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Mappings preserving the ascent or descent of triple skew products of
operators

Hassane Benbouziane®’, Aukacha Daoudi?, Mustapha Ech-Chérif El Kettani?

?Department of Mathematics, LiSMA Laboratory, Faculty of Sciences DharMahraz, University Sidi Mohammed Ben Abdellah, Fez, Morocco

Abstract. Let B(H) be the algebra of all bounded linear operators on an infinite-dimensional complex
Hilbert space H. Let asc(A) and desc(A) be, respectively, the ascent and descent of an operator A in B(H).
In this paper, we determine the explicit form of all maps ¢ from B(H) into itself that preserve the ascent or
descent of triple skew product of operators.

1. Introduction

Let H be an infinite-dimensional complex Hilbert space and B(H) be the algebra of all bounded linear
operators on H with unit .

In the sequel, for any operator A € B(H), we denote by R(A), N(A) and A*, respectively, the range, the
kernel and the adjoint of A.

We denote, as usual, by (., .) the inner product on H. For any nonzero vectors x, u € H \ {0}, the rank-one
operator x ® u is defined by (x ® u)y = (y, u)x for all y € H. Note that every rank-one operator on H can
be expressed in this form. The operator x ® u is nilpotent if and only if (x,u) = 0, and it is idempotent if
and only if (x,u) = 1. We denote by 71(H) and N;(H), respectively, the set of all rank-one operators and
the set of all rank-one nilpotent operators on B(H). Recall that an operator A € B(H) is algebraic if there
exists a nonzero complex polynomial P such that P(A) = 0. Clearly, an operator A is algebraic if and only if
its adjoint A" is algebraic.

For any operator A € B(H), the ascent and the descent of A are defined by

asc(A) = inf{n e N U {0} : N(A") = N(A™)},
desc(A) = infin e NU {0} : R(A") = 'R(A”H)};

if no such numbers exists the ascent of A (resp. the descent of A) is defined to be infinite. Note that
asc(0) = desc(0) = 1 and A is injective (resp. surjective) if and only if asc(A) = 0 (resp. desc(A) = 0). These
notions where introduce by Riesz [16]. They play a central role in the development of one of the most
important branches of spectral theory, namely the theory of Fredholm operators. For more information on
these quantities one can see the books [1, 3, 10].
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Over the past few years, one of the classical problems that has attracted the attention of many math-
ematicians is the study of nonlinear preserver problems. These problems involve characterizing maps
between algebras that preserve a given set, property, or relation, without assuming in advance any alge-
braic conditions such as linearity, additivity, or multiplicativity. see for instance [4, 8, 9, 11, 13, 15] and the
references cited therein.

Recently, in [8], Hosseinzadeh and Petek characterized surjective maps on $B(X), the algebra of all
bounded linear operators on a complex or real Banach space X, that preserve the ascent (respectively, the
descent) of the product of operators. Furthermore, in [9], the same authors described the structure of all
nonlinear maps that preserve either the ascent or, alternatively and simultaneously, the descent of the triple
product of operators.

In line with this direction, the present paper determines the explicit form of all surjective maps ¢ from
B(H) into itself that preserve the ascent or the descent of the skew triple product of operators. Precisely,
our main result is stated as follows.

Theorem 1.1. Let H be an infinite-dimensional complex Hilbert space. Let ¢ : B(H) — B(H) be a surjective map
satisfying

asc(AB'A) = asc(@(A)PB) $(A), (A,B € B(H)), (1)
or
desc(AB'A) = desc($(A)p(BY $(A)), (A, B € B(H)). @)
Then there exist a unitary or conjugate-unitary operators U : H — H and a map y : BEH) — C \ {0} such that
$(A) = WAUAU" (A € B(H)),

or,

G(A) = HAUA'L (A € BIH)).
Note that any map ¢ of the above forms, with the corresponding properties for u and U, is surjective and

satisfies (1) and (2).

2. Preliminaries

In this section, we introduce some notation and preliminary results that will be needed in the sequel.
We begin with the following lemma, which discribes the relationship between the ascent and descent of an
operator and those of its adjoint.

Lemma 2.1. Let A € B(H). Assume that asc(A) = desc(A) = p < oo, then its adjoint A* has finite ascent and finite
descent, moreover

asc(A*) = desc(A*) = p. 3)
Proof. See[1, Problem 2.2.5]. O

The following lemma presents some known properties of the ascent and descent of nilpotent and
idempotent operators.

Lemma 2.2. For every A € B(H), the following statements hold.
1. If A is nilpotent of nilindex k, then asc(A) = desc(A) = k.
2. If A is idempotent and A # I, then asc(A) = desc(A) = 1.

The next lemma is quoted from [9], it characterizes nilpotent and non-nilpotent rank-at-most-one oper-
ators in terms of their ascent and descent.
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Lemma 2.3. Let A € 71(H) be a rank one operator. Then
1. Ae Mi(H) — asc(A) =2 < desc(A) =2
2. A¢ Ni(H) & asc(A) =1 < desc(A) = 1.
Proof. See [9, Lemma 2.2]. O

Definition 2.4. We say that an operator A € B(H) is s-idempotent if A = aP for some nonzero scalar a € C and an
idempotent operator P € B(H).

Note that an operator A € B(HH) is s-idempotent if and only if A% = aA for some nonzero scalar a € C. In
what follows, we denote the set of all rank one s-idempotent operators in B(H) by 71,(H).
The following lemma determines the ascent and descent of s-idempotent operator.

Lemma 2.5. Let A € B(H) be a non-scalar operator. If A is s-idempotent, then
asc(A) = desc(A) = 1.

Proof. Let A € B(H) be a non-scalar operator such that A = aP for some nonzero scalar a € C and some
idempotent operator P € B(H). Then asc(A) = desc(A) = asc(P) = desc(P) = 1.
O

Note that if A € ¥1(H) a rank-one operator. Then, we have
Ael i (H) & asc(A)=1 & desc(A)=1 4)
In the next Lemma, we identify when a rank-one operator is s-idempotent in terms of ascent and descent.

Lemma 2.6. Let A € F1(H) be a rank-one operator. The following statements are equivalent.

1. A€ I1,(H).
2. asc(ATA) =1 for all operator T € B(H).
3. desc(ATA) =1 for all operator T € B(H) .

Proof. Assume that A = ax®u where x, u € H and «a is a nonzero scalar such that (x, u) = 1. Let T € B(H) be
an arbitrary operator. We have ATA = a*(Tx, u)x ® u. If (Tx,u) = 0, then asc(ATA) = desc(ATA) = asc(0) =
desc(0) = 1. If (Tx, u) # 0, then ATA € I1,(H). Thus, by (4), that asc(ATA) = desc(ATA) = 1.

For the implication (2) = (1)and (3) = (1), assume that A ¢ 71,(H). Then A € N1(H). Set A = y®v
where y,v € H \ {0} such that (y,v) = 0. There exists an operator T € B(H) such that (Ty,v) # 0. Then
ATA = (Ty,v)y ® v € N1(H). This implies, by Lemma 2.3, that asc(ATA) = desc(ATA) = 2, as desired.

[

Lemma 2.7. Let A € B(H). The following statements are equivalent.
1. AeCL
2. PAP € I1,(‘H) for every P € I1,(H).

Proof. Assume that A ¢ C*I. If A = 0, then PAP =0 ¢ 11,(H) for every P € I1,(H). If A # 0, there exists
a nonzero vector x € H such that x and Ax are linearly independent. Let u € H be a nonzero vector such
that (x,u) = 1 and (Ax,u) = 0. For P = x ® u, we have P € I1,(H) and PAP = 0 ¢ 71, H). This proves that
(2) = (1) is true. The other implication is obvious. [

In [11], Li, Semrl and Sze proved the following lemma.
Lemma 2.8. Let A, B € B(H). Assume that Bx € span{x, Ax} for every x € H. Then B = al+ uA for some o, i € C.
Proof. See [11, Lemma 2.6]. O
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Lemma 2.9. Let A, B € B(H). If for every N € N1(H) we have
NAN e Ni(H) < NBN € Ni(H).
Then, there exist a, u € C such that B = al + uA.

Proof. LetA, B € B(H)such that NAN € Ni(H) <= NBN € N1(H), forevery N € N1(H). Suppose, by the
way of contradiction, that there exists a nonzero vector x such that x, Ax and Bx are linearly independent.
We can find a nonzero vector u € H such that (x,u) = 0, (Ax,u) = 1 and (Bx, u) = 0. Consider the rank-one
nilpotent opertaor N = x ® u, note that NAN = N € Nj(H) but NBN = 0 ¢ Ni(H). This contradiction
ensures that x, Ax and Bx are linearly dependent for every x € H. Thus, by Lemma 2.8, we conclude that
B=al+uAforsomea, ucC. O

From the above Lemma we obtain immediately the following result.

Lemma 2.10. Let A, B € F1(H) be rank-one operators. The following statements are equivalent.

1. A and B are linearly dependent.
2. For every N € N1(H) we have

NAN € Ni(H) < NBN € Ni(H). (5)

Proof. (1) = (2) is obvious.
(2) = (1) Suppose that the condition 2 holds true. Then by Lemma 2.9, we have B = al + A for some
a, u € C. Since A and B are of rank-one, then a = 0. Hence A and B are linearly dependent.
O

For two rank one operators A, B € 71(H), we write A ~ B if N(A) = N(B) or R(A) = R(B). In other
words for x,y,u,v € H, we have x ® u ~ y ® v if and only if x and y are linearly dependent or # and v are
linearly dependent.

Lemma 2.11. Let M, N be linearly independent operators in N1(H). The following statements are equivalent.

1. M~N.
2. There exists an operator R € N1(H) such that R ¢ C*"M and R ¢ C*N, and satisfies the property that for every
T € B(H)
MTM ¢ Ni(H) and NTN ¢ Ni(H) = RTR ¢ N1(H).

Proof. See [8, Proposition 2.12]. O

We finish this section with the following lemma, established in [8, Proposition 2.13], which will be useful
in the proof of our main result.

Lemma 2.12. Let H be an infinite-dimensional complex Hilbert space. Assume that ¢ : N1(H)U{0} — N1(H)U{0}
is a surjective mapping satisfying ¢(0) = 0, preserving linear dependency in both directions and

N~M = ¢(N)~ pM)
forall M,N € N1(H) .

Then there exist an inverible bounded operator or conjugate-linear operator T : H — H and a map u : Niy(H) —
C\ {0} such that

¢(N) = u(N)TNT™!, (N € N1(H)), (6)
or,

H(N) = u(N)TN'T™, (N € N1(H)). (7)
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3. Proof of the main result

Before proving the main theorem, we establish the following lemmas. The first gives an important
property of locally linearly dependent operators.

Definition 3.1. Let U and V be vector spaces over a field IF. Linear operators Ty, ..., T, : U — V are locally linearly
dependent if T1u, ..., Tyu are linearly dependent for every u € U.

Lemma 3.2. Let A and B be linear operators. If A, B and I are locally linearly dependent, then there exist scalars A
and p such that (A — A)(B — ) = 0 and either (A — A)> = 0 or (B — u)> = 0.

Proof. See [14] and [7]. O
The second lemma gives a necessary and sufficient condition for an operator to be zero.

Lemma 3.3. Let A € B(H). The following assertions are equivalent.

1. A=0.
2. asc(ATA) =1 and asc(TA*T) = 1 for every operator T € B(H).
3. desc(ATA) = 1 and desc(TA*T) = 1 for every operator T € B(H).

Proof. The implications (1) = (2) and (1) = (3) are obvious.
Conversely, let A € B(H) be a nonzero operator. Assume first that A% = 0, then, by Lemma 2.2,
asc(A) = desc(A) = 2. Thus, from Lemma 2.1, asc(A*) = desc(A*) = 2. Taking T = I, we obtain

asc(TA'T) = desc(TA*T) = asc(A*) = desc(A”) = 2.

Next, assume that A? # 0. Consider the following two cases:

Case 1. If x, Ax and A%x are linearly independent for certain x € H. Then, there is a vector u € H such
that (x,u) = (Ax,u) = 1 and (A%x,u) = 0. Setting T = x ® u, we get ATA is a rank-one nilpotent operator.
Thus, by Lemma 2.3,

asc(ATA) = desc(ATA) = 2.

Case 2. If x, Ax and A%x are linearly dependent for all x € H. Then, by lemma 3.2, there exist scalars A
and p such that (A — 1)(A% — ) = 0 and either (A — 1)? = 0 or (A2 — u)?> = 0.

Subcase 1. Suppose that (A — 1)(A2—u) =0 and (A - A)? = 0. Then,

AP —NA*—pA+Au=0 (8)
and
A% =2)1A - )2, )

Hence, by (9), we obtain that A> = 21 A2 — A2A. Substituting into (8), we get AAZ — A2A — uA + A = 0, which
simplifies to A(A? — 2AA) + (A? — u)A + A = 0. This together with (9) gives that —A° + (A2 = p)A + Au =0,
implying that

(1= ADA = A - 2.
Since A2 # 0, from (9), we see that A # 0. If u — A # 0, then A is a nonzero scalar operator. Thus, A" is also
a nonzero scalar operator. By setting T = I, we have

asc(TA'T) = desc(TA*T) = asc(A*) = desc(A”) = 0.

If 1 = A% = 0, by (9), we have uA = A% + 4. Substituting into (8), we get $A? — ZA% = [. This implies that
A(%I - %A)A =I. By Setting T = %A - %I, we have

asc(ATA) = desc(ATA) = asc(I) = desc(I) = 0.
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Subcase 2. Assume now that (A — A)(A% — u) = 0 and (A% — p)? = 0. Then,
A= 2uA*+ ? =0 (10)

From (8), we have A* = AA% + uA? — AuA. This together with (10) leads to AA3 — uA? — ApA + p? = 0, which
implies that
MA® = AA% — pA) + (A2 — wA? + i = 0.

Hence, by (8), we have —A%u + (A% — u)A? + u? = 0. Thus,
(= AA? = p(u = 1%).
If u — A2 # 0. Then, u # 0 because A% # 0. Consequently, A? is a nonzero scalar operator. Let T = I, we have
asc(ATA) = desc(ATA) = asc(A?) = desc(A?) = 0.

If u— A% = 0and p = 0, then A> = 0, that is A is nilpotent operator of nilindex 3. Then, by Lemma 2.1,
asc(A*) = desc(A*) = 3 and by choosing T = I, we get

asc(TA*T) = desc(TA*T) = asc(A*) = desc(A™) = 3.

If u— A% =0and u # 0. Then by (10), we easily get A(ﬁl - LA%)A =1. By taking T = %I - #AZ, we obtain

#
asc(ATA) = desc(ATA) = asc(I) = desc(I) = 0.
The proof is therefore complete. [

The following Lemma gives a characterization of rank one operators in terms of the ascent and the
descent.

Lemma 3.4. Let A € B(H) \ {0}. Then following statements are equivalent.

1. A is of rank one.
2. For any operator T € B(H) we have asc(ATA) € {1,2} and asc(TA*T) € {1,2}.
3. For any operator T € B(H) we have desc(ATA) € (1,2} and desc(TA'T) € {1,2}.

Proof. The implications (1) = (2) and (1) = (3) are clear.
To prove (2) = (1) and (3) = (1). Assume that A is not of rank one. If A = AI, where A is a nonzero
scalar in C, for T = ;] we have

asc(ATA) = desc(ATA) = asc(l) = desc(I) = 0.

If A has rank at least two. Suppose that there exists a vector x € H such that x, Ax and A%x are linearly
independent. Using a similar approach to the proof of [8, Lemma 2.8], we can find an operator S € B(H)
such that asc(SAS) = desc(SAS) = 3. For T = §*, by Lemma 2.1, we get

asc(TA*T) = desc(TA'T) = 3.

If x, Ax and A%x are linearly dependent for all x € H. Similar to the previous discussion in Lemma 3.3,
we show that there exists an operator T € B(H) such that asc(ATA) = desc(ATA) ¢ {1,2} or, asc(TA'T) =
desc(TA*T) ¢ {1,2}. O

Now we are able to prove our main theorem.

Proof of Theorem 1.1

We will only prove the theorem for the ascent, the proof for the descent is done in the same way. Assume
that ¢ : B(H) — B(H) is a surjective map satisfying (1). We break the proof into several steps.

Step 1. p(A) = 0 if and only if A = 0.



H. Benbouziane et al. / Filomat 40:4 (2026), 1491-1501 1497

Let A € B(H) such that ¢(A) = 0. For every T € B(H) we have
asc(ATA) = asc(A(T")"A) = asc(Pp(A)P(T") P(A)) = asc(0) = 1

and
asc(TA'T) = asc(p(T)Pp(A) P(T)) = asc(0) = 1.

Then, by Lemma 3.3, we obtain that A = 0.

Conversely, let T € B(H) be an arbitrary operator. Since ¢ is surjective, there exist S, R € B(H) such that
T =¢(S)and T* = ¢(R). By (1) we have

asc(P(0)TP(0)) = asc(P(0)p(R)'¢(0)) = asc(OR'0) = 1,

and
asc(TP(0)'T) = asc(p(S)P(0)*P(S)) = asc(S0*S) = 1.

This implies, by Lemma 3.3, that ¢»(0) = 0, as desired.
Step 2. ¢ preserves rank-one operators in both directions.

Let A € ¥1(H) be a rank-one operator and T € B(H) be an arbitrary operator. Since ¢ is surjective, there
exist S,R € B(H) such that T = ¢(S) and T* = ¢(R). Using (1) and Lemma 3.4, we obtain that

asc(P(A)TP(A)) = asc(Pp(A)P(R)* P(A)) = asc(AR'A) € {1;2},

and

asc(TP(A)'T) = asc(P(S)P(A) P(S)) = asc(SA*S) € {1;2}.

It follows, by Lemma 3.4 once again, that ¢(A) € 71(H). In the same way we can show the other direction.
Step 3. A € 11,(H) if and only if ¢p(A) € T1,(H).
Let A € 71,(H) be rank-one s-idempotent operator. So, by the previous step, ¢(A) is of rank one. Let
T € B(H) be an arbitrary operator. Since ¢ is surjective, there exists S € B(H) such that T* = ¢(S). Using
Lemma 2.6, we have

asc(PATH(A)) = asc(PAP(S) P(A)) = asc(AS"A) = 1.

By Lemma 2.6 once again, we conclude that ¢(A) € 71,(H). The proof of the reverse direction is done in the
same way. This proves that

A€NI(H) & §(A) € Ni(H) (11)

Step 4. A € Cl if and only if ¢p(A) € CL.

Let A = Al for some A € C. If A = 0, then the equivalence is verfied by step 1. If A # 0, let P be an
arbitrary operator in 71, (H), by surjectivity of ¢ and step 3, there is an R € 11,(H), such that ¢(R) = P.
Applying (4) and Lemma 2.7, we get

asc(PP(A)'P) = asc(p(R)P(A) P(R)) = asc(RA'R) = 1.

Thus, ¢(A) € C*I. By a similar way, we show the reverse direction.
Step 5. ¢ preserves linear dependency in both directions on 77 (H).

Let M,N € F1(H) be rank-one operators such that M and N are linearly dependent. Then for any
R € Ni(H), by surjectivity and (11), there is an S € N;(H) such that ¢(S) = R. By Lemma 2.3 and Lemma
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2.10, we see that

RpM)'R € Ni(H) > asc(Rp(M)'R) =2
asc(G(S)p(M)'P(S)) = 2
asc(SM*S) =2

SM*S € N1(H)

SN*S € N1(H)
asc(SN*S) =2
asc(G(S)P(N)'$(S)) = 2
asc(RP(N)'R) =2
RP(N)'R € N1(H).

pragneny

Then, by Lemma 2.10, we conclude that ¢(M) and ¢(N) are linearly dependent. Similarly, we can check
that ¢p(M) and ¢(N) are linearly dependent implies that M and N are linearly dependent.

Step 6. For every M,N € Ni(H)wehave M ~N = ¢(M) ~ ¢(N).

Let M, N € N1(H) be rank-one nilpotent operators such that M ~ N. Firstly, suppose that M and N are
linearly dependent. Then, by the previous step, ¢p(M) and ¢(N) are also linearly dependent. Consequently,
H(M) ~ B(N).

Now, suppose that M and N arelinearly independent. By Lemma 2.11, there exists an operator R € N;(H)
such that R ¢ C'M and R ¢ C'N, and for every T € B(H), we have

MTM ¢ Ny(H) and NTN ¢ Ny(H) = RTR ¢ Ni(H). (12)

Let F = ¢(R). Then, by steps 4 and 6, F € N1(H), F ¢ C'p(M) and F ¢ C*$(N).

To prove that (M) ~ ¢(N), consider S € B(H) such that p(M)Sp(M) ¢ N1(H) and ¢(N)SP(N) ¢ N1(H),
and let us show that FSF ¢ Ni1(H). Indeed, since ¢ is surjective there exists T € B(H) such that S = ¢(T)".
Note that

asc(GMSHM)) = asc(p(N)SH(N))) = 1.

That is
asc(M)P(T)" p(M)) = asc(P(N)P(T)"¢(N)) = 1.
Then, by (1), we get
asc(MT*M) = asc(NT*N) = 1.
This implies that

MT*M & Ni(H) and NT'N ¢ Ni(H).

Therefore, by (12), we have RT*R ¢ Ni(H). Thus asc(RT*R) = 1. Using the condition (1) we see that
asc(P(R)p(T)*p(R)) = 1. Hence
FSF ¢ Ni(H).

From Lemma 2.11, we see that ¢(P) ~ ¢(Q) in this case too.
The inverse implication can be proved using the same method.
Step 7. ¢ takes the desired forms.
By the previous steps, the restriction

Pivi ooy : N1 (H) U {0} — Ni(H) U {0}

is a surjective mapping satisfying the conditions of Lemma 2.12, then there exist an inverible bounded
operator linear or conjugate-linear operator T : H — H and a map u : N1(H) — C\ {0} such that ¢ takes
either of form (6) or (7).
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Assume that ¢ takes the form (6). First, we claim that for every x, u € H such that (x,u) = 0, Tx # 0 and
~)'u # 0 we have
(T™Y 0 h

(T'T)'x,u)=0 or (T"Tx,u)=0. (13)
Indeed, let x, u € H be such vectors. For N = x ® u we have

(TNT Y)TN*T 1) (TNT™) (Tx@uT ) (Tu®xT ) (Tx®uT ™)

(T T) Y, uXT*Tx, u)Tx ® (T~ u.

Moreover,

asc(((T*T) " x, u)(T*Tx, u)Tx @ (T~ u) asc((TNTY)YTN' T (TNT™Y))
= asc((N)P(N")'$(N))

= asc(N°)

= asc(0)

1.

Since Tx ® (T~1)'u € N1(H), then
(T'T)'x,uy=0 or (T"Tx,u)=0.

Next, let us prove that T*T is a scalar operator. To do that, suppose that there exists a nonzero vector x € H
such that T*Tx and x are linearly independent.

If x, T*Tx and (T*T) 'x are linearly independent, then we can find u € H such that (x, u) = 0, (T"Tx, u) #
0 and {((T"T)'x,u) # 0, which contradicts (13).

If (T*T)"'x = aT*Tx + px for some scalars a,  not both equal to zero. Since T*Tx and x are linearly
independent, then there exists a vector # € H such that (x,u) = 0 and (T"Tx, u) # 0. Thus, (T*T)'x,u) =
T Tx,u). If a # 0, we obtain that ((T*T)'x,u) # 0, which is contradiction. If « = 0, we infer that
(T'T)'x = Bx. This gives that (I"Tx,u) = 0, again a contradiction. Therefore, T*T is a scalar operator.
Consequently, there exists a positive scalar A such that T*T = Al. By setting U = %T, we conclude that

O(N) = u(N)UNU" for every N € Ni(H),

where U is an unitary operator in B(H).

Define the map ¢ : B(H) — B(H) such that p(A) = U'$p(A)U for any A € B(H). Note that ¢ has the
same properties as ¢ and @(N) = u(N)N for every N € N;(H).

Now, let us show that ¢(A) = u(A)A, where u(A) € C\ {0} for all A € B(H). To do so, let A be an operator
in B(H). If A is a scalar operator, then the result follows from Step 4. Otherwise, assume that A ¢ CI. For
any N € Nj(H), we have

NA*N € Ny(H) asc(NA*N) = 2
asc(p(N)p(A)' ¢(N)) = 2
P(N)p(A) ¢(N) € N1(H)

Ng(A)'N € Ny(H).
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Thus, by Lemma 2.9, p(A)" is a linear combination of [ and A*. As a result, there exist a, p € C such that
@(A) = al + uA. (14)

Since A ¢ CI, then p # 0. We claim that @ = 0. If A is of rank-one, then by Step 2, ¢(A) is of rank-one too.
This together with (14) gives that @ = 0. Now, if A is of rank at least 2, we discuss two cases.
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Case 1. If x, Ax and A%x are linearly independent for certain x € H. We can take a vector u € H such that
Go,u) =0, (Ax, u) = 1 and (A%x, u) = 0. Obviously, Ax # 0 and A*u # 0. This implies that, Ax ® uA € N1(H).
On the other hand, we have

Ax®@uA e Ni(H) = asc(Ax®uA) =2
= asc(Au®x)’'A)=2
= asc(p(A)p(u ® x)"p(A)) = 2
= p(A)x®up(A) € Ni(H)
= (p(A)*x,u) = 0.
From the equation (14), we get
0 = (p(A)*x, u) = 2ap.

This together with u # 0 leads to a = 0.

Case 2. If x, Ax and A%x are linearly dependent for all x € H. Then, A is an algebraic operator of degree
two and of rank greater than one, so A* is. Moreover, by (14), we have, p(A)* = al + pA*. Without loss of
generality, assume that p = 1. Suppose, by the way of contradiction, that @ # 0. From Lemma [8, Lemma
2.6 (ii)], there exists an algebraic operator B of degree at least three such that

asc(BA*B) # asc(Bp(A)'B) and desc(BA*B) # desc(Bp(A)'B) (15)
or,
asc(A"BA") # asc(p(A)'Bp(A)') and desc(A*BA") # desc(p(A) Be(A)). (16)

Since B is algebraic of degree at least three, then there exists a nonzero vector y € H, such that y, By and
B2y are linearly independent. By case 1, we deduce that ¢(B) = u(B)B, for certain p(B) € C \ {0}. Then,

asc(BA*B) = asc(p(B)p(A) @(B)) = asc(Bp(A)*B),

this contradicts equation (15). On the other hand, the construction of the operator B, as presented in [8,
Lemma 2.6 (ii)], ensures that asc(A*"BA") = desc(A’BA*) < co. Thus, by Lemma 2.1, we get
asc(A*BAY) asc(AB*A)
= asc(p(A)p(B) p(A))
asc(p(A)B'p(A))
asc(p(A) B(AY).
This contradicts equation (16). Therefore ¢(A) = u(A)A for all A € B(H), as desired.

Finally, if ¢ takes the form (7), similarly to the above proof one can show that there exists a conjugate-
unitary operator U : H — H and a map u : B(H) — C \ {0} such that

O(A) = pAUAU (A € BH)).

The proof is therefore complete.
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