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Existence results for a coupled anisotropic ϕ-Laplacian system with
variable exponents
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Abstract. We study a coupled system of anisotropic ϕ-Laplacian equations with variable exponents,
extending earlier work on single equations. Under generalized Orlicz-Sobolev settings, we study nontrivial
weak solutions via variational methods. Key tools include Ekeland’s principle and Mountain Pass geometry,
with compact embeddings linking anisotropic growth to variable exponent Lebesgue spaces.

1. Introduction

Recent advances in the study of anisotropic elliptic partial differential equations with nonstandard
growth conditions have revealed profound connections between functional analysis and materials science.
The anisotropic ϕ-Laplacian operator, which generalizes both the p-Laplacian and the variable exponent
Laplacian, has emerged as a powerful tool for modeling phenomena where the energy density exhibits
direction-dependent growth behavior. Such operators naturally arise in the study of electrorheological
fluids, where the electrical conductivity depends on both the electric field strength and direction, as well
as in image processing applications where anisotropic diffusion preserves edges while smoothing textures
(see [1, 6–15]).

The mathematical analysis of these problems requires sophisticated tools from the theory of Orlicz-
Sobolev spaces, particularly when dealing with anisotropic growth conditions. While single-equation cases
have been extensively studied in recent years, systems of coupled equations present additional challenges
due to the intricate interplay between different growth rates and coupling effects. The present work
bridges this gap by developing a comprehensive framework for analyzing coupled systems in anisotropic
Orlicz-Sobolev spaces with variable exponents.
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This paper investigates a coupled system of degenerate/singular elliptic equations with variable expo-
nents, generalizing the framework of [9, 10] to a coupled system framework. We consider the problem



−

N∑
i=1

∂i(ϕi(∂iu)) = λ
(
|u|q1(x)−2u + |v|q2(x)

)
in Ω,

−

N∑
i=1

∂i(ψi(∂iv)) = λ
(
|v|q2(x)−2v + |u|q1(x)

)
in Ω,

u = v = 0 on ∂Ω,

(1)

where

(H1) Ω ⊂ RN, N ≥ 3 is a bounded domain with smooth boundary ∂Ω.

(H2) λ ∈ R+ and qi : Ω→ (1,+∞) are continuous functions.

(H3) For each 1 ≤ i ≤ N, the functions ϕi and ψi are odd, increasing homeomorphisms from R onto R.

(H4) For all t ∈ R and 1 ≤ i ≤ N, define Θi(t) =
∫ t

0 θi(s)ds for Θi and θi represents either (Φi, ϕi) or (Ψi, ψi).

(H5) The Banach spaces LΘi (Ω) with the norm

∥u∥Θi := inf
{

k > 0,
∫
Ω

Θi(
u(x)

k
)dx ≤ 1

}
< ∞,

for Θi = Φi,Ψi where 1 ≤ i ≤ N.

(H6) Define (p1
i )0 := inft>0

tϕi(t)
Φi(t)

and (p1
i )0 := supt>0

tϕi(t)
Φi(t)

, 1 ≤ i ≤ N,

(p2
i )0 := inft>0

tψi(t)
Ψi(t)

and (p2
i )0 := supt>0

tψi(t)
Ψi(t)

, 1 ≤ i ≤ N.

(H7) Assume

1 < (p1
i )0 ≤

tϕi(t)
Φi(t)

≤ (p1
i )0 < ∞, 1 < (p2

i )0 ≤
tψi(t)
Ψi(t)

≤ (p2
i )0 < ∞, for all t ≥ 0.

(H8) Assume for each 1 ≤ i ≤ N the functions t→ Φi(
√

t) and t→ Ψi(
√

t) for t ∈ [0,+∞) are convex.

The primary objective of this work is to establish the existence of nontrivial weak solutions to problem
(1) under various conditions on the eigenvalue parameter λ. Our approach combines variational methods
with sophisticated techniques from the theory of Orlicz-Sobolev spaces, allowing us to handle the intricate
interplay between anisotropic growth conditions and variable exponents. The results presented here
significantly extend previous work on single equations to the more challenging case of coupled systems.

The paper is organized as follows: Section 2 provides the necessary background on anisotropic Orlicz-
Sobolev spaces and establishes key embedding results. In Section 3, we present our main existence theorems,
employing variational methods and critical point theory to prove the existence of nontrivial solutions to (1)
under different conditions on the parameter λ.
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2. Orlicz-Sobolev framewrok

The study of anisotropic elliptic problems requires a careful analysis of the underlying function spaces.
In this section, we present the fundamental aspects of Orlicz-Sobolev spaces, which provide the natural
setting for problems with nonstandard growth conditions. For comprehensive treatments of this subject,
we refer to the seminal works [3–5, 9, 10].

The Orlicz-Sobolev space W1LΘi (Ω) comprises functions that are weakly differentiable over Ω, with
their weak derivatives belonging to LΘi (Ω). These spaces are Banach spaces, equipped with the norm
∥u∥1,Θi = ∥u∥Θi + ∥∇u∥Θi for 1 ≤ i ≤ N.

Moreover, the Orlicz-Sobolev spaces W1
0LΘi (Ω) are defined as the closures of C1

0(Ω) within W1LΘi (Ω),
using the norm ∥u∥0,Θi = ∥∇u∥Θi . These spaces are reflexive Banach spaces for 1 ≤ i ≤ N, where Θi can take
the forms Φi orΨi.

We introduce the vectorial function Θ : Ω → R, defined as Θ = (Θ1, . . . ,ΘN). The anisotropic Orlicz-
Sobolev space, noted as W1

0LΘ(Ω), is then established as the closure of C1
0(Ω) with respect to the norm

∥u∥Θ :=
∑N

i=1 |∂iu|Θi , where Θ = Φ,Ψ.

It is recalled that when Θ is a constant vector then W1,Θ
0 (Ω) is a reflexive Banach space for any Θ ∈ RN

with Θi > 1 for all 1 ≤ i ≤ N, this shows that in general W1
0LΘ(Ω) is a reflexive Banach space for Θ = Φ,Ψ.

We introduce P10,P1
0,P20,P2

0 ∈ RN as

P10
= ((p1

1)0, · · · , (p1
N)0), P1

0 = ((p1
1)0, · · · , (p1

N)0),

P20 = ((p2
1)0, · · · , (p2

N)0), P2
0 = ((p2

1)0, · · · , (p2
N)0)

and (P10)+, (P1
0)+, (P10)−, (P20)+, (P2

0)+, (P20)− ∈ R+ by

(P10)+ := max{(p1
1)0, · · · , (p1

N)0
}, (P1

0)+ := max{(p1
1)0, · · · , (p1

N)0},
(P1

0)− := min{(p1
1)0, · · · , (p1

N)0},

(P20)+ := max{(p2
1)0, · · · , (p2

N)0
}, (P2

0)+ := max{(p2
1)0, · · · , (p2

N)0},
and (P2

0)− := min{(p2
1)0, · · · , (p2

N)0}.

We assume

N∑
i=1

1
(p1

i )0
> 1 and

N∑
i=1

1
(p2

i )0
> 1. (2)

We define (P1
0)∗ ∈ R+, P1

0,∞ ∈ R+, (P2
0)∗ ∈ R+ and P2

0,∞ ∈ R+ by

(P1
0)∗ = N∑N

i=1
1

(p1)0
−1
, (P2

0)∗ = N∑N
i=1

1
(p2)0
−1
,

P1
0,∞ = max{(P1

0)+, (P1
0)∗} and P2

0,∞ = max{(P2
0)+, (P2

0)∗}.

Let C+(Ω) := {ζ : ζ ∈ C(Ω), ζ(x) > 1 for all x ∈ Ω}we define ζ+ := supx∈Ω ζ(x) and ζ− := infx∈Ω ζ(x).
For any ζ ∈ C+(Ω), Lζ(x)(Ω) is defined as the collection of all measurable functions u : Ω→ R that satisfy

the integrability condition
∫
Ω
|u(x)|ζ(x) dx < ∞ and is called the variable exponent Lebesgue space where

|u|ζ(x) := inf{ν > 0,
∫
Ω

∣∣∣∣∣u(x)
ν

∣∣∣∣∣ζ(x)

dx ≤ 1}.

This framework generalizes classical Lebesgue spaces by allowing the exponent ζ(x) to vary spatially,
offering flexibility to model systems with non-uniform growth or decay rates. Further properties of these
spaces, such as modular functionals and norm equivalences, depend critically on the behavior of the
variable exponent ζ(x).
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We define τζ(x)(u) =
∫
Ω
|u|ζ(x)dx, for and u ∈ Lζ(x)(Ω). If un,u ∈ Lζ(x)(Ω) then If |u|ζ(x) > 1 then |u|ζ
−

ζ(x) ≤
∫
Ω
|u|ζ(x)dx ≤ |u|ζ

+

ζ(x)

If |u|ζ(x) < 1 then |u|ζ
+

ζ(x) ≤
∫
Ω
|u|ζ(x)dx ≤ |u|ζ

−

ζ(x).
(3)

From now, on we set for 1 ≤ i ≤ N ai : R+ ∪ {0} → R, ai(t) =
ϕi(t)

t , for t > 0 and ai(0) = 0,
bi : R+ ∪ {0} → R, bi(t) =

ψi(t)
t , for t > 0 and bi(0) = 0.

Notice that ϕ(t) = ai(|t|)t and ψ(t) = bi(|t|)t, since ϕ,ψ are odd functions.
The following embedding result is the extension of [9] or [10, Proposition 2.1].

Proposition 2.1. Suppose (H1) and (2) hold, and q1, q2 ∈ C(Ω) satisfy 1 < q1(x) < P1
0,∞ and 1 < q2(x) < P2

0,∞ for
all x ∈ Ω. The embedding X ↪→ Lq1(x)(Ω) × Lq2(x)(Ω) is compact.

3. Eigenvalue problem

Having established the necessary framework in Section 2, we now turn to the main objective of this
work: proving existence results for the coupled system (1) The variational structure of the problem naturally
leads us to employ critical point theory in anisotropic Orlicz-Sobolev spaces. This section presents our key
existence theorems, each addressing different scenarios for the eigenvalue parameter λ.

Here we set X :=W1
0LΦ(Ω) ×W1

0LΨ(Ω) and define the norm

∥(u, v)∥X := ∥|∇u|∥Φ + ∥|∇v|∥Ψ.

Definition 3.1. The pair of functions (u, v) ∈ X is defined as a weak solution to the problem (1) if it satisfies the
integral identity∫

Ω

N∑
i=1

(ai(|∂iu|)∂iu∂iw1dx + bi(|∂iv|)∂iv∂iw2) dx − λ
∫
Ω

(
|u|q1(x)−2u(x)w1(x) + |v|q2(x)−2v(x)w2(x)

)
dx = 0

for all (w1,w2) ∈ X.

For any λ > 0 the energy functional Tλ : X→ R is defined by

Tλ(u, v) =
∫
Ω

N∑
i=1

(Φi(|∂iu|) +Ψi(|∂iv|)) dx − λ
(∫
Ω

1
q1(x)

|u|q1(x) +
1

q2(x)
|v|q2(x)dx

)
.

The Proposition 2.1 implies that Tλ ∈ C1(X,R) and

T′λ(u, v) :=
∫
Ω

N∑
i=1

(ai(|∂iu|∂iu∂w1 + bi(|∂iv|∂iv∂w2) dx − λ
∫
Ω

|u|q1(x)−2uw1dx − λ
∫
Ω

|v|q2(x)−2vw2dx.

The energy functional Tλ has the Mountain Pass geometry (see [10, Lemma 2.2 and 2.3]).

Lemma 3.2. Suppose q1(x), q2(x) ∈ C+(Ω) and

(P10)+ < minx∈Ω q1(x) ≤ maxx∈Ω q1(x) < (P10)∗,
(P20)+ < minx∈Ω q2(x) ≤ maxx∈Ω q2(x) < (P20)∗.

(4)

Then
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(I) ∃η>0,α>0 such that Tλ(u, v) ≥ α > 0 for any (u, v) ∈ X with ∥(u, v)∥X = η.

(II) ∃(e1,e2)∈X with ∥(e1, e2)∥X > η such that Tλ(e1, e2) < 0.

The next result establishes the existence of a nontrivial solution via Mountain Pass geometry.

Theorem 3.3. Assuming the conditions outlined in (4) of Lemma 3.2 are satisfied. Suppose (P10)+ ≤ (P20)+ and
(P1

0)− ≤ (P2
0)−. Then for any λ > 0 the problem defined by equation (1) admits a nontrivial solution within X.

Proof. Notice that the Mountain-Pass Theorem and Lemmas 3.2 imply there exist a sequence (un, vn) ⊂ E
such that

Tλ(un, vn)→ c and T′λ(un, vn)→ 0. (5)

We proceed to demonstrate that the sequence {un, vn} is bounded in X. Assume not, thus there exists a
subsequence (still denoted by {un, vn}) such that ∥(un, vn)∥X → ∞. Consequently, this assumption implies
that for sufficiently large n, the inequality ∥(un, vn)∥X > 1 hold.

Now, we define for any n ≥ 0 and 1 ≤ i ≤ N

αi,n =

{
max{(P10)+, (P20)+} if ∥∂iun∥Φi , ∥∂ivn∥Ψi < 1,
max{(P1

0)+, (P2
0)−} if ∥∂iun∥Φi , ∥∂ivn∥Ψi > 1

So, by the above considerations (see [1, 2, 9, 10]) we deduce that for n large enough we have

1 + c + ∥(un, vn)∥X ≥ Tλ(un, vn) −
1
q−1
⟨T′λ(un, vn), (un, vn)⟩

=

N∑
i=1

∫
Ω

(
Φi(|∂iun|) −

1
q−1
ϕi(|∂iun|)|∂iun|

)
dx +

N∑
i=1

∫
Ω

(
Ψi(|∂ivn|) −

1
q−1
ψi(|∂ivn|)|∂ivn|

)
dx

+λ

(∫
Ω

(
1
q−1
−

1
q1(x)

)
|un|

q1(x) +

(
1
q−1
−

1
q2(x)

)
|vn|

q2(x)dx
)

≥

N∑
i=1

∫
Ω

(
Φi(|∂iun|) −

1
q−1
ϕi(|∂iun|)|∂iun|

)
dx (6)

+

N∑
i=1

∫
Ω

(
Ψi(|∂ivn|) −

1
q−1
ψi(|∂ivn|)|∂ivn|

)
dx

≥

1 −
(P10)+

q1
−

 N∑
i=1

∫
Ω

Φi(|∂iun|)dx +

1 −
(P20)+

q1
−

 N∑
i=1

∫
Ω

Ψi(|∂ivn|)dx

≥

1 −
(P10)+

q1
−

 N∑
i=1

∥∂iun∥
αi,n

Φi
+

1 −
(P20)+

q1
−

 N∑
i=1

∥∂ivn∥
αi,n

Ψi

≥

1 −
(P10)+

q1
−

 { 1
N(P1

0)−−1
∥un∥

(P1
0)−

Φ
−N

}
+

1 −
(P20)+

q1
−

 { 1
N(P2

0)−−1
∥vn∥

(P2
0)−

Ψ
−N

}
≥

1 −
(P10)+

q1
−

 { 1
N(P1

0)−−1
∥(un, vn)∥(P

1
0)−

X −N
}

where we assumed (P10)+ ≤ (P20)+ and (P1
0)− ≤ (P2

0)−. By dividing through by ∥(un, vn)∥(P
2

0)−
X in equation

(6) and subsequently taking the limit as n → ∞, a contradiction arises. This establishes that the sequence
{(un, vn)} is bounded in X. Utilizing the reflexivity of X, there exists a subsequence denoted again as {(un, vn)}
and as an element (u0, v0) ∈ X such that {(un, vn)} converges weakly to (u0, v0) in X. Consequently, invoking
Proposition 2.1, it follows that {(un, vn)} converges strongly to (u0, v0) in Lq1(x)(Ω) × Lq1(x)(Ω).
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The aforementioned arguments, alongside relations (5) and assumption (H8), further imply that the
convergence of {(un, vn)} to (u0, v0) is, in fact, strong within X. Therefore, by virtue of relation (5), one
concludes that Tλ(u0, v0) = c and T′λ(u0, v0) = 0. This demonstrates that (u0, v0) constitutes a nontrivial weak
solution to the equation given by (1).

For the proof of the following lemma see [9] and [10, Lemma 2.4].

Lemma 3.4. Suppose q1(x), q2(x) ∈ C+(Ω) and

1 < minx∈Ω q1(x) < (P1
0)− and maxx∈Ω q1(x) < P1

0,∞,
1 < minx∈Ω q2(x) < (P2

0)− and maxx∈Ω q2(x) < P2
0,∞.

(7)

Thus, there exists a parameter λ∗ > 0 such that, for any λ ∈ (0, λ∗), one can identify constants ρ > 0 and a > 0
satisfying the condition Tλ(u, v) ≥ a > 0 for all (u, v) ∈ X with ∥(u, v)∥X = ρ

The following result complements Theorem 3.3 by establishing existence for small values of the parameter
λ.

Theorem 3.5. Assuming the conditions outlined in (7) of Lemma 3.4. Then there exists λ∗ such that problem (1) has
a nontrivial solution in X for any λ ∈ (0, λ∗).

Proof. Let λ∗ be defined as above and fix λ ∈ (0, λ∗). By Lemma 3.4, we have the boundary estimate

inf
∂Bρ(0)×Bρ(0)

Jλ > 0.

Step 1: Constructing the sublevel set. Standard variational arguments yield the existence of nonnega-
tive functions (℘,ϖ) such that for sufficiently small t > 0:

Tλ(t℘, tϖ) < 0.

Moreover, the functional satisfies the growth estimate for all (u, v) ∈ Bρ(0) × Bρ(0):

Tλ(u, v) ≥ C1∥(u, v)∥(P
10)+

X − C2∥(u, v)∥
q−1
X ,

where C1,C2 > 0 are constants. This implies the existence of a negative infimum:

−∞ < c := inf
Bρ(0)×Bρ(0)

Tλ < 0.

Step 2: Applying Ekeland’s principle. Fix

0 < ϵ < inf
∂Bρ(0)×Bρ(0)

Tλ − inf
Bρ(0)×Bρ(0)

Tλ.

Ekeland’s variational principle yields (uϵ, vϵ) ∈ Bρ(0) × Bρ(0) satisfying:

• Tλ(uϵ, vϵ) < inf Tλ + ϵ

• Tλ(uϵ, vϵ) < Tλ(u, v) + ϵ∥(u, v) − (uϵ, vϵ)∥X for (u, v) , (uϵ, vϵ)

Step 3: Variational analysis. Consider the perturbed functional

Iλ(u, v) = Tλ(u, v) + ϵ∥(u, v) − (uϵ, vϵ)∥X.

At the minimum point (uϵ, vϵ), we derive for any (w1,w2) ∈ Bρ(0) × Bρ(0) and small t > 0:

Iλ(uϵ + tw1, vϵ + tw2) − Iλ(uϵ, vϵ)
t

≥ 0.
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Passing to the limit t→ 0+ yields

⟨T′λ(uϵ, vϵ), (w1,w2)⟩ + ϵ∥(w1,w2)∥X ≥ 0,

from which we conclude ∥T′λ(uϵ, vϵ)∥ ≤ ϵ.
Step 4: Constructing the solution. There exists a Palais-Smale sequence {(w1n,w2n)} ⊂ Bρ(0) × Bρ(0)

satisfying:

• Tλ(w1n,w2n)→ c

• T′λ(w1n,w2n)→ 0

The boundedness of this sequence in X implies weak convergence to some (w1,w2). Following arguments
similar to Theorem 3.3, we establish strong convergence. Consequently, (w1,w2) satisfies:

Tλ(w1,w2) = c < 0 and T′λ(w1,w2) = 0,

proving it is a nontrivial weak solution of (1).

We now present our final existence result, which establishes multiple solutions under critical growth
conditions.

Theorem 3.6. Assume the variable exponents q1, q2 ∈ C+(Ω) satisfy the critical growth conditions:
1 < inf

x∈Ω
q1(x) ≤ sup

x∈Ω
q1(x) < (P1

0)−

1 < inf
x∈Ω

q2(x) ≤ sup
x∈Ω

q2(x) < (P2
0)−

(8)

Then there exist critical parameters 0 < λ∗ < λ∗∗ such that:

(i) For all λ ∈ (0, λ∗), problem (1) admits a nontrivial solution

(ii) For all λ > λ∗∗, problem (1) admits another distinct nontrivial solution

Both solutions belong to the space X =W1,Φ
0 (Ω) ×W1,Ψ

0 (Ω).

Proof. The proof proceeds in two main steps:
Part 1: Existence for small λ

By Theorem 3.5, there exists λ∗ > 0 such that for every λ ∈ (0, λ∗), the energy functional Tλ possesses a
mountain pass critical point, yielding the first nontrivial solution.

Part 2: Existence for large λ
We now establish the existence of a second solution for λ > λ∗∗ via global minimization:

(a) Coercivity and weak lower semicontinuity: The functional Tλ is:

– Coercive due to the strict subcritical growth condition (8)

– Weakly lower semicontinuous as a sum of convex N-functions and compact perturbations

(b) Global minimizer: By the fundamental result of Struwe [16, Theorem 1.2], there exists (uλ, vλ) ∈ X
realizing the global minimum of Tλ.

(c) Non-triviality for large λ: Fix t0 > 1 and let Ω1 ⊂ Ω be an open subset with |Ω1| > 0. Construct test
functions (w10,w20) ∈ C∞0 (Ω) ⊂ X satisfying:

(w10(x),w20(x)) =

(t0, t0) x ∈ Ω1

∈ [0, t0] x ∈ Ω \Ω1
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A direct computation shows:

Tλ(w10,w20) =
∫
Ω

N∑
i=1

(Φi(|∂iw10|) +Ψi(|∂iw20|)) dx − λ
(∫
Ω

1
q1(x)

|w10|
q1(x) +

1
q2(x)

|w20|
q2(x)dx

)
≤L −

λ
q+2

∫
Ω1

|w10|
q1(x) + wq2(x)

20 dx

≤L −
2λ
q+2

(tq−1
0 )|Ω1|.

where L > 0 depends only on Ω and t0. Choosing λ∗∗ >
Lq+2

2t
q−1
0 |Ω1 |

ensures Tλ(w10,w20) < 0 for all λ > λ∗∗.

Consequently, the global minimizer satisfies Tλ(uλ, vλ) < 0 and is therefore nontrivial.

The two solutions are necessarily distinct since one is obtained via mountain pass geometry while the
other is a global minimizer.

Conclusion

In this paper, we prove existence results for a class of anisotropic ϕ-Laplacian systems with variable
exponents. Under hypotheses (H1)-(H8), Theorems 3.3, 3.5, 3.6 demonstrate that nontrivial solutions exist
for λ in various ranges, leveraging Mountain Pass theory and sublinear perturbations. The anisotropic
Orlicz-Sobolev setting required careful analysis of embedding properties (Proposition 2.1) and energy
functional geometry (Lemmas 3.2, 3.4).

Future directions include studying sign-changing solutions, bifurcation phenomena, and applications
to non-Newtonian fluids. Extensions to quasilinear systems with convection terms or fractional anisotropy
remain open challenges.
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