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Abstract. We consider the extremal value of the Sombor index in the class of bipartite graphs of a given
order n and diameter d. Using a layered perspective on bipartite graphs, we first derive structural lemmas
and an exact formula for the Sombor index SO(G) in terms of the vertex partition sizes at successive
distances from a fixed vertex. This framework allows us to transform the problem into a constrained
optimization, which we solve by applying concavity and convexity arguments. As a main result, we prove
a comprehensive characterization of the graphs that maximize SO(G) for each fixed n and d. In particular,
our results show that for d = 3 the unique extremal graph has one vertex in each of the distance-0 and
distance-3 partitions and splits the remaining n − 2 vertices as evenly as possible between the distance-1
and distance-2 partitions. For any d ≥ 4, the graph with maximum Sombor index is obtained by placing a
single vertex in each outer distance partition while distributing the other n − (d + 1) vertices between two
inner partitions (one of which receives ⌈(n − d + 1)/2⌉ vertices and the other ⌊(n − d + 1)/2⌋). These findings
contribute further insights in the extremal graph theory of the Sombor index under diameter constraints,
extending the known case of unconstrained bipartite graphs (attaining their maximum SO at d = 2) to
arbitrary prescribed diameters.

1. Introduction

Topological indices are graph invariants widely used in mathematical chemistry to quantify molecular
structure. One of the newest degree-based indices is the Sombor index, introduced by Gutman in 2021 [1].
For a graph G = (V(G),E(G)), where V(G) is the set of vertices and E(G) denotes the set of graph edges, the
Sombor index is defined as

SO(G) =
∑

uv∈E(G)

√
dG(u)2 + dG(v)2,
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M. Bašić et al. / Filomat 40:4 (2026), 1513–1539 1514

where dG(u) is the degree of a vertex u ∈ V(G). Gutman’s foundational paper on this index established its
basic properties and provided a clear geometric interpretation.

Soon after its introduction, numerous researchers began investigating the Sombor index from various
perspectives. Das et al. [2] presented initial bounds for SO(G) in terms of other graph parameters and
discussed relations with well-known indices. Liu et al. studied applications of the Sombor index in
modeling physicochemical properties of molecular graphs [4], while other authors examined a reduced
Sombor index variant and its mathematical properties [5]. The Sombor index has also been compared with
other degree-based descriptors; for instance, Wang et al. derived analytical relations between the Sombor
index and several classical indices [8]. Connections to spectral graph theory have been explored as well:
Rejaa and Nayeem introduced the notion of Sombor energy and investigated how the Sombor index relates
to graph energy [7].

Beyond general bounds and correlations, a major trend in recent research is to determine extremal
values of the Sombor index under various graph constraints. A fundamental result by Gutman [1] and
independently by Das et al. [2] characterized the bipartite graphs of a given order with maximum Sombor
index. They showed that for a fixed number of vertices n, the largest SO(G) among all n-vertex bipartite
graphs is attained by a complete bipartite graph, which necessarily has diameter 2. This observation
naturally raised the question of how additional constraints influence extremal values of the Sombor index.
In particular, one may ask which graphs maximize the Sombor index within prescribed graph classes.

Over the past two years, numerous extremal problems of this type have been studied. Li, Wang and
Zhang [6] investigated trees with a given diameter. Zhou, Lin and Miao considered extremal Sombor
indices under different parameters: in one work they studied trees and unicyclic graphs with a given
matching number [11], while in another they examined graphs with a prescribed maximum degree [12].
Zhang, Meng and Wang [10] extended such analyses to several graph families; in particular, they derived
sharp upper bounds for SO(G) among connected bipartite graphs with a fixed matching number. Very
recently, Das [13] determined the maximum Sombor index of n-vertex trees with a prescribed independence
number. In addition, Wang, Gao, Zhao and Liu [14] established a sharp upper bound on the Sombor index
of bipartite graphs with a given diameter and proposed an algorithmic approach for identifying extremal
configurations. This rapid development of extremal results highlights the central role of various graph
invariants (such as matching number, degree, and independence number) in shaping the possible range of
the Sombor index.

It is also worth noting that analogous extremal questions have been investigated for other graph invari-
ants, providing further insight into the behavior of the Sombor index. For example, Zhai, Liu and Shu [9]
examined the spectral radius of bipartite graphs with a given diameter. They characterized the n-vertex
bipartite graphs of diameter d that maximize the spectral radius and identified the graph with the second-
largest spectral radius. Although the spectral radius is primarily related to eigenvalues, while the Sombor
index reflects structural graph features, both quantities are strongly influenced by degree distribution and
connectivity. Restricting the diameter imposes constraints on the degree distribution and the number of
edges of the graph, thereby bounding the attainable Sombor index.

Motivated by these developments, the present paper focuses on bipartite graphs with a prescribed
diameter and investigates extremal values of the Sombor index within this class. In contrast to the above-
mentioned approaches, our analysis relies on a layered structural description of extremal graphs combined
with convexity-based optimization arguments. Let B(n, d) denote the class of all bipartite graphs of order
n and diameter d (d ≥ 2). Our goal is to characterize the graphs in B(n, d) that maximize SO(G) for each n
and d, thereby providing further insight into extremal behavior under diameter constraints.

The rest of the paper is organized as follows. Section 2 provides the necessary preliminary results
and structural properties of bipartite graphs with a given diameter. Section 3 presents the main results,
including complete characterizations of extremal graphs for prescribed order and diameter, with a detailed
analysis of small diameters and the general case. Section 4 concludes the paper and outlines directions for
future research.
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2. Preliminary results

Let G ∈ B(n, d) be a graph with the maximal Sombor index. Then, there is a vertex v ∈ V(G) and a
partition V0,V1, . . . ,Vd of the vertex set V(G), i.e. V(G) = V0 ⊔V1 ⊔ · · · ⊔Vd, where ⊔ stands for the disjoint
union, such that V0 = {v} and d(v,u) = i, for each vertex u ∈ Vi, and i = 1, 2, . . . , d. Here, as usual, d(u, v)
stands for the distance between vertices u and v in G, i.e. the length of the shortest path between them.
Each set Vi is called a partition set, and we will suppose that |Vi| = mi, where i = 0, 1, 2, . . . , d. In accordance
with this, G can be denoted as G = [V0,V1, . . . ,Vd], that is G = [m0,m1, . . . ,md].

The following two statements has been proved in [2]:

Lemma 2.1. [2] Let G = (V(G),E(G)) be a connected graph. Then,

1. if uv ∈ E(G), then SO(G) > SO(G − uv);
2. if uv < E(G), then SO(G + uv) > SO(G).

Regarding the nature of G ∈ B(n, d), the subsequent lemma is obvious:

Lemma 2.2. Let G ∈ B(n, d) be a graph with the maximal Sombor index. The induced subgraph G[Vi], for each
i = 0, 1, . . . , d, has no edges.

Lemma 2.3. Let G ∈ B(n, d) be a graph with the maximal Sombor index. Then, G[Vi−1 ∪ Vi], for i = 1, 2, . . . , d,
induces a complete bipartite subgraph. Furthermore, if d ≥ 3, then |Vd| = 1.

Proof. The first part of the statement is obvious, since G has maximal Sombor index in B(n, d).
For the second part of the statement, let us assume that d ≥ 3. Let x ∈ Vd and y ∈ Vd−3. If |Vd| ≥ 2, then

G+ xy ∈ B(n, d), and V0 ⊔V1 ⊔ · · · ⊔Vd−3 ⊔ (Vd−2 ∪ {x})⊔Vd−1 ⊔ (Vd \ {x}) is a partition of the vertex set of the
graph G + xy. By Lemma 2.1, we have SO(G + xy) > SO(x), which is a contradiction with the assumption.
Thus, |Vd| = 1.

We make use of the following three lemmas in the next section.

Lemma 2.4. Let f : [a, b]→ R be a strictly concave function. Let

m :=
a + b

2

be the midpoint of the interval [a, b]. Assume f is symmetric about m, i.e.

f (m + t) = f (m − t), for every real t ≥ 0 with m ± t ∈ [a, b].

Then f attains its (unique) maximum at m.

Proof. By strict concavity we mean: for any distinct x, y ∈ [a, b] and any λ ∈ (0, 1),

f
(
λx + (1 − λ)y

)
> λ f (x) + (1 − λ) f (y).

Take an arbitrary point x ∈ [a, b]. Then, x = m ± t, for the unique real t ≥ 0 with m ± t ∈ [a, b].
If t , 0, m + t , m − t, so strict concavity with λ = 1

2 yields

f (m) = f
(

1
2 (m + t) + 1

2 (m − t)
)
> 1

2 f (m + t) + 1
2 f (m − t). (1)

Using the symmetry f (m + t) = f (m − t), the right-hand side of (1) simplifies to f (m + t). Therefore, for
every t , 0 (equivalently, for every x , m)

f (m) > f (m + t) = f (x).

If t = 0 (i.e. x = m) the previous inequality is an equality f (m) = f (x). Thus f (m) ≥ f (x), for all x ∈ [a, b],
and the inequality is strict for all x , m. Hence f attains its maximum at m, and that maximum is unique.
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Lemma 2.5. Let 1 : [1,S − 1]→ R be a strictly convex function. Then the maximum of 1 in the interval [1,S − 1]
is attained only at the endpoints of the interval, i.e.

max
x∈[1,S−1]

1(x) ∈ {1(1), 1(S − 1)}.

Proof. Suppose, for the sake of contradiction, that the maximum occurs at some interior point x0 ∈ (1,S−1),
i.e.,

1(x0) = max
x∈[1,S−1]

1(x).

Choose any points t ∈ (1, x0) and s ∈ (x0,S − 1). There exists λ ∈ (0, 1) such that

x0 = λt + (1 − λ)s.

By strict convexity of 1, we have

1(x0) = 1(λt + (1 − λ)s) < λ1(t) + (1 − λ)1(s).

However, by maximality of x0, we also have 1(t) ≤ 1(x0) and 1(s) ≤ 1(x0). Therefore,

λ1(t) + (1 − λ)1(s) ≤ λ1(x0) + (1 − λ)1(x0) = 1(x0),

which gives a contradiction, i.e.

1(x0) < λ1(t) + (1 − λ)1(s) ≤ 1(x0).

Lemma 2.6. Let α > 0, A > 0, B > 0, and S > 1. Define canonical functions

hα,A,B(x) := αx
√

A + (x + B)2,

kα,A,B(x) := α
√

A + (x + B)2,

lα,A,B,S(x) := α(S − x)
√

A + (S − x + B)2,

sα,A,B,S(x) := α
√

(x + A)2 + (S − x + B)2.

Each of the functions hα,A,B, kα,A,B, lα,A,B,S and sα,A,B,S(x) is strictly convex in the interval [1,S − 1].

Proof. Compute and estimate the second derivatives for hα,A,B(x), kα,A,B(x) and lα,A,B,S(x):

h′′α,A,B(x) = α
2(x + B)(A + (x + B)2) + xA

(A + (x + B)2)3/2
> 0,

k′′α,A,B(x) =
αA

(A + (x + B)2)3/2
> 0,

l′′α,A,B,S(x) = h′′α,A,B(S − x) > 0.

Set

Q(x) := (x + A)2 + (B + S − x)2 = 2x2 + 2(A − B − S) x +
(
A2 + (B + S)2

)
.

Thus s(x) = α
√

Q(x). For a quadratic Q(x) = ax2 + bx + c with a > 0 and Q(x) > 0, one has

d2

dx2

√
Q(x) =

ac − b2

4

(ax2 + bx + c)3/2
.
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Here a = 2, b = 2(A − B − S), and c = A2 + (B + S)2, so

ac −
b2

4
= 2

(
A2 + (B + S)2

)
−

(
A − B − S

)2
=

(
B + A + S

)2
> 0.

Since Q(x) > 0 for all x (it is a sum of squares), we get

s′′(x) = α
(B + A + S)2(

Q(x)
)3/2

> 0,

which proves that s is strictly convex in x.
Hence all four functions are strictly convex on [1,S − 1].

3. Main results

According to Lemma 2.3, we conclude that the induced subgraph G[Vi ∪ Vi+1], for 0 ≤ i ≤ d − 1, in a
bipartite graph with diameter d is itself a complete bipartite graph. Consequently, every vertex v ∈ Vi has
degree mi−1 + mi+1 for 1 ≤ i ≤ d − 1, while for i = 0 or i = d, the degrees of the vertices are m1 and md−1,
respectively.

It follows that each edge of G[Vi ∪ Vi+1] contributes to the total Sombor index with the value√
(mi−1 +mi+1)2 + (mi +mi+2)2.

Since there are mimi+1 such edges, the total contribution of all edges from G[Vi ∪ Vi+1] to the Sombor index
is

mimi+1

√
(mi−1 +mi+1)2 + (mi +mi+2)2.

Therefore, we define

Ed(m0, . . . ,md) =
d∑

k=1

Tk, (2)

where

T1 = m0m1

√
(m0 +m2)2 +m2

1,

Tk = mk−1mk

√
(mk−2 +mk)2 + (mk−1 +mk+1)2, 2 ≤ k ≤ d − 1,

Td = md−1md

√
(md−2 +md)2 +m2

d−1.

Our objective is to maximize Ed subject to the constraint

d∑
i=0

mi = n,

where d denotes the fixed diameter of the graph, and n represents its order. Additionally, the boundary
conditions m0 = md = 1 hold, as established in Lemma 2.3.
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3.1. Bipartite Graphs of Prescribed Order and Small Diameter
3.1.1.

Bipartite graphs with diameter d = 3

For d = 3 put (m0,m1,m2,m3) = (1, x,S − x, 1) with S = n − 2, and define

F(x) := E3(1, x,S − x, 1), x ∈ [2,S − 2].

Theorem 3.1. Let
F(x) =

√
f1(x) +

√
f2(x) +

√
f3(x),

where
f1(x) = x2

(
(n − x − 1)2 + x2

)
, f2(x) = x2(n − x − 2)2

(
(n − x − 1)2 + (x + 1)2

)
,

f3(x) = (n − x − 2)2
(
(x + 1)2 + (n − 2 − x)2

)
.

For n ≥ 6 and x ∈ [2,n − 3], the function F attains its maximum at

x = c :=
n − 2

2
.

Proof. Step 1. By Cauchy–Schwarz it holds that√
f1(x) +

√
f3(x) ≤

√

2
√

f1(x) + f3(x).

Define
f (x) = 2

(
f1(x) + f3(x)

)
, 1(x) = f2(x).

Since the square root function is concave, it follows that for any y ≥ 0 and y0 > 0 the following inequality
holds:

√
y ≤
√

y0 +
y − y0

2
√

y0
.

Applying this to y = f (x) at x = c and to y = 1(x) at x = c, set

T(x) :=
√

f (c) +
√
1(c) +

f (x) − f (c)

2
√

f (c)
+
1(x) − 1(c)

2
√
1(c)

.

Then
F(x) ≤

√
f (x) +

√
1(x) ≤ T(x) (∀x),

and equalities hold at x = c (because f1(c) = f3(c) and the tangents touch at f (c), 1(c)). Hence

F(c) =
√

f (c) +
√
1(c) = T(c).

Step 2. Differentiate T(x) and write x = c + y:

T′(x) =
f ′(x)

2
√

f (c)
+
1′(x)

2
√
1(c)
, f ′(c + y) = 8y

(
n2
− 5n + 4y2 + 7

)
,

1′(c + y) =
y
4

(
4y2
− (n − 2)2

)(
n2 + 4n + 12y2

− 4
)
.

Thus
T′(c + y) = yφn(y), φn(y) = Φn(z), z = y2,
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with
Φn(z) = A f (n2

− 5n + 7 + 4z) + A1 (4z − (n − 2)2) (n2 + 4n − 4 + 12z),

and
A f =

8

(n − 2)
√

n2 + (n − 2)2
, A1 =

1
√

2 n (n − 2)2
.

On x ∈ [2,n − 4] we have y ∈
[

6−n
2 ,

n−6
2

]
, hence

z = y2
∈

[
0, zmax

]
, zmax =

(n − 6
2

)2
.

Note that Φn is a upward-opening quadratic in z (its z2 coefficient is 48A1 > 0), hence convex.
Step 3. According to Lemma 2.5, convexity implies that maxz∈[0,zmax]Φn(z) is attained at an endpoint. It

therefore suffices to show
Φn(0) ≤ 0 and Φn(zmax) ≤ 0.

(i) The value at z = 0. Using
√

n2 + (n − 2)2 ≥
√

2 (n − 1),

Φn(0) = A f (n2
− 5n + 7) − A1 (n − 2)2(n2 + 4n − 4) ≤

4
√

2
(n − 2)(n − 1)

(n2
− 5n + 7) −

1
√

2n
(n2 + 4n − 4).

This upper bound equals

−
1

√
2 n(n − 2)(n − 1)

P0(n), P0(n) = n4
− 7n3 + 26n2

− 36n − 8.

We observe that P0(4) = 72 > 0. Furthermore, since P′0(n) = 4n3
− 21n2 + 52n − 36 > 0 for all n ≥ 2, it

follows that P0(n) is strictly increasing for n ≥ 2. Consequently, P0(n) > 0 holds for all n ≥ 4. Consequently
Φn(0) ≤ 0 for n ≥ 4.

(ii) The value at z = zmax. Let t =
√

n2 − 2n + 2 ∈ (n − 1,n). A direct simplification gives

Φn(zmax) =

√
2

n
(
n4 − 6n3 + 14n2 − 16n + 8

) (
C1(n) t + C0(n)

)
,

where

C1(n) = 8n4
− 84n3 + 308n2

− 344n, C0(n) = −16n5 + 224n4
− 1344n3 + 3904n2

− 5184n + 3328.

Since t ≤ n and C1(n) > 0 for n ≥ 6, we obtain the upper bound

Φn(zmax) ≤

√
2

n
(
n4 − 6n3 + 14n2 − 16n + 8

) (
C1(n) n + C0(n)

)
,

and
C1(n) n + C0(n) = −4 S(n), S(n) = 2n5

− 35n4 + 259n3
− 890n2 + 1296n − 832.

We have S(6) = 1040 > 0 and S′(n) = 10n4
− 140n3 + 777n2

− 1780n + 1296 has positive second derivative
for all n; hence S′(n) is increasing, S′(6) > 0, and S(n) is increasing on [6,∞), whence S(n) > 0 for all n ≥ 6.
Therefore Φn(zmax) ≤ 0 for n ≥ 6.

Step 4. From Step 3, Φn(z) ≤ 0 for every z ∈ [0, zmax]. Hence for y ∈
[

6−n
2 ,

n−6
2

]
,

T′(c + y) = yΦn(y2)


> 0, y < 0,
= 0, y = 0,
< 0, y > 0,
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i.e., T is strictly increasing on [2, c] and strictly decreasing on [c,n − 3]. Together with Step 1,

F(x) ≤ T(x) ≤ T(c) = F(c) (x ∈ [2,n − 3]),

so F attains its maximum at x = c = n−2
2 .

Corollary 3.2. Let G = [V0,V1,V2,V3] ∈ B(n, 3) be the connected graph with the maximal Sombor index. Then
|V0| = |V3| = 1, |V1| = ⌈

n−2
2 ⌉ and |V2| = ⌊

n−2
2 ⌋, i.e. G = [1, ⌈ n−2

2 ⌉, ⌊
n−2

2 ⌋, 1].

Proof. According to the remarks given in the previous section, and Theorem 3.1, it holds |V0| = |V3| = 1.
Let us suppose |V1| = x and |V2| = y, where x + y = n − 2. Then the Sombor index SO(G) of the graph
G can be considered as the function F(x) given by Theorem 3.1.From Theorem 3.1, it follows that if the
order n of the graph G is even, then |V1| = |V2| =

n−2
2 . If n is odd, then |V1| =

n−3
2 and |V2| =

n−1
2 . This

conclusion holds because the function F(x) is increasing up to x = n−2
2 and decreasing thereafter, and

moreover, F( n−3
2 ) = F( n−1

2 ). Note that F is symmetric with respect to x = n−2
2 , a property used in the proof of

Theorem 3.1. This completes the proof.

3.1.2.
Bipartite graphs with diameter d = 4

For d = 4 put (m0,m1,m2,m3,m4) = (1,S − t, t, 1, 1) with S = n − 3, and define

E4(t) := E4(1,S − t, t, 1, 1), t ∈ [2,S − 2].

Lemma 3.3. Let

N1(t) = −4t2 + (5n − 18)t − 2n2 + 13n − 22.

Then N1(t) ≤ 0 for all real t. In particular,

max
t∈R

N1(t) = − 7
16 (n − 2)2

≤ 0,

and the maximum is attained at

tmax =
5n − 18

8
.

Proof. The polynomial N1(t) is quadratic in t with leading coefficient −4 < 0, hence concave. Its maximum
occurs at

tmax = −
b
2a
=

5n − 18
8
,

where a = −4 and b = 5n − 18. Substituting this into N1(t) yields

N1(tmax) = −
7
16

(n − 2)2
≤ 0.

Since the parabola opens downwards, this value is the global maximum, so N1(t) ≤ 0 for all t ∈ R.

Lemma 3.4. Let

N2(t) = −6t3 + (9n − 23)t2 + (−5n2 + 23n − 28)t + n3
− 6n2 + 13n − 10,

and assume n ≥ 7. Then N2(t) is strictly decreasing for all real t. Moreover,

N2

(n − 3
2

)
=

n2
− 2n + 1

2
=

(n − 1)2

2
> 0, N2

(n − 3
2
+ 1

)
= −n − 1 < 0.

Consequently, for all real t,

t ≤
n − 3

2
=⇒ N2(t) > 0, t ≥

n − 3
2
+ 1 =⇒ N2(t) < 0.
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Proof. Differentiate N2(t) to obtain

N′2(t) = −18t2 + (18n − 46)t + (−5n2 + 23n − 28).

The discriminant of this quadratic is

∆ = (18n − 46)2
− 4(−18)(−5n2 + 23n − 28) = (18n − 46)2

− 72(5n2
− 23n + 28).

A straightforward expansion and cancellation yields

∆ = 100 − 36n2 < 0,

hence N′2(t) has no real zeros, for n ≥ 2. Since the leading coefficient of N′2(t) equals −18 < 0, we conclude
N′2(t) < 0 for all real t; i.e. N2 is strictly decreasing on R.

It remains to evaluate N2 at the two points n−3
2 and n−3

2 + 1. First substitute t =
n − 3

2
:

N2

(n − 3
2

)
= −6

(n − 3
2

)3
+ (9n − 23)

(n − 3
2

)2
+ (−5n2 + 23n − 28)

(n − 3
2

)
+ n3

− 6n2 + 13n − 10.

After simplification (expand, collect terms and divide by 4) one obtains

N2

(n − 3
2

)
=

n2
− 2n + 1

2
=

(n − 1)2

2
> 0.

Next substitute t =
n − 3

2
+ 1 =

n − 1
2

. A direct substitution and simplification gives

N2

(n − 3
2
+ 1

)
= −n − 1 < 0, for n ≥ 0.

Since N2 is strictly decreasing, the positivity at t = (n − 3)/2 and negativity at the next integer imply the
stated sign pattern: for every t ≤ (n− 3)/2 we have N2(t) ≥ N2

(
(n− 3)/2

)
> 0, and for every t ≥ (n− 3)/2+ 1

we have N2(t) ≤ N2

(
(n − 3)/2 + 1

)
< 0. This completes the proof.

Lemma 3.5. For n ≥ 7 and 2 ≤ t ≤ n−3
2 ,

D2(t)
D1(t)

<
6
5
, D1(t) =

√
(t + 1)2 + (n − 3 − t)2, D2(t) =

√
(t + 1)2 + (n − 2 − t)2.

Proof. Put

a := t + 1, b := n − 3 − t, S := a + b = n − 2.

Then a ∈ [3, S+1
2 ], b ∈ [ S−1

2 , S − 3], and

(D2

D1

)2
= 1 +

2b + 1
a2 + b2 ≤ 1 +

2b + 1
9 + b2 =: 1 + f (b).

For b ≥ 3, f ′(b) =
(9 + b2) · 2 − (2b + 1) · 2b

(9 + b2)2 =
18 − 2b − 2b2

(9 + b2)2 < 0,

so f is decreasing on [3,∞).
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Case S ≥ 7 (n ≥ 9). Since a ≥ 3 and b ≥ S−1
2 ≥ 3 (because S = n − 2 ≥ 7), the maximum of f (b) on the

admissible b occurs at bmin =
S−1

2 . Thus,

(D2

D1

)2
≤ 1 +

2b + 1
9 + b2 ≤ 1 +

2 · S−1
2 + 1

9 +
(

S−1
2

)2 = 1 +
4S

(S − 1)2 + 36
.

We want to prove that the last expression is less than 36
25 . This is equivalent to

4S
(S − 1)2 + 36

<
11
25
⇐⇒ 100S < 11

(
(S − 1)2 + 36

)
⇐⇒ 11S2

− 122S + 407 > 0,

which holds for all real S (discriminant < 0). Hence D2/D1 < 6/5 for n ≥ 9.
Cases S = 5, 6 (n = 7, 8). Here t ∈ [2, n−3

2 ] gives a ∈ [3, S+1
2 ] and b = S − a ∈ [ S−1

2 ,S − 3].
- If S = 5 (n = 7), then t = 2 only, so (a, b) = (3, 2) and(D2

D1

)2
=

32 + 32

32 + 22 =
18
13
<

36
25
.

- If S = 6 (n = 8), then a ∈ [3, 7
2 ], b ∈ [ 5

2 , 3] and

∂
∂a

(
a2 + (b + 1)2

a2 + b2

)
= −

2a(2b + 1)
(a2 + b2)2 < 0 ⇒ maximum at a = 3, b = 3,

hence(D2

D1

)2
=

32 + 42

32 + 32 =
25
18
<

36
25
.

Therefore, for all n ≥ 7 and 2 ≤ t ≤ n−3
2 we have D2/D1 < 6/5.

Lemma 3.6. Let

N1(t) = −4t2 + (5n − 18)t − 2n2 + 13n − 22,
N2(t) = −6t3 + (9n − 23)t2 + (−5n2 + 23n − 28)t + n3

− 6n2 + 13n − 10,
P(t) := 6N1(t) + 5N2(t).

For n ≥ 9 and 2 ≤ t ≤ n−3
2 − 1 = n−5

2 , one has P(t) > 0.

Proof. Expand:

P(t) = −30t3 + (45n − 139)t2 + (−25n2 + 145n − 248)t + (5n3
− 42n2 + 143n − 182).

Derivatives:

P′(t) = −90t2 + (90n − 278)t + (−25n2 + 145n − 248), P′′(t) = 90n − 180t − 278.

For 2 ≤ t ≤ n−5
2 and n ≥ 9,

P′′(t) ≥ P′′
(

n−5
2

)
= 90n − 90(n − 5) − 278 = 172 > 0,

so P is strictly convex and its minimum on the interval is at an endpoint. According to Lemma 1.5, the
maximum is achieved at the endpoints of the closed interval.

Endpoint values:

P(2) = 5n3
− 92n2 + 613n − 1474, P

(
n−5

2

)
= 2n2 + 4n + 38.
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Clearly P
(

n−5
2

)
> 0 for all n. Moreover

d
dn

P(2) = 15n2
− 184n + 613 > 0 (discriminant < 0),

hence P(2) is increasing in n; at n = 9, P(2) = 236 > 0. Therefore P(2) > 0 for all n ≥ 9.
Since both endpoints are positive and P is convex on the interval, P(t) > 0 for all 2 ≤ t ≤ n−5

2 .
Remark. For n = 7, 8 the interval [2, n−5

2 ] is empty, so the statement is vacuously true.

Lemma 3.7. Let n ≥ 7 and define

T1(t) = (n − 3 − t)
√

(t + 1)2 + (n − 3 − t)2,

T2(t) = (n − 2 − t) t
√

(t + 1)2 + (n − 2 − t)2,

T3(t) =
√

(t + 1)2 + 1, E4(t) = T1(t) + T2(t) + T3(t).

With a = n−3
2 , we have

E4(a) > E4(a − 1) and E4(a) > E4(a + 1).

Proof. Throughout assume a = n−3
2 ≥ 2 (since n ≥ 7).

We first prove that E4(a) − E4(a − 1) > 0.
Compute termwise at t = a and t = a − 1:

T1(a) = a
√

a2 + (a + 1)2,

T1(a − 1) = (a + 1)
√

a2 + (a + 1)2,

T2(a) = a(a + 1)
√

(a + 1)2 + (a + 1)2 = a(a + 1)2
√

2,

T2(a − 1) = (a − 1)(a + 2)
√

a2 + (a + 2)2 = (a − 1)(a + 2)
√

2(a + 1)2 + 2,

T3(a) =
√

(a + 1)2 + 1,

T3(a − 1) =
√

a2 + 1.

Thus

E4(a) − E4(a − 1) =
(
T2(a) − T2(a − 1)

)
︸                 ︷︷                 ︸

S2

−

(
T1(a − 1) − T1(a)

)
︸                 ︷︷                 ︸

S1

+
(
T3(a) − T3(a − 1)

)
︸                 ︷︷                 ︸

S3

.

Note the exact simplification

S1 = T1(a − 1) − T1(a) =
√

a2 + (a + 1)2 =
√

2a2 + 2a + 1 ≤
√

2(a + 1).

For S2, rationalize the square-root increment:√
2(a + 1)2 + 2 −

√
2(a + 1)2 =

2√
2(a + 1)2 + 2 +

√
2(a + 1)2

≤
1

√
2 (a + 1)

.

Hence

S2 = a(a + 1)2
√

2 − (a − 1)(a + 2)
√

2(a + 1)2 + 2

= [a(a + 1)2
√

2 − (a − 1)(a + 2)
√

2(a + 1)]

+ [(a − 1)(a + 2)
√

2(a + 1) − (a − 1)(a + 2)
√

2(a + 1)2 + 2] =

≥

√

2(a + 1)[a(a + 1) − (a − 1)(a + 2)] −
(a − 1)(a + 2)
√

2(a + 1)
.
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Since a(a + 1) − (a − 1)(a + 2) = 2 and (a − 1)(a + 2) = a2 + a − 2, we get

S2 ≥ 2
√

2(a + 1) −
a2 + a − 2
√

2(a + 1)
.

Therefore

S2 − S1 ≥
(
2
√

2(a + 1) −
a2 + a − 2
√

2(a + 1)

)
−

√

2(a + 1) =
√

2(a + 1) −
a2 + a − 2
√

2(a + 1)

=
1
√

2
·

2(a + 1)2
− (a2 + a − 2)
a + 1

=
1
√

2
·

a2 + 3a + 4
a + 1

=
1
√

2

(
a + 2 +

2
a + 1

)
> 0.

Finally, S3 = T3(a)−T3(a− 1) > 0 because T3 is increasing. Hence, we finally obtain that E4(a)−E4(a− 1) > 0.

Now, we prove that E4(a) − E4(a + 1) > 0.
Observe that

T1(a) = a
√

a2 + (a + 1)2, T1(a + 1) = (a − 1)
√

(a − 1)2 + (a + 2)2,

T2(a) = a(a + 1)2
√

2, T2(a + 1) = a(a + 1)
√

a2 + (a + 2)2 = a(a + 1)
√

2(a + 1)2 + 2,

T3(a) =
√

(a + 1)2 + 1, T3(a + 1) =
√

(a + 2)2 + 1.

Thus

E4(a) − E4(a + 1) =
(
T1(a) − T1(a + 1)

)
︸                 ︷︷                 ︸

R1

−

(
T2(a + 1) − T2(a)

)
︸                 ︷︷                 ︸

R2

−

(
T3(a + 1) − T3(a)

)
︸                 ︷︷                 ︸

R3

.

Put X = 2a2 + 2a + 3. Then

T1(a) = a
√

X − 2, T1(a + 1) = (a − 1)
√

X + 2.

By rationalizing the linear combination, we obtain the following expression:

R1 = a
√

X − 2 − (a − 1)
√

X + 2 =
a2(X − 2) − (a − 1)2(X + 2)

a
√

X − 2 + (a − 1)
√

X + 2

=
(a2
− (a − 1)2)X − 2

(
a2 + (a − 1)2

)
a
√

X − 2 + (a − 1)
√

X + 2

=
(2a − 1)X − 2(2a2

− 2a + 1)

a
√

X − 2 + (a − 1)
√

X + 2
=

4a3
− 2a2 + 8a − 5

a
√

X − 2 + (a − 1)
√

X + 2
.

Since a
√

X − 2 + (a − 1)
√

X + 2 ≤ (2a − 1)
√

X + 2, we obtain the lower bound

R1 ≥
4a3
− 2a2 + 8a − 5

(2a − 1)
√

X + 2
=

4a3
− 2a2 + 8a − 5

(2a − 1)
√

2a2 + 2a + 5
.

Using the same rationalization as above we get√
2(a + 1)2 + 2 −

√
2(a + 1)2 =

2√
2(a + 1)2 + 2 +

√
2(a + 1)

≤
1

√
2(a + 1)

.

Hence

R2 = a(a + 1)
(√

2(a + 1)2 + 2 −
√

2(a + 1)2
)
≤

a
√

2
.
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For R3,√
(a + 2)2 + 1−

√
(a + 1)2 + 1 =

(a + 2)2
− (a + 1)2√

(a + 2)2 + 1 +
√

(a + 1)2 + 1
=

2a + 3√
(a + 2)2 + 1 +

√
(a + 1)2 + 1

≤
2a + 3

2
√

(a + 1)2 + 1
≤ 1,

so R3 ≤ 1.
In order to prove the stated inequality, it suffices to show

R1 > R2 + R3.

Using the explicit bounds above, a sufficient condition is

4a3
− 2a2 + 8a − 5

(2a − 1)
√

2a2 + 2a + 5
>

a
√

2
+ 1.

The left-hand side is increasing for a ≥ 2 (the numerator grows like 2a2 after normalization by the denomi-
nator), while the right-hand side is linear in a. A direct check at the endpoint a = 2 gives

4 · 8 − 2 · 4 + 16 − 5

(4 − 1)
√

13
=

35

3
√

13
≈ 3.231 >

2
√

2
+ 1 ≈ 2.414,

so the inequality holds at a = 2, hence for all a ≥ 2. Therefore E4(a) − E4(a + 1) > 0.

Lemma 3.8. Let n ≥ 7 and define

T1(t) = (n − 3 − t)
√

(t + 1)2 + (n − 3 − t)2,

T2(t) = (n − 2 − t) t
√

(t + 1)2 + (n − 2 − t)2,

T3(t) =
√

(t + 1)2 + 1, E4(t) = T1(t) + T2(t) + T3(t).

Set b = n−2
2 (so b ≥ 5

2 ). Then

E4(b) > E4(b − 1) and E4(b) > E4(b + 1).

E4(b) > E4(b − 2) and E4(b) > E4(b + 2).

Proof. First, we prove E4(b) > E4(b − 1).
At t = b we have n − 3 − b = b − 1 and n − 2 − b = b, so

T1(b) = (b − 1)
√

(b + 1)2 + (b − 1)2 = (b − 1)
√

2b2 + 2,

T1(b − 1) = b
√

b2 + b2 = b2
√

2,

T2(b) = b2
√

(b + 1)2 + b2 = b2
√

2b2 + 2b + 1,

T2(b − 1) = (b2
− 1)

√
b2 + (b + 1)2 = (b2

− 1)
√

2b2 + 2b + 1,

T3(b) =
√

(b + 1)2 + 1, T3(b − 1) =
√

b2 + 1.

Then

E4(b) − E4(b − 1) =
[
T2(b) − T2(b − 1)

]
︸                 ︷︷                 ︸

=
√

2b2+2b+1

+
[
T1(b) − T1(b − 1)

]
︸                 ︷︷                 ︸

:=∆1

+
[
T3(b) − T3(b − 1)

]
.
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We have the exact identity

T2(b) − T2(b − 1) =
√

2b2 + 2b + 1,

and the bound

∆1 = (b − 1)
√

2b2 + 2 − b2
√

2 =
√

2
(
(b − 1)

√

b2 + 1 − b2
)
≥ −

√

2 b,

while T3(b) − T3(b − 1) > 0. Thus

E4(b) − E4(b − 1) ≥
√

2b2 + 2b + 1 −
√

2 b > 0,

because
√

2b2 + 2b + 1 >
√

2b for all b > 0.

We now establish the inequality E4(b) > E4(b + 1).
At t = b + 1 we have n − 3 − (b + 1) = b − 2 and n − 2 − (b + 1) = b − 1, so

T1(b + 1) = (b − 2)
√

(b + 2)2 + (b − 2)2 = (b − 2)
√

2b2 + 8,

T2(b + 1) = (b2
− 1)

√
(b + 2)2 + (b − 1)2 = (b2

− 1)
√

2b2 + 2b + 5,

T3(b + 1) =
√

(b + 2)2 + 1.

We estimate
√

2b2 + 8 ≤
√

2b2 + 2 +
3

√

2b2 + 2
,

√

2b2 + 2b + 5 ≤
√

2b2 + 2b + 1 +
2

√

2b2 + 2b + 1
,

by
√

x + h ≤
√

x + h
2
√

x
. Therefore

R1 := T1(b) − T1(b + 1) ≥
2b2
− 3b + 8
√

2b2 + 2
> 0,

R2 := T2(b) − T2(b + 1) ≥
2b + 3

√

2b2 + 2b + 1
> 0.

Also, by rationalization

R3 := T3(b + 1) − T3(b) =
2b + 3√

(b + 2)2 + 1 +
√

(b + 1)2 + 1
≤

2b + 3

2
√

(b + 1)2 + 1
≤

2b + 3

2
√

2b2 + 2b + 1
.

Thus

E4(b) − E4(b + 1) = R1 + R2 − R3 ≥
2b2
− 3b + 8
√

2b2 + 2
+

2b + 3

2
√

2b2 + 2b + 1
> 0.

We omit the second part of the proof, as it can be established in a similar manner to the first part.

Lemma 3.9. Let n ≥ 7 and put S = n − 2. Fix d = 4 and set

(m0,m1,m2,m3,m4) = (1,m1,m2,m3, 1), mi ≥ 1, m1 +m2 +m3 = S.

If m2 is fixed and m1 +m3 = S −m2, define for x ∈ [1,S −m2 − 1]:

m1 = x, m3 = S −m2 − x.
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Then, for the function E4(x) = T1(x) + T2(x) + T3(x) + T4(x),
where

T1(x) = x
√

(1 +m2)2 + x2,

T2(x) = m2x
√

(1 +m2)2 + (S −m2)2,

T3(x) = m2(S −m2 − x)
√

(S −m2)2 + (m2 + 1)2,

T4(x) = (S −m2 − x)
√

(m2 + 1)2 + (S −m2 − x)2,

it follows that maxx∈[1,S−m2−1] E4(x) ∈ {E4(1), E4(S − m2 − 1)}. In other words, the maximum value of E4(x) on
the interval [1, S−m2 − 1] is attained only at one of the two endpoints. These endpoints correspond to the parameter
pairs (m1,m3) = (1, S −m2 − 1) or (m1,m3) = (S −m2 − 1, 1).

Proof. We first observe that T2 and T3 are linear functions of x, and are therefore convex.
Now note that

T1(x) = h1,(1+m2)2,0(x), T4(x) = l1,(1+m2)2,0,S−m2 (x),

so both T1 and T4 are strictly convex on [1,S −m2 − 1], according to Lemma 2.6. Therefore E4(x) is the sum
of two strictly convex and two affine functions, which is strictly convex.

By Lemma 2.5, a strictly convex function on a closed interval attains its maximum only at the endpoints.
Thus

max
x∈[1,S−m2−1]

E4(x) ∈ {E4(1),E4(S −m2 − 1)},

which completes the proof.

According to Lemma 3.9, we can conclude that, for d = 4, the maximal value of E can be found among
the tuples of the form (1,m1,m2,m3, 1), where either m1 = 1 or m3 = 1. Due to symmetry, we may assume,
without loss of generality, that m3 = 1.

For d = 4 put (m0,m1,m2,m3) = (1,S − t, t, 1, 1) with S = n − 2, and define

E4(t) := E4(1,S − t, t, 1, 1), t ∈ [2,S − 2].

Theorem 3.10. For every integer n ≥ 7, the maximum value of E4(t) is attained at t = ⌈(n − 3)/2⌉.

Proof. The main idea is to show that the derivative E′4(t) changes sign exactly once near the midpoint:

• E′4(t) > 0 for t ≤
n − 3

2
− 1 (so E4 is increasing for t ≤

n − 3
2
− 1), and

• E′4(t) < 0 for t ≥
n − 3

2
+ 1 (so E4 is decreasing for t ≥

n − 3
2
+ 1).

From these monotonicity properties, it follows that the maximum value over the integer points 1 < t < n−3
is attained at the integer closest to the midpoint of the interval. In particular, the maximum is reached at
t = ⌈(n − 3)/2⌉.

To implement this idea we differentiate the three summands

T1(t) = (n − 3 − t)
√

(t + 1)2 + (n − 3 − t)2, T2(t) = (n − 2 − t)t
√

(t + 1)2 + (n − 2 − t)2,

T3(t) =
√

(t + 1)2 + 1,

and use the resulting final expressions:
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T′1(t) =
N1(t)
D1(t)

, N1(t) = −4t2 + (5n − 18)t − 2n2 + 13n − 22,

D1(t) =
√

(t + 1)2 + (n − 3 − t)2

T′2(t) =
N2(t)
D2(t)

,

N2(t) = −6t3 + (9n − 23)t2 + (−5n2 + 23n − 28)t + n3
− 6n2 + 13n − 10,

D2(t) =
√

(t + 1)2 + (n − 2 − t)2 ,

T′3(t) =
t + 1√

(t + 1)2 + 1
.

The signs of these pieces are then analyzed as follows.
The quadratic numerator N1(t) satisfies

N1(t) ≤ 0 for all real t (indeed Nmax
1 = − 7

16 (n − 2)2
≤ 0),

according to Lemma 3.3, hence T′1(t) ≤ 0 for all t.
Hence, by Lemma 3.4, we conclude that

t ≤
n − 3

2
=⇒ T′2(t) =

N2(t)
D2(t)

> 0, t ≥
n − 3

2
+ 1 =⇒ T′2(t) =

N2(t)
D2(t)

< 0.

Finally T′3(t) =
t + 1√

(t + 1)2 + 1
> 0 for all t.

We now distinguish two cases:

• For n − 3 ≥ t ≥ (n − 3)/2 + 1, we have that both T′1(t) and T′2(t) are negative, and although T′3(t) > 0, it
is too small to compensate. Hence, the derivative of E4 can be expressed as a single fraction:

E′4(t) =
N1(t)D2(t)

√
(t+1)2+1+N2(t)D1(t)

√
(t+1)2+1+(t+1)D1(t)D2(t)

D1(t)D2(t)
√

(t+1)2+1

=
N2(t)D1(t)

√
(t+1)2+1+D2(t)(N1(t)

√
(t+1)2+1+(t+1)D1(t))

D1(t)D2(t)
√

(t+1)2+1
.

Since N1,N2 > 0 and D1,D2 > 0, to prove that E′4(t) < 0 it is sufficient to show that N1(t)
√

(t + 1)2 + 1+
(t + 1) D1(t) < 0. Moreover, using the inequality

√
(t + 1)2 + 1 > t + 1, we have√

(t + 1)2 + 1 N1(t) + (t + 1) D1(t) < (t + 1) N1(t) + (t + 1) D1(t) = (t + 1)
(
N1(t) +D1(t)

)
.

Therefore, it is sufficient to prove that |N1(t)| > D1(t), which ensures that the sum is negative and
hence E′4(t) < 0.

Indeed, for (n − 3)/2 + 1 ≤ t < n − 3 we have t + 1 > 0 and n − 3 − t > 0, hence by
√

a2 + b2 < a + b
for a, b ≥ 0, D1(t) < (t + 1) + (n − 3 − t) = n − 2. Furthermore, according to Lemma 3.3, it holds that
|N1(t)| = −N1(t) ≥ 7

16 (n − 2)2. If n ≥ 5, then 7
16 (n − 2)2 > (n − 2); therefore

|N1(t)| −D1(t) >
7

16
(n − 2)2

− (n − 2) > 0.
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• For 2 ≤ t ≤ (n − 3)/2, T′2(t) ≥ 0 and T′3(t) > 0, while T′1(t) ≤ 0.

The derivative of E4 can be expressed as follows:

E′4(t) =
D2(t)
D1(t) N1(t)+N2(t)

D2(t) + T′3(t).

Since D1(t) > 0, D2(t) > 0, and N1(t) < 0, it follows from Lemma 3.5 that D2(t)
D1(t) N1(t) > 6

5 N1(t).

Therefore, we obtain

E′4(t) >
6 N1(t) + 5N2(t)

5 D2(t)
+ T′3(t)

From Lemma 3.6, it directly follows that E′4(t) > 0 for 2 ≤ t ≤ (n − 3)/2 − 1.

Combining this sign information, we conclude that E4(t) is increasing for t ≤ (n−3)/2−1 and decreasing
for t ≥ (n − 3)/2 + 1.

The maximum among integer values of t occurs within the following sets:

- For even n: t ∈ { n−3
2 − 1, n−3

2 ,
n−3

2 + 1}.

- For odd n: t ∈ { n−2
2 − 2, n−2

2 − 1, n−2
2 ,

n−2
2 + 1, n−2

2 + 2}.

According to Lemmas 3.7 and 3.8, the function E4 attains its maximum over the integer values of t
satisfying 1 < t < n − 3 at t =

⌈
n−3

2

⌉
, as claimed.

In that way, the following statement is proved:

Corollary 3.11. Let G = [V0,V1,V2,V3,V4] ∈ B(n, 4) be the connected graph with the maximal Sombor index.
Then |V0| = |V3| = |V4| = 1, |V1| = ⌈

n−3
2 ⌉ and |V2| = ⌊

n−3
2 ⌋, i.e. G = [1, ⌈ n−3

2 ⌉, ⌊
n−3

2 ⌋, 1, 1].

Remark 3.12. If we define

E1
d(m0, . . . ,md) =

d∑
k=1

Tk, (3)

where

T1 = m0m1

√
(m0 +m2)2 +m2

1,

Tk = mk−1mk

√
(mk−2 +mk)2 + (mk−1 +mk+1)2, 2 ≤ k ≤ d − 1,

Td = md−1md

√
(md−2 +md)2 + (md−1 + 1)2,

then it is evident that the same reasoning applied in the analysis of the function E for the case d = 4 with m0 = md = 1
and

∑d
i=0 mi = S can be extended here. In particular, one can show that the maximum of E1 is attained at

(m0,m1,m2,m3,m4) =
(
1, 1, ⌈ S−3

2 ⌉, ⌊
S−3

2 ⌋, 1
)
.
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3.2. Bipartite Graphs of Prescribed Order and Higher Diameter d ≥ 5

Lemma 3.13. Let d ≥ 5, m0 = md = 1, and
d∑

k=0
mk = n. Define the function Ed(m0, . . . ,md) as given in equation (2).

Let 1 ≤ i < j ≤ d − 1 be indices such that j − i ≥ 3. Fix all variables mk, k = 0, 1, . . . , d, except mi and m j, and define

m j = S −mi, where S = n −
∑
ℓ,i, j

mℓ.

Define the one-variable function

1(x) := Ed(. . . ,mi−1, x,mi+1, . . . ,m j−1,S − x,m j+1, . . . ).

Then 1(x) is strictly convex on [1,S − 1].

Proof. We distinguish three cases for the indices i and j:
Case 1: i = 1, j = d− 1. Here, m1 appears in T1,T2,T3 and md−1 in Td−2,Td−1,Td. All other Tk are constant.

Explicitly, for d ≥ 6, we obtain that

T1(x) = hm0,(m0+m2)2,0(x),
T2(x) = hm2,(m0+m2)2,m3 (x),
T3(x) = km2m3,(m2+m4)2,m3 (x),

Td−2(x) = kmd−3md−2,(md−4+md−2)2,md−3
(S − x),

Td−1(x) = lmd−2,(md−2+md)2,md−3
(x),

Td(x) = l1,(md−2+md)2,0(x).

For d = 5, observe that T2 is a linear function of x, and therefore it is convex.
On the other hand, in this case we have T3(x) = Td−2(x) = sm2 m3,m3,m2,S(x), which is also convex.
Case 2: i = 1, j < d − 1. Here, m1 appears in T1,T2,T3, and m j appears in T j−1,T j,T j+1,T j+2. All other Tk

are constant. Explicitly,

T1(x) = hm0,(m0+m2)2,0(x),
T2(x) = hm2,(m0+m2)2,m3 (x),
T3(x) = km2m3,(m2+m4)2,m3 (x),

T j−1(x) = km j−2m j−1,(m j−3+m j−1)2,m j−2 (S − x),

T j(x) = lm j−1,(m j−1+m j+1)2,m j−2 (x),

T j+1(x) = lm j+1,(m j−1+m j+1)2,m j+2 (x),

T j+2(x) = km j+1m j+2,(m j+1+m j+3)2,m j+2 (S − x).

Case 3: i > 1, j < d − 1. Then mi appears in Ti−1,Ti,Ti+1,Ti+2 and m j in T j−1,T j,T j+1,T j+2. If |i − j| ≥ 4, the
sets of affected summands are disjoint. Explicitly,

Ti−1(x) = kmi−2mi−1,(mi−3+mi−1)2,mi−2 (x),
Ti(x) = hmi−1,(mi−1+mi+1)2,mi−2 (x),

Ti+1(x) = hmi+1,(mi−1+mi+1)2,mi+2 (x),

Ti+2(x) = kmi+1mi+2,(mi+1+mi+3)2,mi+2 (x),
T j−1(x) = km j−2m j−1,(m j−3+m j−1)2,m j−2 (S − x),

T j(x) = lm j−1,(m j−1+m j+1)2,m j−2 (x),

T j+1(x) = lm j+1,(m j−1+m j+1)2,m j+2 (x),

T j+2(x) = km j+1m j+2,(m j+1+m j+3)2,m j+2 (S − x).
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If |i − j| = 3, then we obtin that Ti+1 is a linear function of x, and therefore it is convex. On the other
hand, in this case we have Ti+2(x) = T j−2(x) = smi+1 mi+2,mi+2,mi+1,S(x), which is also convex.

Let us observe that the case i > 1, j = d − 1 is symmetric to the Case 2. By Lemma 2.6, each of the
previously exposed terms is a convex function. Therefore, 1(x) is the sum of strictly convex functions, and
hence it is itself strictly convex on [1,S − 1].

Lemma 3.14. Let d ≥ 5, m0 = md = 1, and
d∑

k=0
mk = n. Let Ed(m0, . . . ,md) be the expression given by (2), as in

Lemma 3.13. Fix indices i and j, 1 ≤ i < j ≤ d − 1, with j = i + 2, and fix all variables except mi and mi+2. Put

mi = x, mi+2 = S − x,

where x ∈ [1,S − 1] and S = n −
∑
ℓ,i,i+2

mℓ. Define

1(x) := Ed(. . . ,mi−1, x,mi+1,S − x,mi+3, . . . ).

Then 1 is strictly convex on [1,S − 1].

Proof. Only the summands Ti−1,Ti,Ti+1,Ti+2,Ti+3,Ti+4 can depend on x after the substitution mi = x, mi+2 =
S − x; all other Tk are constant in x.

We write each affected summand explicitly and identify its canonical form.

1. If i ≥ 3, then Ti−1(x) = mi−2mi−1

√
(mi−3 +mi−1)2 + (mi−2 + x)2. Hence

Ti−1(x) = kα1,A1,B1 (x), α1 = mi−2mi−1, A1 = (mi−3 +mi−1)2, B1 = mi−2.

If i = 2, then Ti−1(x) = hm0,(m0+m2)2,0(x).

2. If i ≥ 2, then Ti(x) = mi−1 x
√

(mi−2 + x)2 + (mi−1 +mi+1)2. Hence

Ti(x) = hα2,A2,B2 (x), α2 = mi−1, A2 = (mi−1 +mi+1)2, B2 = mi−2.

If i = 1, then Ti(x) = hm0,(m0+m2)2,0(x).

3. Ti+1(x) = x mi+1

√
(mi−1 +mi+1)2 + (x +mi+2)2. With mi+2 = S − x the sum inside the radical becomes

x + (S − x) = S, so the radical is constant. Thus

Ti+1(x) = Ci+1x

is linear in x, where Ci+1 = mi+1
√

(mi−1 +mi+1)2 + S2 > 0.

4. Since i+2 = j ≤ d−1, it follows that i ≤ d−3. Therefore, we obtain Ti+2(x) = mi+1(S−x)
√

S2 + (mi+1 +mi+3)2.
Hence

Ti+2(x) = Ci+2(S − x)

is linear in x, with Ci+2 = mi+1
√

S2 + (mi+1 +mi+3)2 > 0.

5. If i ≤ d − 4, then Ti+3(x) = mi+2mi+3

√
(mi+1 +mi+3)2 + (mi+2 +mi+4)2.With mi+2 = S − x this becomes

Ti+3(x) = ℓα5,A5,B5 (x),

where α5 = mi+3, A5 = (mi+1 +mi+3)2, B5 = mi+4.
If i = d − 3, then Ti+3(x) = md (S − x)

√
(md−2 +md)2 + (S − x)2 = lmd,(md−2+md)2,0.
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6. If i ≤ d − 5, then Ti+4(x) = mi+3mi+4

√
(mi+2 +mi+4)2 + (mi+3 +mi+5)2.With mi+2 = S − x this equals

Ti+4(x) = kα6,A6,B6 (S − x),

with α6 = mi+3mi+4, A6 = (mi+3 + mi+5)2, B6 = mi+4. Since t 7→ kα6,A6,B6 (t) is strictly convex, the composition
x 7→ kα6,A6,B6 (S − x) is convex as well.

Moreover, if i = d − 4, then

Ti+4(x) = md−1 md

√
S − x +md)2 +m2

d−1 = lmd,(md−2+md)2,0 = kmd−1 md,m2
d−1,md

(S − x).

According to Lemma 2.6, each of the canonical functions hα,A,B, kα,A,B, ℓα,A,B,S is strictly convex on [1,S−1].
Linear functions, appearing in items 3 and 4, are also convex. Therefore each of the six summands above
is a convex or strictly convex function in x, and hence their sum 1(x) is strictly convex on [1,S − 1]. This
proves the lemma.

For d = 5 put (m0,m1,m2,m3,m4,m5) = (1, 1, x,S − x, 1, 1) with S = n − 4, and define

G(x) := E5(1, 1, x,S − x, 1, 1), x ∈ [2,S − 2],

where the expression E5 defined as in (2).

Theorem 3.15. For n ≥ 8 the function G attains its maximum at

x =
S
2
=

n − 4
2
.

Proof. With the substitution above, we obtain that

T1 =
√

(x + 1)2 + 1,

T2 = x
√

(x + 1)2 + (S + 1 − x)2,

T3 = x(S − x)
√

(x + 1)2 + (S + 1 − x)2,

T4 = (S − x)
√

(x + 1)2 + (S + 1 − x)2,

T5 =
√

(S + 1 − x)2 + 1,

hence
G(x) =

√
(x + 1)2 + 1 +

√
(S + 1 − x)2 + 1 +

(
S + x(S − x)

)
R(x),

where R(x) =
√

(x + 1)2 + (S + 1 − x)2 and

T2 + T3 + T4 =
(
S + x(S − x)

)
R(x).

Step 1. By Cauchy–Schwarz, it holds that√
(x + 1)2 + 1 +

√
(S + 1 − x)2 + 1 ≤

√

2
√

(x + 1)2 + (S + 1 − x)2 + 2.

Thus
G(x) ≤

√
f (x) +

√
1(x),

with
f (x) = 2

(
(x + 1)2 + (S + 1 − x)2 + 2

)
, 1(x) =

(
S + x(S − x)

)2(
(x + 1)2 + (S + 1 − x)2

)
.

Let c = S/2. The map x 7→ S − x swaps (x + 1) and (S + 1 − x), so both bounds are equalities at x = c. Using
the concavity inequality

√
y ≤
√

y0 +
y − y0

2
√

y0
,
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applied at y0 = f (c) and y0 = 1(c), define

T(x) =
√

f (c) +
√
1(c) +

f (x) − f (c)

2
√

f (c)
+
1(x) − 1(c)

2
√
1(c)

.

Then
G(x) ≤

√
f (x) +

√
1(x) ≤ T(x) for all x, T(c) = G(c).

Step 2. Write x = c + y and set z = y2. A direct simplification gives

f (c) = n2
− 4n + 8 = (n − 2)2 + 4,

√
1(c) =

n(n − 2)(n − 4)

4
√

2
,

and
f ′(c + y) = 8y, 1′(c + y) = − y

(
K − z

) (
n2
− 4n + 8 + 12z

)
,

where K =
n(n − 4)

4
. Consequently

T′(c + y) =
f ′(c + y)

2
√

f (c)
+
1′(c + y)

2
√
1(c)

= yΦn(z),

with

Φn(z) =
4√

(n − 2)2 + 4
−

2
√

2
n(n − 2)(n − 4)

(K − z)
(
n2
− 4n + 8 + 12z

)
.

This is a convex quadratic in z (its z2–coefficient equals 6/
√
1(c) > 0).

Step 3. On x ∈ [1,S − 1] we have y ∈ [− S−2
2 ,

S−2
2 ], hence

z ∈
[
0, zmax

]
, zmax =

(S − 2
2

)2
=

(n − 6
2

)2
.

By convexity, maxz∈[0,zmax]Φn(z) = max{Φn(0),Φn(zmax)}.
First,

Φn(0) =
4√

(n − 2)2 + 4
−

√
2

2
·

n2
− 4n + 8
n − 2

≤ 0 (n ≥ 6),

since
√

(n − 2)2 + 4 ≥ n − 2 and n2
− 4n + 8 ≥ 20 at n = 6.

Second, using K − zmax = 2n − 9 and n2
− 4n + 8 + 12zmax = 4(n2

− 10n + 29),

Φn(zmax) =
4√

(n − 2)2 + 4
−

8
√

2
n(n − 2)(n − 4)

(2n − 9) (n2
− 10n + 29) ≤ 0 (n ≥ 6),

because
√

(n − 2)2 + 4 ≥ n − 2, (2n − 9) > 0, and (n2
− 10n + 29) = (n − 5)2 + 4 > 0.

Therefore Φn(z) ≤ 0 on [0, zmax], and hence

T′(c + y) = yΦn(y2)


> 0, y < 0,
= 0, y = 0,
< 0, y > 0,

so T is strictly increasing on [1, c) and strictly decreasing on (c,S − 1].
Step 4. Since G(x) ≤ T(x) for all x and G(c) = T(c), and T has its unique maximum at x = c, we get

G(x) ≤ T(x) ≤ T(c) = G(c) (x ∈ [1,S − 1]).

Thus G attains its maximum at x =
S
2
=

n − 4
2

.
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Remark 3.16. It is evident that the same reasoning applied in the analysis of the function E for the case d = 5 with
m0 = md = 1 and

∑d
i=0 mi = S can be extended here. In particular, one can show that the maximum of E1 is attained

at

(m0,m1,m2,m3,m4,m5) =
(
1, 1, ⌈ S−3

2 ⌉, ⌊
S−3

2 ⌋, 1, 1
)
.

Theorem 3.17. Let E = Ed(m0, . . . ,md) be the expression defined as in (2), with d ≥ 5, m0 = md = 1 and mi ≥ 1, for
all 1 ≤ i ≤ d − 1, and suppose the total sum of variables m0,mi,md, 1 ≤ i ≤ d − 1, is fixed:

d∑
i=0

mi = n.

Then the maximum of E is attained for the following configuration

m0 = m1 = · · · = mk−1 = mk+2 = · · · = md−1 = md = 1, mk +mk+1 = n − d + 1,

for some index k ∈ {1, . . . , d − 2}.

Proof. We prove the statement by iterative application of Lemma 2.5.
Step 1 (First iteration): Consider the variables m1 and md−1. Fix all other variables and define the

one-variable function

11(x) = Ed(1, x,m2, . . . ,md−2,S − x, 1),

where S = n−2−
d−2∑
i=2

mi is the sum of the two free variables. By Lemma 3.13, 11 is strictly convex on [1,S−1]

and hence, according to Lemma 2.5, it attains its maximum at an endpoint of this interval. Therefore, at the
maximum of E, at least one of m1 and md−1 equals 1.

Step 2 (Iterative propagation): Suppose that after r iterations we have established

m1 = · · · = mi = 1, m j = · · · = md−1 = 1,

for some i < j with j − i ≥ 5. Consider the next pair (mi+1,m j−1). Define

1r+1(x) = Ed(. . . ,mi−1,mi, x, . . . ,m j−2,S′ − x,m j, . . . ),

where S′ = n − (i + 2) − (d − j) −
j−2∑
ℓ=i+2

mℓ is the sum of the two free variables. Again, by Lemma 3.13, 1r+1

is strictly convex in the interval [1,S′ − 1], and, according to Lemma 2.5, its maximum is attained at an
endpoint of this interval. Hence, either mi+1 = 1 or m j−1 = 1. This extends the region of variables fixed to 1
by at least one more index.

Step 3 (Termination): Repeat the propagation until j − i = 2, and then apply Lemma 3.14; at this point,
only two consecutive inner variables remain unfixed. Let these be mk and mk+1. Then, by the total sum
constraint,

mk +mk+1 = n − 2 −
∑
ℓ,k,k+1

mℓ = n − d + 1.

All other variables are fixed to 1, and exactly two consecutive inner variables sum to n−d+1. Therefore,
the configuration described in the statement is the global maximizer of E.

Theorem 3.18. Let d ≥ 3 and n ≥ d + 1. The maximum of the expression

Ed(m0, . . . ,md) =
d∑

k=1

Tk,
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defined as (2), under the constraints

m0 = md = 1, mi ∈N,
d∑

i=0

mi = n,

is attained precisely when all variables are equal to 1 except two consecutive ones, say mk,mk+1, for some 1 ≤ k ≤ d−2,
and these two satisfy

mk +mk+1 = n − d + 1, mk ∈

{⌊
n − d + 1

2

⌋
,

⌈
n − d + 1

2

⌉}
.

Proof. We proceed by induction on d.
Base cases 3 ≤ d ≤ 7.
If d ∈ {3, 4}, the statement follows directly from Corollaries 3.2 and 3.11.

According to Theorem 3.17, for d = 5, the maximum value of E must occur for a tuple of the form
(1,m1,m2, 1, 1, 1) or (1, 1,m2,m3, 1, 1). Furthermore, Theorem 3.15 directly implies that this statement holds
in the case of the latter tuple. For the first tuple, we obtain E5(1, x,n−4−x, 1, 1, 1) = E1

4(1, x,n−4−x, 1, 1)+
√

5.
It is evident that the statement of the theorem follows directly by applying Remark 3.12.

For d = 6, the following equalities hold:

E6(1, x,n − 5 − x, 1, 1, 1, 1) = E5(1, x,n − 5 − x, 1, 1, 1) + 2
√

2,

E6(1, 1, x,n − 5 − x, 1, 1, 1) = E1
5(1, 1, x,n − 5 − x, 1, 1) +

√

5.

According to the analysis presented in the preceding paragraph and in Remark 3.16, the maximum of
the right-hand side in both equalities is attained for x =

⌊
n−5

2

⌋
. This implies that for the same value of x, the

maximum of the left-hand side expressions is also attained.

For d = 7, the following equalities hold:

E7(1, x,n − 6 − x, 1, 1, 1, 1, 1) = E6(1, x,n − 6 − x, 1, 1, 1, 1) + 2
√

2,

E7(1, 1, x,n − 6 − x, 1, 1, 1, 1) = E6(1, 1, x,n − 6 − x, 1, 1, 1) + 2
√

2,

E7(1, 1, 1, x,n − 6 − x, 1, 1, 1) = E1
6(1, 1, 1, x,n − 6 − x, 1, 1) +

√

5.

According to the analysis presented in the previous section, the maximum of the right-hand side in each
equality is attained when x =

⌊
n−6

2

⌋
. In particular, the maximum of E1

6(1, 1, 1, x,n − 6 − x, 1, 1) is attained

at x =
⌊

n−6
2

⌋
if and only if the maximum of E6(1, 1, 1, x,n − 6 − x, 1, 1) is attained at the same value of x.

Therefore, it follows that for this value of x, the maxima of the left-hand side expressions are also attained.

Induction Hypothesis. Assume that the statement holds for some d − 1 ≥ 7. In other words, for any
admissible n′, the maximizer of Ed−1 is obtained when all entries are equal to 1, except for two consecutive
entries whose sum is n′ − (d − 1) + 1. Moreover, these two entries are chosen to be as balanced as possible,
that is, for x = ⌊(n′ − d + 2)/2⌋.

Induction step.
Firstly, we may exploit the symmetry (reflection) of the chain by applying the index reversal

i 7→ d − i,

which transforms the right-end pair (mi,mi+1) into the left-end pair (md−i−1,md−i) of the reflected chain.
Therefore, without loss of generality, we may assume that k+1 ≤ d+1

2 . Since d > 7, we observe that d+1
2 < d−3.

Consequently, it follows that k + 1 < d − 3. From this inequality we deduce that md−3 = md−2 = md−1 = 1.
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By definition,

Ed(m0, . . . ,md) = Ed−1(m0, . . . ,md−1) + md−1md

√
(md−2 +md)2 +m2

d−1

+ md−2md−1

√
(md−3 +md−1)2 + (md−2 +md)2

− md−2md−1

√
(md−3 +md−1)2 +m2

d−2

= Ed−1(m0, . . . ,md−1) + 2
√

2.

Let n′ := n− 1. Removing the last variable md = 1 yields a reduced number of terms in the expression of
length d − 1 whose total sum of entries equals n′. The induction hypothesis is to be applied to this reduced
chain Ed−1 (with length d − 1 and total sum n′). The pair (mk,mk+1) is strictly inside the reduced chain
because the reduced chain has internal indices 1, . . . , d− 2. Hence the induction hypothesis applies directly
to Ed−1 with the same index k. Note also that the target sum for the pair on the reduced chain equals

mk +mk+1 = n′ − (d′ − 1) = n − d + 1,

which is exactly the same value as in the original chain; thus the conclusion of the induction hypothesis
transfers unchanged to Ed.

Proposition 3.19. Let d ≥ 6, t ≥ 2, and let E(k; t) denote the value of the expression defined in (2) when mk = mk+1 = t,
1 ≤ k ≤ d − 3, and every other inner mℓ = 1. Define ∆k(t) := E(k + 1; t) − E(k; t). Then the following holds:

1. If 3 ≤ k ≤ d − 4, then

∆k(t) = 0 for all t > 1.

2. For the leftmost positions k = 1 and k = 2, when d ≥ 6, one obtains

∆1(t) = E(2; t) − E(1; t) = t
√

(t + 1)2 + t2 −
√

(t + 1)2 + 1 > 0,

and

∆2(t) = E(3; t) − E(2; t) =
√

(t + 1)2 + 4 −
√

(t + 1)2 + 1 < 0 (t ≥ 2).

3. If k = d − 3 and k = d − 2, then it holds that ∆d−2(t) = ∆1(t) and ∆d−3(t) = ∆2(t).

Proof. All computations are elementary substitutions into the Tr formulas and straightforward cancellations.
We give the algebraic derivations case by case.

Case (1) Suppose 3 ≤ k ≤ d − 4. With the pair at (k, k + 1) the only dependent indices are

{k − 1, k, k + 1, k + 2, k + 3},

and each of these indices lies strictly inside {2, . . . , d − 1} so the formula for Tr applies, for 2 ≤ r ≤ d − 1.
Substituting mk = mk+1 = t and mi = 1, i < {k, k + 1} yields

Tk−1 =
√

4 + (t + 1)2,

Tk = t
√

2 (t + 1),

Tk+1 = t2
√

2 (t + 1),

Tk+2 = t
√

2 (t + 1),

Tk+3 =
√

4 + (t + 1)2.
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The shifted pair at (k + 1, k + 2) produces the same multiset of five terms (just shifted by one index), so
E(k + 1; t) and E(k; t) are identical and therefore ∆k(t) = 0.

(2a) Case k = 1. With the pair at (1, 2) the affected terms are those with the indices (for d ≥ 6) are 1, 2, 3, 4.
Substitution gives

E(1; t)
∣∣∣
affected

= t
√

(t + 1)2 + t2 +
√

2 (t + 1)(t2 + t) +
√

(t + 1)2 + 4.

For the pair located at (2, 3), the affected terms are 1, 2, 3, 4, 5, which results in the following expression for
d ≥ 6:

E(2; t)
∣∣∣
affected

=
√

(t + 1)2 + 1 +
√

2 (t + 1)(t2 + 2t) +
√

(t + 1)2 + 4.

Subtracting gives the formula ∆1(t) = t
√

(t + 1)2 + t2 −
√

(t + 1)2 + 1 + 2
√

2, whence ∆1(t) > 0 for t > 1.

(2b) Case k = 2. For d ≥ 7, considering the pair located at (2, 3), the five affected indices yield

E(2; t)
∣∣∣
affected

=
√

(t + 1)2 + 1 +
√

4 + (t + 1)2 +
√

2 (t + 1)(t2 + 2t),

while moving the pair to (3, 4) yields

E(3; t)
∣∣∣
affected

= 2
√

4 + (t + 1)2 +
√

2 (t + 1)(t2 + 2t).

Subtracting gives

∆2(t) =
√

4 + (t + 1)2 −
√

1 + (t + 1)2 +
√

5 − 2
√

2 (4)

=
(4+(t+1)2)−(1+(t+1)2)
√

4+(t+1)2+
√

1+(t+1)2
+
√

5 − 2
√

2

= 3√
(t+1)2+4+

√
(t+1)2+1

+
√

5 − 2
√

2

< 3
2(t+1) +

√
5 − 2

√
2 for t ≥ 2

≤
3
6 +
√

5 − 2
√

2 < 0.

Each left-end formula has a mirror on the right end: replace index r by d − r. Thus the stated right-end
identities hold.

Proposition 3.20. Let d ≥ 6, t ≥ 2, and let E(k; t) denote the value of the expression in (2) when mk = t+1, mk+1 = t
for some 1 ≤ k ≤ d − 3, and every other inner mℓ = 1. Define ∆k(t) := E(k + 1; t) − E(k; t). Then:

1. If 3 ≤ k ≤ d − 4, then

∆k(t) = 0 for all t > 0.

2. For d ≥ 6,

∆1(t) = E(2; t) − E(1; t) = (t + 1)
√

(t + 2)2 + (t + 1)2 +
√

(t + 2)2 + 1 −
√

2 (t + 1)2 > 0,

and for d ≥ 7,

∆2(t) = E(3; t) − E(2; t) =
√

(t + 2)2 + 4 −
√

(t + 2)2 + 1 > 0.

3. By symmetry of the chain,

∆d−2(t) = ∆1(t) and ∆d−3(t) = ∆2(t).
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Proof. All steps follow by substituting the specified tuple into the Tr formulas and cancelling identical
terms.
(1) 3 ≤ k ≤ d−4. The only indices whose Tr change when the pair sits at (k, k+1) are r ∈ {k−1, k, k+1, k+2, k+3}.
With mk = t+1, mk+1 = t and all neighbors = 1, one computes

Tk−1 =
√

4 + (t + 2)2,

Tk = (t + 1)
√

(t + 2)2 + (t + 1)2,

Tk+1 = t(t + 1)
√

(t + 1)2 + (t + 2)2,

Tk+2 = t
√

(t + 2)2 + (t + 1)2,

Tk+3 =
√

(t + 1)2 + 4.

Shifting the pair one step to (k+1, k+2) simply shifts this same multiset of five values along the chain (the
two square-root arguments are the same two numbers in reversed order), so the partial sums coincide and
hence ∆k(t) = 0.
(2a) k = 1. For d ≥ 6 and the pair at (1, 2) we have, on the affected block r = 1, 2, 3, 4,

E(1; t)
∣∣∣
aff
=
√

2 (t + 1)2︸       ︷︷       ︸
T1

+ t(t + 1)R︸   ︷︷   ︸
T2

+ tR︸︷︷︸
T3

+
√

(t + 1)2 + 4︸          ︷︷          ︸
T4

,

where R :=
√

(t + 2)2 + (t + 1)2. For the pair at (2, 3) the affected block r = 1, 2, 3, 4, 5 yields

E(2; t)
∣∣∣
aff
=

√
(t + 2)2 + 1 + (t + 1)R + t(t + 1)R + tR +

√
(t + 1)2 + 4.

Subtracting gives

∆1(t) = (t + 1)R +
√

(t + 2)2 + 1 −
√

2 (t + 1)2 + 2
√

2.

Since R =
√

(t + 2)2 + (t + 1)2 >
√

(t + 1)2 + (t + 1)2 =
√

2 (t + 1), we get (t + 1)R −
√

2(t + 1)2 > 0, hence
∆1(t) > 0.
(2b) k = 2. For d ≥ 7 and (2, 3) we already have the affected sum above. Moving to (3, 4) changes only the
two boundary terms, giving

E(3; t)
∣∣∣
aff
=

√
4 + (t + 2)2 + (t + 1)R + t(t + 1)R + tR +

√
(t + 1)2 + 4.

Thus, according to inequality (4), we obtain the following inequality ∆2(t) =
√

(t + 2)2 + 4 −
√

(t + 2)2 + 1 +
√

5 − 2
√

2 < 0.
(3) Reflecting the chain (replace index r by d−r) maps (1, 2) to (d−2, d−1) and (2, 3) to (d−3, d−2), preserving
the computed differences. Hence ∆d−2(t) = ∆1(t) and ∆d−3(t) = ∆2(t).

From the two preceding propositions, it follows that Ed, for d ≥ 6, attains its maximum for tuples of the
form (m0, . . . ,mk,mk+1, . . . ,md), where mk = ⌈

n−d+1
2 ⌉, mk+1 = ⌊

n−d+1
2 ⌋, and mi = 1 for all i < {k, k+1}, specifically

in the case k = 2. The same observation can be straightforwardly demonstrated in the case d = 5.

From Corollaries 3.11 and 3.2, together with Theorem 3.18 and Propositions 3.19 and 3.20, we now
establish the main theorem. This result provides a complete characterization of all bipartite graphs that
attain the maximal Sombor index for a fixed order and diameter.

Theorem 3.21. Let G = [V0,V1, . . . ,Vd] ∈ B(n, d) be a connected bipartite graph with the maximal Sombor index.
Then:

• If d = 3, the partitions satisfy |V0| = |V3| = 1, |V1| = ⌈
n−2

2 ⌉, and |V2| = ⌊
n−2

2 ⌋.

• If d ≥ 4, then |V0| = |V1| = |V3| = · · · = |Vd| = 1, while |V2| = ⌈
n−d+1

2 ⌉ and |V3| = ⌊
n−d+1

2 ⌋.
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Conclusion

In summary, we have characterized the bipartite graphs of order n and diameter d that attain the max-
imum Sombor index. The principal contribution of this work is a structural description of the unique
extremal graphs in B(n, d), obtained by combining new analytical methods with classical extremal graph
theory arguments. This result provides a complete solution to the problem of how imposing a diameter
constraint influences the maximum possible value of the Sombor index, thereby broadening the under-
standing of degree-based graph invariants under structural restrictions. A natural direction for further
research is to extend this study to broader graph classes. In particular, it would be of interest to investigate
the extremal Sombor index of multipartite graphs of a given order and diameter.

References

[1] Gutman I., Geometric approach to degree-based topological indices: Sombor indices, MATCH Commun. Math. Comput. Chem. 86
(2021), 11–16.
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