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Abstract. For an algebra with bracket and two two-sided ideals, several subalgebras of the Lie algebra
of derivations of an algebra with bracket are introduced and characterized. The interplay of these sub-
algebras with central derivations and inner derivations of tautological algebras with bracket is analyzed.
Exact sequences of Wells-type are obtained, which include the various types of subalgebras of introduced
derivations, and which are associated with an abelian extension of algebras with bracket.

1. Introduction

The algebraic structure of algebra with bracket (AWB for short) was introduced in [5] and its origins
can be found in the physics literature (see [6]). It is an associative algebra (not necessarily commutative)
endowed with a second operation, denoted by [−,−], such that the following identity holds for all a, b, c:

[ab, c] = a[b, c] + [a, c]b

The main example of this structure is a Poisson algebras. Other examples and a study of homological
properties of this algebraic structure can be seen in [1, 2, 4, 5].

The proposal on this article focuses on the study of central derivations of algebras with bracket and
some of their subalgebras, as well as on inner derivations of tautological algebras with bracket and their
relationship with central derivations. Furthermore, the role played by the different subalgebras of central
derivations in the construction of Wells-type exact sequences associated with an abelian extension of AWB
is analyzed [4].

The paper is structured as follows: after a review of basic notions in Section 2, actions and cohomology,
necessary for the development of the paper, in Section 3, we introduce central derivations of an AWB
A, that is derivations whose image is contained in the center of A, and some subalgebras of Der(A), the
Lie algebra of derivations of A, such as DerM,N(A) = {d ∈ Der(A) | d(A) ∈ M; d(N) = 0} (M,N are two-sided
ideals of A), studying their most important properties such as the isomorphism between central derivations
and linear transformations from the abelianized AWB to its center (Proposition 3.3), the characterization
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of stem AWBs using their central derivations (Proposition 3.5), or the characterization of the subalgebra
C∗(A) = DerZ(A),Z(A)(A) when A is a finite-dimensional AWB (Theorem 3.8). We also prove several results on
central derivations and stem AWB using the isoclinism equivalence relation introduced in [3] (Proposition
3.12, Corollary 3.16). In Section 4, we discuss inner derivations of tautological AWBs, since there are no
inner derivations for AWB in general. We also study the relationship between inner derivations and the
subalgebra DerM,N(A) (Theorem 4.4), the conditions under which inner derivations coincide with central
derivations (Corollary 4.7) or the equality of the center of inner derivations with C∗(A) (Theorem 4.9).
Finally, Section 5 is devoted to the construction of several Wells-type exact sequences associated with an
abelian extension or a central extension of AWBs in which the introduced subalgebras of derivations play
a central role (Theorem 5.5, Corollary 5.6). Furthermore, the splitting of these sequences when the abelian
extension or the central extension is split is proved (Theorem 5.7).

2. Preliminaries

2.1. Basic definitions
Definition 2.1 ([5]). An algebra with bracket, or an AWB for short, is an associative (not necessarily commutative)
algebra A equipped with a bilinear map (bracket operation) [−,−] : A×A→ A, (a, b) 7→ [a, b] satisfying the following
identity:

[ab, c] = [a, c]b + a[b, c] (2.1)

for all a, b, c ∈ A.

A homomorphism of AWB’s is a homomorphism of associative algebras preserving the bracket operation.
We denote by AWB the respective category of AWB’s.

Example 2.2.

(a) Any vector space A with the trivial multiplication and bracket, i.e. ab = 0 and [a, b] = 0 for all a, b ∈ A, is an
AWB, called an abelian AWB.

(b) Any Poisson algebra is an AWB.

(c) Let (A, ·) be an associative algebra, then A endowed with the bracket [a, b] B ab− ba, a, b ∈ A, is an algebra with
bracket called the tautological algebra with bracket associated to (A, ·). Some examples are included throughout
the text.

(d) For other examples we refer to [4, 5] and references given therein.

Let us recall the following notions from [1]. A subalgebra B of an AWB A is a vector subspace satisfying
B B ⊆ B and [B,B] ⊆ B. A subalgebra B is said to be a right (respectively, left) ideal if A B ⊆ B, [A,B] ⊆ B
(respectively, B A ⊆ B, [B,A] ⊆ B). If B is both left and right ideal, then it is said to be a two-sided ideal. In
this case, the quotient A/B is endowed with an AWB structure naturally induced from the operations on A.

Let A be an AWB and B,C be two-sided ideals of A. The commutator ideal of B and C is the two-sided
ideal of B and C

[[B,C]] = ⟨{bc, cb, [b, c], [c, b] | b ∈ B, c ∈ C}⟩.

Observe that [[B,C]] is not a two-sided ideal of A in general, except when B = A or C = A. In the particular
case B = C = A, one obtains the definition of derived algebra of A, [[A,A]] = ⟨{aa′, [a, a′] | a, a′ ∈ A}⟩. Note
that the quotient A/[[A,A]] is an abelian AWB.

The center of an AWB A is the two-sided ideal

Z(A) = {a ∈ A | ab = 0 = ba, [a, b] = 0 = [b, a], for all b ∈ A}.
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Note that an AWB A is abelian if and only if A = Z(A). An AWB A is said to be stem if Z(A) ⊆ [[A,A]].
Let M be a two-sided ideal of an AWB A. The two-sided ideal of A

CA(A,M) = {a ∈ A | aa′, a′a, [a, a′], [a′, a] ∈ M, for all a′ ∈ A}

is said to be the centralizer of A and M on A (see [2]). Obviously, CA(A, 0) = Z(A).
The sequence of two-sided ideals defined recursively by

A[1] = A; A[i] = [[A[i+1],A]], i ≥ 2

is said to be the lower central series of an AWB A. A is said to be nilpotent with class of nilpotency c if and
only if A[c+1] = 0 and A[c] , 0 (see [2]).

The upper central series (see [2]) of an AWB A is the sequence of two-sided ideals defined recursively
by

Z0(A) = 0; Zi(A) = CA(A,Zi−1(A)), i ≥ 1

Theorem 2.3. [2] An AWB A is nilpotent with class of nilpotency c if and only ifZc(A) = A andZc−1(A) , A.

2.2. Actions
Definition 2.4. Let A and M be two AWB’s. An action of A on M consists of four bilinear maps

A ×M→ M, (a,m) 7→ a ·m, M × A→ M, (m, a) 7→ m · a,
A ×M→ M, (a,m) 7→ {a,m}, M × A→ M, (m, a) 7→ {m, a},

such that the following conditions hold:

(a1a2) ·m = a1 · (a2 ·m), {a1·m, a2} = a1·{m, a2} + [a1, a2] ·m,
m · (a1a2) = (m · a1)·a2, {m·a1, a2} = {m, a2}·a1 +m·[a1, a2],
(a1·m)·a2 = a1·(m·a2), {a1a2,m} = a1·{a2,m} + {a1,m} · a2,
(m1m2)·a = m1(m2· a), [m1·a,m2] = m1{a,m2} + [m1,m2]·a,
a·(m1m2) = (a·m1)m2, [a·m1,m2] = a · [m1,m2] + {a,m2}m1,
(m1·a)m2 = m1(a·m2), {m1m2, a} = m1{m2, a} + {m1, a}m2,

(2.2)

for all a, a1, a2 ∈ A, m,m1,m2 ∈ M.
The action is called trivial if all these bilinear maps are trivial.

Let us remark that if an action of an AWB A on an abelian AWB M is given, then all six equations in the
last three lines of (2.2) vanish and we get the definition of a representation M of A (see [5]).

Example 2.5.

(a) If M is a two-sided ideal of an AWB A, then the structural operations in A yield an action of A on M, that is
a·m = am, m·a = ma, {a,m} = [a,m], {m, a} = [m, a], for all m ∈ M, a ∈ A.

(b) Let 0→ M i
→ E

s
⇆
p

A→ 0 be a split short exact sequence of AWBs, then there is an action of A on M, given by:

a ·m = i−1
(
s(a)i(m)

)
, m · a = i−1

(
i(m)s(a)

)
,

{a,m} = i−1
(

[s(a), i(m)]
)
, {m, a} = i−1

(
[i(m), s(a)]

)
,

(2.3)

for all m ∈ M, a ∈ A.

(c) If p : E→ A is a surjective homomorphism of AWB’s with abelian kernel, then the actions (2.3) endow Ker(π)
with a structure of A-representation.
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2.3. Cohomology of AWB’s

The Quillen cohomology of an AWB A with coefficients in a representation M of A is computed as the
cohomology of an explicit cochain complex K∗(A,M) in [5]. Let us recall the main constructions.

Let A be an AWB and M be a representation of A. Since M is a bimodule over the associative algebra
A, we can consider the Hochschild cochain complex C∗(A,M) of A with coefficients in M. Let us recall that
Cn(A,M) = Hom(A⊗n,M) and the coboundary map b∗ is given by

bn( f )(a0, . . . , an) =a0 · f (a1, . . . , an) +
∑

0≤i≤n−1

(−1)i+1 f (a0, . . . , aiai+1, . . . , an)

+ (−1)n+1 f (a0, . . . , an−1) · an .

Now we let C
∗

(A,M) be the cochain complex defined by

C
n
(A,M) = Cn+1(A,M), n ≥ 0 and C

n
(A,M) = 0, n ≤ 0.

At the same time, the vector space Me = Hom(A,M) has a bimodule structure over A given by

(a0 · f )(a1) = a0 · f (a1), ( f · a0)(a1) = f (a1) · a0,

for all a0, a1 ∈ A and f ∈ Me.
There is a cochain map

αn : C
n
(A,M)→ C

n
(A,Me), n ≥ 0

defined by(
α0( f )(a0)

)
(a1) = {a0, f (a1)} − f [a0, a1] + { f (a0), a1}

provided n = 0 and for n ≥ 1 by(
αn( f )(a0, . . . , an)

)
(an+1) = { f (a0, . . . , an), an+1} −

∑
0≤i≤n

f (a0, . . . , [ai, ai+1], . . . , an+1) .

Then the complex K∗(A,M) is defined to be the cone of the cochain map α. By definition, the n-th AWB
cohomology is Hn

AWB(A,M) = Hn−1K∗(A,M), n ≥ 0.

For future references, we specify below the cochains and coboundary maps of K∗(A,M) in low dimen-
sions:
• K−1(A,M) consists of all linear maps h : A→ M
• K0(A,M) consists of all pairs ( f , 1), where f : A⊗2

→ M (resp. 1 : A → Me) is a 2-cochain (resp. 1-cochain)
in the Hochschild complex C∗(A,M) (resp. C∗(A,Me)).
• K1(A,M) consists of all pairs (f,g), where f : A⊗3

→ M (resp. g : A⊗2
→ Me) is a 3-cochain (resp. 2-cochain)

in the Hochschild complex C∗(A,M) (resp. C∗(A,Me));
• The coboundary map ∂−1 is given by

∂−1(h)(a0, a1) =
(
−b1(h)(a0, a1), −α0(h)(a0)(a1)

)
(2.4)

=
(
− a0 · h(a1) + h(a0a1) − h(a0) · a1, −{a0, h(a1)} + h[a0, a1] − {h(a0), a1}

)
.

• The coboundary map ∂0 is given by

∂0( f , 1) =
(
−b2( f ), b1(1) − α1( f )

)
,
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where

b2( f )(a0, a1, a2) = a0 · f (a1, a2) − f (a0a1, a2) + f (a0, a1a2) − f (a0, a1) · a2, (2.5)

and (
b1(1) − α1( f )

)
(a0, a1, a2) = a0 ·

(
1(a1)(a2)

)
+

(
1(a0)(a2)

)
· a1 − 1(a0a1)(a2) (2.6)

−

(
{ f (a0, a1), a2} − f

(
[a0, a2], a1

)
− f

(
a0, [a1, a2]

))
.

2.4. H0
AWB and H1

AWB

Definition 2.6. Let A be an AWB and M be a representation of A. An AWB-derivation is a linear map d : A→ M
such that

d(a0a1) = a0d(a1) + d(a0)a1,
d[a0, a1] = [a0, d(a1)] + [d(a0), a1],

for all a0, a1 ∈ A.

Let DerAWB(A,M) denote the vector space of all AWB-derivations. By [5, Lemma 4.4] there is an isomor-
phism of abelian AWBs

H0
AWB(A,M) � DerAWB(A,M). (2.7)

In the particular case when M = A, we denote DerAWB(A,A) by DerAWB(A). It is easy to check that
d1d2 − d2d1 ∈ DerAWB(A) if d1, d2 ∈ DerAWB(A), showing that DerAWB(A) is a Lie subalgebra of the Lie algebra
of all derivations Der(A) of the associative algebra A.

Definition 2.7. Any abelian extension of an AWB A by a representation M of A is a short exact sequence of AWB’s

E : 0 −→ M i
−→ E

p
−→ A −→ 0,

which induces (see Example 2.5 (c)) the given representation structure on M.

It gives rise to a 0-cocycle ( f , 1) ∈ K0(A,M) by choosing a linear section s : A → E of p, and by defining
f : A⊗2

→ M and 1 : A→ Hom(A,M) as follows

f (a0, a1) = i−1
(
s(a0)s(a1) − s(a0a1)

)
, (2.8)

1(a0)(a1) = i−1
(
[s(a0), s(a1)] − s[a0, a1]

)
for all a0, a1 ∈ A. This gives a well-defined bijection between the set of equivalence classes ExtAWB(A,M) of
such abelian extensions of A by M and the first cohomology of A with coefficients in M [5, Lemma 4.6], i.e.

H1
AWB(A,M) � ExtAWB(A,M). (2.9)

Let us note that this bijection allows us to endow the set Ext(A,M) with a vector space structure induced
from the one of H1

AWB(A,M) (see [4]).
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3. Some subalgebras of derivations

In this section, we introduce and characterize several subalgebras of the Lie algebra of derivations of an
AWB, paying special attention to central derivations.

Let A be an AWB and M,N be two two-sided ideals of A. We introduce the following subalgebras of
Der(A):

DerM(A) = {d ∈ DerAWB(A) | d(x) ∈ M for all x ∈ A} ,
DerN(A) = {d ∈ DerAWB(A) | d(x) = 0 for all x ∈ N} ,
DerM,N(A) = DerM(A) ∩ DerN(A),
Der(A : M) = {d ∈ DerAWB(A) | d(x) ∈ M for all x ∈ M} ;
C∗(A) = DerZ(A),Z(A)(A).

Definition 3.1. A derivation d : A→ A of an AWB A is said to be a central derivation if Im(d) ⊆ Z(A).

We denote the set of all central derivations of an AWB A by Derz(A). Obviously, Derz(A) is a subalgebra
of DerAWB(A) and every element of Derz(A) annihilates [[A,A]].

Let A and B be two AWBs and denote by T(A,B) the set of all linear transformations from A to B. Clearly,
T(A,B) endowed with the operations ( f1)(x) = f (x)1(x) and [ f , 1](x) = [ f (x), 1(x)] inherits the algebraic
structure that B may have.

Lemma 3.2. Let M and N be two two-sided ideals of an AWB A such that M ⊆ Z(A). Then the following statements
hold:

(a) The mapΨ : DerM,N(A)→ T
(

A
N ,M

)
, which assigns to a derivation d ∈ DerM,N(A) the map χd : A

N → M given
by χd(x + N) = d(x), x ∈ A, is an isomorphism of abelian AWBs.

(b) If M ⊆ N, then Ψ : DerM,N(A) → T
(

A
N ,M

)
is an isomorphism of AWBs. Moreover, DerM,N(A) is an abelian

AWB.

Proof. (a) χd is well-defined and
χd((x + N)(x′ + N)) = d(xx′) = d(x)x′ + xd(x′) = 0,
χd(x + N)χd(x′ + N) = d(x)d(x′) = 0,
χd([x + N, x′ + N]) = d([x, x′]) = [d(x), x′] + [x, d(x′)] = 0,
[χd(x + N), χd(x′ + N)] = [d(x), d(x′)] = 0.
On the other hand, Ψ has trivial kernel and is surjective since for any f ∈ T

(
A
N ,M

)
, define τ : A →

A, τ(x) = f (x + N), x ∈ A. It is easy to check that τ ∈ DerM,M(A) andΨ(τ) = χτ = f .
(b) Direct checking.

Proposition 3.3. For any AWB A, Derz(A) � T
(

A
[[A,A]] ,Z(A)

)
as abelian AWBs. If A is also a stem AWB, then

Derz(A) is isomorphic to the abelian Lie algebra T
(

A
[[A,A]] ,Z(A)

)
.

Proof. Let d ∈ Derz(A) be, then d(A) ⊆ Z(A), and d annihilates [[A,A]]. So, d induces the map αd : A
[[A,A]] −→

Z(A) defined by αd(a + [[A,A]]) = d(a), a ∈ A.
Now define the map β : Derz(A) −→ T

(
A

[[A,A]] ,Z(A)
)

by β(d) = αd. Clearly, β is a linear map, which is
one-to-one by definition of αd.

β is onto since for a given d∗ ∈ T
(

A
[[A,A]] ,Z(A)

)
, there exists a linear map d : A → Z(A), d = d∗π, where

π : A↠ A
[[A,A]] is the canonical projection, such that β(d) = d∗. Finally, d ∈ Derz(A) since d(ab) = d∗(π(a)π(b)) =

d∗(0) = 0 and d[a, b] = d∗([π(a), π(b)]) = d∗(0) = 0; on the other hand, d(a)b+ad(b) = d∗(π(a))b+ad∗(π(b)) = 0 and
[d(a), b]+[a, d(b)] = [d∗(π(a)), b]+[a, d∗(π(b))] = 0, since d∗(π(a)), d∗(π(b)) ∈ Z(A), a, b ∈ A. Finally, we show that
β is Lie algebra homomorphism. Indeed, let a ∈ A . It is clear that β([d1, d2])(a) = α[d1,d2](a) = [d1, d2](a) = 0
since d1(A), d2(A) ⊆ Z(A) ⊆ [[A,A]] and d1, d2 annihilate [[A,A]]. On the other hand, [β(d1), β(d2)](a) =
[αd1 , αd2 ](a) = [αd1 (a), αd2 (a)] = 0 since αdi (a) ∈ Z(A), i = 1, 2. Hence β([d1, d2]) = [β(d1), β(d2)]. This completes
the proof.
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Corollary 3.4. If A is a stem AWB, then Derz(A) is an abelian Lie algebra.

Proof. Direct consequence of Proposition 3.3.

The converse of the above result is not true in general. Indeed, let A be the 1-dimensional abelian
tautological AWB, that is A has a basis {e} and operations ee = [e, e] = 0, then Derz(A) = Der(A) is an abelian
Lie algebra, but A is not a stem AWB since Z(A) = A ⊈ 0 = [[A,A]].

Proposition 3.5. Let A be a nilpotent finite-dimensional AWB such that [[A,A]] , 0. Then Derz(A) is abelian if
and only if A is a stem AWB.

Proof. We only need to prove the converse of Corollary 3.4. Assume that A is not a stem AWB. Then,
there is some a1 ∈ Z(A) such that a1 < [[A,A]]. Since A is a nilpotent AWB and [[A,A]] , 0, it follows
that Z(A) ∩ [[A,A]] , 0. Now, let H := ⟨a1⟩

⊥ be the complement of the subspace spanned by a1, and let
a2 ∈ Z(A) ∩ [[A,A]], a2 , 0. Consider d1 (d2, respectively) as the linear transformation of A vanishing on H
and mapping a1 to a1 (a1 to a2, respectively). Clearly, d1 and d2 are central derivations of the AWB A such
that [d1, d2](a1) = d1(d2(a1)) − d2(d1(a1)) = −a2 , 0. Therefore Derz(A) is not abelian.

Corollary 3.6. Let A be a finite-dimensional AWB and M1,M2,N1, N2 be two-sided ideals of A such that M1 ⊆ M2 ⊆

Z(A) and N2 ⊆ N1. Then DerM1,N1 (A) ⊆ DerM2,N2 (A). Also, DerM1,N1 (A) = DerM2,N2 (A) if and only if M1 = M2 and
N1 = N2.

Proof. The inclusion is obvious. If DerM1,N1 (A) = DerM2,N2 (A), then Lemma 3.2 implies dim
(
T
(

A
N1
,M1

))
=

dim
(
T
(

A
N2
,M2

))
. From this equality is derived the equality between the ideals, since otherwise, that is, if

M1 ⊊ M2 or N2 ⊊ N1, then dim
(
T
(

A
N1
,M1

))
< dim

(
T
(

A
N2
,M2

))
, which is a contradiction.

The converse is evident.

Corollary 3.7. Let A be a finite-dimensional AWB and M,N be two two-sided ideals of A such that M ⊆ Z(A). Then
DerM,N(A) = Derz(A) if and only if M = Z(A) and N ⊆ [[A,A]].

Proof. By Lemma 3.2, DerM,N(A) = DerM,N+[[A,A]](A). By Corollary 3.6 and bearing in mind that Derz(A) =
DerZ(A),[[A,A]](A), we have DerZ(A),[[A,A]](A) = DerM,N+[[A,A]](A) if and only if M = Z(A) and N+[[A,A]] = [[A,A]]
if and only if M = Z(A) and N ⊆ [[A,A]].

Theorem 3.8. Let A be a finite-dimensional AWB. Then the following statements hold:

(a) If A is abelian or Z(A) = 0, then C∗(A) = {0}.
(b) Let A be a nilpotent AWB. Then A is abelian if and only if C∗(A) = {0}.
(c) The abelian algebra with bracket C∗(A) and T

(
A

Z(A) ,Z(A)
)

are isomorphic.

(d) Let A be such that [[A,A]] = Z(A), then Derz(A) = C∗(A) � T
(

A
[[A,A]] ,Z(A)

)
.

(e) If A is nilpotent of class 2, then Derz(A) = C∗(A) if and only if [[A,A]] = Z(A).

Proof. (a) If A is abelian, then Z(A) = A, so Der(A) = Derz(A) and every derivation d ∈ C∗(A) sends elements
of A = Z(A) to 0, hence d = 0.

If Z(A) = 0, then every derivation d ∈ C∗(A) verifies that d(a) ∈ Z(A) = 0, for all a ∈ A, hence d = 0.
(b) If A is nilpotent and C∗(A) = {0}, then having in mind the isomorphism of abelian AWBs C∗(A) �

T
(

A
Z(A) ,Z(A)

)
provided by Lemma 3.2 (a) we have dim

(
A

Z(A)

)
· dim(Z(A)) = 0, which implies A = Z(A). The

converse is given in statement (a).
(c) Consequence of Lemma 3.2 (b).
(d) By Lemma 3.2, C∗(A) � T

(
A

Z(A) ,Z(A)
)

as abelian AWBs. By Proposition 3.3, Derz(A) � T
(

A
[[A,A]] ,Z(A)

)
as abelian AWBs.

(e) Since A is nilpotent of class 2, then [[A,A]] ⊆ Z(A). By Lemma 3.2 and Proposition 3.3, T
(

A
Z(A) ,Z(A)

)
�

T
(

A
[[A,A]]) ,Z(A)

)
, then dim(Z(A)) = dim([[A,A]]).

The converse is provided by statement (d).
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Example 3.9. Consider the two-dimensional complex associative algebra As1
2 with basis {e1, e2} and operation given

by e1e1 = e2 and zero elsewhere [7]. Then the tautological AWB A associated to As1
2 satisfies the requirements of

statement (d) in Theorem 3.8, since [[A,A]] = Z(A) = ⟨{e2}⟩.

Following [3], two AWBs A and B are said to be isoclinic, if there exist a pair of isomorphisms η : A
Z(A) →

B
Z(B) and ξ : [[A,A]]→ [[B,B]] such that the following diagram is commutative

[[A,A]]

ξ

��

A
Z(A) ×

A
Z(A)

CA //

η×η

��

PAoo [[A,A]]

ξ

��
[[B,B]] B×B

CB //PBoo [[B,B]]

(3.1)

where PA : A
Z(A) ×

A
Z(A) → [[A,A]] is given by PA(a1 + Z(A), a2 + Z(A)) = a1a2 and CA : A

Z(A) ×
A

Z(A) → [[A,A]] is
given by CA(a1 + Z(A), a2 + Z(A)) = [a1, a2], a1, a2 ∈ A (correspondingly, PB,CB).

The pair (η, ξ) is called an isoclinism from A to B and will be denoted by (η, ξ) : A ∼ B.

Lemma 3.10. Let A and B be two isoclinic AWB’s. If A is nilpotent of class c, then so is B.

Proof. For any a ∈ A, denote ā = a + Z(A). Then for a, ai ∈ A, i = 1, . . . ,n, we have (((āā1)ā2) . . . ān) =
(((aa1)a2) . . . an)+ Z(A), so a ∈ Zi+1(A) if and only if ā ∈ Zi

(
A

Z(A)

)
. Thus Zi+1(A)

Z(A) = Zi

(
A

Z(A)

)
. If (η, ξ) denotes the

isoclinism between A and B, then we have

η

(
Zi+1 (A)

Z(A)

)
= η

(
Zi

(
A

Z(A)

))
= Zi

(
B

Z(B)

)
=
Zi+1 (B)

Z(B)
.

It follows that
A

Zi+1 (A)
�

A /Z(A)
Zi+1 (A) /Z(A)

�
B /Z(B)

Zi+1 (B) /Z(B)
�

B
Zi+1 (B)

Now assume that A is nilpotent of class c, that isZc (A) = A (see Theorem 2.3), then B
Zc(B) �

A
Zc(A) = 0, hence

B = Zc (B).
Also, A

Zc−1(A) , 0 if and only if B
Zc−1(B) , 0. Consequently, B is nilpotent of class c.

Lemma 3.11. Let (η, ξ) : A ∼ B be. If A is a stem AWB, then ξ maps Z(A) onto Z(B) ∩ [[B,B]].

Proof. As Z(A) ⊆ [[A,A]], then any element z ∈ Z(A) can be written as z =
∑

i

λixiyi + µi[ai, bi], λi, µi ∈

K, xi, yi, ai, bi ∈ A. Let η(xi + Z(A)) = x′i + Z(B), η(yi + Z(A)) = y′i + Z(B), η(ai + Z(A)) = a′i + Z(B), η(bi + Z(A)) =
b′i + Z(B) be, then

ξ(z) + Z(B) = ξ

∑
i

λixiyi + µi[ai, bi]

 + Z(B) =
∑

i

λiξ(xiyi) + µiξ[ai, bi] + Z(B)

(∗)
=

∑
i

λi(x′i y
′

i ) + µi[a′i , b
′

i ] + Z(B)

=
∑

i

λi((x′i + Z(B))(y′i + Z(B))) + µi[a′i + Z(B), b′i + Z(B)]

=
∑

i

λiη
(
(xiyi) + Z(A)

)
+ µi ([ai, bi] + Z(A))

= η

∑
i

λi
(
xiyi

)
+ µi ([ai, bi]) + Z(A)

 = η(Z(A)) = Z(B).
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hence ξ(z) ∈ Z(B).
(∗)

ξ(xiyi) = ξ(xi)ξ(yi) = ξ
(
PA(xi + Z(A))ξPA(yi + Z(A))

)
= PB

(
η × η

(
(xi + Z(A))(yi + Z(A))

))
= PB

(
((x′i + Z(B))((y′i + Z(B)))

)
= x′i y

′

i ;

Similarly, ξ[xi, yi] = [x′i , y
′

i ].
Obviously, ξ[[A,A]] ⊆ [[B,B]], therefore ξ(Z(A)) ⊆ Z(B) and ξ(Z(A)) ⊆ ξ[[A,A]] ⊆ [[B,B]], so ξ(Z(A)) ⊆

Z(B) ∩ [[B,B]].
Finally, it is easy to check that ξ is surjective.

Proposition 3.12. Let A and B be two isoclinic AWB where A is a stem AWB. Then every d ∈ Derz(A) induces
a central derivation d∗ of B. Moreover, the map ϕ : Derz(A) → Derz(B), d 7→ d∗ is an injective Lie algebra
homomorphism.

Proof. Let (η, ξ) : A ∼ B be. For d ∈ Derz(A), d(a) ∈ Z(A) for all a ∈ A, then ξ(d(a)) ∈ Z(B)∩ [[B,B]] by Lemma
3.11. Define d∗ : B→ B by d∗(b) = d(ξ(a)), for all b ∈ B and b+ Z(B) = η(a+ Z(A)). Now the statements of the
proposition are easy to verify.

Lemma 3.13. An AWB A is a stem AWB if and only if J∩[[A,A]] , 0 for all non-zero two-sided ideal J of A.

Proof. Assume that A is not a stem AWB and let a ∈ Z(A) such that a < [[A,A]]. Consider the two-sided ideal
J B ⟨{a}⟩. Then J is a non-zero two-sided ideal of A such that J∩[[A,A]] = 0.

Conversely, suppose that A is a stem AWB and let J be a non-zero two-sided ideal of A such that
J∩[[A,A]] = 0. Then J ⊆ Z(A), so J = J∩Z(A) ⊆ J∩[[A,A]] = 0. This leads to the conclusion that J = 0,
which is a contradiction.

Lemma 3.14. Let A be an AWB and J be a two-sided ideal of A, then A
J ∼

A
J∩[[A,A]] . Consequently, if J∩[[A,A]] = 0,

then A ∼ A
J .

Proof. Consider the map η : A1
Z(A1) →

A2
Z(A2) , where A1 =

A
J and A2 =

A
J∩[[A,A]] , defined by η(ā+Z(A1)) = ã+Z(A2)

with ā = a+J and ã = a+J∩[[A,A]]. Thenη is clearly an isomorphism. Also, the mapξ : [[A1,A1]]→ [[A2,A2]]
defined by ξ(ā1ā2) = ã1ã2; ξ[ā1, ā2] = [ã1, ã2], a1, a2 ∈ A is a well-defined isomorphism and diagram (3.1) is
commutative. Therefore, (η, ξ) is an isoclinism.

Proposition 3.15. Every AWB is isoclinic to some stem AWB.

Proof. Let A be an AWB. Consider the set

M = {J | J is a two-sided ideal of A satisfying J∩[[A,A]] = 0}.

Obviously, J = 0 belongs toM, soM is non-empty and partially ordered by the set inclusion. By Zorn’s
lemma, it contains a maximal two-sided ideal, denoted by M. By Lemma 3.14, it follows that A is isoclinic
to A

M , since M∩[[A,A]] = 0.
It remains to show that A

M is a stem AWB. To do so, let J be an arbitrary two-sided ideal of A containing
M and satisfying J

M ∩ [[ A
M ,

A
M ]] = M. By Lemma 3.13 it is enough to show that J ⊆ M. Indeed, it is easy to

show that J∩[[A,A]] = 0, then J ∈ M, so J ⊆ M by the maximality of M.

Corollary 3.16. For any arbitrary AWB A, the Lie algebra Derz(A) has a central subalgebra N isomorphic to
T
(

B
[[B,B]] ,Z(B)

)
for some stem AWB algebra B isoclinic to A.

Moreover, each element of N sends Z(A) to zero.
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Proof. By Proposition 3.15 there is a stem AWB B isoclinic to A. Denote this isoclinism by (η, ξ). Now, by the
proof of Proposition 3.12, N B {d∗ : B→ B | d ∈ Derz(A)} is a subalgebra of Derz(B) isomorphic to Derz(A).

Moreover, N is a central subalgebra of Derz(B). Indeed, if d0 ∈ N and d1 ∈ Derz(B), then for any b ∈ B, we
have d∗0(b) = ξ(d0(a)) with b + Z(B) = η(a + Z(A)), so d1(d∗0(b)) = 0 since d∗0(B) ⊆ Z(B) ∩ [[B,B]] due to Lemma
3.11. Also, d∗0(Z(B)) = 0 since η is one-to-one and ξ is an isomorphism. In particular, d∗0(d1(b)) = 0, since
d1(B) ⊆ Z(B). Therefore, [d∗0, d1] = 0. Moreover, for any d∗0 ∈ N we have d∗0(Z(B)) = 0 as mentioned above.

To complete the proof, notice that Derz(B) � T
(

B
[[B,B]] ,Z(B)

)
by Proposition 3.3.

4. On inner derivations

In this section we study inner derivations of tautological AWBs and analyze their relationship with the
different subalgebras of the Lie algebra of the derivations of AWBs introduced in Section 3.

Note that the right and left multiplication operators of an AWB are in general not derivations. However,
if we consider tautological AWBs A (see Example 2.2 (c)), then the operators dx : A → A, dx(a) = [x, a] =
xa − ax, a ∈ A, for a fix x ∈ A, are derivations. This type of derivations is called an inner derivation of the
tautological algebra with bracket A, and we denote by IDer(A) the Lie subalgebra of all inner derivations of
A.

From now on we consider tautological algebras with bracket. Clearly, ZAss(A) =
⋂
x∈A

Ker(dx) and

[A,A]Ass =
∑
x∈A

Im(dx), where ZAss(A) = {x ∈ A | xy = yx, for all y ∈ A} = {x ∈ A | [x, y] = 0, for all y ∈ A} and

[A,A]Ass = ⟨{[x, y] | x, y ∈ A}⟩ = ⟨{xy − yx | x, y ∈ A}⟩.
Let D be a subalgebra of Der(A) such that IDer(A) ⊆ D. Define E(A) =

⋂
d∈D

Ker(d). E(A) is a two-sided

ideal of A whenever E(A) ⊆ Z(A). Examples of the subalgebra D are Der(A) or DerZAss(A)(A). We will denote
by Dere(A) the subalgebra DerE(A)(A).

Proposition 4.1. Let A be a tautological AWB such that E(A) ⊆ Z(A). Then

(a) Dere(A) � T
(

A
[[A,A]] ,E(A)

)
as abelian AWBs and it is an AWB isomorphism whenever E(A) ⊆ [[A,A]].

(b) If D = Der(A), then Dere(A) is isomorphic to the abelian AWB T
(

A
E(A) ,E(A)

)
.

Proof. (a) Direct consequence of Lemma 3.2 bearing in mind that Dere(A) = DerE(A),[[A,A]](A), since every
d ∈ Dere(A) satisfies that d(a) ∈ E(A) ⊆ Z(A), that is, d is a central derivation, therefore it vanishes over
[[A,A]].

(b) By Lemma 3.2, T
(

A
E(A) ,E(A)

)
� DerE(A),E(A)(A) = Dere(A).

Example 4.2. Consider the three-dimensional complex associative algebra As2
3 with basis {e1, e2, e3} and operation

given by e1e3 = e2, e3e1 = αe2, α ∈ C \ {1}, and zero elsewhere [7]. Let A be the tautological AWB associated to As2
3

and D = IDer(A). Then A satisfies the conditions in Proposition 4.1 since E(A) = Z(A) = ⟨{e2⟩}.

Lemma 4.3. Let M and N be two two-sided ideals of a tautological AWB A such that ZAss
(

A
M

)
= H

M for some H. Then

DerM,N(A) ∩ IDer(A) �
H ∩ CAss

A (N)

ZAss(A)

as abelian AWBs, where CAss
A (N) = {a ∈ A | [a,n] = 0 for all n ∈ N}. In particular, if DerM,N(A) ⊆ IDer(A), then

DerM,N(A) �
H ∩ CAss

A (N)

ZAss(A)

as abelian AWBs.
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Proof. Define the surjective linear map φ : H∩CAss
A (N)→ DerM,N(A)∩ IDer(A) by φ(x) = dx, dx(y) = [x, y], for

all y ∈ A. Since Ker(φ) = ZAss(A), then the isomorphism is obvious.

Theorem 4.4. Let M and N be two two-sided ideals of a tautological AWB A such that ZAss
(

A
M

)
= H

M for some H,
then

(a) IDer(A) ⊆ DerM,N(A) if and only if CAss
A (N) = A = H.

(b) If M ⊆ N ∩ Z(A) and dim
(

A
ZAss(A)

)
< ∞, then IDer(A) = DerM,N(A) if and only if N ⊆ ZAss(A), [A,A]Ass ⊆ M

and T
(

A
N ,M

)
� A

ZAss(A)
as abelian AWBs.

Proof. (a) Suppose that CAss
A (N) = A = H. Let dx ∈ IDer(A), for any x ∈ A, then dx(y) = [x, y] ∈ [A,A]Ass ⊆ M,

hence Im(dx) ⊆ M. On the other hand, every dx vanishes on N. Therefore, dx ∈ DerM,N(A).
Conversely, for any x ∈ A, dx ∈ IDer(A) ⊆ DerM,N(A), which implies that [A,A]Ass ⊆ M, therefore A

M ⊆

ZAss
(

A
M

)
= H

M , so A ⊆ H, and thus A = H. On the other hand, [x,n] = dx(n) = 0 for all x ∈ A,n ∈ N, that is
x ∈ CAss

A (N), hence A ⊆ CAss
A (N).

(b) Suppose that IDer(A) = DerM,N(A). By statement (a), CAss
A (N) = A = H. By Lemma 3.2 we have

DerM,N(A) � T
(

A
N ,M

)
. Moreover, the kernel of the surjective linear mapφ : A↠ IDer(A), φ(x) = dx, is ZAss(A),

hence A
ZAss(A)

� IDer(A) as abelian AWBs.

Since [A,A]Ass ⊆ M ⊆ N and N ⊆ ZAss(A), then we have

A

ZAss(A)
� IDer(A) = DerM,N(A) � T

(A
N
,M

)
.

Conversely, DerM,N(A) � T
(

A
N ,M

)
� A

ZAss(A)
� IDer(A).

Since N ⊆ ZAss(A), then CAss
A (N) = A and statement (a) implies IDer(A) ⊆ DerM,N(A). Now the finite

dimension of A
ZAss(A)

implies the equality.

Corollary 4.5. Let M and N be two two-sided ideals of a finite-dimensional tautological AWB A such that M ⊆
Z(A) ⊆ ZAss(A) ⊆ N. Then IDer(A) = DerM,N(A) if and only if N = ZAss(A), [A,A]Ass ⊆ M and dim(M) = 1.

Proof. If IDer(A) = DerM,N(A), then N ⊆ ZAss(A), [A,A]Ass ⊆ M and T
(

A
N ,M

)
� A

ZAss(A)
by Theorem 4.4 (b). Thus

N = ZAss(A), [A,A]Ass ⊆ M and T
(

A
N ,M

)
� A

ZAss(A)
, which implies dim(M) = 1.

Conversely, dim(M) = 1 implies dim
(
T
(

A
N ,M

))
= dim

(
A

ZAss(A)

)
, hence T

(
A
N ,M

)
� A

ZAss(A)
as abelian AWBs,

now Theorem 4.4 (b) concludes the proof.

Corollary 4.6. Let A be a finite-dimensional tautological AWB such that Z(A) = ZAss(A). Then IDer(A) =
DerZ(A),Z(A)(A) if and only if [A,A]Ass ⊆ Z(A) and dim(Z(A)) = 1.

Proof. Take M = Z(A),N = ZAss(A) in Corollary 4.5.

Corollary 4.7. Let A be a finite-dimensional tautological AWB such that ZAss(A) = [[A,A]]. Then IDer(A) =
Derz(A) if and only if [A,A]Ass = Z(A) and dim(Z(A)) = 1.

Proof. Consider M = Z(A) and N = [[A,A]] in Corollary 4.5, then IDer(A) = DerZ(A),[[A,A]](A). Now Corollary
4.5 implies that IDer(A) = Derz(A).

Conversely, if IDer(A) = Derz(A), then [A,A]Ass ⊆ Z(A). Hence, [[A,A]] = [A,A]Ass = Z(A) = ZAss(A). Now
Corollary 4.5 implies dim(Z(A)) = 1.
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Example 4.8. Example 4.2 satisfies the requirements of Corollaries 4.5, 4.6 and 4.7.
Consider the two-dimensional complex associative algebra As4

2 with basis {e1, e2} and operation given by e1e1 =

e1, e1e2 = e2e1 = e2 and zero elsewhere [7]. Then the tautological AWB A associated to As4
2 satisfies the requirements

of Corollaries 4.5 and 4.7, but no those of Corollary 4.6, since [[A,A]] = ZAss(A) = A and Z(A) = 0.

It is an easy task to check that, for tautological AWB, the central derivations commute with the inner
derivations. Furthermore, the following facts hold for any tautological AWB A:

Z (IDer(A)) ⊆ Derz(A) = CAss
Der(A)(IDer(A)). (4.1)

Next, we characterize tautological algebras with bracket for which the inclusion in (4.1) is actually an
equality.

Theorem 4.9. Let A be a tautological AWB. Then the following statements hold:
(a) Z(IDer(A)) ⊆ C∗(A).
(b) Z(IDer(A)) = C∗(A) if and only if T

(
A

Z(A) ,Z(A)
)
� Z(IDer(A)).

(c) If A is nilpotent of class 2, then IDer(A) ⊆ C∗(A).

Proof. (a) Let da ∈ Z(IDer(A)). By (4.1), Im(da) ⊆ Z(A).
On the other hand, if a ∈ Z(A), then da(b) = [a, b] = 0, for all b ∈ A, i.e. da(Z(A)) = 0.
(b) By Lemma 3.2, C∗(A) � T

(
A

Z(A) ,Z(A)
)
.

(c) Since A is nilpotent of class 2, then [[A,A]] ⊆ Z(A), which implies that every inner derivation da
belongs to Z(IDer(A)). Now statement (a) concludes the proof.

Theorem 4.10. Let A be a finite-dimensional tautological AWB such that Z(A) , 0. If Z (IDer(A)) = Derz(A), then
Z(A) = [[A,A]].

Proof. If Z (IDer(A)) = Derz(A), then Derz(A) = DerZ(A),Z(A)(A). Lemma 3.2 provides the isomorphism of
abelian AWBs DerZ(A),Z(A)(A) � T

(
A

Z(A) ,Z(A)
)

and Proposition 3.3 provides the isomorphism of abelian AWBs

Derz(A) � T
(

A
[[A,A]]) ,Z(A)

)
, hence Z(A) = [[A,A]].

Theorem 4.11. Let A be a nilpotent AWB of class 2. Then Derz(A) has a central subalgebra isomorphic to
T
(

A
Z(A)) , [[A,A]]

)
.

Moreover, if A is a tautological AWB, then IDer(A) ⊆ T
(

A
Z(A)) , [[A,A]]

)
.

Proof. By Proposition 3.15 there is a stem AWB B isoclinic to A. Since A is nilpotent of class 2, then so is B
by Lemma 3.10. Then Z(B) = [[B,B]] � [[A,A]] and B

[[B,B]] �
B

Z(B) �
A

Z(A) . So T
(

B
[[B,B]] ,Z(B)

)
� T

(
A

[[A,A]] ,Z(A)
)
.

Therefore Derz(A) has a central subalgebra N isomorphic to T
(

A
[[A,A]] ,Z(A)

)
due to Corollary 3.16.

Now assume that A is a tautological AWB. The map ζ : A
Z(A) → T

(
A

Z(A) , [[A,A]]
)

given by ζ(a+Z(A)) : A
Z(A) →

[[A,A]], ζ(a + Z(A))(a′ + Z(A)) = [a, a′] = aa′ − a′a, a, a′ ∈ A, is a well-defined one-to-one linear map. Finally,
IDer(A) = Im(ζ) ⊆ T

(
A

Z(A) , [[A,A]]
)

since ζ(a + Z(A))(a′ + Z(A)) = [a, a′] = da(a′).

5. Exact sequences associated with an abelian extensions

In this section we will construct exact sequences similar to the Wells-type exact sequence associated
with an abelian extension of AWB (see [4, Theorem 3.9]) in which the subalgebras of derivations of AWB
play a central role.

Let E : 0 −→ M i
−→ E

p
−→ A −→ 0 be an abelian extension of AWB with a linear section s : A→ E. Then

every element in E can be written as i(m)+s(a), for some a ∈ A,m ∈ M. Moreover, any d ∈ Der(E : M) induces
a derivation δ = d|M ∈ Der(M) and a derivation ∂ ∈ Der(A) defined by ∂(a) = p(d(s(a))), a ∈ A. Therefore,
the map ω : Der(E : M) → Der(M) ⊕ Der(A) given by ω(d) = (δ, ∂) is a Lie algebra homomorphism (see [4,
Subsection 3.2]).
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Lemma 5.1. Let E : 0 −→ M i
−→ E

p
−→ A −→ 0 be an abelian extension of AWB and s : A→ E a linear section of

p. If d ∈ Der(E : M), then there exists (δ, ∂, χ) ∈ Der(M) ⊕ Der(A) ⊕ Hom(A,M) such that:

1.
(a) f (∂(a1), a2) + f (a1, ∂(a2)) − δ( f (a1, a2)) = χ(a1a2) − χ(a1)s(a2) − s(a1)χ(a2);
(b) 1(∂(a1)(a2)) + 1(a1)(∂(a2)) − δ(1(a1)(a2)) = χ[a1, a2] − [χ(a1), s(a2)] − [s(a1), χ(a2)];

2.

δ(s(a)m) = s(∂(a))m + s(a)δ(m);
δ(ms(a)) = δ(m)s(a) +ms(∂(a));
δ[s(a),m] = [s(∂(a)),m] + [s(a), δ(m)];
δ[m, s(a)] = [δ(m), s(a)] + [m, s(∂(a))],

for all a, a1, a2 ∈ A,m ∈ M and ( f , 1) ∈ K0(A,M) is the 0-cocycle given by (2.8).
Conversely, if (δ, ∂, χ) ∈ Der(M) ⊕ Der(A) ⊕ Hom(A,M) satisfying 1. and 2., then d : E → E given by

d(e) = d(i(m) + s(a)) = s(∂(a)) + χ(a) + δ(m) belongs to Der(E : M).

Proof. Given d ∈ Der(E : M), then the homomorphism ω provides the pair (δ, ∂) ∈ Der(M) ⊕ Der(A). On the
other hand, for any a ∈ A, ∂(a) = pds(a), hence ds(a) = s∂(a)+m, for some m ∈ M, so we have defined a linear
map χ : A→ M given by ∂(a) = ds(a) − s∂(a).

Applying d to the equalities (2.8) we obtain:

s(∂(a1, a2)) + χ(a1a2) + δ( f (a1, a2)) = d(s(a1))s(a2) + s(a1)d(s(a2)),

and
δ(1(a1)(a2)) + χ[a1, a2] + s(∂[a1, a2]) = [d(s(a1)), s(a2)] + [s(a1), d(s(a2))].

From these equations, the equalities 1. (a) and (b) are easily derived.
To obtain 2. just reproduce a calculation like the following with each of the operations:

δ(s(a)m) = d(s(a)m) = (s(∂(a)) + χ(a))m + s(a)δ(m) = s(∂(a))m + s(a)δ(m).

Conversely, let (δ, ∂, χ) ∈ Der(M) ⊕ Der(A) ⊕ Hom(A,M) satisfying 1. and 2.
For any ei = s(ai) + mi; p(ei) = ai, ai ∈ A,mi ∈ M, i = 1, 2, it is easy to check that d(e1e2) = d(e1)e2 + e1d(e2)

and d[e1, e2] = [d(e1), e2] + [e1, d(e2)], simply by using the identities (2.8), 1. and 2. So d ∈ Der(E). Finally,
d(m) = δ(m) ∈ M, so d ∈ Der(E : M)

Definition 5.2. Let M and A be AWBs with an action of A over M. A pair (δ, ∂) ∈ Der(M) ⊕ Der(A) is said to be
compatible if the following identities hold for any a ∈ A,m ∈ M:

∂(a) ·m = δ(a ·m) − a · δ(m),
m · ∂(a) = δ(m · a) − δ(m) · a,
{∂(a),m} = δ{a,m} − {a, δ(m)},
{m, ∂(a)} = δ{m, a} − {δ(m), a}.

(5.1)

Example 5.3.

(a) If A acts trivially on M, then any pair (δ, ∂) ∈ Der(M) ⊕ Der(A) is compatible. An example of trivial action is
given by the induced action provided by a split central extension (M ⊆ Z(E)) (see Example 2.5 (b)).

(b) The pair (δ, ∂) constructed in Lemma 5.1 from d ∈ Der(E : M) is compatible.

Let Cα = {(δ, ∂) ∈ Der(M) ⊕ Der(A) | (δ, ∂) is a compatible pair} be the subalgebra of compatible pairs in
Der(M) ⊕ Der(A). Let be

C1 = {δ ∈ Der(M) | (δ, 0) ∈ Cα}

C2 = {∂ ∈ Der(A) | (0, ∂) ∈ Cα}



J. M. Casas, N. Pacheco Rego / Filomat 40:4 (2026), 1463–1478 1476

For δ ∈ C1, ∂ ∈ C2, define for any ai ∈ A the maps ki
δ, k

i
∂
, ki
δ,∂

: A⊕A→ M, i = 1, 2, by

k1
δ(a1, a2) = δ( f (a1, a2));

k2
δ(a1, a2) = δ(1(a1)(a2));

k1
∂
(a1, a2) = f (∂(a1), a2) + f (a1, ∂(a2));

k2
δ(a1, a2) = 1(∂(a1))(a2) + 1(a1)(∂(a2));

k1
δ,∂
= f (∂(a1), a2) + f (a1, ∂(a2)) − δ( f (a1, a2));

k2
δ,∂
= 1(∂(a1))(a2) + 1(a1)(∂(a2)) − δ(1(a1)(a2)),

(5.2)

where ( f , 1) ∈ K0(A,M) is the 0-cocycle given by (2.8).

Lemma 5.4. The pairs (k1
δ, k

2
δ), (k

1
∂
, k2
∂
), (k1

δ,∂
, k2
δ,∂

) are 0-cocycles.

Proof. A simple but tedious computation allows to check the 0-cocycle conditions:

a0 · k1
δ(a1, a2) − k1

δ(a0a1, a2) + k1
δ(a0, a1a2) − k1

δ(a0, a1) · a2 = 0

a0 · k2
δ(a1, a2) + k2

δ(a0, a2) · a1 − k2
δ(a0a1, a2) − {k1

δ(a0, a1), a2} + k1
δ([a0, a2], a1) + k1

δ(a0, [a1, a2]) = 0

for all a0, a1, a2 ∈ A. Similarly for (k1
∂
, k2
∂
), (k1

δ,∂
, k2
δ,∂

).

Next, we define the linear maps:

λ1 : C1 → H1
AWB(A,M); λ2 : C2 → H1

AWB(A,M); λα : Cα → H1
AWB(A,M)

δ 7→ [(k1
δ, k

2
δ)]; ∂ 7→ [(k1

∂
, k2
∂
)]; (δ, ∂) 7→ [(k1

(δ,∂), k
2
(δ,∂))]

where [(k1
δ, k

2
δ)], [(k1

∂
k2
∂
)] and [(k1

(δ,∂), k
2
(δ,∂))] denote the corresponding cohomology cosets.

Now, we check that the definitions are consistent, that is, they do not depend on the linear section
of p : E → A. To do so, consider two linear sections s, s′ : A → E. Then there exist f , f ′ : A⊗2

→ M and
1, 1′ : A → Hom(A,M) such that ( f , 1) and ( f ′, 1′) satisfy the corresponding identities (2.8) relative to s and
s′.

Since for any a ∈ A, ps(a) = ps′(a), then there exists some m ∈ M, denoted by k(a), such that s(a)−s′(a) = k(a).
Thus, we have a linear map k : A→ M, k(a) = s(a) − s′(a), a ∈ A, which gives:

f (a1, a2) − f ′(a1, a2) = s(a1)s(a2) − s(a1a2) − s′(a1)s′(a2) + s′(a1a2)
= s(a1)s(a2) − ((s(a1) − k(a1))(s(a2) − k(a2))) − k(a1a2)
= s(a1)k(a2) + k(a1)s(a2) − k(a1a2)
= a1 · k(a2) + k(a1) · a2 − k(a1a2).

1(a1)(a2) − 1′(a1)(a2) = [s(a1), s(a2)] − s[a1, a2] − [s′(a1), s′(a2)] + s′[a1, a2]
= [s(a1), s(a2)] − [s(a1) − k(a1), s(a2) − k(a2)] − k[a1, a2]
= [s(a1), k(a2)] + [k(a1), s(a2)] − k[a1, a2]
= {a1, k(a2)} + {k(a1), a2} − k[a1, a2].

Since δ ∈ C1, then we have:

δ( f (a1, a2) − f ′(a1, a2)) = δ(a1 · k(a2) + k(a1) · a2 − k(a1a2))
= a1 · (δk)(a2) + (δk)(a1) · a2 − (δk)(a1a2).

δ(1(a1)(a2) − 1′(a1)(a2)) = δ({a1, k(a2)} + {k(a1), a2} − k[a1, a2])
= {a1, (δk)(a2)} + {(δk)(a1), a2} − (δk)[a1, a2]
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therefore
(k1
δ, k

2
δ) = δ( f , 1) = δ( f ′, 1′) + δ(∂−1(k))) = δ( f ′, 1′) + ∂−1(δ(k))

thus λ1(δ) = [(k1
δ, k

2
δ)] = [δ( f , 1)] = [δ( f ′, 1′)].

The proof for λ2 is similar to the previous one. It is simply necessary to use that ∂ ∈ C2 and that it is a
derivation. Finally, λα is well-defined, since λα = λ2 − λ1.

Theorem 5.5. Let E : 0 −→ M i
−→ E

p
−→ A −→ 0 be an abelian extension of AWBs with a linear section s : A→ E.

Then there exist the following exact sequences:

0−→DerM,M(E) ι
−→ DerM(E)

τ1
−→ C1

λ1
−→ H1

AWB(A,M)

0−→DerM,M(E) ι
−→ DerM(E)

τ2
−→ C2

λ2
−→ H1

AWB(A,M)

0−→DerM,M(E) ι
−→ Der(E : M) τ

−→ Cα
λα
−→ H1

AWB(A,M)

Proof. First sequence: ι : DerM,M(E)−→DerM(E) is the inclusion; τ1 : DerM(E)−→C1 is given by τ1(d) =
(d|M, 0). An easy computation shows that Ker(τ1) = Im(ι).

Im(τ1) ⊆ Ker(λ1) since λ1τ1(d) = [(k1
d|M
, k2

d|M
)] and

k1
d|M
= d|M( f (a1, a2)) = −χ(a1a2) + χ(a1) · a2 + a1 · χ(a2) by Lemma 5.1 1.(a).

k2
d|M
= d|M(1(a1)(a2)) = −χ[a1, a2] + {χ(a1), a2} + {a1, χ(a2)} by Lemma 5.1 1.(b).

Therefore (k1
d|M
, k2

d|M
) is a coboundary, so λ1τ1(d) = 0̄.

Now we prove that Ker(λ1) ⊆ Im(τ1). Let (d, 0) ∈ Ker(λ1), then (k1
d, k

2
d) is a coboundary. Therefore, there

exists a linear map χ : A→ M such that
d( f (a1, a2)) = χ(a1a2) − χ(a1) · a2 − a1 · χ(a2)
d(1(a1)(a2)) = χ[a1, a2] − {χ(a1), a2} − {a1, χ(a2)}
Since (d, 0) ∈ C1 and by the converse of Lemma 5.1, d(e) = d(i(m) + s(a)) ∈ M, then d ∈ DerM(E) and

τ1(d) = (d|M, 0) = (d, 0), i.e. (d, 0) ∈ Im(τ1).
The exactness of the other two sequences is proved with parallel arguments to the first sequence.

Corollary 5.6. Let E : 0 −→ M i
−→ E

p
−→ A −→ 0 be a central extension of algebras with bracket with a linear

section s : A→ E. Then the following sequence is exact

0−→DerM,M(E) ι
−→ Der(E : M) τ

−→ Der(M) ⊕ Der(A) λ
−→ H1

AWB(A,M)

Proof. In case of central extensions, induced actions are trivial, hence Cα � Der(M) ⊕ Der(A) in the third
sequence of Theorem 5.5.

Let E : 0 −→ M i
−→ E

p
−→ A −→ 0 be an abelian extension of algebras with bracket with a linear section

s : A → E. Let be C∗1 = {δ ∈ C1 | λ1(δ) = 0}, C∗2 = {∂ ∈ C2 | λ2(∂) = 0} and C∗α = {(δ, ∂) ∈ Cα | λα(δ, ∂) = 0}.
Then it follows from Theorem 5.5 that the following sequences are exact:

0−→DerM,M(E) ι
−→ DerM(E)

τ1
−→ C∗1−→0 (5.3)

0−→DerM,M(E) ι
−→ DerM(E)

τ2
−→ C∗2−→0 (5.4)

0−→DerM,M(E) ι
−→ Der(E : M) τ

−→ C∗α−→0 (5.5)

If E : 0 −→ M i
−→ E

p
−→ A −→ 0 is a central extension of AWBs with a linear section s : A → E and

C∗ = {(δ, ∂) ∈ Der(M) ⊕ Der(A) | λ(δ, ∂) = 0}, then Corollary 5.6 implies that the following sequence is exact

0−→DerM,M(E) ι
−→ Der(E : M) τ

−→ C∗−→0 (5.6)
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Theorem 5.7. Let E : 0 −→ M i
−→ E

p
−→ A −→ 0 be a split abelian extension of AWBs. Then sequences (5.3), (5.4)

and (5.5) are also split.
Furthermore, if E is a central extension, then sequence (5.6) is also split.

Proof. We only prove that the sequence (5.5) is split. The other cases are similar.
Consider the semi-direct product M⋊A given in [1, Definition 2.5], then the split extension E : 0 −→

M i
−→ E

p
−→ A −→ 0 is equivalent to the trivial extension 0 −→ M κ

−→ M⋊A π
−→ A −→ 0, hence

Der(M⋊A : M) � Der(E : M).
Note that for a split extension, the corresponding 0-cocycle ( f , 1) ∈ K0(A,M) is trivial, hence C∗α � Cα.

Now we define β : C∗α → Der(M⋊A : M), (θ,φ) 7→ γ, with γ(m, a) = (θ(m), φ(a)),m ∈ M, a ∈ A. β is
well-defined, since γ is indeed a derivation due to the compatibility conditions:

γ((m, a)(m′, a′)) = γ(m · a′ + a ·m′, aa′)
= (θ(m) · a′ +m · φ(a′) + a · θ(m′) + φ(a) ·m′, φ(a)a′ + aφ(a′))
= (θ(m), φ(a))(m′, a′) + (m, a)(θ(m′), φ(a′))
= γ(m, a)(m′, a′) + (m, a)γ(m′, a′)

and

γ[(m, a)(m′, a′)] = γ({m, a′} + {a,m′}, [a, a′])
= ({θ(m), a′} + {m, φ(a′)} + {a, θ(m′)} + {φ(a),m′}, [φ(a), a′] + [a, φ(a′)])
= [θ(m), φ(a)), (m′, a′)] + [(m, a), (θ(m′), φ(a′)]
= [γ(m, a)(m′, a′)] + [(m, a), γ(m′, a′)]

Finally, it is easy to check that β is a homomorphism of AWBs and a splitting of τ.
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