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Approximation of certain operators on time scales
via deferred Cesaro mean
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Abstract. The paper first studies the basic notions of statistical convergence for a sequence of time
scale functions via deferred Cesaro summability mean. Some useful limit related and inclusion results
among these newly defined notions have been examined. Also based upon these notions, two Korovkin-
type approximation theorems with certain algebraic test functions have been established. An example
is provided considering a positive linear operator in association with Bernstein polynomial to clarify the
relevant results. Moreover, the rate of statistical deferred Cesaro summability is estimated.

1. Introduction and Motivation

The notion of statistical convergence was introduced by Zygmund (see [27]) in 1935. Fast (see [6])
and Steinhaus (see [24]) independently introduced Statistical Convergence in sequence space theory in the
year 1951. Statistical convergence is closely related with the study of measure Theory, probability Theory,
Fibonacci sequence, etc. Statistical convergence has been an active area of research in the current time.
Some of the recent works in approximation theory using statistical convergence are [5,[11}[12} 15,16} [18-23].

A time scale is an arbitrary non-empty closed subset of the real numbers. It is denoted by the symbol T.
Throughout the study we assume that a time scale T has the topology that it inherits from the real numbers
with the standard topology. The calculus of time scale was introduced by Stefan Hilger in his Ph.D. thesis
supervised by Aulbach in 1988 (see [9,[10]]). This allowed the unification of discrete and continuous analysis.
Here one can replace the range of definition of the functions under consideration by an arbitrary time scale
T. There are many applications of time scales in dynamic equations (see [4]). The continuous version of
statistical convergence was studied by Moéricz (see [14]). Guseinov (see [8]) introduced and investigated

the concept of Riemann’s A- and V- integrals on time scale. Several other studies on time scale calculus
have been presented in [1} 9} 17, [25] and there are many more.

We first discuss some important terms and notions on time scale (see [8]):
For t € T, the forward jump operator o : T — T is given by

of)=inf{seT :s >t}
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and the backward jump operator p : T — T is given by
pt)y=sup{seT :s<t}
and the graininess function u : T — [0, o) is given by
u(t) = olt) ~ t

Here we putinf @ = sup T (i.e., o(t) = t if T has a maximum ¢) and sup @ = inf T (i.e.,, p(t) = tif T has a
minimum £), where 0 is the empty set.

A closed interval, open interval and semi-closed (or semi-open) interval on a time scale T are given by
[a,bly ={teT :a<t<b},(@b)y={teT :a<t<bland[ab)y ={teT :a<t<b}respectively.

Next, let S be the collection of all left closed and right open intervals of the form [a,b)y. Then the set
functionm : S — [0, o0) defined by m ([a,])) = b — a is a countably additive measure. The Carathéodory
extension of the set function m associated with the family S is called the Lebesgue A-measure on T and it is
denoted by pa (see [8,[17]).

We say that a function f : T — R is A-measurable if the set f~1(A) is A-measurable for every open subset
Aof R

Theorem 1.1 ([8]). For each a € T — {max T}, the singleton point set {a} is A-measurable, and its A-measure is
given by
ua(a) = o(a) —a.

Theorem 1.2 ([8]). Ifa, b € Tanda < b, then
ta([a,b)) = b —a, and py ((a,b)) = b - o(a).
Ifa,b e T — {max T} anda < b, then,
ua ((a,b]) = o(b) — o(a), and ua ([a,b]) = o(b) —a.
Definition 1.3 ([25]). Let Q be a A-measurable subset of T. Then for t € T, we define the set Q(t) by
Q) ={s € [t, tlp :s€ Q}

The density of the set O on T, denoted by o1((Q2), is defined as

L uaQ)
or () = im e )

provided the above limit exists.

Here if T = IN, then the concept reduces to asymptotic density (or natural density) and if T = [0, o),
then the concept implies approximate density. In this paper, we shall mainly use the Lebesgue A-measure
pa introduced by Guseinov in [8]. Here T is a time scale satisfying inf T = t; > 0 and sup T = co.

In this paper, we have studied certain notions of a sequence of A-measurable functions on time scales
and provided Korovkin-type approximation theorems in the time scale framework.

2. Statistical Convergence of a Sequence Functions on Time scales

Definition 2.1. A sequence (f,),., of A-measurable functions on T is said to be convergent to a A-measurable
function f on T if, for each € > 0, there exists m € IN and N C T such that 61(N) = 1 and

|fn(t) - f(t)| <€ forallt € Ncand n > m.
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We denote it by
AM &ggo fo=f

Next, we present the notion of statistical convergence of a sequence of A - measurable functions on T.

Definition 2.2. A sequence (f,) of A-measurable functions on T is said to be statistically convergent to a A-
measurable function f on T if, for each € > 0, the set

E(e) = {s :5 € [to, tely and |fi(s) - £(5)] = €}

has zero density, where ty € T, fork =1, 2, 3, ..., and ty — oo as k — oo. Thus, for each € > 0,

. pa(EG€)
or(E@) = im ot

We denote this by
statam lim f, = f.
n—oo

Next, we present some basic fundamental limit theorems on sequence of A-measurable functions on T.

Theorem 2.3. Let the sequence (f,) of A-measurable functions is statistically convergent on T, then it has unique
limit.

Proof: Let f and g be A-measurable functions on T such that
statam lim f, = f and statam lim f, = g
n—oo n—oo

Since, |f —g| = |fi — fi + f—g| <|fi — f| + |fi — 9|, foreachk =1,2,3, ...
Then, for statistical convergence of sequence of A-measurable functions on T, for each € > 0, we have

statam |f - gl < statam )fk - f| + statam }fk - 9| <E€.
This implies f = g.

Theorem 2.4. If a sequence (f,) of A-measurable functions is convergent on T, then it is statistically convergent on
T. But the converse may not be true.

Proof: The sequence f, : T — R being convergent, for each € > 0, there exists m € IN and N. C T such that
o1 (Ne) = 1and |f, (1) - f(t)| < € for each t € K. and 1 > m.
Therefore, for each € > 0, n > m and the set

E(e) = {s:s € [to, tely and |fils) - f(5)] 2 €},
the following inequality holds
ta (E(e)) :
0 < lim ———— < lim |fi(t) = f(t)| <e.
o s Gy = A0 -0
Hence, by definition we get statam lim f, = fon T.
n—o0
The following example shows that the converse is not always true.
Example 2.5. Let T = [0, 1]. We consider the sequence f,, : T — R of functions defined by
L fro<s<l n=/2(GeN
fn(s) — {2 f n ] (] )

0, otherwise

Here the sequence (f,) of A-measurable functions is statistically convergent to the function f = 0 over T = [0, o0),
but it is not usual convergent over T = [0, co).
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3. Deferred Cesaro Statistical Convergence & Statistically Deferred Cesaro Summability

Following [2], we present notion of deferred Cesaro summability mean for a sequence of time scale
functions as follows:

Definition 3.1. Let (ax) and (bx) be two sequences of non-negative integers on T which satisfy the reqularity
conditions ay < by and hm by = +oo. Then we define the deferred Cesaro summability mean for the sequence (f,) of

A-measurable functzons on o T as

Xﬁ

“h-a
k kzak+1

Next, we present the definitions of statistical convergence and statistical summability of a sequence of
A-measurable functions on T via deferred Cesaro summability mean as follows:

Definition 3.2. Let (ax) and (by) be two sequences of non-negative integers on T which satisfy the regularity
conditions ay < by and ]}im by = +oo. A sequence (f,) of A-measurable functions is said to be deferred Cesaro

statistically convergent to a A-measurable function f on T if, for each € > 0, the set

Ee) = {s: s € (a, by and [fi(s) - f(5)] 2 €}
has zero density. Thus, for each € > 0,

o1(E(e)) = lim _iaE@)

o pa((@k, bily)

We denote this by
DAMStat lim fn = f

Definition 3.3. Let (ax) and (bx) be two sequences of non-negative integers on T which satisfy the reqularity
conditions ar < by and hrn b = +o0. A sequence (f,) of A-measurable functions is said to be statistically deferred

Cesaro summable to a A meusumble function f on T if, for each € > 0, the set

E(e) = {s :s € (ax, bly and )qi)k(s) - f(s)| > e}

has zero density. Thus, for each € > 0,

52(E(©)) = lim uaEE)

k—eo t1a((ax, brly)

We denote this by
statpaym lim fn = f
n—oo

Now, we give an inclusion theorem relating these two potentially useful notions.

Theorem 3.4. Let (ax) and (by) be two sequences of non-negative integers which satisfy the regularity conditions
ax < by and ]}im by = +oo. If a sequence (f,) of A-measurable functions is deferred Cesaro Statistical convergent to a

A-measurable function f on T, then it is statistically deferred Cesaro summable to the same function f on T, but the
converse is not always true.
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Proof: Suppose the sequence f, : T — R of A-measurable functions is deferred Cesaro statistical
convergent to a A-measurable function f on T, by Definition[3.2} we have

5p(E) = lim pa(E)

B e\ A—
k—oo ta((@k, bily)

where E = {s s € (a, bely and | fi(s) — f (s)| > e} . Now, we consider two sets as follows:
E.=E= {s : s € (ax, bxly and |fk(s) —f(s)‘ > 6},

and, (E.)" = {s : s € (ag, bxly and (fk(s) - f(s)| < e}.

Then we have

|¢k_f| b — a Zfl ‘

k i=ag+1
by

1

bi = a i—aZkilfi ‘ by = ay l_tlzk:lf f‘

1 < b

Sbk—ak ' Z | f’ bk—llk ' Z | f|+|f| Zl—l

i=ar+1 i=ag+1 kit
(m € Ee) (m € (E.)°)

1 1 ¢
< lTk |[,lA (E6)| + ITk |[1A(Ee) |

where Py = ua((ax, bily). Then the above inequality implies |¢, — f| < €. This shows that the sequence (f,)
of A-measurable functions is statistically deferred Cesaro summable to the A-measurable function f on T.

Example 3.5. Let a;, = 2k and by = 4k and T = [0, oo). Let (f,) be a sequence of A-measurable functions on T of the
form given by

Al) = 1, iftel0, k+1)y;kiseven
70, iftelk+1, o)y kis odd.

By the definition of deferred Cesaro summability mean, we get

P(t) =

i=ag+1
1 1
=% Z fith =3
i=2k+1

Thus, the sequence (f,) of A-measurable functions on T has deferred Cesaro summability mean } over T. Therefore, the
sequence is statistically deferred Cesiro summable to 1 over T. But it is not deferred Cesaro statistically convergent.

4. Korovkin-Type Approximation Theorems on Time Scales

Let [a,b]y € T, where T is a time scale. And let C([a, b]y) denote the space of all continuous real valued
functions defined on [a, b]y, then C([a, b]y) is a complete normed linear space (Banach space) with the sup
norm ||.lo,.. Then for f € C([a, b]t), the norm of f is given by

I, =sup {|fa] :nelably}.



P. Bhattarai, H. Dutta / Filomat 40:4 (2026), 1479-1490 1484

We say that a sequence of linear operators R; : C([a, bly) — C([a, b]y) is positive if
Ri(f, n)=0as f>0.

Now, with the help of our proposed mean, we use the notions of deferred Cesaro statistical convergence
(DAMgtat) and statistically deferred Cesaro summability (statpan) for the sequences of A-measurable func-
tions on T to state and prove the following Korovkin-type approximation theorems. Jena et al. (see [11]])
introduced statistical deferred Cesaro summability for a sequence of real numbers in approximation results
of Korovkin-type.

Theorem 4.1. Let R; : C([a, bly) — C([a, bly) be a sequence of positive linear operators. Then for all f € C(T),

DAMyat lim [[9,(£;) = f), = 0 (1)
if and only if
DAMjailim [[%,(1; ) - fl,, =0, )
DAMjat lim [®im:m) - ||, =0, (3)
and DAMstat]h_)rg %62 m) - f)|. = 0. (4)

Proof: Since, each of the following functions

fom =1, fo(n) =n, and fo(n) = n*

are members of C([4, b]y), so the condition (I} obviously implies the conditions ), (3) and (4).
For the converse part, we assume that the conditions ), (3) and @) hold. If f € C([a,b]y), then there
exists a constant T > 0 such that | f (17)| < 7 for each 1 € [a, b]y. We thus find that

|£(&) = f(m)| < 27 for each &, 1 € [a, by (5)
This implies, for each € > 0, there exists 8 > 0 such that
[f&) - f)] <e (6)

whenever |£ — 7| < O for each &, 1 € [a, bly.
We choose A = A1(&, 1) = & — 2n)*.
If |E — 1| = 6, then we obtain
2T 27 27

€)= ] <20 = S = 2 < o < ZAE 0 %

From inequalities (6) and (7), we get
27
[f(&) = f| < e+ M m
which implies
27 27
—e— MEM < FE) - f) < e+ (&) ®
G 0
Now, R,,(1; ) being monotone and linear, we apply the operator R,,(1; ) to the above inequality (8) as

W15 € = 24106 ] < K1) (FE) = ) < R [e + T2
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Here 1) is fixed, so f (n) is constant. So, we have

—€ m111(1 n) m(Al rn) < gRm(f T]) f(n)mm(l T]) <e€ gRm(l T]) + = ﬂl(All T])
Also, we have

Ru(fim) = f) = [Ru(fi ) = FODRn (L] + fFD[R(1;77) — 1]
Using the conditions () and (10), we have

27
Roun(f) = f(1) < eRn(L) + 5 Rn(Aa; 1) + f () [Rin(L;m) — 1]
Now, we estimate R,,(11;7) as follows
Ron(Ar ;1) = R (28 = 20)7 ;)
=R, (47 - 880+ 4% ;1)

= Ru(48% ;1) = 8nRu(E; ) + 4P Ru(1; 1)
= 4R, (E% ) — 0?1 - 8n[Ru(E; 1) — 1] + 477 [Ro(1 ;1) — 1]

Using this estimation, the inequality becomes
Rn(f31) = F(1) < Rn(151) + 5 {4[%(52 i) = 121 = 8n[Ru(& ) — 1]
4P [R (1 ;n) — 10+ f) [Rn (1) 1]
= e[ (1) = 1]+ e+ 2R 1)~ ] = Bl 7) — 1]
+ 4P [ Rn(1 1) = 1]+ £() [R(15) = 1]

Since, € > 0, we can write this as

b
[Ru(fm) = f)| < e+ (e - T) |Rou(1;m) - 1| I‘Rm(é m-n|+ % R, (%) —

92
<9 {|inm(1,- m) = 1]+ R (& n)—nl+i‘ﬁm(ézf' ’1)—’72\}
where

( 8tb? 167b 8’[)
9 = max|e +

T e e
and € > 0 being arbitrary. Now, for a given x > 0, there exists € > 0 (¢ < x) such that
L) ={n :n€ @, blyand R (F; 1) = £ ()] 2 1}
Also, for j =0, 1, 2, we have
L) = {0 1 @, by and 9 (55 ) - i) 2 27

such that )
L) <Y L)

j=0

1485

©)

(10)

(11)

(12)
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This clearly gives

aLn () Z ALy m0)

13
pa((ag, ua((@r, bely) pa ((ax, bily) (13)
From the inequality (12), the RHS of this inequality (I3) vanishes as k — co. Hence

HA(-Em(X))

Lammel .
koo 11a((@p, brly)

This completes the proof.
Theorem 4.2. Let R; : C([a, bly) — C([a, bly) be a sequence of positive linear operators. Then for all f € C([a, bly),

statpavlim 1% (F;m=f), =0 (14)

if and only if
statpawlim [|%; (15 n) - £ (]|, =0, (15)
statpalim [[%; (n3m) = f, = 0, (16)
and, statDAM}gg %62 5m) = f@)|, = 0. (17)

Proof: The proof of Theorem [4.2]is similar to that of Theorem [4.1]

Next, we consider an example of a sequence of positive linear operators that does not work via the
deferred Cesaro statistical convergence of a sequence of A-measurable functions on T (Theorem 4.1), but it
fairly works on Theorem In view of this example, we can say that Theoremis anon-trivial extension
of deferred Cesaro statistical convergence of a sequence of A-measurable functions on T.

We now recall the operator

p(1 + pD) where (D = % (18)
This operator was used by Al-Salam (see [3]), Viskov and Srivastava (see [26]) and many more.

Example 4.3. Consider the Bernstein polynomial B, (f;t) on C(T) given by

Bi(fit) = Zf (4o 19)

wheret € T =[0,00)and k=0, 1, 2,....
We now introduce the positive linear operators on C(T) under the composition of Bernstein polynomial B,(f;t)
and the operator mentioned above in as given below:

Ri(f;1) = [1+ FIK1 + tD)Bi(f; 1), for eachf € C(T) (20)

where (f;) is the same sequence of A-measurable functions on T mentioned in Example[3.5]
Next, we will estimate the values of each of the testing functions 1,t and t* by using the operator mentioned in

in the following way
(L) =[1+ f]t(L+ D)1 =[1+ fit
Ri(x; 1) =[1+ filtA + D)t = [1 + fi]t(1 + 1)

Ri(x? ) = [1+ fi]t(1 + tD) {t2 + @}

-venfel-2)
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This gives
statpay lim ||R;(1;m) - 1|| , =0, (21)
statpam zlgg ||9{7 (n;n) - '7“00 =0, (22)
and, statpam lim ||93,-(172 ;1) — 772“00 =0. (23)

This shows that the sequence R;(f; t) satisfies the conditions (15), (L6) and ([17). Hence, we can conclude by Theorem
that

statpam Zlgg “‘Ri(f,‘ n- f(’?)“m =0.
We have already seen that the sequence (f,) of A-measurable functions mentioned in Example is statistically

deferred Cesaro summable, but not deferred Cesaro statistically convergence. Therefore, the operator defined above in
satisfies Theorem 4.2, but not the Theorem

5. Rate of Deferred Cesaro Summability

In this section, we study the rate of statistical deferred Cesaro summability of sequences of positive
linear operators from C(T) to C(T).

Definition 5.1. Let (ax) and (by) be two sequences of non-negative integers which satisfy the regularity conditions
ay < by and %im by = +co. Let (yx) be a sequence of non-increasing positive real numbers. A sequence f, : T — Rof

A-measurable functions is statistically deferred Cesaro summable to a A-measurable function f on T with rate o(yy),
if for each € > 0 and the set

E(e) ={s :s € (a, blyand |pi(s) - £(5)| 2 ¢},
ma(EE)
im-———— =0
k—oo Vipa((ax, bilr)
where ¢y is the deferred Cesaro summability mean.
We write this as
statrpaMm fk — f = O(yk) onT.

Next, we prove the following lemma

Lemma 5.2. Let (a;) and (b,)be two non-increasing positive sequences, and let (fx), (gx) € C(T) with the conditions

statrpam fi — f = o(a;)onT
and, statrpam gk — g = o(b;)onT

Then the following assertions are true:

(i) statrpam (fx + gx) — (f +g) = o(c;) on T.

(it) statrpam (fk — f)(gx — 9) = o(aby) on T.
(iii) statrpam K(fx — f) = o(al’() on T, for any scalar K.
(iv) statroam(fi — f)? = o(al) on T.

where, ¢; = max{a;, b;}.
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Proof: To prove the assertion (i) of the lemma, we consider the following sets for which e > 0 and t € T.

E(t) = {s:5 € (a, biyand |pi + () - (f + 9)(B)] 2 €],
Ei(t) ={s:s € (a, blyand |pu(t) - f()] > €},
Ex(t)={s: s € (@, blyand [yi(t) - g(t)] > ¢},
Then, clearlyE(t) C E1(t) U Ex(t). Since, c,’{ = max{a,’{, b,’{}, we can obtain

HAED) pE®) s (Ea()
cpalar, bedr) ~ apua (G, bily) — bpa (@, bilr)

Using the given conditions of the lemma, the RHS of this inequality tends to zero as k — co. So we obtain
our desired result. Similar technique can be applied to prove the assertions (ii), (iii) and (iv) of Lemma
Now, we define the modulus of continuity of a time scale function f : T — R as follows:

w(f,0) = x,syugjl" {|f(x)—f(y)| : |x—y| < 6} , where 0 < 6 < maxT .

Now we establish a theorem on rates of statistically deferred Cesaro summable sequences of time scale
positive linear operators with the help of modulus of continuity defined above.

Theorem 5.3. Let (a;) and (b;) be two non-increasing positive sequences in T, and let Ry : C([a, bly) — C([a, bly) ,
(k € INN be a sequence of positive linear operators such that

(i) statrpam Rk(1,1) =1 = o(a;) on T.
(ii) statrpam a)(f, Ox) = O(b;{) on T.

where, 5(f) = { £u(6% 1) and 0 (k) = (k- 1),
then for each f € C([a, bly), the below mentioned assertion holds:

statrpam || Le(f; ) = £(1)|| = o(c}) on [a, bly

/

k
Proof: Suppose, T C R be compact and let f € C([a,b]y) and t € T. Then

[Le(F:0) = FO)] < Le(|f 00 = £ £) + |FO)| 1 L6151 - 1]
< £ "5 1 tatson + 0] 12030 - 1

where c; = max{a;, b;}.

O

42
<z (1 A t)w(f, 5+ FO]1£ (10~ 1
k

< [Lk 1;H+ %Lk (6%; t)]w(ffék) + 1L (1D -1
k
= [Le(@; )+ N (f, 6) + |[FO] L1 1) - 1]
This gives
£ (F:6) = FO)||., < 200 (f, 85 + (f, SNLi (15 £) = Ll + || FO| MLk ) = Ll
which again gives
%6 (F: ) = FO)]|., <20 (F, 0%) + @ (£, 8 IRk (15 £) = Ul + QIR (1;6) = 1|,

where Q = || f (t)”oo. Using the conditions (i) and (ii) of the Theorem [5.3|along with the Lemma we get
the desired result.
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6. Concluding Remark

We further observe the following:
Remark 6.1. Let (f5) : T — R be a sequence of A-measurable functions that is already mentioned in Example
(3.5). The sequence (f;) is statistically deferred Cesaro summable to 3, i.e.

1
statDAM}}im fi = > onT.

Then we have
StatDAM;}i_{g “?Rk(fj; n) - ﬁ(n)”m =0forj=0,1, 2.

Thus, by Theorem [£.2} we immediately get
statpawlim [Ri(f; ) = fa]l,, =0

where fo(n) =1, Ai(n) =1 and f(n) = .

As the given sequence (fi) of time scale functions is statistically deferred Cesaro summable on T, but
neither deferred Cesaro statistical convergence nor usual convergence on T. Therefore, under the operator
defined in equation (20), the Korovkin-type approximation Theorem [£.2] works properly, but the classical
and statistical convergence via deferred Cesaro mean do not work for the same operators. This helps us to
conclude that the Theorem [£.2]is a non-trivial extension of the Theorem [#.T)and the classical Korovkin-type
approximation Theorem (see [13]).
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