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Some Kantorovich type inequalities and Young type inequalities for
the Hadamard product of matrices

Zhengwei Xiea,∗, Jianzhong Liua

aSchool of Mathematics and Physics, Jiangsu University of Technology, Changzhou, 213001, China

Abstract. In this paper, we present some Kantorovich type inequalities and Young type inequalities
for the Hadamard product of positive definite matrices using the convexity of some functions involving
positive definite matrices and the properties of Hadamard products of matrices. Based on this, we get some
Kantorovich type inequalities for the spectral condition numbers of Hadamard product of positive definite
matrices and some Kantorovich type inequalities in the Löwner partial ordering. Secondly, we obtain some
Kantorovich type inequalities involving the Hadamard product of positive matrices by the properties of
positive linear functionals in matrix space. Finally, we provide some Kantorovich type inequalities for the
permanent of positive matrices.

1. Introduction

Let A be an n × n positive definite matrix and x ∈ Cn (x , 0). In 1948, Kantorovich [8] introduced the
well-known Kantorovich inequality. Mond et al. [11, 12] presented two matrix versions of the Ky Fan
generalization of the Kantorovich inequality. The basic form of a matrix type Kantorovich inequality is as
follows:

x†Axx†A−1x

(x†x)2 ≤
(ρ(A) + σ(A))2

4ρ(A)σ(A)
, (1)

where x† stands for the conjugate transpose of x, ρ(A) and σ(A) represent the maximum and minimum
eigenvalues of A respectively. When B and A are n × n positive definite matrices with AB = BA, Greub and
Rheinboldt [6] provided a generalized form of (1) as follows:

x†A2xx†B2x

(x†ABx)2 ≤

(
ρ(A)ρ(B) + σ(A)σ(B)

)2

4ρ(A)ρ(B)σ(A)σ(B)
. (2)
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Xie et al. [16] presented a Kantorovich type inequality for positive matrices by using the properties of
positive linear functionals on matrices, which provided some Kantorovich type inequalities for spectral
radius, numerical radius and spectral norm of the product of positive matrices. For more generalized
Kantorovich inequalities, please refer to [4, 13–15]. Ando [3] obtained an interesting Hölder type inequality
for the Hadamard product of positive definite matrices in the Löwner partial ordering as follows:

A ◦ B ≤ (Ap
◦ I)

1
p (Bq

◦ I)
1
q , (3)

where A,B are positive definite matrices of the same order and p, q > 1 with 1
p +

1
q = 1.

Let a, b > 0 and 0 < ν < 1. The well-known Young inequality is as follows:

νa + (1 − ν)b ≥ aνb1−ν. (4)

In some literature, (4) is also said to be the weighted arithmetic-geometric mean inequality. For positive
definite matrices A,B of the same order, their weighted geometric and arithmetic mean are respectively as
follows:

Gν(A,B) = A
1
2

(
A−

1
2 BA−

1
2

)1−ν
A

1
2 ,Aν(A,B) = νA + (1 − ν)B.

As is well known, their relationship is as follows:

Gν(A,B) ≤ Aν(A,B). (5)

In recent years, researchers have investigated the extension, improvement, and inverse of inequality
(5) through the improvement, generalization, and inverse of Young’s inequality (4) in many literature. For
example, Kittaneh and Manasrah [9] gave the improved Young inequality as follows:

aνb1−ν + τ
(√

a −
√

b
)2
≤ νa + (1 − ν)b, (6)

where τ = min{ν, 1 − ν}. Using the improved Young inequality (6), they proposed some improvements on
some Young type inequalities involving matrix singular values and matrix norms. Kittaneh and Manasrah
[10] presented an inverse of the Young inequality as follows:

νa + (1 − ν)b ≤ aνb1−ν + σ
(√

a −
√

b
)2
, (7)

where σ = max{ν, 1 − ν}. Using (7), Kittaneh and Manasrah provided some inverse forms of the matrix
weighted arithmetic-geometric mean inequality. Alzer et al. [2] investigated the difference of weighted
arithmetic and weighted geometric mean with respect to two different weights. They used differential
methods, through a scalar inequality, and showed that

ν
µ

(
Aµ(A,B) − Gµ(A,B)

)
≤ Aν(A,B) − Gν(A,B) ≤

1 − ν
1 − µ

(
Aµ(A,B) − Gµ(A,B)

)
, (8)

where A,B are positive definite matrices and 0 < ν ≤ µ < 1.
We use the following standard notation. R and C represent the sets of real numbers and the sets of

complex numbers, respectively. Mm×n and Mn represent the complex linear space formed by m×n complex
matrices and n × n complex matrices respectively. M+

n (M̃n) stands for a convex cone formed by an n × n
positive definite (semidefinite) matrix. The set of n × n Hermite matrices is denoted by Hn. For A ∈ Mm×n,
A† stands for the conjugate transpose of A. For A,B ∈ Hn, A > 0 (A ≥ 0) stands that A is positive definite
(semidefinite), A ≥ B stands for A − B ≥ 0, and this relationship is said to be the Löwner partial ordering.
Rm×n andRn represent the real linear space formed by m×n real matrices and n×n real matrices respectively.
For A = [ai j] ∈ Rm×n, A ≻ 0 stands for ai j ≥ 0, i = 1, 2, · · · ,m, j = 1, 2, · · · ,n. In which case, A is said to be
a nonnegative matrix. In addition, if ai j > 0, i = 1, 2, · · · ,m, j = 1, 2, · · · ,n, then A is said to be a positive
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matrix. For A ∈ Mm×n, AT stands for the transpose of A. Pm,n and P+m,n stand for convex cones formed by
m × n nonnegative matrices and positive matrices, respectively. When m = n, corresponding symbols are
abbreviated as Pn and P+n respectively. A ≻ B stands for A − B ≻ 0. Em,n represents an m × n matrix with all
elements being 1. When m = n, we denote En,n by En. For A = [ai j] ∈ P+m,n and α ∈ R, A(α) stands for

[
aαi j

]
.

A ◦ B stands for the Hadamard product of A and B. Denote n × n the identity matrix by In, or I for short.
For A ∈ Mn, w(A) = sup{|x†Ax| : x ∈ Cn, x†x = 1} is said to the numerical radius of A. For A ∈ Hn, ρ(A),
σ(A) stand for the maximum eigenvalue, minimum eigenvalue of A, respectively. If A is a positive definite
matrix, then κ(A) = ρ(A)

σ(A) represents the spectral condition number of A.
The remainder of this paper is organized as follows. In Section 2, we give some of the definitions and

lemmas that will be used in the rest of the paper. Then, in Section 3, we present two Kantorovich type
inequalities and some Young type inequalities for the Hadamard product of positive definite matrices.
Based on these, we obtain some Kantorovich type inequalities for the upper bound of the spectral condition
number of Hadamard product of positive definite matrices. In Section 4, we provide some Kantorovich
type inequalities involving the Hadamard product of two positive matrices and the permanent of positive
matrices.

2. Preliminaries

In this section, we introduce some basic concepts and lemmas related to matrix theory.

Definition 2.1. Let D ⊂ Mm,n be a convex set and f : D → Hk be a map. Then f is said to be a convex map, if for
any U,V ∈ D, λ ∈ [0, 1], we have

f (λU + (1 − λ)V) ≤ λ f (U) + (1 − λ) f (V).

When the above inequality is reversed, f is called a concave map on D.

If f is continuous, then f is a convex mapping on D if and only if

f
(U + V

2

)
≤

f (U) + f (V)
2

.

Remark 2.2. Obviously, if f is a convex function on D and A ∈ M̃k, then 1(U) = f (U)A is a convex map on D.

Definition 2.3. Let Φ : Mk →Ml be a linear map. If C ≥ 0 implies Φ(C) ≥ 0, then Φ is called a positive linear map
on Mk. In addition, if C > 0 implies Φ(C) > 0, then Φ is called a strictly positive linear map on Mk. If Φ(Ik) = Il,
then Φ is called a unital map. When l = 1, Φ is called a linear functional on Mk.

Definition 2.4. Let Φ : Rm×n → R be a linear function. If A ≻ 0 implies Φ(A) ≥ 0, then Φ is called a positive
linear functional on Rm,n. In addition, if any A ∈ P+m,n implies Φ(A) > 0, then Φ is called a strictly positive linear
functional on Rm×n. If Φ(Em,n) = 1, then Φ is called a unit linear functional on Rm×n.

Definition 2.5. Let A,B ∈ M+
n , 0 < ν < 1. The weighted geometric Hadamard mean and arithmetic Hadamard

mean of A,B are defined respectively as follows:

G
◦

ν(A,B) = Aν ◦ B1−ν,A◦ν(A,B) = ν (A ◦ In) + (1 − ν)(B ◦ In).

Lemma 2.6. Let A,B ∈M+
n and Φ : Mn →Mk be a positive linear map. Then

G(x, y) = Φ (Ax
◦ By)

is a convex map on R2.
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Proof. Let the spectral decomposition of A,B be A =
∑N1

i=1 λiPi, B =
∑N2

j=1 µ jQ j, where Pi,Q j are the or-

thogonal projections, λi, µ j > 0 and N1,N2 ≤ n. Then Ax =
∑N1

l=1 λ
x
i Pi, By =

∑N2
j=1 µ

y
j Q j and Φ (Ax

◦ By) =∑N1
i=1

∑N2
j=1 λ

x
i µ

y
jΦ

(
Pi ◦Q j

)
.

Using the fact that Φ
(
Pi ◦Q j

)
≥ 0 and f (x, y) = axby is a convex function on R2 for any a, b > 0, the

conclusion follows from Remark 2.2.

It is easy to verify the following lemma by the definition of matrix function.

Lemma 2.7. Let A ∈ Hn and its eigenvalues included in the interval I. If f , 1 : I → R satisfy f (x) ≤ 1(x) (x ∈ I),
then f (A) ≤ 1(A).

Lemma 2.8. Let A ∈ M+
n , f : (0,+∞) → R be a convex function and Φ be a unit positive linear functional on Mn.

Then

f (Φ(A)) ≤ Φ( f (A)).

When f is a concave function, the above inequality is reversed.

Proof. Let the spectral decomposition of A be A =
∑k

i=1 λiPi, where Pi are the orthogonal projections, λi > 0
and k ≤ n. Then

f (A) =
k∑

i=1

f (λi)Pi,Φ( f (A)) =
k∑

i=1

f (λi)Φ (Pi) , f (Φ(A)) = f

 k∑
i=1

λiΦ (Pi)

 .
When f is a convex function, using the fact Φ (Pi) ≥ 0,

∑k
i=1Φ (Pi) = Φ

(∑k
i=1 Pi

)
= Φ (In) = 1, we have

f (Φ(A)) = f

 k∑
i=1

λiΦ (Pi)

 ≤ k∑
i=1

Φ (Pi) f (λi) = Φ( f (A)).

When f is a concave function, the above inequality is reversed.

Lemma 2.9. Let A ∈M+
n and Φ be a unit positive linear functional on Mn. When 0 < r < 1, we have

Φ(Ar
◦ In) ≥ ηA(r)Φ(A ◦ In)r, (9)

where

ηA(r) =
{

r−r(1 − r)r−1(κ(A) − 1)−1(κ(A)r
− 1)r(κ(A) − κ(A)r)1−r, κ(A) > 1

1, κ(A) = 1 .

Proof. The result is clear when κ(A) = 1. We therefore assume κ(A) > 1. Due to f (x) = xr being a concave
function on (0,+∞), for x ∈ [σ(A), ρ(A)], we have

xr
≥
ρ(A)r

− σ(A)r

ρ(A) − σ(A)
x +
ρ(A)σ(A)r

− ρ(A)rσ(A)
ρ(A) − σ(A)

. (10)

By (10) and Lemma 2.7, we get

Ar
≥
ρ(A)r

− σ(A)r

ρ(A) − σ(A)
A +
ρ(A)σ(A)r

− ρ(A)rσ(A)
ρ(A) − σ(A)

In. (11)

By (11), we have

Ar
◦ In ≥

ρ(A)r
− σ(A)r

ρ(A) − σ(A)
A ◦ In +

ρ(A)σ(A)r
− ρ(A)rσ(A)

ρ(A) − σ(A)
In.
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Hence we have

Φ(Ar
◦ In) ≥

1
ρ(A) − σ(A)

((
ρ(A)r

− σ(A)r)Φ(A ◦ In) + ρ(A)σ(A)r
− ρ(A)rσ(A)

)
. (12)

By (12) and (4), we obtain

Φ(Ar
◦ In) ≥

1
ρ(A) − σ(A)

{
r
[1

r
(
ρ(A)r

− σ(A)r)Φ (A ◦ In)
]
+ (1 − r)

[ 1
1 − r

(
ρ(A)σ(A)r

− ρ(A)rσ(A)
)]}

≥
1

ρ(A) − σ(A)

[1
r

(ρ(A)r
− σ(A)r)Φ(A ◦ In)

]r [ 1
1 − r

(
ρ(A)σ(A)r

− ρ(A)rσ(A)
)]1−r

= r−r(1 − r)r−1
(
ρ(A)r

− σ(A)r)r (ρ(A)σ(A)r
− ρ(A)rσ(A)

)1−r

ρ(A) − σ(A)
Φ(A ◦ In)r

= r−r(1 − r)r−1(κ(A) − 1)−1 (κ(A)r
− 1)r (κ(A) − κ(A)r)1−rΦ(A ◦ In)r.

Lemma 2.10. Let ξ, η be two bounded random variables on probability space (Ω,Σ,P). Hence, there exist constants
mξ,Mξ,mη,Mη such that mξ ≤ ξ ≤Mξ,mη ≤ η ≤Mη. Then their covariance satisfies

| cov(ξ, η) |≤
1
4
(
Mξ −mξ

) (
Mη −mη

)
.

Proof. By the Cauchy-Schwarz inequality, we have

| cov(ξ, η) |≤
√

D(ξ)D(η). (13)

By mξ ≤ ξ ≤Mξ, we know
(
ξ − Mξ+mξ

2

)2
≤

(Mξ−mξ)2

4 . So, we obtain

D(ξ) ≤ E
(
ξ −

Mξ +mξ
2

)2

≤

(
Mξ −mξ

)2

4
. (14)

Similarly, we have

D(η) ≤

(
Mη −mη

)2

4
. (15)

Finally, the conclusion follows from (13), (14) and (15).

Lemma 2.11. (Perron Theorem, See [7]) If A ∈ P+n , then there exists an n-dimensional positive vector x =
(x1, x2, · · · , xn)T that satisfies

∑n
i=1 xi = 1 such that Ax = ρ(A)x, where ρ(A) denotes the spectral radius of A

and x is called the Perron vector of A.

For A ∈ P+n , let cA = min1≤ j≤n
∑n

i=1 ai j, ∥A∥1 = max1≤ j≤n
∑n

i=1 ai j, rA = min1≤i≤n
∑n

j=1 ai j, ∥A∥∞ = max1≤i≤n
∑n

j=1 ai j.
Through simple calculations, we have the following lemma.

Lemma 2.12. Let A ∈ P+n . Then

min

ET
n,1Ax : x ≥ 0,

n∑
i=1

xi = 1

 = cA,max

ET
n,1Ax : x ≥ 0,

n∑
i=1

xi = 1

 = ∥A∥1,
min

xTAEn,1 : x ≥ 0,
n∑

i=1

xi = 1

 = rA,max

xTAEn,1 : x ≥ 0,
n∑

i=1

xi = 1

 = ∥A∥∞.
Lemma 2.13. ( See [16]) Let A ∈ P+n . Then

w(A) = sup
{
xTAx : x ≻ 0, xTx = 1

}
.
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3. Some Kantorovich type inequalities and Young type inequalities for Hadamard product of positive
definite matrices

3.1. Two Kantorovich type inequalities for the Hadamard product of positive definite matrices
In this section, we give two Kantorovich type inequalities for the Hadamard product of positive definite

matrices using the properties of positive linear functionals in matrix space.

Theorem 3.1. If A,B ∈M+
n and Φ is a unit positive linear functional on Mn, then

√
κ(A) +

√
κ(B)√

κ(A)κ(B) + 1

2

≤
Φ(A ◦ B)

Φ(A ◦ In)Φ(B ◦ In)
≤


√
κ(A)κ(B) + 1√
κ(A) +

√
κ(B)

2

, (16)

| Φ(A ◦ B) −Φ(A ◦ In)Φ(B ◦ In) |≤
1
4

(ρ(A) − σ(A))(ρ(B) − σ(B)). (17)

Proof. Let us first check (16). The result is clear when ρ(A) = σ(A), i.e., when κ(A) = 1. We therefore assume
ρ(A) > σ(A). By σ(A)In ≤ A ≤ ρ(A)In, σ(B)In ≤ B ≤ ρ(B)In, we obtain

A − σ(A)In ≥ 0, ρ(A)In − A ≥ 0,B − σ(B)In ≥ 0, ρ(B)In − B ≥ 0.

Setting α = Φ
[
(ρ(A)In − A) ◦ In

]
, β = Φ [(A − σ(A)In) ◦ In]. Obviously, α ≥ 0, β ≥ 0 and α + β = (ρ(A) −

σ(A))Φ(In) = ρ(A) − σ(A) > 0, so α, β are not all 0. Through simple calculation, we get

Φ(A ◦ In) =
σ(A)α + ρ(A)β
ρ(A) − σ(A)

=
σ(A)α + ρ(A)β
α + β

. (18)

Using the fact that Φ[(ρ(A)In − A) ◦ (ρ(B)In − B)] ≥ 0, Φ [(A − σ(A)In) ◦ (B − σ(B)In)] ≥ 0, we have

σ(B)βΦ[(ρ(A)In − A) ◦ (ρ(B)In − B)] + ρ(B)αΦ [(A − σ(A)In) ◦ (B − σ(B)In)]
= σ(B)β[Φ(A ◦ B) + ρ(B)α − ρ(A)Φ(B ◦ In)] + ρ(B)α[Φ(A ◦ B) − σ(B)β − σ(A)Φ(B ◦ In)] (19)
= (ρ(B)α + σ(B)β)Φ(A ◦ B) − (ρ(B)σ(A)α + ρ(A)σ(B)β)Φ(B ◦ In) ≥ 0.

Similarly, using the fact that Φ[(ρ(A)In − A) ◦ (B − σ(B)In)] ≥ 0 and Φ
[
(A − σ(A)In) ◦ (ρ(B)In − B)

]
≥ 0, we

have

ρ(B)βΦ
[(
ρ(A)In − A

)
◦ (B − σ(B)In)

]
+ σ(B)αΦ

[
(A − σ(A))In) ◦ (ρ(B)In − B)

]
= ρ(B)β[−Φ(A ◦ B) − σ(B)α + ρ(A)Φ(B ◦ In] + σ(B)α[−Φ(A ◦ B) + ρ(B)β + σ(A)Φ(B ◦ In)] (20)
= −(σ(B)α + ρ(B)β)Φ(A ◦ B) + (σ(A)σ(B)α + ρ(A)ρ(B)β)Φ(B ◦ In) ≥ 0.

According to (19), it follows that

Φ(A ◦ B)
Φ(B ◦ In)

≥
ρ(B)σ(A)α + ρ(A)σ(B)β
ρ(B)α + σ(B)β

. (21)

According to (20), it follows that

Φ(A ◦ B)
Φ(B ◦ In)

≤
σ(A)σ(B)α + ρ(A)ρ(B)β
σ(B)α + ρ(B)β

. (22)

By (18) and (21), we have

Φ(A ◦ B)
Φ(A ◦ In)Φ(B ◦ In)

≥
(ρ(B)σ(A)α + ρ(A)σ(B)β)(α + β)
(ρ(B)α + σ(B)β)(σ(A)α + ρ(A)β)

=
(κ(B)α + κ(A)β)(α + β)
(κ(B)α + β)(α + κ(A)β)

. (23)
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Similarly, by (18) and (22), we obtain

Φ(A ◦ B)
Φ (A ◦ In)Φ(B ◦ In)

≤
(σ(A)σ(B)α + ρ(A)ρ(B)β)(α + β)
(σ(B)α + ρ(B)β)(σ(A)α + ρ(A)β)

=
(α + κ(A)κ(B)β)(α + β)
(α + κ(B)β)(α + κ(A)β)

. (24)

As κ(A), κ(B) ≥ 1, which implies

κ(A) + κ(B) ≤ κ(A)κ(B) + 1,
√
κ(A) +

√
κ(B) ≤

√
κ(A)κ(B) + 1,

√
κ(A) +

√
κ(B)√

κ(A)κ(B) + 1

2

≤ 1,


√
κ(A)κ(B) + 1√
κ(A) +

√
κ(B)

2

≥ 1. (25)

If αβ = 0, by (23) and (24), we have

Φ(A ◦ B)
Φ(A ◦ In)Φ(B ◦ In)

= 1.

So, the conclusion holds.
If αβ , 0, setting t = βα , by (23), (25) and the arithmetic geometric mean inequality, we get

Φ(A ◦ B)
Φ(A ◦ In)Φ(B ◦ In)

≥
(κ(B)α + κ(A)β)(α + β)
(κ(B)α + β)(α + κ(A)β)

=
(κ(B) + κ(A)t)

(
1 + 1

t

)
(κ(B) + t)

(
κ(A) + 1

t

)
=
κ(A) + κ(B) + κ(A)t + 1

t κ(B)

κ(A)κ(B) + 1 + κ(A)t + 1
t κ(B)

= 1 −
κ(A)κ(B) + 1 − κ(A) − κ(B)
κ(A)κ(B) + 1 + κ(A)t + 1

t κ(B)
(26)

≥ 1 −
κ(A)κ(B) + 1 − κ(A) − κ(B)

κ(A)κ(B) + 1 + 2
√
κ(A)κ(B)

=

(√
κ(A) +

√
κ(B)

)2(√
κ(A)κ(B) + 1

)2 .

By (26), we obtain the left side of (16). Similarly, by (24) and (25), we obtain the right side of (16).
Next, we check (17) using the spectral decomposition of matrices and Lemma 2.10.
Let the spectral decomposition of A,B be A =

∑k
i=1 λiPi,B =

∑l
j=1 µ jQ j, (1 ≤ k, l ≤ n), where Pi,Q j are the

orthogonal projections matrices,
∑k

i=1 Pi = In,
∑l

j=1 Q j = In, andλi, µ j are the eigenvalues of A,B, respectively.
Hence, we have

A ◦ B =
k∑

i=1

l∑
j=1

λiµ jPi ◦Q j,Φ(A ◦ B) =
k∑

i=1

l∑
j=1

λiµ jΦ
(
Pi ◦Q j

)
,

k∑
i=1

l∑
j=1

Φ
(
Pi ◦Q j

)
= Φ

 k∑
i=1

l∑
j=1

Pi ◦Q j

 = Φ (In) = 1.
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Taking Ω = {(i, j) : i = 1, 2, · · · , k, j = 1, 2, · · · , l} and Σ to be the σ-field composed of all subsets of Ω, for any
A ∈ Σ,P(A) =

∑
(i, j)∈AΦ(Pi ◦Q j), ξ(i, j) = λi, η(i, j) = µ j, together with simple substitution, we have

E(ξη) =
k∑

i=1

l∑
j=1

λiµ jΦ
(
Pi ◦Q j

)
= Φ

 k∑
i=1

l∑
j=1

λiµ jPi ◦Q j

 = Φ(A ◦ B),

E(ξ) =
k∑

i=1

l∑
j=1

λiΦ
(
Pi ◦Q j

)
= Φ

 k∑
i=1

l∑
j=1

λiPi ◦Q j

 = Φ
 k∑

i=1

λiPi ◦ In

 = Φ (A ◦ In) , (27)

E(η) = Φ (B ◦ In) , σ(A) ≤ ξ ≤ ρ(A), σ(B) ≤ η ≤ ρ(B),
cov(ξ, η) = Φ(A ◦ B) −Φ (A ◦ In)Φ (B ◦ In) .

Finally, (17) follows from Lemma 2.10 and (27).

Remark 3.2. The bounds given in (16) and (17) are achievable. Taking Φ(X) = tr(WX) (X ∈ Mn), where W ∈ M+
n

and tr(W) = 1. It is easy to see that Φ is a unit positive linear functional on Mn. Through simple calculations, when

n = 2,A =
[
ρ(A) 0

0 σ(A)

]
,B =

[
ρ(B) 0

0 σ(B)

]
,W = dia1{w1,w2},w1 =

1√
κ(A)κ(B) + 1

,w2 =

√
κ(A)κ(B)√
κ(A)κ(B) + 1

,

the right-hand side equality of (16) holds;
When

n = 2,A =
[
ρ(A) 0

0 σ(A)

]
,B =

[
σ(B) 0

0 ρ(B)

]
,W = dia1{w1,w2},w1 =

√
κ(B)√

κ(A) +
√
κ(B)
,w2 =

√
κ(A)√

κ(A) +
√
κ(B)
,

the left-hand side equality of (16) holds;
When

n = 2,A =
[
ρ(A) 0

0 σ(A)

]
,B =

[
ρ(B) 0

0 σ(B)

]
,W = dia1

{1
2
,

1
2

}
,

the equality of (17) holds. Furthermore, from the proof process it is easy to see that the condition for (17) can be
weakened to A,B ∈ Hn and Φ is a unit positive linear functional on Mn.

Remark 3.3. Let λi > 0, ai > 0, i = 1, 2, · · · ,n. Let m = min1≤i≤n ai and M = max1≤i≤n ai. Taking A =
dia1{a1, a2, · · · , an},B = A−1,Φ(X) = tr(WX), (X ∈Mn), where W = 1∑n

i=1 λi
dia1{λ1, λ2, · · · , λn}, it is easy to see that

Φ is a unit positive linear functional on Mn. By the left side of (16), together with simple substitution, we have a
discrete Kantorovich inequality as follows∑n

i=1 λiai
∑n

i=1
λi
ai(∑n

i=1 λi
)2 ≤

(M +m)2

4Mm
. (28)

Using the diagonalization of positive definite matrices, it is easy to verify that (28) is equivalent to (1).

For any unit vector x ∈ Cn, takingΦ(X) = x†Xx (X ∈Mn) in Theorem 3.1, we have the following corollary.

Corollary 3.4. Let A = [ai j],B = [bi j] ∈M+
n , and x ∈ Cn with x†x = 1. Then

√
κ(A) +

√
κ(B)√

κ(A)κ(B) + 1

2

≤
x†A ◦ Bx

x†A ◦ Inxx†In ◦ Bx
≤


√
κ(A)κ(B) + 1√
κ(A) +

√
κ(B)

2

, (29)

∣∣∣x†A ◦ Bx − x†A ◦ Inxx†In ◦ Bx
∣∣∣ ≤ 1

4
(ρ(A) − σ(A))

(
ρ(B) − σ(B)

)
. (30)
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Next, using Corollary 3.4 and Rayleigh Ritz Theorem, we provide some upper bounds on the spectrum
condition number of Hadamard product of positive definite matrices.

Corollary 3.5. Let A = [ai j],B = [bi j] ∈ M+
n . Let a, b stand for the maximum values of diagonal elements for A and

B respectively. Let â, b̂ stand for the minimum values of diagonal elements for A and B respectively. Then

κ(A ◦ B) ≤


√
κ(A)κ(B) + 1√
κ(A) +

√
κ(B)

4
ab

âb̂
. (31)

If γ < âb̂, then

κ(A ◦ B) ≤
ab + γ

âb̂ − γ
, (32)

where γ = 1
4 (ρ(A) − σ(A))(ρ(B) − σ(B)).

Proof. Let us first check (31). For any unit vector x ∈ Cn, by (29), we have
√
κ(A) +

√
κ(B)√

κ(A)κ(B) + 1

2

x†(A ◦ I)xx†(B ◦ I)x ≤ x†A ◦ Bx ≤


√
κ(A)κ(B) + 1√
κ(A) +

√
κ(B)

2

x†(A ◦ I)xx†(B ◦ I)x. (33)

Because of x†(A ◦ I)x =
∑n

i=1 aii|xi|
2, we get

â =
n∑

i=1

â|xi|
2
≤ x†(A ◦ I)x ≤

n∑
i=1

a|xi|
2 = a. (34)

Similarly,

b̂ =
n∑

i=1

b̂|xi|
2
≤ x†(B ◦ I)x ≤

n∑
i=1

b|xi|
2 = b. (35)

According to the Rayleigh-Ritz Theorem, we have ρ(A◦B) = max∥x∥2=1 x†(A◦B)x, σ(A◦B) = min∥x∥2=1 x†(A◦
B)x. By (33), (34) and (35), we have

√
κ(A) +

√
κ(B)√

κ(A)κ(B) + 1

2

âb̂ ≤ σ(A ◦ B) ≤ ρ(A ◦ B) ≤


√
κ(A)κ(B) + 1√
κ(A) +

√
κ(B)

2

ab. (36)

By (36), we have

κ(A ◦ B) =
ρ(A ◦ B)
σ(A ◦ B)

≤


√
κ(A)κ(B) + 1√
κ(A) +

√
κ(B)

4
ab

âb̂
.

Let us check (32). For any unit vector x ∈ Cn (i.e., ∥x∥2 = 1), by (30), we have∣∣∣x†(A ◦ B)x − x†(A ◦ In)xx†(In ◦ B)x
∣∣∣ ≤ γ. (37)

By (37), we have

x†(A ◦ In)xx†(In ◦ B)x − γ ≤ x†(A ◦ B)x ≤ x†(A ◦ In)xx†(In ◦ B)x + γ. (38)

By (34), (35) and (38), we have

âb̂ − γ ≤ x†(A ◦ B)x ≤ ab + γ. (39)

By (39), together with the Rayleigh-Ritz Theorem, we get

âb̂ − γ ≤ σ(A ◦ B) ≤ ρ(A ◦ B) ≤ ab + γ. (40)

Finally, (32) follows from (40).
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Remark 3.6. Let A = [ai j] ∈M+
n , then AT

∈M+
n , A ◦AT =

[
|ai j|

2
]
, ρ(AT) = ρ(A), σ(AT) = σ(A) and κ(AT) = κ(A).

Let a, â stand for the maximum values, the minimum values of diagonal elements for A respectively, then a2, â2 stand
for the maximum values, the minimum values of diagonal elements for A ◦ AT respectively. By the Rayleigh-Ritz
Theorem, we obtain a2

â2 ≤ ρ(A ◦ AT). Taking B = AT in (31), we obtain

a2

â2 ≤ κ
(
A ◦ AT

)
≤

(κ(A) + 1)4

16κ(A)2

a2

â2 . (41)

Let A,B ∈M+
n , p, q > 1 with 1

p +
1
q = 1. Taking Φ to be the identity map in Lemma 2.6, we know that

1(x, y) = Ax
◦ By

is a convex map on R2. Based on this, we can obtain the Young type inequality for Hadamard product of
A and B as follows:

A ◦ B = (Ap)
1
p ◦ (Bq)

1
q ≤

1
p

(Ap
◦ I) +

1
q

(Bq
◦ I) .

One can naturally ask whether

A ◦ B ≤
1
p

(A ◦ I)p +
1
q

(B ◦ I)q

holds. The following example provides a negative answer. Setting

A = B =
(

1 1
2

1
2 1

)
,

through simple calculation, we can obtain

1
p

(A ◦ I)p +
1
q

(B ◦ I)q
− A ◦ B =

(
0 −

1
4

−
1
4 0

)
.

It is thus clear that 1
p (A ◦ I)p + 1

q (B ◦ I)q
− A ◦ B ≥ 0 does not hold. Next, using Corollary 3.4, we present a

relationship between 1
p (A ◦ I)p + 1

q (B ◦ I)q and A ◦ B.

Corollary 3.7. Let A,B ∈M+
n and p, q > 1 with 1

p +
1
q = 1. Then

A ◦ B ≤


√
κ(A)κ(B) + 1√
κ(A) +

√
κ(B)

2 [
1
p

(A ◦ I)p +
1
q

(B ◦ I)q
]
.

Proof. For any unit vector x ∈ Cn, by Corollary 3.4 and the Young inequality, we have

x†A ◦ Bx ≤


√
κ(A)κ(B) + 1√
κ(A) +

√
κ(B)

2

x†(A ◦ I)xx†(B ◦ I)x

≤


√
κ(A)κ(B) + 1√
κ(A) +

√
κ(B)

2 [
1
p

(
x†(A ◦ I)x

)p
+

1
q

(
x†(B ◦ I)x

)q
]
. (42)

It is easy to see that Φ(X) = x†Xx (X ∈ Mn) is a unit positive linear functional on Mn and xp, xq are both
convex functions on (0,+∞) for p, q > 1. By Lemma 2.8, we have

(x†(A ◦ I)x)p
≤ x†(A ◦ I)px, (x†(A ◦ I)x)q

≤ x†(A ◦ I)qx. (43)
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By (42) and (43), we have

x†A ◦ Bx ≤


√
κ(A)κ(B) + 1√
κ(A) +

√
κ(B)

2 [
1
p

x†(A ◦ I)px +
1
q

x†(B ◦ I)qx
]
. (44)

So, the conclusion follows from (44).

3.2. Some Young type inequalities and their inverse for Hadamard product of positive definite matrices
In this section, we give some Young type inequalities and their inverse for Hadamard product of positive

definite matrices.
Let A,B ∈M+

n and 0 < ν < 1. Taking Φ to be the identity map in Lemma 2.6, we know that

f (x, y) = Ax
◦ By

is a convex map on R2. So, we can obtain Aν ◦ B1−ν
≤ νA ◦ In + (1 − ν)B ◦ In. That is, we have the following

weighted geometric-arithmetic mean inequality involving the Hadamard product of matrices.

Corollary 3.8. Let A,B ∈M+
n and 0 < ν < 1. Then

G
◦

ν(A,B) ≤ A◦ν(A,B). (45)

By Lemma 2.9, Corollary 3.8 and Theorem 3.1, we have the following theorem.

Theorem 3.9. Let A,B ∈M+
n , 0 < r < 1 and Φ be a unit positive linear functional on Mn. Then

ϖ(r)Φ(A ◦ In)rΦ(B ◦ In)1−r
≤ Φ

(
Ar
◦ B1−r

)
≤ Φ(A ◦ In)rΦ(B ◦ In)1−r, (46)

where

ϖ(r) = ηA(r)ηB(1 − r)

(√
κ(A)r +

√
κ(B)1−r

)2(√
κ(A)rκ(B)1−r + 1

)2

and

ηX(θ) =

 θ−θ(1 − θ)θ−1(κ(X) − 1)−1
(
κ(X)θ − 1

)θ (
κ(X) − κ(X)θ

)1−θ
, κ(X) > 1

1, κ(X) = 1

for 0 < θ < 1 and positive definite matrix X.

Proof. By Corollary 3.8, we have

Φ
(
Ar
◦ B1−r

)
≤ rΦ(A ◦ In) + (1 − r)Φ(B ◦ In). (47)

Replacing A with tA (t > 0) in (47), we obtain

Φ
(
Ar
◦ B1−r

)
≤ rt1−rΦ(A ◦ In) + (1 − r)t−rΦ(B ◦ In). (48)

Using differential method, it is easy to prove that

min
{
rt1−rΦ(A ◦ In) + (1 − r)t−rΦ(B ◦ In) : t > 0

}
= Φ(A ◦ In)rΦ(B ◦ In)1−r. (49)

By (48) and (49), we have

Φ
(
Ar
◦ B1−r

)
≤ min

{
rt1−rΦ(A ◦ In) + (1 − r)t−rΦ(B ◦ In) : t > 0

}
= Φ(A ◦ In)rΦ(B ◦ In)1−r. (50)
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By (50), we know that the right side of (46) holds.
Using the fact that κ(Ar) = κ(A)r, κ(B1−r) = κ(B)1−r, together with the left side of (16) and Lemma 2.9, we

have

Φ
(
Ar
◦ B1−r

)
≥


√
κ(A)r +

√
κ(B)1−r√

κ(A)rκ(B)1−r + 1

2

Φ (Ar
◦ In)Φ

(
B1−r
◦ In

)
≥ ϖ(r)


√
κ(A)r +

√
κ(B)1−r√

κ(A)rκ(B)1−r + 1

2

Φ (A ◦ In)rΦ (B ◦ In)1−r .

Remark 3.10. Through simple computations, it is easy to see that the right side equality of (46) holds when κ(A) = 1
or κ(B) = 1. When κ(A) = κ(B) = 1, the left side equality of (46) holds.

Next, using Lemma 2.6 we provide a relationship between the weighted Hadamard geometric-arithmetic
mean of matrices under different weights.

Theorem 3.11. Let A,B ∈M+
n and 0 < ν ≤ µ < 1. Then

ν
µ

(
A
◦

µ(A,B) − G◦µ(A,B)
)
≤ A

◦

ν(A,B) − G◦ν(A,B) ≤
1 − ν
1 − µ

(A◦µ(A,B) − G◦µ(A,B)). (51)

Proof. Our proof is based on the following three steps.
Step 1. If R2

+ = {(x, y) : x ≥ 0, y ≥ 0} − {(0, 0)} and G : R2
+ → M+

n is a convex (concave) map, then
1 : [0, 1] → M+

n is a convex (concave) map, where 1(x) = G(x, 1 − x). This result can be directly verified by
definition.

Step 2. If 1 : [0, 1]→M+
n is a concave map, 1(0) = 1(1) = 0 and 0 < ν ≤ µ < 1, then

ν
µ
1(µ) ≤ 1(ν) ≤

1 − ν
1 − µ

1(µ). (52)

If 1 : [0, 1]→M+
n is a convex map, (52) is reversed.

We only verify the concave case. If 1 : [0, 1]→M+
n is a concave map, then

1(ν) = 1
(
ν
µ
µ +

(
1 −
ν
µ

)
0
)
≥
ν
µ
1(µ) +

(
1 −
ν
µ

)
1(0) =

ν
µ
1(µ),

1(µ) = 1
(

1 − µ
1 − ν

ν +
µ − ν

1 − ν
1
)
≥

1 − µ
1 − ν

1(ν) +
µ − ν

1 − ν
1(1) =

1 − µ
1 − ν

1(ν).

From this, the conclusion follows from a simple transformation. Similarly, we can verify the convex case.
Step 3. By Lemma 2.6, we know that G(x, y) = Ax

◦ By is a convex map on R2. Therefore, from the first
step mentioned above, we get Ax

◦B1−x : [0, 1]→M+
n is a convex map, which implies that 1(x) : [0, 1]→M+

n
is a concave map satisfied 1(0) = 1(1) = 0, 1(ν) = A◦ν(A,B) − G◦ν(A,B) and 1(µ) = A◦µ(A,B) − G◦µ(A,B), where
1(x) = xA ◦ In + (1 − x)B ◦ In − Ax

◦ B1−x. Finally, (51) follows from (52).

By Theorem 3.11, we get the following corollary.

Corollary 3.12. Let A,B ∈M+
n and 0 < ν < 1, τ = min{ν, 1 − ν} and σ = max{ν, 1 − ν}. Then

2τ
(
A
◦
1
2
(A,B) − G◦1

2
(A,B)

)
≤ A

◦

ν(A,B) − G◦ν(A,B) ≤ 2σ
(
A
◦
1
2
(A,B) − G◦1

2
(A,B)

)
. (53)
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Proof. The result is clear when ν = 1
2 . We therefore assume ν , 1

2 . When 0 < ν < 1
2 , by (51), we have

2ν
(
A
◦
1
2
(A,B) − G◦1

2
(A,B)

)
≤ A

◦

ν(A,B) − G◦ν(A,B) ≤ 2(1 − ν)
(
A
◦
1
2
(A,B) − G◦1

2
(A,B)

)
. (54)

When 1
2 < ν < 1, we have

1
2ν

(
A
◦

ν(A,B) − G◦ν(A,B)
)
≤ A

◦
1
2
(A,B) − G◦1

2
(A,B) ≤

1
2(1 − ν)

(
A
◦

ν(A,B) − G◦ν(A,B)
)
. (55)

Through simple deformations, the conclusion follows from of (54) and (55).

Remark 3.13. By (3), we have

A
1
2 ◦ B

1
2 ≤ (A ◦ I)

1
2 (B ◦ I)

1
2 .

So, we get

A
◦
1
2
(A,B) − G◦1

2
(A,B) ≥

1
2

A ◦ I +
1
2

B ◦ I − (A ◦ I)
1
2 (B ◦ I)

1
2 =

1
2

(
(A ◦ I)

1
2 − (B ◦ I)

1
2
)2
. (56)

The improvement for (45) can be obtained from the left side of (53) and (56) as follows:

A
◦

ν(A,B) ≥ G◦ν(A,B) + τ
(
(A ◦ I)

1
2 − (B ◦ I)

1
2
)2
. (57)

4. Some Kantorovich type inequalities for Hadamard product of positive matrices

With the rapid development of data acquisition technology, large amounts of data, such as online
documents, medical images, traffic data, health data, and other high-dimensional data, are accumulating.
Nonnegative matrices have received a lot of attention in the recent years, since they provide a powerful
tool in analysing nonnegative data. For example, Adam et al. [1] presented sequences of lower and upper
bounds for the spectral radius of a nonnegative matrix. Bui [5] gave an effective bound of the joint spectral
radius for a finite set of nonnegative matrices. Xie et al. [16] presented a Kantorovich type inequality
for positive matrices, which provided some generalized forms of discrete Kantorovich inequality. In this
section, we investigate some Kantorovich type inequalities for Hadamard product of positive matrices.

4.1. Two Kantorovich type inequalities for Hadamard product of positive matrices
Theorem 4.1. Let A = [ai j],B = [bi j] ∈ P+m,n and Φ be a strictly positive linear functional on Rm,n. Let mA =

min1≤i≤m,1≤ j≤n ai j, MA = max1≤i≤m,1≤ j≤n ai j, mB = min1≤i≤m,1≤ j≤n bi j, MB = max1≤i≤m,1≤ j≤n bi j,RA =
MA
mA

, RB =
MB
mB

.
Then

1 ≤
Φ

(
A(2)

)
Φ

(
B(2)

)
[Φ(A ◦ B)]2 ≤

(RARB + 1)2

4RARB
, (58)

0 ≤
Φ

(
A(2)

)
Φ(A ◦ B)

−
Φ(A ◦ B)
Φ

(
B(2)) ≤

(√
MAMB −

√
mAmB

)2

MBmB
. (59)

Proof. Let us first check (58). For any positive number t > 0, using the fact that A◦B = B◦A, (A−tB)◦(A−tB) =
A(2) + t2B(2)

− 2tA ◦ B ≻ 0, we obtain

Φ
(
A(2)

)
+ t2Φ

(
B(2)

)
− 2tΦ(A ◦ B) ≥ 0.
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That is

Φ(A ◦ B) ≤
1
2

(1
t
Φ

(
A(2)

)
+ tΦ

(
B(2)

))
. (60)

By (60), we have

Φ(A ◦ B) ≤ min
t>0

1
2

(1
t
Φ

(
A(2)

)
+ tΦ

(
B(2)

))
=

√
Φ

(
A(2))Φ (

B(2)). (61)

Then (60) implies the left side of (58).
On the other hand, we have

mA

MB
Em,n ≺ A ◦ B(−1)

≺
MA

mB
Em,n,

mB

MA
Em,n ≺ A(−1)

◦ B ≺
MB

mA
Em,n. (62)

By (58), we obtain

A ◦ B ◦
(MA

mB
Em,n − A ◦ B(−1)

)
◦

(MB

mA
Em,n − A(−1)

◦ B
)

=
(MAMB

mAmB
+ 1

)
A ◦ B −

MB

mA
A(2)
−

MA

mB
B(2)
≻ 0. (63)

By (63), we obtain(MAMB +mAmB

mAmB

)
Φ(A ◦ B) −

MB

mA
Φ

(
A(2)

)
−

MA

mB
Φ

(
B(2)

)
≥ 0.

That is

MB

mA
Φ

(
A(2)

)
+

MA

mB
Φ

(
B(2)

)
≤

(MAMB +mAmB

mAmB

)
Φ(A ◦ B). (64)

By (64) and the arithmetic geometric mean inequality, we obtain

2

√
MAMB

mAmB

√
Φ

(
A(2))Φ (

B(2)) ≤ MB

mA
Φ

(
A(2)

)
+

MA

mB
Φ

(
B(2)

)
≤

(MAMB +mAmB

mAmB

)
Φ(A ◦ B). (65)

Through simple calculations, (65) implies the right side of (58).
Next, we check (59). It is easy to see that the left side of (58) implies the left side of (59). Therefore,

we only need to prove the right side of (59). If MA
mB
= mA

MB
, then MA = mA,MB = mB. So, there exist positive

numbers a, b such that A = aEm,n,B = bEm,n. In view of this, it is easy to verify (59). We therefore assume
MA
mB
, mA

MB
. Let

x = Φ
(
A ◦ B ◦

(MA

mB
Em,n − A ◦ B(−1)

))
=

MA

mB
Φ (A ◦ B) −Φ

(
A(2)

)
,

y = Φ
(
A ◦ B ◦

(
A ◦ B(−1)

−
mA

MB
Em,n

))
= Φ

(
A(2)

)
−

mA

MB
Φ (A ◦ B) . (66)

By (62), we have ‘

x ≥ 0, y ≥ 0, x + y =
(MA

mB
−

mA

MB

)
Φ(A ◦ B) > 0. (67)

By (66) and (67), we have

Φ
(
A(2)

)
Φ(A ◦ B)

=

mA
MB

x + MA
mB

y

x + y
. (68)
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By (64) and (68), we have

Φ
(
B(2)

)
Φ(A ◦ B)

≤
MAMBx +mAmBy

MAmA(x + y)
. (69)

If xy = 0, by (68) and (69), we have

Φ
(
A(2)

)
Φ(A ◦ B)

−
Φ(A ◦ B)
Φ

(
B(2)) = 0.

Therefore, the conclusion holds.
If x > 0, y > 0, by (68) and (69), we have

Φ
(
A(2)

)
Φ(A ◦ B)

−
Φ(A ◦ B)
Φ

(
B(2)) ≤ mA

MB
x + MA

mB
y

x + y
−

MAmA(x + y)
MAMBx +mAmBy

=
(MAMB −mAmB)2 xy

MBmB
(
MAMBx2 +mAmBy2 + (MAMB +mAmB) xy

) . (70)

From the arithmetic geometric mean inequality, we have

MAMBx2 +mAmBy2 + (MAMB +mAmB) xy ≥
(
2
√

MAMBmAmB +MAMB +mAmB

)
xy

= (
√

MAMB +
√

mAmB)2xy. (71)

Finally, (59) follows from (70) and (71).

Remark 4.2. When B = cA (c > 0), it is easy to check the left equalities of (58) and (59) hold.
When

m = 2,n = 1,A =
[

MA
mA

]
,B = A(−1),Φ

([
x1
x2

])
= x1 + x2,

the right equality in (58) holds.
When

m = 2,n = 1,A =
[

MA
mA

]
,B = A(−1),Φ

([
x1
x2

])
=MAx1 +mAx2,

the right equality in (59) holds.

Remark 4.3. Replacing A,B with A( 1
2 ),A(− 1

2 ) respectively in (58) and (59), we can obtain

1 ≤
Φ(A)Φ

(
A(−1)

)
[
Φ

(
Em,n

)]2 ≤
(RA + 1)2

4RA
, (72)

0 ≤
Φ(A)
Φ

(
Em,n

) − Φ (
Em,n

)
Φ(A(−1))

≤

(√
MA −

√
mA

)2
. (73)

By Lemma 2.11, 2.12, 2.13 and (72), we have the following corollary.

Corollary 4.4. Let A ∈ P+n , mA = min1≤i≤n,1≤ j≤n ai j, MA = max1≤i≤n,1≤ j≤n ai j, RA =
MA
mA

, and cA = min1≤ j≤n
∑n

i=1 ai j.
Then

1
∥ A ∥1

n2
≤ ρ

(
A(−1)

)
≤

(RA + 1)2

4RAcA
n2, (74)

w(A)w(A(−1)) ≥ n2. (75)
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Proof. Let y be the Perron vector of A(−1). Taking Φ(X) = ET
n,1Xy (X ∈ Rn) in (72), we have

1 ≤
ET

n,1AyET
n,1A(−1)y

[ET
n,1Eny]2

≤
(RA + 1)2

4RA
. (76)

By Lemma 2.12, we have

cA ≤ ET
n,1Ay ≤∥ A ∥1 . (77)

Through simple calculations, we obtain

ET
n,1A(−1)y = ρ(A(−1)),ET

n,1Eny = n. (78)

By simple substitution, (74) follows from (76), (77) and (78).
Similarly, for any non negative unit vector x ∈ Rn (i.e., x ≻ 0, xTx = 1), taking Φ(X) = xTXx (X ∈ Rn) in

(72), we have

xTAxxTA(−1)x

[xTEnx]2 ≥ 1. (79)

Through simple calculations, we know

n2 = [w(En)]2 = sup
{[

xTEnx
]2

: x ≻ 0, xTx = 1
}
≤ sup

{
xTAxxTA(−1)x : x ≻ 0, xTx = 1

}
≤ w(A)w

(
A(−1)

)
.

If A ∈ P+n is a doubly stochastic matrix, by (74), we know n2
≤ ρ

(
A(−1)

)
≤

(RA+1)2

4RA
n2 and equalities hold when

A = 1
n En.

4.2. Several Kantorovich type inequalities involving the permanent of positive matrices
By (73), we have the following corollary.

Corollary 4.5. If λi > 0, i = 1, 2, · · · ,n, ρλ = max1≤i≤n{λi}, σλ = min1≤i≤n{λi}, then

0 ≤
∑n

i=1 λi

n
−

n∑n
i=1 λ

−1
i

≤

(√
ρλ −

√
σλ

)2
. (80)

Proof. Taking A = (λ1, λ2, · · · , λn), Φ(X) = XEn,1,X ∈ R1,n in (73), the conclusion follows from simple
substitution.

By Theorem 4.1, we have the following corollary.

Corollary 4.6. Let λi, µi > 0, i = 1, 2, · · · ,n and wi > 0 with
∑n

i=1 wi = 1. Let ρλ = max1≤i≤n{λi}, σλ =
min1≤i≤n{λi}, ρµ = max1≤i≤n{µi}, σµ = min1≤i≤n{µi}, κλ =

ρλ
σλ

and κµ =
ρµ
σµ

. Then

∣∣∣∣∣∣∣
n∑

i=1

wiλiµi −

n∑
i=1

wiλi

n∑
i=1

wiµi

∣∣∣∣∣∣∣ ≤ 1
4

(
ρµ − σµ

) (
ρλ − σλ

)
, (81)

( √
κλ +

√
κµ

√
κλκµ + 1

)2

≤

∑n
i=1 wiλiµi∑n

i=1 wiλi
∑n

i=1 wiµi
≤

( √
κλκµ + 1
√
κλ +

√
κµ

)2

. (82)
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Proof. Setting A = dia1 {λ1, λ2, · · · , λn}, B = dia1
{
µ1, µ2, · · · , µn

}
x =

(√
w1,
√

w2, · · · ,
√

wn

)
, Φ(X) = x†Xx,X ∈

Mn in (16) and (17), it is easy to see that ρ(A) = ρλ, σ(A) = σλ, ρ(B) = ρµ, σ(B) = σµ, κ(A) = κλ and κ(B) = κµ.
Through simple substitution, (81) and (82) follow from (16) and (17).

From Corollary 4.5, and Corollary 4.6, we have the Kantorovich type inequality involving the permanent
of positive matrices as follows:

Corollary 4.7. Let A = [ai j],B = [bi j] ∈ P+n , PA =
Mn

A
mn

A
, PB =

Mn
B

mn
B

. Then

0 ≤
Per(A)

n!
−

n!
Per(A(−1))

≤

(
M

n
2
A −m

n
2
A

)2
, (83)

∣∣∣∣∣ 1
n!

Per(A ◦ B) −
1

(n!)2 Per(A)Per(B)
∣∣∣∣∣ ≤ 1

4

(
Mn

A −mn
A

) (
Mn

B −mn
B

)
, (84)

1
n!

( √
PA +

√
PB

√
PAPB + 1

)2

≤
Per(A ◦ B)

Per(A)Per(B)
≤

1
n!

( √
PAPB + 1
√

PA +
√

PB

)2

. (85)

Proof. Let Sn be a permutation group with order n. According to the definition of permanent, we have

per(A) =
∑

π1π2···πn∈Sn

a1π1 a2π2 · · · anπn , per(B) =
∑

π1π2···πn∈Sn

b1π1 b2π2 · · · bnπn ,

per(A ◦ B) =
∑

π1π2···πn∈Sn

a1π1 a2π2 · · · anπn b1π1 b2π2 · · · bnπn . (86)

Let

λπ1π2···πn = a1π1 a2π2 · · · anπn , µπ1π2···πn = b1π1 b2π2 · · · bnπn , ωπ1π2···πn =
1
n!
.

It is easy to see that

ρλ ≤Mn
A, σλ ≥ mn

A, ρµ ≤Mn
B, σµ ≥ mn

B,

√
κλκλ + 1
√
κλ +

√
κµ
≤

√
PAPB + 1
√

PA +
√

PB
. (87)

By simply substituting (79), (80), (81), (86) and (87), we obtain (83), (84) and (85).
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