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Approximation of certain operators on time scales
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Abstract. The paper first studies the basic notions of statistical convergence for a sequence of time
scale functions via deferred Cesàro summability mean. Some useful limit related and inclusion results
among these newly defined notions have been examined. Also based upon these notions, two Korovkin-
type approximation theorems with certain algebraic test functions have been established. An example
is provided considering a positive linear operator in association with Bernstein polynomial to clarify the
relevant results. Moreover, the rate of statistical deferred Cesàro summability is estimated.

1. Introduction and Motivation

The notion of statistical convergence was introduced by Zygmund (see [27]) in 1935. Fast (see [6])
and Steinhaus (see [24]) independently introduced Statistical Convergence in sequence space theory in the
year 1951. Statistical convergence is closely related with the study of measure Theory, probability Theory,
Fibonacci sequence, etc. Statistical convergence has been an active area of research in the current time.
Some of the recent works in approximation theory using statistical convergence are [5, 11, 12, 15, 16, 18–23].

A time scale is an arbitrary non-empty closed subset of the real numbers. It is denoted by the symbol T.
Throughout the study we assume that a time scaleT has the topology that it inherits from the real numbers
with the standard topology. The calculus of time scale was introduced by Stefan Hilger in his Ph.D. thesis
supervised by Aulbach in 1988 (see [9, 10]). This allowed the unification of discrete and continuous analysis.
Here one can replace the range of definition of the functions under consideration by an arbitrary time scale
T. There are many applications of time scales in dynamic equations (see [4]). The continuous version of
statistical convergence was studied by Móricz (see [14]). Guseinov (see [8]) introduced and investigated
the concept of Riemann’s ∆- and ∇- integrals on time scale. Several other studies on time scale calculus
have been presented in [1, 9, 17, 25] and there are many more.

We first discuss some important terms and notions on time scale (see [8]):
For t ∈ T, the forward jump operator σ : T→ T is given by

σ(t) = inf {s ∈ T : s > t}
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and the backward jump operator ρ : T→ T is given by

ρ(t) = sup {s ∈ T : s < t }

and the graininess function µ : T→ [0,∞) is given by

µ(t) = σ(t) − t

Here we put inf ∅ = sup T (i.e., σ(t) = t if T has a maximum t) and sup ∅ = inf T (i.e., ρ(t) = t if T has a
minimum t), where ∅ is the empty set.

A closed interval, open interval and semi-closed (or semi-open) interval on a time scale T are given by
[a, b]T = {t ∈ T : a ≤ t ≤ b}, (a, b)T = { t ∈ T : a < t < b} and [a, b)T = { t ∈ T : a ≤ t < b} respectively.

Next, let S be the collection of all left closed and right open intervals of the form [a, b)T. Then the set
function m : S → [0,∞) defined by m ([a, b)) = b − a is a countably additive measure. The Carathéodory
extension of the set function m associated with the family S is called the Lebesgue ∆-measure on T and it is
denoted by µ∆ (see [8, 17]).
We say that a function f : T→ R is ∆-measurable if the set f−1(A) is ∆-measurable for every open subset
A of R.

Theorem 1.1 ([8]). For each a ∈ T − {max T}, the singleton point set {a} is ∆-measurable, and its ∆-measure is
given by

µ∆(a) = σ(a) − a.

Theorem 1.2 ([8]). If a, b ∈ T and a ≤ b, then

µ∆ ([a, b)) = b − a, and µ∆ ((a, b)) = b − σ(a).

If a, b ∈ T − {max T} anda ≤ b, then,

µ∆ ((a, b]) = σ(b) − σ(a), and µ∆ ([a, b]) = σ(b) − a.

Definition 1.3 ([25]). LetΩ be a ∆-measurable subset of T. Then for t ∈ T, we define the setΩ(t) by

Ω(t) = {s ∈ [to, t]T : s ∈ Ω}

The density of the setΩ on T, denoted by δT(Ω), is defined as

δT (Ω) = lim
t→∞

µ∆(Ω(t))
µ∆([t0, t]T)

provided the above limit exists.

Here if T = N, then the concept reduces to asymptotic density (or natural density) and if T = [0,∞),
then the concept implies approximate density. In this paper, we shall mainly use the Lebesgue ∆-measure
µ∆ introduced by Guseinov in [8]. Here T is a time scale satisfying inf T = t0 > 0 and sup T = ∞.

In this paper, we have studied certain notions of a sequence of ∆-measurable functions on time scales
and provided Korovkin-type approximation theorems in the time scale framework.

2. Statistical Convergence of a Sequence Functions on Time scales

Definition 2.1. A sequence ( fn)∞n=1 of ∆-measurable functions on T is said to be convergent to a ∆-measurable
function f on T if, for each ϵ > 0, there exists m ∈N and Nϵ ⊂ T such that δT(Nϵ) = 1 and∣∣∣ fn(t) − f (t)

∣∣∣ < ϵ f or all t ∈ Nϵ and n ≥ m.
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We denote it by
∆M lim

n→∞
fn = f .

Next, we present the notion of statistical convergence of a sequence of ∆ - measurable functions on T.

Definition 2.2. A sequence ( f n) of ∆-measurable functions on T is said to be statistically convergent to a ∆-
measurable function f on T if, for each ϵ > 0, the set

E(ϵ) =
{

s : s ∈ [t0, tk]T and
∣∣∣ fk(s) − f (s)

∣∣∣ ≥ ϵ}
has zero density, where tk ∈ T, for k = 1, 2, 3, . . . , and tk →∞ as k→∞. Thus, for each ϵ > 0,

δT(E(ϵ)) = lim
k→∞

µ∆(E(ϵ))
µ∆([t0, tk]T)

= 0.

We denote this by
stat∆M lim

n→∞
fn = f .

Next, we present some basic fundamental limit theorems on sequence of ∆-measurable functions on T.

Theorem 2.3. Let the sequence ( fn) of ∆-measurable functions is statistically convergent on T, then it has unique
limit.

Proof: Let f and 1 be ∆-measurable functions on T such that

stat∆M lim
n→∞

fn = f and stat∆M lim
n→∞

fn = 1.

Since,
∣∣∣ f − 1∣∣∣ = ∣∣∣ fk − fk + f − 1

∣∣∣ ≤ ∣∣∣ fk − f
∣∣∣ + ∣∣∣ fk − 1∣∣∣ , for each k = 1, 2, 3, ....

Then, for statistical convergence of sequence of ∆-measurable functions on T, for each ϵ > 0, we have

stat∆M

∣∣∣ f − 1∣∣∣ ≤ stat∆M

∣∣∣ fk − f
∣∣∣ + stat∆M

∣∣∣ fk − 1∣∣∣ < ϵ.
This implies f = 1.

Theorem 2.4. If a sequence ( fn) of ∆-measurable functions is convergent on T, then it is statistically convergent on
T. But the converse may not be true.

Proof: The sequence fn : T→ R being convergent, for each ϵ > 0, there exists m ∈ N and Nϵ ⊂ T such that
δT (Nϵ) = 1 and

∣∣∣ fn (t) − f (t)
∣∣∣ < ϵ for each t ∈ Kε and n ≥ m.

Therefore, for each ϵ > 0, n ≥ m and the set

E(ϵ) =
{
s : s ∈ [t0, tk]T and

∣∣∣ fk(s) − f (s)
∣∣∣ ≥ ϵ} ,

the following inequality holds

0 ≤ lim
k→∞

µ∆ (E(ϵ))
µ∆ ([t0, tk]T)

≤ lim
k→∞

∣∣∣ fk(t) − f (t)
∣∣∣ < ϵ.

Hence, by definition 2.2, we get stat∆M lim
n→∞

fn = f on T.
The following example shows that the converse is not always true.

Example 2.5. Let T = [0, 1]. We consider the sequence fn : T→ R of functions defined by

fn(s) =

 1
2 , for 0 ≤ s < 1

n , n = j2 ( j ∈N)
0, otherwise

Here the sequence ( fn) of ∆-measurable functions is statistically convergent to the function f = 0 over T = [0,∞),
but it is not usual convergent over T = [0,∞).
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3. Deferred Cesàro Statistical Convergence & Statistically Deferred Cesàro Summability

Following [2], we present notion of deferred Cesàro summability mean for a sequence of time scale
functions as follows:

Definition 3.1. Let (ak) and (bk) be two sequences of non-negative integers on T which satisfy the regularity
conditions ak < bk and lim

k→∞
bk = +∞. Then we define the deferred Cesàro summability mean for the sequence ( fn) of

∆-measurable functions on T as

ϕk =
1

bk − ak

bk∑
i=ak+1

fi.

Next, we present the definitions of statistical convergence and statistical summability of a sequence of
∆-measurable functions on T via deferred Cesàro summability mean as follows:

Definition 3.2. Let (ak) and (bk) be two sequences of non-negative integers on T which satisfy the regularity
conditions ak < bk and lim

k→∞
bk = +∞. A sequence ( fn) of ∆-measurable functions is said to be deferred Cesàro

statistically convergent to a ∆-measurable function f on T if, for each ϵ > 0, the set

E(ϵ) =
{
s : s ∈ (ak, bk]T and

∣∣∣ fk(s) − f (s)
∣∣∣ ≥ ϵ}

has zero density. Thus, for each ϵ > 0,

δT(E(ϵ)) = lim
k→∞

µ∆(E(ϵ))
µ∆((ak, bk]T)

= 0.

We denote this by
D∆Mstat lim

n→∞
fn = f .

Definition 3.3. Let (ak) and (bk) be two sequences of non-negative integers on T which satisfy the regularity
conditions ak < bk and lim

k→∞
bk = +∞. A sequence ( fn) of ∆-measurable functions is said to be statistically deferred

Cesàro summable to a ∆-measurable function f on T if, for each ϵ > 0, the set

E(ϵ) =
{
s : s ∈ (ak, bk]T and

∣∣∣ϕk(s) − f (s)
∣∣∣ ≥ ϵ}

has zero density. Thus, for each ϵ > 0,

δT(E(ϵ)) = lim
k→∞

µ∆(E(ϵ))
µ∆((ak, bk]T)

= 0.

We denote this by
statD∆M lim

n→∞
fn = f .

Now, we give an inclusion theorem relating these two potentially useful notions.

Theorem 3.4. Let (ak) and (bk) be two sequences of non-negative integers which satisfy the regularity conditions
ak < bk and lim

k→∞
bk = +∞. If a sequence ( fn) of ∆-measurable functions is deferred Cesàro Statistical convergent to a

∆-measurable function f on T, then it is statistically deferred Cesàro summable to the same function f on T, but the
converse is not always true.
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Proof: Suppose the sequence fn : T → R of ∆-measurable functions is deferred Cesàro statistical
convergent to a ∆-measurable function f on T, by Definition 3.2, we have

δT(E) = lim
k→∞

µ∆(E)
µ∆((ak, bk]T)

= 0,

where E =
{
s : s ∈ (ak, bk]T and

∣∣∣ fk(s) − f (s)
∣∣∣ ≥ ϵ} . Now, we consider two sets as follows:

Eϵ = E =
{
s : s ∈ (ak, bk]T and

∣∣∣ fk(s) − f (s)
∣∣∣ ≥ ϵ} ,

and, (Eϵ)
c =

{
s : s ∈ (ak, bk]T and

∣∣∣ fk(s) − f (s)
∣∣∣ < ϵ} .

Then we have∣∣∣ϕk − f
∣∣∣ = ∣∣∣∣∣∣∣ 1

bk − ak

bk∑
i=ak+1

fi − f

∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣ 1
bk − ak

bk∑
i=ak+1

fi − f

∣∣∣∣∣∣∣ +
∣∣∣∣∣∣∣ 1
bk − ak

bk∑
i=ak+1

f − f

∣∣∣∣∣∣∣
≤

1
bk − ak

bk∑
i = ak + 1
(m ∈ Eϵ)

∣∣∣ fi − f
∣∣∣+ 1

bk − ak

bk∑
i = ak + 1(
m ∈ (Eϵ)c)

∣∣∣ fi − f
∣∣∣ + | f | ∣∣∣∣∣∣∣ 1

bk − ak

bk∑
i=ak+1

1 − 1

∣∣∣∣∣∣∣
≤

1
Pk

∣∣∣µ∆ (Eϵ)
∣∣∣ + 1

Pk

∣∣∣µ∆(Eϵ)c
∣∣∣

where Pk = µ∆((ak, bk]T). Then the above inequality implies |ϕk − f | < ϵ. This shows that the sequence ( fn)
of ∆-measurable functions is statistically deferred Cesàro summable to the ∆-measurable function f on T.

Example 3.5. Let ak = 2k and bk = 4k and T = [0,∞). Let ( fn) be a sequence of ∆-measurable functions on T of the
form given by

fk(t) =

1, i f t ∈ [0, k + 1)T; k is even
0, i f t ∈ [k + 1, ∞)T; k is odd.

By the definition of deferred Cesàro summability mean, we get

ϕ(t) =
1

bk − ak

bk∑
i=ak+1

fi(t)

=
1
2k

4k∑
i=2k+1

fi(t) =
1
2
.

Thus, the sequence ( fn) of∆-measurable functions onT has deferred Cesàro summability mean 1
2 overT. Therefore, the

sequence is statistically deferred Cesàro summable to 1
2 over T. But it is not deferred Cesàro statistically convergent.

4. Korovkin-Type Approximation Theorems on Time Scales

Let [a, b]T ⊂ T, where T is a time scale. And let C([a, b]T) denote the space of all continuous real valued
functions defined on [a, b]T, then C([a, b]T) is a complete normed linear space (Banach space) with the sup
norm ∥.∥∞. Then for f ∈ C([a, b]T), the norm of f is given by∥∥∥ f

∥∥∥
∞
= sup

{∣∣∣ f (η)
∣∣∣ : η ∈ [a, b]T

}
.
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We say that a sequence of linear operators R j : C([a, b]T)→ C([a, b]T) is positive if

R j( f , η) ≥ 0 as f ≥ 0.

Now, with the help of our proposed mean, we use the notions of deferred Cesàro statistical convergence
(D∆Mstat) and statistically deferred Cesàro summability (statD∆M) for the sequences of ∆-measurable func-
tions on T to state and prove the following Korovkin-type approximation theorems. Jena et al. (see [11])
introduced statistical deferred Cesàro summability for a sequence of real numbers in approximation results
of Korovkin-type.

Theorem 4.1. Let R j : C([a, b]T)→ C([a, b]T) be a sequence of positive linear operators. Then for all f ∈ C(T),

D∆Mstat lim
j→∞

∥∥∥R j( f ; η) − f (η))
∥∥∥
∞
= 0 (1)

if and only if

D∆Mstat lim
j→∞

∥∥∥R j(1; η) − f (η)
∥∥∥
∞
= 0, (2)

D∆Mstat lim
j→∞

∥∥∥R j(η; η) − f (η)
∥∥∥
∞
= 0, (3)

and D∆Mstat lim
j→∞

∥∥∥R j(η2; η) − f (η)
∥∥∥
∞
= 0. (4)

Proof: Since, each of the following functions

f0(η) = 1, f0(η) = η, and f0(η) = η2

are members of C([a, b]T), so the condition (1) obviously implies the conditions (2), (3) and (4).
For the converse part, we assume that the conditions (2), (3) and (4) hold. If f ∈ C([a, b]T), then there

exists a constant τ > 0 such that
∣∣∣ f (η)

∣∣∣ ≤ τ for each η ∈ [a, b]T. We thus find that∣∣∣ f (ξ) − f (η)
∣∣∣ ≤ 2τ for each ξ, η ∈ [a, b]T (5)

This implies, for each ϵ > 0, there exists θ > 0 such that∣∣∣ f (ξ) − f (η)
∣∣∣ < ϵ (6)

whenever |ξ − η| < θ for each ξ, η ∈ [a, b]T.
We choose λ1 = λ1(ξ, η) = (2ξ − 2η)2.
If |ξ − η| ≥ θ, then we obtain∣∣∣ f (ξ) − f (η)

∣∣∣ < 2τ =
2τλ1

λ1
=

2τλ1

4(ξ − η)2 ≤
2τ
4θ2λ1 ≤

2τ
θ2λ1(ξ, η) (7)

From inequalities (6) and (7), we get ∣∣∣ f (ξ) − f (η)
∣∣∣ < ϵ + 2τ

θ2λ1(ξ, η)

which implies

− ϵ −
2τ
θ2λ1(ξ, η) < f (ξ) − f (η) < ϵ +

2τ
θ2λ1(ξ, η) (8)

Now, Rm(1; η) being monotone and linear, we apply the operator Rm(1; η) to the above inequality (8) as

Rm(1; η)
[
−ϵ −

2τ
θ2λ1(ξ, η)

]
≤ Rm(1; η)

(
f (ξ) − f (η)

)
≤ Rm(1; η)

[
ϵ +

2τ
θ2λ1(ξ, η)

]
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Here η is fixed, so f (η) is constant. So, we have

− ϵ Rm(1; η) −
2τ
θ2Rm(λ1 ; η) ≤ Rm( f ; η) − f (η)Rm(1; η) ≤ ϵ Rm(1; η) +

2τ
θ2Rm(λ1; η) (9)

Also, we have

Rm( f ; η) − f (η) =
[
Rm( f ; η) − f (η)Rm(1; η)

]
+ f (η)[Rm(1; η) − 1] (10)

Using the conditions (9) and (10), we have

Rm( f ; η) − f (η) ≤ ϵRm(1; η) +
2τ
θ2Rm(λ1; η) + f (η)

[
Rm(1; η) − 1

]
(11)

Now, we estimate Rm(λ1; η) as follows

Rm(λ1 ; η) = Rm

(
(2ξ − 2η)2 ; η

)
= Rm

(
4ξ2
− 8ξη + 4η2 ; η

)
= Rm(4ξ2 ; η) − 8ηRm(ξ; η) + 4η2

Rm(1; η)

= 4[Rm(ξ2; η) − η2] − 8η[Rm(ξ; η) − η] + 4η2[Rm(1 ; η) − 1]

Using this estimation, the inequality (11) becomes

Rm( f ; η) − f (η) ≤ ϵRm(1 ; η) +
2τ
θ2

{
4[Rm(ξ2 ; η) − η2] − 8η[Rm(ξ; η) − η]

+4η2[Rm
(
1 ; η

)
− 1]

}
+ f (η)

[
Rm

(
1 ; η

)
− 1

]
= ϵ

[
Rm

(
1 ; η

)
− 1

]
+ ϵ +

2τ
θ2 {4[Rm(ξ2 ; η) − η2] − 8η[Rm(ξ; η) − η]

+ 4η2[Rm(1 ; η) − 1] + f (η)
[
Rm(1 ; η) − 1

]
Since, ϵ > 0, we can write this as∣∣∣Rm( f ; η) − f (η)

∣∣∣ ≤ ϵ + (
ϵ +

8τb2

θ2 + τ

) ∣∣∣Rm(1; η) − 1
∣∣∣ 16τb
θ2

∣∣∣Rm(ξ ; η) − η
∣∣∣ + 8τ

θ2

∣∣∣Rm(ξ2; η) − η2
∣∣∣

≤ ϑ
{∣∣∣Rm

(
1 ; η

)
− 1

∣∣∣ + ∣∣∣Rm
(
ξ ; η

)
− η

∣∣∣ + ∣∣∣∣Rm

(
ξ2 ; η

)
− η2

∣∣∣∣} (12)

where

ϑ = max
(
ϵ +

8τb2

θ2 + τ,
16τb
θ2 ,

8τ
θ2

)
and ϵ > 0 being arbitrary. Now, for a given χ > 0, there exists ϵ > 0 (ϵ < χ) such that

Lm (χ) =
{
η : η ∈ (ak, bk]T and

∣∣∣Rm
(

f ; η
)
− f

(
η
)∣∣∣ ≥ χ} .

Also, for j = 0, 1, 2, we have

L j, m (χ) =
{
η : η ∈ (ak, bk]T and

∣∣∣∣Rm

(
f j ; η

)
− f j(η)

∣∣∣∣ ≥ χ − ϵ3ϑ

}
such that

Lm(χ) ≤
2∑

j=0

L j, m (χ).
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This clearly gives

µ∆(Lm (χ))
µ∆((ak, bk]T)

≤

2∑
j=0

µ∆
(
L j, m (χ)

)
µ∆

(
(ak, bk]T

) (13)

From the inequality (12), the RHS of this inequality (13) vanishes as k→∞. Hence

lim
k→∞

µ∆(Lm(χ))
µ∆((ak, bk]T)

= 0.

This completes the proof.

Theorem 4.2. Let R j : C([a, b]T)→ C([a, b]T) be a sequence of positive linear operators. Then for all f ∈ C([a, b]T),

statD∆M lim
j→∞

∥∥∥R j
(

f ; η
)
− f

(
η
)∥∥∥
∞
= 0 (14)

if and only if

statD∆M lim
j→∞

∥∥∥R j
(
1 ; η

)
− f

(
η
)∥∥∥
∞
= 0 , (15)

statD∆M lim
j→∞

∥∥∥R j
(
η ; η

)
− f (η)

∥∥∥
∞
= 0 , (16)

and, statD∆M lim
j→∞

∥∥∥R j(η2 ; η) − f (η)
∥∥∥
∞
= 0. (17)

Proof: The proof of Theorem 4.2 is similar to that of Theorem 4.1.
Next, we consider an example of a sequence of positive linear operators that does not work via the

deferred Cesàro statistical convergence of a sequence of ∆-measurable functions on T (Theorem 4.1), but it
fairly works on Theorem 4.2. In view of this example, we can say that Theorem 4.2 is a non-trivial extension
of deferred Cesàro statistical convergence of a sequence of ∆-measurable functions on T.

We now recall the operator

ρ(1 + ρD) where (D = d
dρ ) (18)

This operator was used by Al-Salam (see [3]), Viskov and Srivastava (see [26]) and many more.

Example 4.3. Consider the Bernstein polynomial βn( f ; t) on C(T) given by

βk( f ; t) =
k∑

i=0

f (
i
k

)
(

k
i

)
ti(1 − t)k−i (19)

where t ∈ T = [0,∞) and k = 0, 1, 2, . . . .
We now introduce the positive linear operators on C(T) under the composition of Bernstein polynomial βn( f ; t)

and the operator mentioned above in (18) as given below:

Ri( f ; t) = [1 + fi]t(1 + tD)βi( f ; t), for each f ∈ C(T) (20)

where ( fi) is the same sequence of ∆-measurable functions on T mentioned in Example 3.5.
Next, we will estimate the values of each of the testing functions 1, t and t2 by using the operator mentioned in

(20) in the following way

Ri(1; t) =
[
1 + fi

]
t (1 + tD) 1 = [1 + fi]t

Ri(x; t) =
[
1 + fi

]
t(1 + tD)t =

[
1 + fi

]
t(1 + t)

Ri

(
x2 t

)
=

[
1 + fi

]
t(1 + tD)

{
t2 +

t(1 − t)
i

}
=

[
1 + fi

] {
t2

(
2 −

3t
i

)}
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This gives

statD∆M lim
i→∞

∥∥∥Ri(1 ; η) − 1
∥∥∥
∞
= 0 , (21)

statD∆M lim
i→∞

∥∥∥Ri
(
η ; η

)
− η

∥∥∥
∞
= 0 , (22)

and, statD∆M lim
i→∞

∥∥∥Ri(η2 ; η) − η2
∥∥∥
∞
= 0. (23)

This shows that the sequence Ri( f ; t) satisfies the conditions (15), (16) and (17). Hence, we can conclude by Theorem
4.2 that

statD∆M lim
i→∞

∥∥∥Ri( f ; η) − f (η)
∥∥∥
∞
= 0.

We have already seen that the sequence ( f k) of ∆-measurable functions mentioned in Example 3.5 is statistically
deferred Cesàro summable, but not deferred Cesàro statistically convergence. Therefore, the operator defined above in
(20) satisfies Theorem 4.2, but not the Theorem 4.1.

5. Rate of Deferred Cesàro Summability

In this section, we study the rate of statistical deferred Cesàro summability of sequences of positive
linear operators from C(T) to C(T).

Definition 5.1. Let (ak) and (bk) be two sequences of non-negative integers which satisfy the regularity conditions
ak < bk and lim

k→∞
bk = +∞. Let (γk) be a sequence of non-increasing positive real numbers. A sequence fn : T→ R of

∆-measurable functions is statistically deferred Cesàro summable to a ∆-measurable function f on T with rate o(γk),
if for each ϵ > 0 and the set

E(ϵ) =
{

s : s ∈ (ak, bk]Tand
∣∣∣ϕk (s) − f (s)

∣∣∣ ≥ ϵ} ,
lim
k→∞

µ∆(E(ϵ))
γkµ∆((ak, bk]T)

= 0

where ϕk is the deferred Cesàro summability mean.

We write this as
statRD∆M fk − f = o(γk) on T.

Next, we prove the following lemma

Lemma 5.2. Let (a′k) and (b′k)be two non-increasing positive sequences, and let ( fk), (1k) ∈ C(T) with the conditions

statRD∆M fk − f = o(a′k)onT
and, statRD∆M 1k − 1 = o(b′k)onT

Then the following assertions are true:

(i) statRD∆M ( fk + 1k) − ( f + 1) = o(c′k) on T.
(ii) statRD∆M ( fk − f )(1k − 1) = o(a′kb′k) on T.

(iii) statRD∆M K( fk − f ) = o(a′k) on T, for any scalar K.

(iv) statRD∆M( fk − f )
1
2 = o(a′k) on T.

where, c′k = max{a′k, b′k}.
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Proof: To prove the assertion (i) of the lemma, we consider the following sets for which ϵ > 0 and t ∈ T.

E(t) =
{
s : s ∈ (ak, bk]Tand

∣∣∣ϕk + ψk)(s) − ( f + 1)(t)
∣∣∣ ≥ ϵ} ,

E1 (t) =
{
s : s ∈ (ak, bk]Tand

∣∣∣ϕk(t) − f (t)
∣∣∣ ≥ ϵ} ,

E2 (t) =
{
s : s ∈ (ak, bk]Tand

∣∣∣ψk(t) − 1(t)
∣∣∣ ≥ ϵ} ,

Then, clearlyE(t) ⊆ E1(t) ∪ E2(t). Since, c′k = max{a′k, b′k}, we can obtain

µ∆(E(t))
c′kµ∆((ak, bk]T)

≤
µ∆ (E1(t))

a′kµ∆
(
(ak, bk]T

) + µ∆ (E2(t))
b′kµ∆

(
(ak, bk]T

) .
Using the given conditions of the lemma, the RHS of this inequality tends to zero as k → ∞. So we obtain
our desired result. Similar technique can be applied to prove the assertions (ii), (iii) and (iv) of Lemma 5.2.

Now, we define the modulus of continuity of a time scale function f : T→ R as follows:

ω( f , δ) =
sup

x, y ∈ T
{∣∣∣ f (x) − f (y)

∣∣∣ :
∣∣∣x − y

∣∣∣ ≤ δ} , where 0 < δ ≤ maxT .

Now we establish a theorem on rates of statistically deferred Cesàro summable sequences of time scale
positive linear operators with the help of modulus of continuity defined above.

Theorem 5.3. Let (a′k) and (b′k) be two non-increasing positive sequences in T, and let Rk : C([a, b]T)→ C([a, b]T) ,
(k ∈NN be a sequence of positive linear operators such that

(i) statRD∆M Rk(1, t) − 1 = o(a′k) on T.
(ii) statRD∆M ω( f , δk) = o(b′k) on T.

where, δk(t) =
{
Lk(θ2; t)

}1/2
and θ (k) = (k − t),

then for each f ∈ C([a, b]T), the below mentioned assertion holds:

statRD∆M

∥∥∥Lk( f ; t) − f (t)
∥∥∥ = o(c′k) on [a, b]T

where c′k = max{a′k, b′k}.

Proof: Suppose, T ⊂ R be compact and let f ∈ C([a, b]T) and t ∈ T. Then∣∣∣Lk( f ; t) − f (t)
∣∣∣ ≤ Lk

(∣∣∣ f (k) − f (t)
∣∣∣ ; t

)
+

∣∣∣ f (t)
∣∣∣ |Lk(1; t) − 1|

≤ Lk

(
|k − t|
δk
+ 1 ; t

)
ω( f , δk) +

∣∣∣ f (t)
∣∣∣ |L(1; t) − 1|

≤ Lk

(
1 +
|k − t|2

δk
2 ; t

)
ω

(
f , δk

)
+

∣∣∣ f (t)
∣∣∣ |Lk (1; t) − 1|

≤

[
Lk (1 ; t) +

1
δk

2Lk

(
θ2 ; t

)]
ω

(
f , δk

)
+

∣∣∣ f (t)
∣∣∣ |Lk (1; t) − 1|

= [Lk (1 ; t) + 1]ω
(

f , δk
)
+

∣∣∣ f (t)
∣∣∣ |Lk(1; t) − 1|

This gives ∥∥∥Lk
(

f ; t) − f (t
)∥∥∥
∞
≤ 2ω

(
f , δk

)
+ ω( f , δk)∥Lk (1 ; t) − 1∥∞ +

∥∥∥ f (t)
∥∥∥
∞
∥Lk(1; t) − 1∥∞

which again gives∥∥∥Rk
(

f ; t) − f (t
)∥∥∥
∞
≤ 2ω

(
f , δk

)
+ ω

(
f , δk

)
∥Rk (1 ; t) − 1∥∞ +Q∥Rk (1; t) − 1∥∞

where Q =
∥∥∥ f (t)

∥∥∥
∞

. Using the conditions (i) and (ii) of the Theorem 5.3 along with the Lemma 5.2, we get
the desired result.



P. Bhattarai, H. Dutta / Filomat 40:4 (2026), 1479–1490 1489

6. Concluding Remark

We further observe the following:
Remark 6.1. Let ( fk) : T→ R be a sequence of∆-measurable functions that is already mentioned in Example
(3.5). The sequence ( fk) is statistically deferred Cesàro summable to 1

2 , i.e.

statD∆M lim
k→∞

fk =
1
2

on T.

Then we have
statD∆M lim

k→∞

∥∥∥Rk( f j ; η) − f j(η)
∥∥∥
∞
= 0 for j = 0, 1, 2.

Thus, by Theorem 4.2, we immediately get

statD∆M lim
k→∞

∥∥∥Rk( f ; η) − f (η)
∥∥∥
∞
= 0 .

where f0(η) = 1, f1(η) = η and f2(η) = η2.
As the given sequence ( fk) of time scale functions is statistically deferred Cesàro summable on T, but

neither deferred Cesàro statistical convergence nor usual convergence on T. Therefore, under the operator
defined in equation (20), the Korovkin-type approximation Theorem 4.2 works properly, but the classical
and statistical convergence via deferred Cesàro mean do not work for the same operators. This helps us to
conclude that the Theorem 4.2 is a non-trivial extension of the Theorem 4.1 and the classical Korovkin-type
approximation Theorem (see [13]).
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32 (2018), 2307-2319.
[12] B. B. Jena, S. K. Paikray, H. Dutta, On various new concepts of Statistical convergence for sequence of random variables via deferred Cesàro
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[15] P. Parida, S. K. Paikray, B. B. Jena, Generalized deferred Cesàro equistatistical convergence and analogus approximation theorems,

Proyecciones J. Math. 39 (2020), 307-331.
[16] T. Pradhan, S. K. Paikray, B. B. Jena, H. Dutta, Statistically deferred B-summability and its applications to associated approximation

theorems, J. Inequal. Appl. 65 (2018).
[17] M. S. Seyyidoglu, N. O. Tan, A note on statistical convergence on time scale, J. Inequal. Appl., 2012.
[18] H. M. Srivastava, B. B. Jena, S. K. Paikray, U. K. Mishra, Generalized equi-statistical convergence of the deferred Nörlund summability

and its applications to associated approximation theorems, Rev. Real Acad. Cienc. Exactas Fı́s. Natur. Ser. A Mat. (RACSAM) 112 (2018),
1487-1501.

[19] H. M. Srivastava, B. B. Jena, S. K. Paikray, U. K. Mishra, Statistically and relatively modular deferred-weighted summability and
Korovkin-type approximations theorems, Symmetry 11 (2019), Article ID 448.



P. Bhattarai, H. Dutta / Filomat 40:4 (2026), 1479–1490 1490

[20] H. M. Srivastava, B. B. Jena, S. K. Paikray, A certain class of statistical probability convergence and its applications to approximation
theorems, Appl. Anal. Discrete Math., 14 (2020), 579-598.

[21] H. M. Srivastava, B. B. Jena, S. K. Paikray, Statistical deferred Nörlund summability and Korovkin-type approximation theorem, Mathe-
matics, 8(4) (2020), Article ID 636.

[22] H. M. Srivastava, B. B. Jena, S. K. Paikray, Statistical probability convergence via deferred Nörlund mean and its applications to
approximation theorems, RACSAM 144 (2020).

[23] H. M. Srivastava, B. B. Jena, S. K. Paikray, Statistical product convergence of martingale sequences and its applications to Korovkin-type
approximation theorems, Math. Methods Appl. Sci. 44(11) (2021).

[24] H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math. 2 (1951), 73-74.
[25] C. Turan, O. Duman, Statistical convergenceon time scales and its characterization, in: Advances in Applied Mathematics and Approxi-

mation Theory, Springer Proc. Math. Stat., Springer, New York, 41 (2013), 57-71.
[26] O. V. Viskov, H. M. Srivastava, New approaches to certain identities involving differential operators, J. Math. Anal. Appl. 186 (1994),

1-10.
[27] A. Zygmund, Trigonometrical Series, (2nd edition), Cambridge Univ. Press, Cambridge, 1979.


	Introduction and Motivation
	Statistical Convergence of a Sequence Functions on Time scales
	Deferred Cesàro Statistical Convergence & Statistically Deferred Cesàro Summability
	Korovkin-Type Approximation Theorems on Time Scales
	Rate of Deferred Cesàro Summability
	Concluding Remark

