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Some Kantorovich type inequalities and Young type inequalities for
the Hadamard product of matrices

Zhengwei Xie*”, Jianzhong Liu®

®School of Mathematics and Physics, Jiangsu University of Technology, Changzhou, 213001, China

Abstract. In this paper, we present some Kantorovich type inequalities and Young type inequalities
for the Hadamard product of positive definite matrices using the convexity of some functions involving
positive definite matrices and the properties of Hadamard products of matrices. Based on this, we get some
Kantorovich type inequalities for the spectral condition numbers of Hadamard product of positive definite
matrices and some Kantorovich type inequalities in the Lowner partial ordering. Secondly, we obtain some
Kantorovich type inequalities involving the Hadamard product of positive matrices by the properties of

positive linear functionals in matrix space. Finally, we provide some Kantorovich type inequalities for the
permanent of positive matrices.

1. Introduction

Let A be an n X n positive definite matrix and x € C" (x # 0). In 1948, Kantorovich [8] introduced the
well-known Kantorovich inequality. Mond et al. [11, 12] presented two matrix versions of the Ky Fan

generalization of the Kantorovich inequality. The basic form of a matrix type Kantorovich inequality is as
follows:

xF Axxt A 1x - (P(A) + 0(A))? 1
(tx)? T 4p(A)a(d) 7 )

where x' stands for the conjugate transpose of x, p(A) and o(A) represent the maximum and minimum
eigenvalues of A respectively. When B and A are n X n positive definite matrices with AB = BA, Greub and
Rheinboldt [6] provided a generalized form of (1) as follows:

W A%t B (p(A)p(B) + a(A)a(B))* 2
(x'ABx)?> ~ 4p(A)p(B)a(A)o(B)

2020 Mathematics Subject Classification. Primary 15A39; Secondary 15A45, 15A60.

Keywords. Convex map, Kantorovich type inequality, Young type inequality, Positive linear mapping, Positive definite matrix.
Received: 04 September 2025; Revised: 27 November 2025; Accepted: 30 November 2025
Communicated by Dragan S. Djordjevié

This work is supported by the Natural Science Foundation of Jiangsu Province of China [Grant No. BK20211358], the Postgraduate

Education Reform Project of Jiangsu University of Technology [Grant No. Y]S]JG2401], and the High-level Personnel Project of Jiangsu
University of Technology (Grant No. KYY20021).

* Corresponding author: Zhengwei Xie

Email addresses: xiezhengwei@jsut.edu.cn (Zhengwei Xie), 1jz@jsut.edu. cn (Jianzhong Liu)
ORCID iDs: https://orcid.org/0009-0006-9897-3872 (Zhengwei Xie)



Z. Xie, |. Liu / Filomat 40:4 (2026), 1207-1224 1208

Xie et al. [16] presented a Kantorovich type inequality for positive matrices by using the properties of
positive linear functionals on matrices, which provided some Kantorovich type inequalities for spectral
radius, numerical radius and spectral norm of the product of positive matrices. For more generalized
Kantorovich inequalities, please refer to [4, 13-15]. Ando [3] obtained an interesting Holder type inequality
for the Hadamard product of positive definite matrices in the Lowner partial ordering as follows:

AoB<(Aol) (BTol)1, 3)

where A, B are positive definite matrices of the same order and p,q > 1 with % + % =1
Leta,b > 0 and 0 < v < 1. The well-known Young inequality is as follows:

va+(1-v)b>a'b™. 4)

In some literature, (4) is also said to be the weighted arithmetic-geometric mean inequality. For positive
definite matrices A, B of the same order, their weighted geometric and arithmetic mean are respectively as
follows:

G.(A,B) = A? (A-%BA-%)l_VA%,ﬂV(A,B) =vA+ (1-v)B.
As is well known, their relationship is as follows:
Gv(A, B) < A (A, B). ®)

In recent years, researchers have investigated the extension, improvement, and inverse of inequality
(5) through the improvement, generalization, and inverse of Young’s inequality (4) in many literature. For
example, Kittaneh and Manasrah [9] gave the improved Young inequality as follows:

b +7(Va— Vb) <va+(1-wp, ©)

where 7 = min{v, 1 — v}. Using the improved Young inequality (6), they proposed some improvements on
some Young type inequalities involving matrix singular values and matrix norms. Kittaneh and Manasrah
[10] presented an inverse of the Young inequality as follows:
2
va+(1—v)b§a"b1*"+a<\/_—\/5) , (7)
where 0 = max{v,1 — v}. Using (7), Kittaneh and Manasrah provided some inverse forms of the matrix
weighted arithmetic-geometric mean inequality. Alzer et al. [2] investigated the difference of weighted
arithmetic and weighted geometric mean with respect to two different weights. They used differential
methods, through a scalar inequality, and showed that

— y (A4, B) - Gu(A, B), (8)

ﬁ (AL(A, B) - Gu(A, B)) < ALA, B) - G(A, B) <

where A, B are positive definite matricesand 0 <v < p < 1.
We use the following standard notation. R and C represent the sets of real numbers and the sets of
complex numbers, respectively. M,x, and M,, represent the complex linear space formed by m X n complex

matrices and n X n complex matrices respectively. M; (M,) stands for a convex cone formed by an n X n
positive definite (semidefinite) matrix. The set of #n X n Hermite matrices is denoted by H,,. For A € M,,xs,
A" stands for the conjugate transpose of A. For A,B € H,, A > 0 (A > 0) stands that A is positive definite
(semidefinite), A > B stands for A — B > 0, and this relationship is said to be the Léwner partial ordering.
Ryxn and R, represent the real linear space formed by m xn real matrices and n X real matrices respectively.
For A = [a;j] € Ryxn, A > 0 stands for a;; > 0,i = 1,2,--- ,m,j = 1,2,--- ,n. In which case, A is said to be
a nonnegative matrix. In addition, if a;; > 0,i = 1,2,--- ,m,j = 1,2,--- ,n, then A is said to be a positive
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matrix. For A € M,,;x,,, AT stands for the transpose of A. Py, and P, , stand for convex cones formed by
m X n nonnegative matrices and positive matrices, respectively. When m = n, corresponding symbols are
abbreviated as P, and P} respectively. A > B stands for A — B > 0. E,, , represents an m X n matrix with all
elements being 1. When m = n, we denote E, , by E,. For A = [a;;] € P,’;w and a € R, AW stands for [ai]
A o B stands for the Hadamard product of A and B. Denote n X n the identity matrix by I, or I for short.
For A € M,,, w(A) = sup{lx*AxI :x € C",x*x = 1} is said to the numerical radius of A. For A € H,, p(A),
o(A) stand for the maximum eigenvalue, minimum eigenvalue of A, respectively. If A is a positive definite
matrix, then x(A) = % represents the spectral condition number of A.

The remainder of this paper is organized as follows. In Section 2, we give some of the definitions and
lemmas that will be used in the rest of the paper. Then, in Section 3, we present two Kantorovich type
inequalities and some Young type inequalities for the Hadamard product of positive definite matrices.
Based on these, we obtain some Kantorovich type inequalities for the upper bound of the spectral condition
number of Hadamard product of positive definite matrices. In Section 4, we provide some Kantorovich
type inequalities involving the Hadamard product of two positive matrices and the permanent of positive
matrices.

2. Preliminaries

In this section, we introduce some basic concepts and lemmas related to matrix theory.

Definition 2.1. Let D C M,,,, be a convex set and f : D — Hy be a map. Then f is said to be a convex map, if for
any U,V € D, A €0, 1], we have

fAU+A-A)V)<AfU)+ Q=N f(V).
When the above inequality is reversed, f is called a concave map on D.

If f is continuous, then f is a convex mapping on D if and only if

f(LI+ V) < f(U)+f(V).

2 2
Remark 2.2. Obuviously, if f is a convex function on D and A € My, then g(U) = f(U)A is a convex map on D.
Definition 2.3. Let @ : My — M, be a linear map. If C > 0 implies ®(C) > 0, then @ is called a positive linear map
on My. In addition, if C > 0 implies ®(C) > O, then ® is called a strictly positive linear map on M. If ®(Iy) = I,
then @ is called a unital map. When | = 1, @ is called a linear functional on My.
Definition 2.4. Let ® : Ryx, — R be a linear function. If A > 0 implies ®(A) > 0, then ® is called a positive
linear functional on Ry, .. In addition, if any A € P}, , implies ®(A) > 0, then @ is called a strictly positive linear

functional on Ryxy. If ®(Epn) = 1, then @ is called a unit linear functional on Ryxy.

Definition 2.5. Let A,B € M;;,0 < v < 1. The weighted geometric Hadamard mean and arithmetic Hadamard
mean of A, B are defined respectively as follows:

GAA,B) = A" o BYV, AA,B) =v(AolL,) + (1 -v)(Bol,).
Lemma 2.6. Let A,B € M} and ® : M,, — My be a positive linear map. Then
Glx, y) = ©(A* 0 BY)

is a convex map on R,
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Proof. Let the spectral decomposition of A,B be A = fol AiP;, B = Z,?izl ujQj, where P;,Q; are the or-
thogonal projections, A;, y; > 0 and N, N < n. Then A* = 5\:“1 AfP;, BY = Z;izl y]y.Qj and © (A* o BY) =
N1 v N
Y L4 /\f”?q) (Pi ° Qf)'
Using the fact that @ (Pi o Q]-) > 0 and f(x,y) = a*b? is a convex function on R? for any a,b > 0, the
conclusion follows from Remark 2.2. [

It is easy to verify the following lemma by the definition of matrix function.

Lemma 2.7. Let A € H, and its eigenvalues included in the interval I. If f,g : I — R satisfy f(x) < g(x) (x € ),
then f(A) < g(A).

Lemma 2.8. Let A € M}, f: (0, +00) — R be a convex function and ® be a unit positive linear functional on M,,.
Then

f(D(A)) < O(f(A)).

When f is a concave function, the above inequality is reversed.

Proof. Let the spectral decomposition of A be A = Zi-;l AiP;, where P; are the orthogonal projections, A; > 0
and k < n. Then

Zk: Ai@ (Py)
P

When f is a convex function, using the fact ® (P;) > 0, ):f-(zl O(P;) =D (Zile Pi) = ®(I,) =1, we have

Zk‘ Ai®@ (P;)

i=1

k k
f(A) = Y FAIP, (f(A) = Y FAID (P, F@(A)) = f
i=1 i=1

k
<) ©(P) f (1) = Df(A).

i=1

f(®(A) = f

When f is a concave function, the above inequality is reversed. [J
Lemma 2.9. Let A € M} and ® be a unit positive linear functional on M,,. When 0 < r < 1, we have
D(A" o I) 2 na(D(A o L)', ©)
where

(r) = r (1 =) (k(A) - D7) - 1) (k(A) - (A, Kk(A) > 1
A 1, k(A)=1"

Proof. The result is clear when x(A) = 1. We therefore assume x(A) > 1. Due to f(x) = x” being a concave
function on (0, +00), for x € [6(A), p(A)], we have

ry PA =0 pA)o(d) — p(dYo(d)

2 @) pA) — o) 1o
By (10) and Lemma 2.7, we get
s PA —od)y  p(A)a(A) — plA)a(4) (11)

@ - T T p—od) "
By (11), we have

L PAY oAy pAAY — plAyalA)
Aoz @ At T @ o)

L.
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Hence we have

r o 1 ro_ r o ro_ r
DA ol,) 2 —p(A) = o) ((p(A) = a(A))D(A o L) + p(A)a(A) — p(A) o(A)). (12)
By (12) and (4), we obtain
r 1 1 r r 1 r r
A0 1) 2 s {r [ o) —oan @ A1)+ 1= 1 (o) — payoa|)

> L ! A) A)N)D(Ao] e A)o(A) A)'o(A -

> o | PP — AN | | T (Ao — piay ()

-1 A = 9 (AY) (p(A)o(A) — pAy o)™
p(A) ~ o)

= 771 = A) = 17 (A = 1 (K(A) = k(AT DA o L'

=71 - D(A o L,)

O
Lemma 2.10. Let &, 1 be two bounded random variables on probability space (Q3, L, P). Hence, there exist constants
me, Mg, my,, M, such that mg < & < Mg, my <1 < M,,. Then their covariance satisfies
1
| cov(&, n) |< 1 (Mg —myg) (M,, - m,,).
Proof. By the Cauchy-Schwarz inequality, we have
| cov(&, ) I< VD(E)D(n). (13)

2
Me+me \2 Me—myg .
-5 ‘E) S( I ) . So, we obtain

By mg < & < Mg, we know (5

2 2
D(é)sE(é—Mézmé) < (M‘imé) . (14)
Similarly, we have
(M, = my)’
—-m
D() < ~— ; ! (15)

Finally, the conclusion follows from (13), (14) and (15). O

Lemma 2.11. (Perron Theorem, See [7]) If A € Py, then there exists an n-dimensional positive vector x =
(x1,%2,+++ ,x,)7 that satisfies Y.I' x; = 1 such that Ax = p(A)x, where p(A) denotes the spectral radius of A
and x is called the Perron vector of A.

. n n . n n
ForA € Py, letca = minigjcn Yjmq aij, |Alh = maxi<jcn Yoy @ij, T4 = Miigicn Xjoq aij, 1Alleo = maxizicn Xjoq aij-
Through simple calculations, we have the following lemma.

Lemma 2.12. Let A € P};. Then

n n
min {E;le x> O,in = 1} = 4, max {Ez,le x> O,Zx,- = 1} =||Alh,
i=1

i=1

n n
min {xTAE,,,l x> O,Z x; = 1} = 74, max {xTAEn,l x> O,Z x; = 1} = |All.
i=1

i=1
Lemma 2.13. ( See [16]) Let A € P}. Then

w(A) = sup {xTAx cx>0,xTx = 1}.
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3. Some Kantorovich type inequalities and Young type inequalities for Hadamard product of positive
definite matrices

3.1. Two Kantorovich type inequalities for the Hadamard product of positive definite matrices

In this section, we give two Kantorovich type inequalities for the Hadamard product of positive definite
matrices using the properties of positive linear functionals in matrix space.

Theorem 3.1. If A, B € M and D is a unit positive linearfunctional on My, then

[ Vi(A) + w/K(B ®(A o B) VK(A)k(B) + 1 16)
A)K(B) +1 CD(A o[,)®(Bol,) \/_) + \/K(_B
| D(A o B) - P(A o L,)D(B o) |< }I(p(A) - a(A))(p(B) — o(B)). (17)

Proof. Let us first check (16). The result is clear when p(A) = 0(A), i.e., when k(A) = 1. We therefore assume
p(A) > a(A). By 0(A)l, < A < p(A)l,, 0(B)L, < B < p(B)I,,, we obtain

A—=0(A), >0,p(A), —A >0,B-3(B)l, >0,p(B)l, — B >0.

Setting @ = @ [(p(A), —A)oL,], B = P[(A—-0(A)l,)oI,]. Obviously, « > 0, > 0and a + B = (p(A) —

o(A)D(I,) = p(A) — 6(A) > 0, so a, p are not all 0. Through simple calculation, we get

o(A)a+p(A)p _ o(A)a + p(A)p

p(A) —o(A) a+p

Using the fact that ®[(p(A)I,, — A) o (p(B)I, — B)] = 0, D [(A — 6(A)L,) o (B — d(B)I,)] = 0, we have
a(B)BR[(p(A)l, — A) o (p(B)l, = B)] + p(B)a®@ [(A — o(A)],)) o (B = a(B)])]
= 0(B)B[P(A o B) + p(B)a — p(A)D(B o I;)] + p(B)a[P(A o B) — a(B)f — a(A)P(B o I,)] (19)
= (p(B)a + o(B)B)P(A o B) — (p(B)o(A)a + p(A)a(B)B)P(B o I,) > 0.

D(Aol,) = (18)

Similarly, using the fact that ®[(p(A)L, — A) o (B — d(B)I,)] = 0 and @ [(A — 0(A)L,,) o (p(B), — B)] > 0, we
have

p(B)BP [(p(A)L, — A) o (B — 6(B)I,)] + a(B)a® [(A — 6(A))],,) o (p(B)I, — B)]

= p(B)B[-D(A o B) — o(B)a + p(A)P(B o I,,] + o(B)a[-P(A o B) + p(B)B + c(A)P(B o I,,)] (20)

= ~(0(B)a + p(BYPD(A o B) + (9(A)a(B)ax + p(A)p(BIP)D(B o I,) > 0.
According to (19), it follows that

DA oB) _ pB)a(Aa +p(A)o(B)E

OBol,) ~ p(B)a + o(B)B
According to (20), it follows that

DAoB) _ aA)aBa+p(A)p(B)

®Bol,) ~ o(B)a + p(B)B '
By (18) and (21), we have

®(A 0 B) , (pB)o(A)a + p(A)a(B)p)(a + f)
D(Aol,)PBol,) ~ (p(B)a+ a(B)B)co(A)a + p(A)p)
_ (k(B)a + k(A)p)(a + )
(k(B)ar + B)(a + k(A)B)’

(21)

(22)

(23)
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Similarly, by (18) and (22), we obtain

®(A o B) _ (o@oB)a + p(A)pB)F)(a + )
O (Aol)D(Boly) ~ (a(B)a+ pB)B)(a(A)a + p(A)B)
_ (a+ k(A)K(B)B)( + B) 24)
(a + x(B)B)(a + k(A)B)
As 1(A), k(B) = 1, which implies
K(A) + k(B) < k(A)k(B) + 1, Vx(A) + Vk(B) < vx(A)x(B) +1,
[ V@A) + w/K(B)]Z - ( JrARB) + 1 )2 . -
Ve@Ax®B) +1) = "\ Vx@) + JxB))

If af = 0, by (23) and (24), we have

®(A o B) _
D(AL)P(Bol,)

So, the conclusion holds
If af # 0, setting t = £ - by (23), (25) and the arithmetic geometric mean inequality, we get

®(A o B) S (x(B)a + k(A)B)(a + B)
DAoL,)DBol,) ~ (k(B)a+ p)a+x(A)B)

_ (x(B) +x(A)) (1+1)

(<(B) + ) (x(A4) + 1)
K(A) + k(B) + x(A)t + %K(B)
" K(A)K(B) + 1 + k(A)t + 1x(B)
_1- K(A)x(B) + 1 — x(A) — x(B) 26)
K(A)k(B) + 1 + x(A)t + %K(B)
B k(A)x(B) + 1 — x(A) — x(B)

(A)(B) + 1+ 2 \(A)(B)
(Ve + Jx®)
(Ve@xB) +1)

By (26), we obtain the left side of (16). Similarly, by (24) and (25), we obtain the right side of (16).
Next, we check (17) using the spectral decomposition of matrices and Lemma 2.10.

Let the spectral decomposition of A, B be A = Zle AiP;, B = 2521 1iQj, (1 <k, I < n), where P;, Q; are the

orthogonal projections matrices, Zle P, =1, Z;zl Qj = I, and A;, u; are the eigenvalues of A, B, respectively.
Hence, we have

k I k 1
AoB= ZZ/\ PoQ],CD(AoB)=ZZ/\1 (PioQ)),

i=1 j=1 i=1 j=1

=0(l;) =1.
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Taking Q ={(5,j):i=1,2,--- ,k,j=1,2,--- I} and X to be the o-field composed of all subsets of 2, for any
A €L, P(A) = L jea @Pi0Q)), &, j) = Ai,ni, ) = pj, together with simple substitution, we have

k 1 k 1
E@Em =) ) dw®@(PioQ)= sz P OQ]] (Ao B),
i=1 j=1 =1 j=1
k 1 k 1 k
E(g):ZZA, (Piog)= Z )\PoQ]]_ Z/\lpoln]—q)(AoI) 27)
i=1 j=1 =1 j=1

1
E(M)=®Bol,),0(A) <& <p(A),oB) <n<p(B),
cov(E,n) =P(AoB)—P(Aol,)P(Bol,).

Finally, (17) follows from Lemma 2.10 and (27). O
Remark 3.2. The bounds given in (16) and (17) are achievable. Taking ®(X) = tr(WX) (X € M,,), where W € M}

and tr(W) = 1. It is easy to see that @ is a unit positive linear functional on M. Through simple calculations, when
1 3 x(A)x(B)

@B +1 T B 1

n=2,A=[ p(éq) 084) ],B =[ p(OB) a(OB) ],W:diag{wl,wz},m =

the right-hand side equality of (16) holds;

When
. ey 0 [e® o0 . 3 Vx(B) 3 VK(A)
n—2,A—[ 0 o(A) ] B—[ 0 p(B) ],W—dlag{wl,wz},wl——erm,wz——m+ \/@,
the left-hand side equality of (16) holds;
When
—oa_| PA) 0 _| p®B 0 11
”—Z'A—[ 0 o(A)]’B_[ 0 a(B)]W diag (3.3}

the equality of (17) holds. Furthermore, from the proof process it is easy to see that the condition for (17) can be
weakened to A, B € H,, and ® is a unit positive linear functional on M,,.

Remark 3.3. Let A; > 0,4; > 0,i = 1,2,---,n. Let m = min1<,<na7 and M = maxi<i<ya;. Taking A =
diaglay,az, -+ ,ay}, B = A7, O(X) = tr(WX), (X € M,,), where W = Z"M diag{iA, Ay, - -+, Ayl, it is easy to see that

@ is a unit positive linear functional on M,,. By the left side of (16), together with simple substitution, we have a
discrete Kantorovich inequality as follows

211/\’112112‘ (M+m)2
S v (28)
(T 40 "
Using the diagonalization of positive definite matrices, it is easy to verify that (28) is equivalent to (1).

For any unit vector x € C", taking ®(X) = x"Xx (X € M,) in Theorem 3.1, we have the following corollary.

Corollary 3.4. Let A = [a;;], B = [b;j] € M, and x € C" with xtx = 1. Then

[«/K(A) + x/K(B)]2 - x"A o Bx <[ Vr(A)x(B) + 1 ]2 9
Vr(A)x(B) + 1 ~ xtAolxxtl,oBx \/K(_A 4 \/@ ’

| —

[x*A o Bx — x*A o I,xx"I, o Bx| < Z(p(A) — a(A)) (p(B) — o(B)). (30)

4
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Next, using Corollary 3.4 and Rayleigh Ritz Theorem, we provide some upper bounds on the spectrum
condition number of Hadamard product of positive definite matrices.

Corollary 3.5. Let A = [a;;], B = [b;j] € M;;. Let a, b stand for the maximum values of diagonal elements for A and
B respectively. Let d,b stand for the minimum values of diagonal elements for A and B respectively. Then

4
k(A oB) < [—VK(A)KW} 2_ (31)
VK(A) + /x(B)| ab
Ify < ab, then
ab+vy
K(AoB) < ——, (32)
ab—vy

wherey = }I(p(A) - 0(A))(p(B) — a(B)).
Proof. Let us first check (31). For any unit vector x € C", by (29), we have

> 2
[ \/K((IZ))+(B\/)K(31)] x’f(A o I)Xx*(B ol)x < xTAoBx < (%] x*(A o I)xx*(B o I)x. (33)
Vr(A)x(B) + VKA) + YK

Because of xT(A o I)x = Y1, a;i|xi|?, we get
n n
a= Z x> < xf(AoDx < Z:czlxil2 =a. (34)
i=1 i=1
Similarly,
n n
b= P <x'(Bolx<) bf=b. (35)
i=1 i=1

According to the Rayleigh-Ritz Theorem, we have p(A o B) = max|yj,=1 X'(A 0 B)x, 6(A 0 B) = minyy,=1 x' (Ao
B)x. By (33), (34) and (35), we have

2 2
VK(A) + Vr(B) VK(B)] b < (A oB) < p(AoB) < {—”K(A)K(B)H] ab. (36)
Vx(A)k(B) + 1 ©(A) + /x(B)

By (36), we have

k(Ao B) =

p(AoB) [ VrA)KB) + 1 ]4 ab
o(AoB) 7| \[k(A) + x(B)| ab

Let us check (32). For any unit vector x € C”" (i.e., ||x[l = 1), by (30), we have

|x*(A o B)x — x"(A o L)xx(I,, o B)x| <y. (37)
By (37), we have

x"(A o I)xx"(I, o B)x — y < x"(A o B)x < x"(A o I,)xx"(I, o B)x + 7. (38)
By (34), (35) and (38), we have

ab—y <x"(AoB)x <ab+y. (39)

By (39), together with the Rayleigh-Ritz Theorem, we get
ab—y < o(AoB)< p(AoB)<ab+y. (40)
Finally, (32) follows from (40). O
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Remark 3.6. Let A = [a;] € M;;, then AT € M}, Ao AT = [la;ji2], p(AT) = p(A), 6(AT) = 6(A) and 1<(AT) = K(A).
Let a, & stand for the maximum values, the minimum values of diagonal elements for A respectively, then a?,4* stand
for the maximum values, the minimum values of diagonal elements for A o AT respectively. By the Rayleigh-Ritz

Theorem, we obtain & < p(A o AT). Taking B = AT in (31), we obtain

2 =

’ SK(AOAT)<MH—2

= Tl6k(AR a2 &)

Q)lm
N

Let A, B e M, p,q > 1 with % + % = 1. Taking @ to be the identity map in Lemma 2.6, we know that
g(x,y) = A*o B

is a convex map on R%. Based on this, we can obtain the Young type inequality for Hadamard product of
A and B as follows:

AoB=(AP)F o (Bl)i < %(APOI)+%(BQOI),
One can naturally ask whether
1 1
AoB< —(Aol)) + -(Bol)
p q
holds. The following example provides a negative answer. Setting

1
2
)

through simple calculation, we can obtain

oo

N= =

1 1 0 —l)
(Ao’ +=(Bol)T—AoB-= 4],
pael el (-% 0

It is thus clear that %(A o) + %(B o)1 — Ao B > 0 does not hold. Next, using Corollary 3.4, we present a
relationship between %(A oy + %(B ol)and A o B.

Corollary 3.7. Let A,B € My and p,q > 1with ; + . = 1. Then

Vx(@A)x(B) + 1
Vx(A) + vx(B)

Proof. For any unit vector x € C", by Corollary 3.4 and the Young inequality, we have

VK(A) + +/x(B)
2
) [ VRARB) + 1 ) [% (aen + (e I)x)q] | )

2
1 1
AoB< “(AoIy +=(Bol)|.
<[ HP( )+q( )]

2
xtAoBx < ( ] xM(A o Dxx"(B o D)x

Vx(A) + vx(B)

It is easy to see that ®(X) = x"Xx (X € M,) is a unit positive linear functional on M, and x”,x7 are both
convex functions on (0, +) for p,q > 1. By Lemma 2.8, we have

(" (A o Dx)P < xT(A o IVPx, (xT(A o Dx)7 < x"(A o I)x. (43)
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By (42) and (43), we have
2
xtAoBx < [—VK(A)KW] [1x+(A oIPx + 1x‘f(B o I)7x|. (44)
Ve + x®B)) P q

So, the conclusion follows from (44). O

3.2. Some Young type inequalities and their inverse for Hadamard product of positive definite matrices

In this section, we give some Young type inequalities and their inverse for Hadamard product of positive
definite matrices.
Let A, B € M} and 0 < v < 1. Taking @ to be the identity map in Lemma 2.6, we know that

f(x,y):AxoBy

is a convex map on R?. So, we can obtain A" o B'™" < vA o I, + (1 = v)B o I,,. That is, we have the following
weighted geometric-arithmetic mean inequality involving the Hadamard product of matrices.

Corollary 3.8. Let A,Be M and 0 <v < 1. Then
G,(A, B) < AL(A, B). (45)
By Lemma 2.9, Corollary 3.8 and Theorem 3.1, we have the following theorem.

Theorem 3.9. Let A,B € M}, 0 < r < 1 and ® be a unit positive linear functional on M,,. Then
() DA oL)DBoL) " <D (Af o BH) <DAoL)DBoIL,), (46)

where

(VREY + VB)
(\/K(A)’K(B)P’ + 1)2

@(r) = na(r)ne(1 —7)

and
nx(6) = { 6-0(1 - 0)°-1(k(X) - 1) (k)¢ 1)’ (x(X) = k(X)) ", x(X) > 1
1, K(X) =1
for 0 < 0 < 1 and positive definite matrix X.

Proof. By Corollary 3.8, we have

® (A" 0 BI") < rd(A o L) + (1 = DB o ). (47)
Replacing A with tA (t > 0) in (47), we obtain

® (A0 B') < T DA 0 L) + (1 - 1)t D(B o I,). (48)
Using differential method, it is easy to prove that

min {r A o L) + (1= DB o L) 1 £ > 0} = DA 0 L) B(B o I,)1 ™. (49)
By (48) and (49), we have

® (A" 0 B'") < min {rtl-’cD(A ol,)+ (1=t ®(Boly):t >0} =DAocL)YDBoL) (50)
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By (50), we know that the right side of (46) holds.
Using the fact that x(A") = x(A)", x(B'™") = x(B)'™, together with the left side of (16) and Lemma 2.9, we
have

VKA + x(B)~"
Vr(Ay k(B +1
> (D(I’)( VHlA) + V(B
- k(A x(B)1" + 1

2
®(AToB) 2 [ ) D (A" 0 1,)@(B'" o 1,)

2
) ®(AoL) DPBol,) .

O

Remark 3.10. Through simple computations, it is easy to see that the right side equality of (46) holds when k(A) = 1
or k(B) = 1. When k(A) = k(B) = 1, the left side equality of (46) holds.

Next, using Lemma 2.6 we provide a relationship between the weighted Hadamard geometric-arithmetic
mean of matrices under different weights.

Theorem 3.11. Let A,Be M} and 0 <v < u < 1. Then
v ) o o o 1-v o o
;ﬁﬂW&m—QAAB»Sﬂ&&m—QW&mSTjwﬂAAm—QW&B) (51)

Proof. Our proof is based on the following three steps.

Step 1. If R2 = {(x,y) : x > 0,y > 0} = {(0,0)} and G : RZ — M is a convex (concave) map, then
g :[0,1] — M} is a convex (concave) map, where g(x) = G(x, 1 — x). This result can be directly verified by
definition.

Step 2. If g : [0,1] — M} is a concave map, g(0) = g(1) =0and 0 < v < pu < 1, then

v 1-v
ﬁg(u) <gv) < o Hg(u). (52)

If g: [0,1] = M} is a convex map, (52) is reversed.
We only verify the concave case. If g : [0,1] — M} is a concave map, then

g(v) = 9(%# + (1 - K)0) > gg(u) + (1 - ﬁ)g(o) = ﬁg(u),

U
1- —v 1- —v 1-
mm=g(yjﬁ+f_vﬁz1_5%ﬂ+§j;mn=l_ﬁww

From this, the conclusion follows from a simple transformation. Similarly, we can verify the convex case.

Step 3. By Lemma 2.6, we know that G(x, y) = A* o B is a convex map on IR?. Therefore, from the first
step mentioned above, we get A* o B1™ : [0,1] — M} is a convex map, which implies that g(x) : [0,1] — M
is a concave map satisfied g(0) = g(1) = 0, g(v) = A (A, B) — G7(A, B) and g(u) = A (A, B) — G1(A, B), where
g(x) =xAol,+(1-x)Bol, — A* o BI™*. Finally, (51) follows from (52). [

By Theorem 3.11, we get the following corollary.

Corollary 3.12. Let A,Be M} and 0 <v <1, t = min{v,1 — v} and 0 = max{v,1 —v}. Then

21 (ﬂ‘; (AB)-6; (A,B)) < A°(A,B) - G°(A, B) < 20 (ﬂ‘; (AB)-6; (A,B)). (53)
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Proof. The result is clear when v = 1. We therefore assume v # 1. When 0 < v < 1, by (51), we have
20 (A (A, B) - G}(4, B)) < (A, B) - 634, B) < 2(1 - ) (A (4,B) - G5 (A, B)). 64

When 1 <v <1, we have

L (A4, B) - G3(A, B)) < 7 (A, B) — 63 (A, B) <

5 (A4, B) - G3(A, B)). (55)

2(1-v)
Through simple deformations, the conclusion follows from of (54) and (55). O

Remark 3.13. By (3), we have

A? 0Bt < (Aol (Bol)?.

So, we get
o o 1 1 1 11 1 112
AYAB) = Gi(A,B) 2 sAol+5Bol~(Acl) (Bol)* = z((A o) = (Bol)?) . (56)
2 2
The improvement for (45) can be obtained from the left side of (53) and (56) as follows:
1 1\2
A(A,B) 2 Go(A,B)+T((AoD)? — (Bol)?) . (57)

4. Some Kantorovich type inequalities for Hadamard product of positive matrices

With the rapid development of data acquisition technology, large amounts of data, such as online
documents, medical images, traffic data, health data, and other high-dimensional data, are accumulating.
Nonnegative matrices have received a lot of attention in the recent years, since they provide a powerful
tool in analysing nonnegative data. For example, Adam et al. [1] presented sequences of lower and upper
bounds for the spectral radius of a nonnegative matrix. Bui [5] gave an effective bound of the joint spectral
radius for a finite set of nonnegative matrices. Xie et al. [16] presented a Kantorovich type inequality
for positive matrices, which provided some generalized forms of discrete Kantorovich inequality. In this
section, we investigate some Kantorovich type inequalities for Hadamard product of positive matrices.

4.1. Two Kantorovich type inequalities for Hadamard product of positive matrices

Theorem 4.1. Let A = [a;;], B = [b;;] € P}, , and ® be a strictly positive linear functional on Ry, ,. Let my =

. _ _ . _ _ MA _ MB
MmN <i<m,1<j<n Bij, Ma = MaXi<i<m1<j<n dij, Mp = MiNi<icm1<j<n bij, Mp = maxi<i<m1<j<n bij Ra = 75, Rp = 2

Then

O(A?) D (B?
1 < ( ) ( ) < (RARB + 1)2’ (58)
[®(A o B)I? 4RARp

oo 24 awon) (VMaMs - yimas)

2
“®AoB) ®(B®) " Mpmg '

(59)

Proof. Letus first check (58). For any positive numbert > 0, using the fact that AoB = BoA, (A—tB)o(A—tB) =
AD 4+ 2B@ _2tA o B > 0, we obtain

®(A®) + LD (B?) - 2tD(A 0 B) 2 0.
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That is
1/1
iy (2 (2)
CI)(AOB)SZ(tq)(A )+tq)(B )) (60)

By (60), we have

®(A 0 B) < min % (%@ (A®) + (B<2>)) = \JD(A®) D (B@). (61)

Then (60) implies the left side of (58).
On the other hand, we have

M M
T/{f; n < A0 B < m—:Em " I\T’Z Eppn <ACD 0B < m—jEWl. (62)
By (58), we obtain

AoBo (%Em,,, “Ao B<—1>) 0 (Aﬁgm _AGD B)
mp
My

- (M n 1)A oB— M8 g0 _Magey, g (63)
mamp ma mp
By (63), we obtain
(w)@m oB) - MBq)(A(Z)) MA (B(Z)) 0.
mams ma mp
That is
Ms o, (A(2)) MA (3(2)) (AM)Q(A o B). (64)
muy mampg

By (64) and the arithmetic geometric mean inequality, we obtain

/MAMB O (A®) @ (B@) < =L MB A®) MACD(B@) (MANE ;mAmB)cp(A o B). (65)
All'B

Through simple calculations, (65) implies the right side of (58).

Next, we check (59). It is easy to see that the left side of (58) implies the left side of (59). Therefore,
we only need to prove the right side of (59). If i\% = 1\"17/;, then My = ms, Mg = mp. So, there exist positive
numbers a,b such that A = aE,,,, B = bE,,,. In view of this, it is easy to verify (59). We therefore assume

Ma o - Let

mpg

_ (D(A oBo (%Emﬂ —Ao B<—1>)) _ A%CD(A o B)-d(A?),
B

-1 _Mma - @) _ Ma
Y= q)(AoBo(AoB MBE,M))_CD(A ) TA0 (40 B). (66)
By (62), we have ’
xzo,yzo,xw:(]\nf—;—;\”72)®(AOB)>0. 67)
By (66) and (67), we have
D(A? x+
( ) mp y. (68)

CI)(AOB) x+y
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By (64) and (68), we have
(O] (B(z)) - MaMpx + mampy
(I)(A o B) - MAmA(x + y) '
If xy = 0, by (68) and (69), we have
®(A?)  o@oB)
®AoB) ®(B®)

Therefore, the conclusion holds.
If x >0,y > 0, by (68) and (69), we have

P(A%)  woB) _ FX+HIEY  Mumar+y)
PAoB) ©BO®) T x+y MaMgpx + mampy
(MaMp — mamgp)* xy

- Mgmp (MaMgx? + mampy? + (MaMp + mamg) xy)

From the arithmetic geometric mean inequality, we have

MAMB.X2 + mAmBy2 + (MAMB + THAH’IB)X]/ > (2 MAMBmAmB + MAMB + mAmB) Xy

= (VMsMp + \/mAmB)ny.

Finally, (59) follows from (70) and (71). O

Remark 4.2. When B = cA (c > 0), it is easy to check the left equalities of (58) and (59) hold.

When
m=2n=1A= [ Ma ],B = A<—1>,q>([ 1 ]) = X1+,
my X2
the right equality in (58) holds.
When
m=2,n=1A= [ Ma ],B = A<—1>,c1>([ 1 ]) = Maxi + maxa,
ma X2

the right equality in (59) holds.

Remark 4.3. Replacing A, B with A), A2 respectively in (58) and (59), we can obtain

PAP(AT) (R, + 17

1< <
[ (En)] 4R4

4

D(A) @ (Epn) 2
0 )~ aar) < (VMa~ Vi)

By Lemma 2.11, 2.12, 2.13 and (72), we have the following corollary.

. M
Corollary 4.4. Let A € Py, my = mini<jcp,1<j<n @ij, Mo = MaXi<i<n,1<j<n dij, Ra =

Then

1, _ (R4 + 1)
n?<p(AY) < 2212
Al =P (4 4Rxch

w(A)wAY) > n?.

1221

(69)

(70)

(71)

(72)

(73)

. n
and cy = minj<j<, Y.iLq aij.

(74)

(75)



Z. Xie, |. Liu / Filomat 40:4 (2026), 1207-1224 1222

Proof. Let y be the Perron vector of AT, Taking ®(X) = ET Xy (X € R,) in (72), we have

Eﬁ,lAyEZ,lA(fl)y < (R4 + 1)

[ET Eny? = 4Ra (76)
By Lemma 2.12, we have
ca<EpAy<[l Al . (77)
Through simple calculations, we obtain
Eni ATy = p(A™)), B} Ey = n. (78)

By simple substitution, (74) follows from (76), (77) and (78).
Similarly, for any non negative unit vector x € R” (i.e., x > 0,xTx = 1), taking ®(X) = xT Xx (X € R,)) in
(72), we have

T AT AG-D
x'Axx'A i X (79)
[x"Enx]
Through simple calculations, we know
2
n® = [w(E,,)]2 = sup {[xTE,,x] cx>0,xTx = 1} <sup {xTAxxTA(‘l)x cx>0,xTx = 1} < w(A)w (A(‘l)).
O

If A € P; is a doubly stochastic matrix, by (74), we know n? < p (A(‘l)) < (R*‘“) 42 52 and equalities hold when
A=1E,
n

4.2. Several Kantorovich type inequalities involving the permanent of positive matrices
By (73), we have the following corollary.
Corollary 4.5. IfA; > 0,i=1,2,--- ,n, pp = maxi<i<u{Ai}, 04 = mini<i<,{Ai}, then
0 < Y Ai n
B n Zz 1/\_1 -

Proof. Taking A = (A1, A, -+, An), D(X) = XE,1,X € Ry, in (73), the conclusion follows from simple
substitution. [

< (vpr- v <80>

By Theorem 4.1, we have the following corollary.

Corollary 4.6. Let Aj,u; > 0,i = 1,2,---,n and w; > 0 with YL w; = 1. Let pp = maxjcicnfAi}, o4 =
minigicu{Ai}, py = maxisicniphil, 0y = minigicn{pil, k2 = 5 and x, = B Then

ZAWA‘ul szﬂt Zw,yl

= p‘u U‘u) (P)\ - 0/\)/ (81)

( \/a + \/K_F)z . Z?:l wiAiHi ( \/K/\_K+ 1 )

82
Viak, +1 Yiswidi sy wigi ~ \ VKa+ Ky %2
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Proof. Setting A = diag{A1, Ay, -+, Ay}, B =diag{ua, o, -, tn} X = (\/zT, \Vwsy, -, \/uTn), D(X) =x"Xx, X €
M, in (16) and (17), it is easy to see that p(A) = p,, 0(A) = 04, p(B) = pu, 0(B) = 0, K(A) = k1 and x(B) = x,.
Through simple substitution, (81) and (82) follow from (16) and (17). O

From Corollary 4.5, and Corollary 4.6, we have the Kantorovich type inequality involving the permanent
of positive matrices as follows:

Corollary 4.7. Let A = [a;;], B = [b;j] € P;;, Ps = m" , PB ]\rfw Then
Per(A) n! 2 - 2
1 n n n n
‘Eper(A oB) - ” |)2 — Per(A)Per( B)’ = (M — ) (M = ), (84)

l(\/P_A+ \/P_B)Z< Per(A o B) Sl(\/PAPB+1)2' )

\PsPs +1) ~ Per(A)Per(B) VP + \Ps

Proof. Let S, be a permutation group with order n. According to the definition of permanent, we have

Per(A) = Z A179271, ** " Anmyy s PET’(B) = Z blm b2n2 te bnn,,/

T T Tt €S T iy T4 €Sy

Per(A o B) = Z My 421, Anm, blnl b27‘[2 ce bnnn‘ (86)

T Tl TR €Sy
Let
Arimymy = 01 B2my ** * Anmy s Prymyeom, = bin, ban, * by, Oryrym, = E

It is easy to see that

" VK/\K/\+1 VPAPg +1
B/\/a+\/7<_u VP4 + VPg

By simply substituting (79), (80), (81), (86) and (87), we obtain (83), (84) and (85). O

pr <My, 00 2mly, py < Mg, 0, 2m (87)
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