])S* = P(S([aif] ® [b])S")
is Jc-positive in B(Kc¢), which completes the proof. [

Remark 4.8. There is a relation between a bilinear map and the amplification of its linearization. We observe that if
the linearization ¢ : M,(B(Kp)) — B(Kc) of a bilinear map v is r-J-positive, then 1 is (p, q,1)-]-positive for any
p,q € N. Indeed, since

(Ja®Jp) (S(x®)S") = S(J), ® [P(x ® 1)S" = S(J}x ® J§1)S"

for any x € Mp(B(Ka)*, y € My(B(Kp))'* and S € M, ,5(C), we see that S(x ® y)S* is (Ja ® Jp)"-positive. Ifyis
r-J-positive, we have that

SPpq(x ® Y)S" = Sthpeg(x @ Y)S* = Y (Sx @ Y)S*) € MU(B(Ke))™,

which implies that 1 is (p, q, r)-J-positive. [

5. Conclusions

We explored the structural aspects of completely J-positive (bi-)linear maps through their associated
Choi [-matrices. This will give foundational insights into the interplay between completely J-positive
(bi-)linear maps and their Choi J-matrices, advancing the understanding of operator-theoretic positivity
structures. By employing a bilinear J-pairing framework, the dual cone of the set of completely [-positive
linear maps coincides with itself. This self-duality mirrors properties of classical positive semidefinite
cones and underscores the intrinsic symmetry in J-positivity frameworks. Multiple criteria for J-positivity
of bilinear maps are proved, with a central result linking the J-positivity of a bilinear map to the J-positivity
of its Choi J-matrix. This bridges abstract operator-theoretic properties to concrete matrix analysis. A notion
of partial J-positivity is offering a refined perspective on the linearization of bilinear maps in the context
of J-structures. This concept resolves ambiguities in extending positivity properties from bilinear forms
to their linear counterparts. These results unify and generalize tools for studying positivity in operator
algebras, with applications in quantum information theory, matrix analysis, and functional analysis. The
Choi [-matrix characterization offers a practical method to verify J-positivity, while partial J-positivity
provides a nuanced framework for analyzing linearized systems. This work sets the stage for further
exploration of (complete) J-positivity in noncommutative settings and operator-valued mappings.
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