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Abstract. In this paper, we consider completely J-positive linear maps and (p, q, r)-J-positive bilinear maps
for p, q, r ∈ N in the Krein space setting. We investigate relations between completely J-positive (bi-)linear
maps and their Choi J-matrices. We prove that the dual cone of the set of completely J-positive linear
maps, under a bilinear J-pairing, coincides with itself. Several characterizations of various J-positivity of
bilinear maps are proved, including the one in terms of the J-positivity of the corresponding Choi J-matrices.
Finally, we introduce a notion of a partial J-positivity of bilinear maps to clarify the relationship between
J-positivity of bilinear maps and J-positivity of their linearization.

1. Introduction

The Krein space is an important generalization of Hilbert spaces where the inner product is not necessar-
ily positive definite. Krein spaces provide a natural framework for understanding mathematical problems
involving indefinite metrics, which arise in various areas of physics and engineering. For example, Krein
spaces are used in the study of differential equations, operator theory, and quantum field theory. Moreover,
Krein spaces have played an important role in the local formulation of gauge quantum field theories, where
locality and covariance of the gauge fields are incompatible with positivity of the inner product. Krein
space structure allows for deeper insights into the spectral properties of operators, stability of dynamical
systems, and the formulation of physical theories with indefinite energy or probability.

A Krein space K is a Hilbert space equipped with an indefinite inner product that can be decomposed
into a direct sum K = K+ ⊕ K−of two Hilbert spaces, one with a positive definite inner product and
one with a negative definite inner product. In a Krein space, the fundamental symmetry is a self-adjoint,
unitary operator that connects the indefinite inner product of the Krein space with a positive definite
inner product, which we will denote by J. That is, the operator J = P+ − P− can be defined, where P±
are orthogonal projections onto K±, so that the indefinite inner product have the connection as follows;
[·, ·]J = ⟨J·, ·⟩. The symmetry symmetry J is central to the structure and analysis of Krein spaces, which
generalize Hilbert spaces by introducing an indefinite inner product. A classical example of a Krein space
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is the four dimensional spacetime used in special relativity where the indefinite inner product is given by

[(x0, x1, x2, x3), (y0, y1, y2, y3)]J = x0y0 − x1y1 − x2y2 − x3y3

and J = diag(1,−1,−1,−1).
In the Krein spaces framework, spectral theory, Fredhom theory and numerical ranges have been studied

in [1–3] and such a study is applicable for the investigation of the spectra of non-hermitian operators with
PT symmetry. When passing to Krein spaces, the adjoint of a matrix with respect to the indefinite metric
is defined through a J-metric and is used for the construction of states and quantum channels. A quantum
J-channel is a structure-preserving transformation compatible with indefinite metrics, extending the usual
framework of quantum information to Krein spaces and provides a general setting for the theory of quantum
information by means of tools arising from operators theory on Krein spaces. Felipe-Sosa and Felipe [6]
introduced the notions of J-states and quantum J-channels on matrix algebras and the author [9] established
the equivalence of Kraus J-decompositions and Choi J-matrices and discussed the entanglement breaking
condition of quantum J-channels.

We first consider completely J-positive linear maps and define (p, q, r)-J-positive bilinear maps for
p, q, r ∈ N in the Krein space setting. In section two, we review the Choi J-matrices associated with linear
maps and define a bilinear J-pairing of two linear maps using the corresponding Choi J-matrices. We
investigate relations between completely J-positive (bi-)linear maps and their Choi J-matrices. Using a
bilinear J-pairing of two linear maps, we observe that the dual cone of the set of completely J-positive
linear maps with respect to a bilinear J-pairing coincide with itself. This self-duality mirrors properties of
classical positive semidefinite cones and underscores the intrinsic symmetry in J-positivity frameworks.
We prove the equivalence of complete J-positivity of a linear map between matrix algebras and J-positivity
of Choi J-matrix associated to the matrix satisfying the Choi J-correspondence. In the third section, several
characterizations of various J-positivity of bilinear maps are proved, including the one in terms of the
J-positivity of the corresponding Choi J-matrices. Finally, we introduce a notion of a partial J-positivity
of bilinear maps to clarify the relationship between J-positivity of bilinear maps and J-positivity of their
linearization.

2. Completely J-positive linear maps and Choi J-matrices

Let K be a Hilbert space with a positive definite inner product ⟨·, ·⟩ and J be a fundamental symmetry,
i.e. J = J∗ = J−1. We denote by [·, ·]J = ⟨J ·, ·⟩ the indefinite inner product induced by J. We say that the pair
(K , J) is a Krein space with an indefinite inner product [·, ·]J, or simply a Krein space. Let B(K ) be the set
of bounded linear operators on K and Kn (n ≥ 2) be the direct sum of n-copies of a Hilbert space K . We
denote by (Kn, Jn) the Krein space with an indefinite inner product

[x,y]Jn = ⟨Jnx,y⟩ =
n∑

i=1

⟨Jxi, yi⟩ =

n∑
i=1

[xi, yi]J

where Jn = diag(J, . . . , J) ∈ Mn(B(K )) and x = (x1, . . . , xn),y = (y1, . . . , yn) ∈ Kn. Throughout this paper,
(Ki, Ji) (i = 1, 2) denote Krein spaces with indefinite inner products [·, ·]Ji , unless specified otherwise

Let Φ be a linear map from B(K1) into B(K2) and n ≥ 2 be a positive integer. The n-fold amplification
of Φ is the map Φn := idn ⊗Φ : Mn(C) ⊗ B(K1)→Mn(C) ⊗ B(K2), which is given by applying Φ an element
by an element to each matrix over B(K1), that is,

Φn([Ti j]) = [Φ(Ti j)] for [Ti j] ∈Mn(B(K1)).

For each i = 1, 2, we denote by B(Ki)J+ the set of all Ji-positive bounded linear operators T on a Krein space
Ki, i.e.,

0 ≤ [Tx, x]Ji := ⟨JiTx, x⟩, for all x ∈ Ki.

Definition 2.1. Let Φ : B(K1)→ B(K2) be a linear map.
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(i) Φ is J-positive if Φ(B(K1)J+) ⊆ B(K2)J+.

(ii) For each n ≥ 2, Φ is n-J-positive if

Φn(Mn(B(K1))J+) ⊆Mn(B(K2))J+

where Mn(B(Ki))J+ = B(Kn
i )J+ is the set of all Jn

i -positive linear operators on the Krein space (Kn
i , J

n
i ).

(iii) Φ is completely J-positive (or simply, J-CP) if Φ is n-J-positive for all n ∈N.

For a linear map Φ : B(K1)→ B(K2), letΨ : B(K1)→ B(K2) be a linear map defined by

Ψ(T) = J2Φ(J1T) for T ∈ B(K1).

Then we have that, for each n ∈N and (Ti j) ∈Mn(B(K1))

Ψn((Ti j)) = (Ψ(Ti j)) = (J2Φ(J1Ti j)) = Jn
2Φ

n(Jn
1 (Ti j)),

so that Ψn(·) = Jn
2Φ

n(Jn
1 ·). Thus, we observe that a linear map Φ : B(K1) → B(K2) is completely positive if

and only if the map Ψ : B(K1) → B(K2) given by Ψ(·) = J2Φ(J1·) is completely J-positive. In particular, if
K1 = K2 = K and J1 = J2 = J and if Φ(JT) = JΦ(T) for all T ∈ B(K ), we see that Φ is completely positive
if and only if it is completely J-positive. In [9], the author has proved a Stinespring type theorem for
completely J-positive linear maps as follows: if Ψ : B(K1) → B(K2) is completely J-positive, there exist a
Krein space (K , J), a *-representation π : B(K1) → B(K ) and a bounded linear operator V : K2 → K such
that

Ψ(T) = V#π(T)V, (T ∈ B(K1))

where J = π(J1) and V# = J2V∗ J. If, in addition,Ψ(J1) = J2, then V is an isometry.

Remark 2.2. Kraus [10] proved that ϕ : Mm(C)→Mn(C) is completely positive if and only if

ϕ(X) =
ℓ∑

i=1

V∗i XVi, X ∈Mm(C) (1)

with m × n complex matrices Vi ∈ Mm,n(C). This expression (1) is called a Kraus decomposition. Moreover, it is
known that the followings are equivalent:

(i) ϕ is completely positive.

(ii) ϕ has a Kraus decomposition (1).

(iii) the Choi matrix Cϕ is positive (semi-definite) where Cϕ is given by

Cϕ :=
m∑

i, j=1

ei j ⊗ ϕ(ei j) = (idA ⊗ ϕ)
( m∑

i, j=1

ei j ⊗ ei j

)
∈Mm(C) ⊗Mn(C) (2)

with the canonical matrix units {ei j} in Mm(C).

In this section, we denote by MA = Mm(C) (MB = Mn(C), respectively) the set of all m × m complex
matrices (the set of all n × n complex matrices, respectively), unless specified otherwise. We denote by JA
the fundamental symmetry in MA which induces an indefinite inner product on KA = Cm. Similarly, JB
denotes the fundamental symmtry in MB.

For an m × n complex matrix V, we denote

V#A,B := JBV∗ JA ∈Mn,m(C).
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Let V1, . . . ,Vℓ be in Mm,n(C) and we consider an elementary map ψ : MA →MB of the form

ψ(X) =
ℓ∑

i=1

V#A,B

i XVi, X ∈MA. (3)

Then such a map ψ is completely J-positive. Conversely, any completely J-positive linea map from MA into
MB is of the form (3) (see [9] for details). We say that the decomposition (3) is the Kraus J-decomposition of ψ.

Definition 2.3. [9] Let ψ : MA →MB be a linear map. We define CJ
ψ by

CJ
ψ :=

m∑
i, j=1

ei j ⊗ ψ(JAei j) = (idA ⊗ ψ)
( m∑

i, j=1

ei j ⊗ JAei j

)
∈MA ⊗MB (4)

where {ei j : i, j = 1, . . . ,m} is the set of canonical matrix units in MA. The matrix CJ
ψ is called the Choi J-matrix of ψ.

The author [9] have showed that a linear map ψ : MA → MB is completely J-positive if and only if the
Choi J-matrix CJ

ψ is IA ⊗ JB-positive in MA ⊗MB. We say that a linear map ϕ : MA → MB is a quantum
J-channel if ϕ is completely J-positive and trace preserving. Then a quantum J-channel ϕ : MA →MB maps
quantum J-states into quantum J-states [9]. Here, a quantum J-state ρ means that Jρ is a quantum state

Paulsen and Shultz [12] considered the matrix

CAϕ :=
m∑

i, j=1

ai j ⊗ ϕ(ai j) = (idA ⊗ ϕ)
( m∑

i, j=1

ai j ⊗ ai j

)
∈MA ⊗MB (5)

which is replaced matrix units in (2) by a basis A = {ai j} of MA. Let CA (CT
A

, respectively) be the linear
map sending each matrix unit ei j to ai j (aT

ij, respectively) where T denotes the transpose). We define
MA := CA ◦ CT

A
∈ L(MA) where L(MA) is the set of all linear maps from MA into MA. For a given V ∈MA, let

AdV : MA →MA be defined by
AdV(X) = V∗XV.

They [12] proved that if MA = AdV for some V ∈ MA, then ϕ : MA →MB is completely positive if and only
if CAϕ is a positive semi-definite matrix in MA ⊗MB.

More generally, Kye [11] has considered the question what happens when we replace the matrix
∑

i, j ei j⊗ei j
in (2) by another matrix Ξ ∈MA ⊗MA, to define

CΞϕ := (idA ⊗ ϕ)(Ξ) ∈MA ⊗MB.

For example, ifΞ =
∑

k ak⊗bk ∈MA⊗MA, then we have that CΞϕ =
∑

k ak⊗ϕ(bk). For the matrixΞA =
∑

i, j ai j⊗ai j

associated to some basis A = {ai j}, we have CAϕ = CΞAϕ .

Definition 2.4. [11] We say that a matrix Ξ ∈ MA ⊗ MA satisfies the Choi correspondence when the complete
positivity of a linear map ϕ : MA →MB is equivalent to the positivity of the matrix CΞϕ ∈MA ⊗MB.

Remark 2.5. Let ψ : MA →MA be a linear map.

1. Definition 2.4 says that Cψ satisfies the Choi correspondence if and only if the complete positivity ofϕ : CA → CB
implies the complete positivity of ϕ ◦ ψ : CA → CB for all B.

2. Kye [11] proved that the Choi matrix Cψ ∈MA ⊗MB satisfies the Choi correspondence if and only if ψ is of the
form AdV for some nonsingular matrix V ∈MA.
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We define a bilinear pairing on the matrix algebra MA or MB as

(a, b) := Tr(abT) =
∑

i, j

ai jbi j for a = (ai j), b = (bi j)

where bT denotes the transpose of b. Using their Choi matrices [4], the bilinear pairing of two linear maps
ϕ,ψ : MA →MB is defined by

(ϕ,ψ) := (Cϕ,Cψ) = TrAB(CϕCT
ψ) =

∑
i, j

TrB(ϕ(ei j)ψ(ei j)T).

For a linear map ϕ : MA →MB, its adjoint map ϕ∗ : MB →MA is defined by

(a, ϕ∗(b))A := (ϕ(a), b)B for all a ∈MA, b ∈MB.

Then, it is clear that (ϕ,ψ) = (ψ∗, ϕ∗).
We similarly define the bilinear J-pairing of two linear maps ϕ,ψ : MA →MB as follows;

(ϕ,ψ)J := (CJ
ϕ,C

J
ψ) = TrAB

(
CJ
ϕ(CJ

ψ)T
)
.

It is clear that we have the following identities;

1. (ϕ,ψ)J =
∑

i, j TrB

(
ϕ(JAei j)ψ(JAei j)T

)
for ϕ,ψ ∈ L(MA,MB),

2. (ϕ,ψ)J = (ϕ ◦MJ, ψ ◦MJ) for ϕ,ψ ∈ L(MA,MB),
3. (ϕ2 ◦ ϕ1, ψ)J = (ϕ1, ϕ∗2 ◦ ψ)J for ϕ1 ∈ L(MA,MB), ϕ2 ∈ L(MB,MC) and ψ ∈ L(MA,MC)

where MJ is the left multiplication map on MA by JA.

Let K be a subset of L(MA,MB) where L(MA,MB) is the set of all linear maps from MA into MB. We denote
by KJ the J-dual cone of K which is the set of all linear maps ϕ ∈ L(MA,LB) satisfying (ϕ,ψ)J ≥ 0 for all ψ ∈ K.
Here the cone means that ϕ ∈ KJ =⇒ λϕ ∈ KJ for any λ > 0 and ϕ1, ϕ2 ∈ KJ =⇒ ϕ1 + ϕ2 ∈ KJ. It is well
known that (KJ)J is the smallest closed convex cone in L(MA,LB) containing the set K. In particular, if K is a
closed and convex subset in L(MA,LB), then K = (KJ)J.

Proposition 2.6. If σ : MB → MB is a linear isomorphism and K ⊂ L(MA,MB) is a convex cone, then we have that
(σ∗ ◦ K)J = σ−1

◦ KJ where σ∗ ◦ K = {σ∗ ◦ ϕ : ϕ ∈ K}.

Proof. We have that

ψ ∈ (σ∗ ◦ K)J
⇐⇒ (ψ, σ∗ ◦ ϕ)J ≥ 0 for all ϕ ∈ K
⇐⇒ (σ ◦ ψ,ϕ)J ≥ 0 for all ϕ ∈ K

⇐⇒ ψ ∈ σ−1
◦ KJ.

This completes the proof.

We denote by J-CP[MA,MB] the set of all completely J-positive linear maps from MA into MB. It is clear
that the set J-CP[MA,MB] is a closed convex cone in L(MA,LB).

Proposition 2.7. Assume that JB is a fundamental symmetry in MB such that JB = JT
B where JT

B is the transpose of
JB. Then J-CP[MA,MB] = J-CP[MA,MB]J.
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Proof. For any ϕ,ψ ∈ J-CP[MA,MB], we have that

(ϕ,ψ)J = (CJ
ϕ,C

J
ψ) = Tr

(
CJ
ϕ(CJ

ψ)T
)

= Tr
(
(IA ⊗ JB)2

· CJ
ϕ(CJ

ψ)T
)

= Tr
(
(IA ⊗ JB)CJ

ϕ ·

(
(IA ⊗ JB)CJ

ψ

)T
)
≥ 0

where the last inequality follows from the fact that (IA ⊗ JB)CJ
ϕ and (IA ⊗ JB)CJ

ψ are positive semi-definite.
This implies that J-CP[MA,MB] ⊂ J-CP[MA,MB]J.

Similarly, we see that J-CP[MA,MB]J
⊂ (J-CP[MA,MB]J)J Since J-CP[MA,MB] is a closed convex cone in

L(MA,LB), we have that J-CP[MA,MB] = (J-CP[MA,MB]J)J, so that we get the reverse inclusion J-CP[MA,MB]J
⊂

J-CP[MA,MB].

In the remaining of this section, we discuss a variant of the Choi J-matrix as a variant of Choi matrix
was studied in [11]. Let A = {ai j} be a basis of MA and ϕ : MA →MB be a linear map. We define a variant of
the Choi J-matrix of ϕ associated to A as follows:

CJ,A
ϕ :=

m∑
i, j=1

ai j ⊗ ϕ(JAai j) = (idA ⊗ ϕ)
( m∑

i, j=1

ai j ⊗ JAai j

)
∈MA ⊗MB. (6)

Similarly, for a matrix Ξ =
∑

k ak ⊗ bk we define

CJ,Ξ
ϕ := (idA ⊗ ϕ)

[
(IA ⊗ JA)Ξ

]
=

∑
k

ak ⊗ ϕ(JAbk).

If ΞA =
∑

i, j ai j ⊗ ai j where {ai j} is a basis of MA, then CJ,A
ϕ = CJ,ΞA

ϕ . Let E = {ei j} be the canonical matrix units
in MA, F = { fi j} be another matrix units in MA and w be the unitary matrix such that w∗ei jw = fi j for all i, j.
For a linear map ϕ : MA →MB, we have that

CJ,F
ϕ =

∑
i, j

fi j ⊗ ϕ(JA fi j) =
∑

i, j

w∗ei jw ⊗ ϕ(JAw∗ei jw)

= Adw⊗I

(∑
i, j

ei j ⊗ ϕ ◦MJ ◦Adw(ei j)
)

= Adw⊗I(Cϕ◦MJ◦Adw )

Remark 2.8. Let ϕ : MA → MB be a linear map and k = min{m,n} ∈ N. If ψ : MA → MB is defined by
ψ(·) = JBϕ(JA·), then the followings are equivalent;

1. ϕ is completely J-positive.
2. ϕ is k-J-positive.
3. CJ

ϕ = Cϕ◦MJ is IA ⊗ JB-positive.
4. ψ is completely positive.
5. ψ is k-positive.
6. Cψ = CMJB◦ϕ◦MJA

is positive.

The following definition is an J-analogue of Definition 2.4 and it has some properties similar to the Choi
correspondence.

Definition 2.9. (cf. [11]) A matrix Ξ ∈MA⊗MA satisfies the Choi J-correspondence when the complete J-positivity
of a linear map ϕ : MA →MB is equivalent to the IA ⊗ JB-positivity of the Choi J-matrix CJ,Ξ

ϕ of ϕ associated to Ξ.
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We observe that Ξ ∈MA ⊗MA satisfies the Choi J-correspondence if the complete J-positivity of a linear
map ϕ : MA → MB is equivalent to the IA ⊗ JB-positivity of the Choi J-matrix CJ,Ξ

ϕ for any m ≥ 1. If Ξ = CJ
ψ

is the Choi J-matrix of a linear map ψ : MA →MA, then we have that

CJ,Ξ
ϕ = (idA ⊗ ϕ)

[
(IA ⊗ JA)CJ

ψ

]
= (idA ⊗ ϕ)

[
(IA ⊗ JA)

(∑
i, j

ei j ⊗ ψ(JAei j)
)]

=
∑

i, j

ei j ⊗ ϕ(JAψ(JAei j))

=
∑

i, j

ei j ⊗ (ϕ ◦MJA ◦ ψ)(JAei j)

= CJ
ϕ◦MJA◦ψ

where MJA is the left multiplication map on MA by JA. This observation gives the following proposition.

Proposition 2.10. For any linear map ψ : MA → MA, the Choi J-matrix CJ
ψ satisfies the Choi J-correspondence

if and only if the complete J-positivity of a linear map ϕ : MA → MB is equivalent to the complete J-positivity of
ϕ ◦MJA ◦ ψ for any m ≥ 1.

3. Complete J-positivity of bilinear maps

In this section, we will denote unless specified otherwise. Let B(KA) (B(KB), B(KC), resp.) be the
set of all bounded linear operators on the Krein space KA (KB, KC, resp.). When JA (JB, resp.) is a
fundamental symmetry in B(KA) (B(KB), resp.), let JA ⊗ JB be a fundamental symmetry of B(KA) ⊗ B(KB).
Let ψ : B(KA) × B(KB) → B(KC) be a bilinear map and ψ̃ : B(KA) ⊗ B(KB) → B(KC) be its linearization
given by ψ̃(a ⊗ b) := ψ(a, b).

For any p, q ∈N, we define a bilinear map ψp,q : Mp(B(KA)) ×Mq(B(KB))→Mpq(B(KC)) by

ψp,q

(
[ai j], [bkl]

)
:=

[
ψ(ai j, bkl)

]
∈Mpq(B(KC))

for [ai j] ∈ Mp(B(KA)), [bkl] ∈ Mq(B(KB)). Moreover, the linearization of a bilinear map ψ is completely
positive if and only if the following statement

[ai j] ∈Mp(B(KA))+, [bkl] ∈Mq(B(KB))+ =⇒ ψp,q

(
[ai j], [bkl]

)
∈Mpq(B(KC))+

holds for every p, q = 1, 2, . . .. This notion of (p, q)-fold amplification is different from the notion introduced
by Christensen and Sinclair [5] which is related to the definition of matrix multiplication.

In [7], Han and Kye introduced the (p, q, r)-positivity of a bilinear map and classified tri-partite entan-
glement which include various kinds of bi-separability. A bilinear map ψ : B(KA) × B(KB) → B(KC) is
(p, q, r)-positive if for any [ai j] ∈Mp(B(KA))+, [bkl] ∈Mq(B(KB))+ and S ∈Mr,pq, we have

S
[
ψ(ai j, bkl)

]
S∗ ∈Mr(B(KC))+ (7)

where Mr,pq denotes the r × pq matrix algebra over C.
We denote by B(KA)J+ the set of all J-positive elements in B(KA) and by Jp

A := Ip ⊗ JA the fundamental
symmetry in Mp(B(KA)) where Ip is the identity matrix in Mp, which induces an indefinite inner product
on the Hilbert space Cp

⊗ KA. Let Mp(B(KA))J+ be the set of all J-positive elements in Mp(B(KA)). If
[ai j]

p
i, j=1 ∈Mp(B(KA))J+ for p = 1, 2, . . ., then we see that Jp

A[ai j] = [JAai j] is positive semi-definite in Mp(B(KA)).
In this section we introduce the analogue of (p, q, r)-positivity in the Krein space setting.
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Definition 3.1. Let ψ : B(KA) × B(KB)→ B(KC) be a bilinear map and let p, q, r ∈N.

1. ψ is J-positive if we have ψ(a, b) ∈ B(KC)J+ for any a ∈ B(KA)J+ and b ∈ B(KB)J+.
2. ψ is (p, q, r)-J-positive if for any [ai j] ∈Mp(B(KA))J+, [bkl] ∈Mq(B(KB))J+ and S ∈Mr,pq, we have that

SJpq
C ψp,q

(
[ai j], [bkl]

)
S∗ = S

[
JCψ(ai j, bkl)

]
S∗ ∈Mr(B(KC))+ (8)

where Mr,pq denotes the set of all r × pq complex matrices.

Remark 3.2. Let ψ : B(KA) × B(KB)→ B(KC) be a bilinear map. For simplicity, we assume that KA, KB and KC
are all finite dimensional.

1. The (1, 1, 1)-J-positivity of ψ implies the J-positivity of ψ.
2. If ψ is J-positive, then the linearization ψ̃ is (JA ⊗ JB, JC)-positive.
3. The linearization of a bilinear map ψp,q is defined by

ψ̃p⊗q

(
[ai j] ⊗ [bkl]

)
:= ψp,q

(
[ai j], [bkl]

)
=

[
ψ(ai j, bkl)

]
,

so that ψ̃p⊗q is the map from Mp(B(KA)) ⊗Mq(B(KB)) into Mpq(B(KC)) where

[
ai j

]
i, j
⊗

[
bkl

]
k,l

:=
[
ai j ⊗

[
bkl

]
k,l

]
i, j
=


a11 ⊗

[
bkl

]
k,l
· · · a1p ⊗

[
bkl

]
k,l

...
. . .

...

ap1 ⊗
[
bkl

]
k,l
· · · app ⊗

[
bkl

]
k,l


can be regarded as an element in Mpq(B(KA) ⊗ B(KB)).

4. If a bilinear map ψp,q : Mp(B(KA)) ×Mq(B(KB)) → Mpq(B(KC)) is J-positive, then the linearization ψ̃p⊗q is
(Jp

A ⊗ Jq
B, J

pq
C )-positive linear.

5. We denote by ψ̃r the r-th amplification of ψ̃, so that the linear map ψ̃r : Mr(B(KA))⊗Mr(B(KB))→Mr(B(KC))
is given by ψ̃r

(
[ai j ⊗ bi j]

)
:=

[
ψ̃(ai j ⊗ bi j)

]
. After shuffling and identifying Mp(B(KA)) ⊗Mq(B(KB)) with

Mpq(B(KA) ⊗ B(KB)), we can see ψ̃p⊗q = ψ̃pq.

Proposition 3.3. Let ψ : B(KA) × B(KB) → B(KC) be a bilinear map. For any p, q ∈ N, the followings are
equivalent:

(i) For any [ai j] ∈Mp(B(KA))J+ and [bkl] ∈Mq(B(KB)B)J+, we have

ψp,q

(
[ai j], [bkl]

)
∈Mpq(B(KC))J+.

(ii) ψ is (p, q, r)-J-positive for each r = 1, 2, . . ..
(iii) ψ is (p, q, r)-J-positive for some r ≥ pq.
(iv) ψ is (p, q, pq)-J-positive.

Proof. (i)⇒ (ii) Let [ai j] ∈Mp(B(KA))J+ and [bkl] ∈Mq(B(KB))J+. By assumption, we have that[
ψ(ai j, bkl)

]
∈Mpq(B(KC))J+

⇒

[
JCψ(ai j, bkl)

]
∈Mpq(B(KC))+,

which implies that S
[
JCψ(ai j, bkl)

]
S∗ ∈Mr(B(KC))+ for all r ∈N and any r × pq matrix S ∈Mr,pq.

(ii)⇒ (iii) is clear.
(iii)⇒ (iv) For any [ai j] ∈Mp(B(KA))J+, [bkl] ∈Mq(B(KB))J+ and S ∈Mpq, we observe that(

S
[
JCψ(ai j, bkl)

]
S∗ Opq,r−pq

Or−pq,pq Or−pq

)
=

(
S

Or−pq,pq

) [
JCψ(ai j, bkl)

] (
S∗ Opq,r−pq

)
,
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which is positive semi-definite in Mr(B(KC)). Here, Mpq is the set of all pq × pq-matrices over C and Om,n

is the m × n-matrix whose entries are all 0. Thus, S
[
JCψ(ai j, bkl)

]
S∗ is positive semi-definite, so that ψ is

(p, q, pq)-J-positive.
(iv)⇒ (i) By assumption, we have

S
[
JCψ(ai j, bkl)

]
S∗ ∈Mpq(B(KC))+

for all [ai j] ∈ Mp(B(KA))J+, [bkl] ∈ Mq(B(KB))J+ and S ∈ Mpq. By putting S = Ipq, we obtain that
[
ψ(ai j, bkl)

]
∈

Mpq(B(KC))J+.

Corollary 3.4. Let ψ : B(KA) × B(KB)→ B(KC) be a bilinear map and let p ∈N.

(i) ψ is (1, p, p)-J-positive if and only if the linear map aψ : MB →MC given by

aψ(b) := ψ(a, b)

is p-(JB, JC)-positive for any a ∈ B(KA)J+.
(ii) ψ is (p, 1, p)-J-positive if and only if the linear map ψb : MA →MC given by

ψb(a) := ψ(a, b)

is p-(JA, JC)-positive for any b ∈ B(KB)J+.

Proof. The proofs of (i) and (ii) immediately follow from Proposition 3.3.

Remark 3.5. Recall that a linear map ϕ : B(KA) → B(KB) is (JA, JB)-positive if and only if the map ϕJ given by
ϕJ(·) := JBϕ(JA·) is positive. Similarly, we can observe that a bilinear mapψ : B(KA)×B(KB)→ B(KC) is J-positive
if and only if the bilinear map ψJ given by ψJ(·, ·) := JCψ(JA·, JB·) is positive.

4. The Choi J-matrix associated with a bilinear map

In [7], the the Choi-Jamiolkowski isomorphism between a bilinear map and its Choi matrix was ob-
served and the authors proved the equivalence of (p, q, r)-positivity for a bilinear map and the positive
semidefiniteness of its Choi matrix. In this section, I introduce the J-analogue of the Choi matrix associted
to a bilinear map and prove the equivalent conditions with (p, q, r)-J-positivity of bilinear maps on matrix
algebras.

Definition 4.1. Let MA, MB and MC be matrix algebras which are not necessarily of same size and JA, JB and JC be
their fundamental symmetries, respectively. The Choi J-matrix CJ

ψ of a bilinear map ψ : MA ×MB → MC is defined
by

CJ
ψ :=

m∑
i, j=1

n∑
k,l=1

ei j ⊗ fkl ⊗ ψ(JAei j, JB fkl) ∈MA ⊗MB ⊗MC

where {ei j} and { fkl} are canonical matrix units of MA and MB, respectively.

In the remaining of this section, let MA, MB and MC be m×m, n×n and l× l-matrix algebras, respectively
where m,n, l are natural numbers. We will sometimes regard a matrix in MA (or MB) as an operator in
B(KA) (or B(KB)) for some finite dimensional Krein space KA (or KB), especially when multiplying block
matrices with scalar matrices.

If [ai j]
p
i, j=1 ∈Mp(MA)J+ and [bkl]

q
k,l=1 ∈Mq(MB)J+ are J-positive semidefinite, then we have that [ai j ⊗ bkl] ∈

Mpq(MA ⊗MB)J+ since
(JA ⊗ JB)pq[ai j ⊗ bkl] = [JAai j ⊗ JBbkl] ∈Mpq(MA ⊗MB)+.
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Let S be an mn × l-matrix in Mmn,l and put SJ := JCS∗(JA ⊗ JB) ∈ Ml,mn. We define a bilinear map
ψJ

S : MA ×MB →MC associated with S and SJ by

ψJ
S(a, b) := SJ(a ⊗ b)S = JCS∗(JAa ⊗ JBb)S, (a ∈MA, b ∈MB). (9)

We see that ψJ
S satisfies (1) in Proposition 3.3. Indeed, for any [ai j] ∈Mp(MA)J+ and any [bkl] ∈Mq(MB)J+, we

have
(ψJ

S)p,q

(
[ai j], [bkl]

)
=

[
ψJ

S(ai j, bkl)
]
=

[
JCS∗(JAai j ⊗ JBbkl)S

]
∈Mpq(MC)J+.

By Proposition 3.3, the bilinear map ψJ
S is (p, q, r)-J-positive for all p, q, r ∈N.

We denote by {|i⟩} a canonical basis vector in KA = Cm or KB = Cn, which may be understood as a
column vector. For any vector KA, we can write the ket notation |a⟩, so that |a⟩ =

∑m
i=1 ai|i⟩. The adjoint of a

ket |a⟩ is denoted by a bra ⟨a|, which is a row vector whose entries are obtained by complex conjugation of
entries of |a⟩, that is, ⟨a| = (a1, . . . , am).

Proposition 4.2. LetψJ
S : MA×MB →MC be the bilinear map associated with S and SJ where S is an mn× l complex

matrix. The Choi J-matrix CJ
ψJ

S

of the bilinear map ψJ
S is (IA ⊗ IB)⊗ JC-positive semidefinite and (IA ⊗ IB)⊗ JC ·C

J
ψJ

S

is

a positive rank one matrix.

Proof. Let {ei j} and { fkl} be canonical matrix units of MA and MB, respectively. Then we compute the Choi
J-matrix CJ

ψJ
S

as follows;

CJ
ψJ

S

=

m∑
i, j=1

n∑
k,l=1

ei j ⊗ fkl ⊗ ψ
J
S(JAei j, JB fkl)

=

m∑
i, j=1

n∑
k,l=1

ei j ⊗ fkl ⊗ SJ(JAei j ⊗ JB fkl)S

=

m∑
i, j=1

n∑
k,l=1

ei j ⊗ fkl ⊗ JCS∗(ei j ⊗ fkl)S

=

m∑
i, j=1

n∑
k,l=1

|vi,k⟩⟨v j,l| ⊗ JC|s∗i,k⟩⟨s
∗

j,l|

where |vi,k⟩ = |i⟩ ⊗ |k⟩ ∈ KA ⊗KB and |s∗i,k⟩ = S∗|vi,k⟩ ∈ KC. We have that

(IA ⊗ IB) ⊗ JC · C
J
ψJ

S

=

m∑
i, j=1

n∑
k,l=1

|vi,k⟩⟨v j,l| ⊗ |s∗i,k⟩⟨s
∗

j,l|

=

 m,n∑
i,k=1

|vi,k⟩ ⊗ |s∗i,k⟩


 m,n∑

j,l=1

|v j,l⟩ ⊗ |s∗j,l⟩


∗

,

which is a positive matrix of rank one whose range vector is given by
∑m,n

i,k=1 |vi,k⟩ ⊗ |s∗i,k⟩.

Remark 4.3. In the proof of Proposition 4.2, we observe that

CJ
ψJ

S

= (IA ⊗ IB ⊗ JC) · CψS = CJC·ψS

where ψS : MA ×MB →MC is a bilinear map given by ψS(a, b) = S∗(a ⊗ b)S.

Theorem 4.4. Let ψ : MA ×MB →MC be a bilinear map. The followings are equivalent:
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(i) the following holds for any p, q ∈N;
if [ai j] ∈Mp(MA)J+ and [bkl] ∈Mq(MB)J+, then ψp,q

(
[ai j], [bkl]

)
∈Mpq(MC)J+.

(ii) ψ is (p, q, r)-J-positive for each p, q, r ∈N.
(iii) ψ is (m,n,mn)-J-positive.
(iv) ψ satisfies (i) for p = m and q = n.
(v) the Choi J-matrix CJ

ψ of ψ is IA ⊗ IB ⊗ JC-positive.

(vi) there are mn×l-matrices Si such thatψ =
∑

i ψ
J
S j

whereψJ
S j

: MA×MB →MC is given byψJ
S j

(a, b) = S j
J(a⊗b)S j.

Proof. (i)⇔ (ii) and (iii)⇔ (iv) have already proved in Proposition 3.3.
(iv) ⇒ (v) Assume that ψ satisfies (i) for p = m and q = n. For [ai j] ∈ Mm(MA)+ and [bkl] ∈ Mn(MB)+, we

write

[ai j] =
m∑

i, j=1

ei j ⊗ ai j ∈Mm ⊗MA, [bkl] =
n∑

k,l=1

fkl ⊗ bkl ∈Mn ⊗MB.

Thus, we have that [
ψ(ai j, bkl)

]
=

m∑
i, j=1

n∑
k,l=1

ei j ⊗ fkl ⊗ ψ(ai j, bkl).

We observe that Jm
A [ai j] = [JAai j] ∈ Mm(MA)J+ and Jn

B[bkl] = [JBbkl] ∈ Mn(MB)J+. Since
∑m

i, j=1 ei j ⊗ ei j and∑n
k,l=1 fkl ⊗ fkl are positive, the Choi J-matrix

CJ
ψ =

m∑
i, j=1

n∑
k,l=1

ei j ⊗ fkl ⊗ ψ(JAei j, JB fkl) =
[
ψ(JAei j, JB fkl)

]
is IA ⊗ IB ⊗ JC-positive.

(v)⇒ (vi) If the Choi J-matrix CJ
ψ ofψ is IA⊗ IB⊗ JC-positive, then (IA⊗ IB⊗ JC) ·CJ

ψ is positive semidefinite

in MA⊗MB⊗MC. By the spectral decomposition, the matrix (IA⊗ IB⊗ JC) ·CJ
ψ is the sum of rank one positive

semidefinite matrices. We define a bilinear map ϕ : MA ×MB →MC by

ϕ(·, ·) = JC · ψ(JA·, JB·).

Since (IA ⊗ IB ⊗ JC) ·CJ
ψ = Cϕ is positive semidefinite, we observe that ϕ is of the form

∑
j ϕS j where each S j is

a mn × l-matrix and ϕS j (a, b) = S∗j(a ⊗ b)S j (a ∈ MA, b ∈ MB). Thus, we obtain that ψ(JA·, JB·) =
∑

j JC · ϕS j (·, ·).
For any a ∈MA and b ∈MB, we have that

ψ(a, b) =
∑

j

JC · ϕS j (JAa, JBb) =
∑

j

JCS∗j(JA ⊗ JB)(a ⊗ b)S j

=
∑

j

SJ
j(a ⊗ b)S j =

∑
j

ψJ
S j

(a, b).

(6)⇒ (1) We consider a bilinear map ψJ
S given by (9) for some matrix S ∈Mmn,l(C). Let [ai j] ∈Mp(MA)J+

and [bkl] ∈Mq(MB)J+ be J-positive. Then we see that [JAai j] ∈Mp(MA)+ and [JBbkl] ∈Mq(MB)+ and that[
ψJ

S(ai j, bkl)
]
= (Ipq ⊗ JC)(Ipq ⊗ S)∗

[
JAai j ⊗ JBbkl

]
(Ipq ⊗ S).

Since (Ipq ⊗ S)∗
[
JAai j ⊗ JBbkl

]
(Ipq ⊗ S) is positive semidefinite,

[
ψJ

S(ai j, bkl)
]

is Ipq ⊗ JC-positive in Mpq(MC). Since

ψ =
∑

i ψ
J
S j

for some S j ∈Mmn,l(C),

ψp,q

(
[ai j], [bkl]

)
=

∑
j

[
ψJ

S j
(ai j, bkl)

]
is Ipq ⊗ JC-positive, which completes the proof.
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Let B(KB) be the set of bounded linear operators on a finite dimensional Krein space KB. We consider
the product between [wi j] ∈Mp(C) and [bi j] ∈Mp(B(KB)) given by

[
wi j

]
·

[
bi j

]
=

[ p∑
k=1

wikbkj

]
,

[
bi j

]
·

[
wi j

]
=

[ p∑
k=1

bikwkj

]
where wb and bw denote the product between a scalar w ∈ C and an operator b ∈ B(KB). Since Jp

B is the
operator diagonal matrix in Mp(B(KB)) with each diagonal entry JB, we observe that JBwi j = wi j JB for each
scalar wi j, so that Jp

B[wi j] = [wi j]Jp
B. By the associative law of matrix products, we have that

Jp
B

[
wi j

]
·

[
bi j

]
·

[
wi j

]∗
=

[
wi j

]
·

[
JBbi j

]
·

[
wi j

]∗
(10)

for all [wi j] ∈Mp(C) and [bi j] ∈Mp(B(KB)).
In the following proposition, we will identifyB(KA),B(KB) andB(KC) with MA,MB and MC, respectively.

Proposition 4.5. For any p ∈ N, a bilinear map ψ : B(KA) × B(KB) → B(KC) is (p, p, 1)-J-positive if and only if
the following holds;

[ai j] ∈Mp(B(KA))J+, [bi j] ∈Mp(B(KB))J+ =⇒

p∑
i, j=1

ψ(ai j, bi j) ∈ B(KC)J+. (11)

Proof. If a bilinear map ψ is (p, p, 1)-J-positive, then for all S ∈ M1,p2 (C), [ai j] ∈ Mp(B(KA))J+ and [bkl] ∈
Mp(B(KB))J+, we have

S
[
JCψ(ai j, bkl)

]
S∗ ∈ B(KC)+

Let {e j : 1 ≤ j ≤ p} be a canonical basis of Cp written as column vectors. We denote by eT
j the transpose of e j,

that is, a row vector, so that S := (eT
1 · · · eT

p ) ∈M1,p2 (C). Thus, we have that

JC

p∑
i, j=1

ψ(ai j, bi j) = (eT
1 · · · eT

p )
[
JCψ(ai j, bkl)

] 
e1
...

ep

 = S
[
JCψ(ai j, bkl)

]
S∗

is positive semidefinite in B(KC), which implies that
∑p

i, j=1 ψ(ai j, bi j) is JC-positive in B(KC).
Conversely, assume that (11) holds. We take any element V ∈M1,p2 (C) with

V = (v1,1, v1,2, . . . , v1,p2 ).

We denote by Ṽ =
[
ṽi j

]
the p × p-matrix whose entries are given by ṽi j = v1,(i−1)p+ j, that is,

Ṽ =
[
ṽi j

]
=


v1,1 v1,2 · · · v1,p

v1,p+1 v1,p+2 · · · v1,2p
...

...
. . .

...
v1,p(p−1)+1 v1,p(p−1)+2 · · · v1,p2 .


For any [bi j] ∈Mp(B(KB))J+, we observe that Jp

B · Ṽ
[
bi j

]
Ṽ∗ is positive semidefinite in Mp(B(KB)).

Let {e j : 1 ≤ j ≤ p} be the canonical basis of Cp, written as column vectors. Then we can decompose
V ∈M1,p2 (C) as follows;

V = (eT
1 · · · eT

p )


Ṽ

. . .

Ṽ

 = (eT
1 · · · eT

p )(Ip ⊗ Ṽ)
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where eT
j is the transpose of e j, which is a row vector. We observe that

[bi j] ∈Mp(B(KB))J+ =⇒ Ṽ
[
bi j

]
Ṽ∗ ∈Mp(B(KB))J+.

For any elements [ai j] ∈Mp(B(KA))J+ and [bkl] ∈Mp(B(KB))J+, we have that

V
[
JCψ(ai j, bkl)

]
V∗ = (eT

1 · · · eT
p )(Ip ⊗ Ṽ)

[
JCψ(ai j, bkl)

]
(Ip ⊗ Ṽ)∗(eT

1 · · · eT
p )∗

= (eT
1 · · · eT

p )(Ip ⊗ Ṽ)(Ip ⊗ Jp
C)

[
ψ(ai j, bkl)

]
(Ip ⊗ Ṽ)∗(eT

1 · · · eT
p )∗

= (eT
1 · · · eT

p )(Ip ⊗ Jp
C)(Ip ⊗ Ṽ)

[
ψ(ai j, bkl)

]
(Ip ⊗ Ṽ)∗(eT

1 · · · eT
p )∗

= (eT
1 · · · eT

p )(Ip ⊗ Jp
C)ψ̃p⊗p

(
(ai j) ⊗ Ṽ(bkl)Ṽ∗

)
(eT

1 · · · eT
p )∗

= (eT
1 · · · eT

p )
[
JCψ(ai j, b′kl)

] 
e1
...

ep


= JC

p∑
i, j=1

ψ(ai j, b′i j).

Since [b′i j] = Ṽ[bi j]Ṽ∗ is Jp
B-positive in Mp(B(KB)) by (10), It follows from the assumption (11) that ψ is

(p, p, 1)-J-positive.

Definition 4.6. Let ψ : B(KA) × B(KB)→ B(KC) be a bilinear map and let p, q, r ∈N.

1. ψ is partial J-positive if ψ(a, b) ∈MJ+
C for any a ∈ B(KA)+ and b ∈ B(KB)J+.

2. ψ is partial (p, q, r)-J-positive if

SJpq
C ψp,q

(
[ai j], [bkl]

)
S∗ = S

[
JCψ(ai j, bkl)

]
S∗ ∈Mr(B(KC))+

for any [ai j] ∈Mp(B(KA))+, [bkl] ∈Mq(B(KB))J+ and S ∈Mr,pq(C).

Proposition 4.7. A bilinear map ψ : Mp(C) × B(KB) → B(KC) is partial (p, p, 1)-J-positive if and only if the
linearization ψ̃ : Mp(B(KB))→MC is (Jp

B, JC)-positive.

Proof. Suppose that ψ is partial (p, p, 1)-J-positive. Let {ei j : 1 ≤ i, j ≤ p} be the set of canonical matrix units
in Mp(C). Since [ei j]

p
i, j=1 ∈ Mp(Mp(C)) is positive semidefinite, it follows from the definition that for any

[bi j]
p
i, j=1 ∈Mp(B(KB))J+,

n∑
i, j=1

ψ(ei j, bi j) = Sψp,p

(
[ei j], [bkl]

)
S∗ ∈ B(KC)J+

where S = (eT
1 · · · eT

p ) ∈ M1,p2 (C) with a canonical basis {ei : 1 ≤ i ≤ p} in Cp. Thus, for any [bi j]
p
i, j=1 ∈

Mp(B(KB))J+ we have that

ψ̃
(
Jp
B[bi j]

)
= ψ̃

( n∑
i, j=1

ei j ⊗ JBbi j

)
=

n∑
i, j=1

ψ̃
(
ei j ⊗ JBbi j

)
=

n∑
i, j=1

ψ(ei j, JBbi j),

which is JC-positive in B(KC). This implies that ψ̃ is (Jp
B, JC)-positive.

Conversely, assume that the linearization ψ̃ : Mp(B(KB)) → B(KC) is (Jp
B, JC)-positive. For any [ai j] ∈

Mp(Mp(C))+, [bkl] ∈Mp(B(KB))J+ and S ∈M1,p2 (C), we observe that

S([ai j] ⊗ [bkl])S∗ ∈Mp(B(KB))
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is Jp
B-positive. Hence we have that

Sψp,p

(
[ai j], [bkl]

)
S∗ = Sψ̃p⊗p

(
[ai j] ⊗ [bkl]

)
S∗ = ψ̃

(
S
(
[ai j] ⊗ [bkl]

)
S∗

)
is JC-positive in B(KC), which completes the proof.

Remark 4.8. There is a relation between a bilinear map and the amplification of its linearization. We observe that if
the linearization ψ̃ : Mp(B(KB)) → B(KC) of a bilinear map ψ is r-J-positive, then ψ is (p, q, r)-J-positive for any
p, q ∈N. Indeed, since

(JA ⊗ JB)r(S(x ⊗ y)S∗) = S(Jp
A ⊗ Jq

B)(x ⊗ y)S∗ = S(Jp
Ax ⊗ Jq

By)S∗

for any x ∈ Mp(B(KA))J+, y ∈ Mq(B(KB))J+ and S ∈ Mr,pq(C), we see that S(x ⊗ y)S∗ is (JA ⊗ JB)r-positive. If ψ̃ is
r-J-positive, we have that

Sψp,q(x ⊗ y)S∗ = Sψ̃p⊗q(x ⊗ y)S∗ = ψ̃r(S(x ⊗ y)S∗) ∈Mr(B(KC))J+,

which implies that ψ is (p, q, r)-J-positive.

5. Conclusions

We explored the structural aspects of completely J-positive (bi-)linear maps through their associated
Choi J-matrices. This will give foundational insights into the interplay between completely J-positive
(bi-)linear maps and their Choi J-matrices, advancing the understanding of operator-theoretic positivity
structures. By employing a bilinear J-pairing framework, the dual cone of the set of completely J-positive
linear maps coincides with itself. This self-duality mirrors properties of classical positive semidefinite
cones and underscores the intrinsic symmetry in J-positivity frameworks. Multiple criteria for J-positivity
of bilinear maps are proved, with a central result linking the J-positivity of a bilinear map to the J-positivity
of its Choi J-matrix. This bridges abstract operator-theoretic properties to concrete matrix analysis. A notion
of partial J-positivity is offering a refined perspective on the linearization of bilinear maps in the context
of J-structures. This concept resolves ambiguities in extending positivity properties from bilinear forms
to their linear counterparts. These results unify and generalize tools for studying positivity in operator
algebras, with applications in quantum information theory, matrix analysis, and functional analysis. The
Choi J-matrix characterization offers a practical method to verify J-positivity, while partial J-positivity
provides a nuanced framework for analyzing linearized systems. This work sets the stage for further
exploration of (complete) J-positivity in noncommutative settings and operator-valued mappings.
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