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Abstract. In this article we explore a new growth condition on Young functions, which we call Mulholland
condition, pertaining to the mathematician H.P Mulholland, who studied these functions for the first time,
albeit in a different context. We construct a non-trivial Young function Q which satisfies Mulholland
condition and A,-condition. We then associate F-norms to the vector space X; ® X,, where X; and X, are
Banach spaces, using the function ). This F-space contains the Banach space X; and X, as a maximal
Banach subspace. Further, the Banach envelope (X; ® X5, [|./lq,) of this F-space corresponds to the Young
function Q, who characteristic function is an asymptotic line to the characteristic function of the Young
function Q. Thus these F-spaces serves as “interpolation space” for Banach spaces X; and (X; ® Xo, ||.llo,)
in some sense. These F-space are well behaved in regards to Hahn-Banach extension property, which is
lacking in classical F-spaces like LV and H” for 0 < p < 1. Towards the end, some direct sums for Orlicz
spaces are discussed.

1. Introduction

F-spaces often arise in various subdomains of operator theory. For an introductory literature on F-
spaces one can refer the book “An F-space sampler” by N.J] Kalton [6], where he studies non-locally convex
topological vector spaces (F-spaces in particular). Most of the text is dedicated to the study of F-space
LF[0,1] and H? for 0 < p < 1 (the p-norm being ||f||, = f |fIPdu). One can construct Banach envelope of
any F-space, which in some sense is the “smallest” Banach space containing the original F-space by giving
a new norm to the underlying vector space. As mentioned by Kalton, modern functional analysis mostly
focuses on locally convex space, and rightly so. But in some cases, there is no reason to restrict the study to
locally convex space, for example there is no reason to restrict the study of H” spaces only for p > 1. Several
important results regarding F-spaces are explored in [11],[10],[3],[7] and [6].

In this article we consider a family of special type of Young functions ®(x) = [x|e*!"R), where x is a
continuous even convex function on R which is also strictly increasing on positive axis. The function y will
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be called the characteristic function of ®. Such Young functions are said to satisfy Mulholland condition.
When y is an affine function of the type x(x) = ax+b, then the associated Young function is of type ®(x) = Cx™
for some C > 0 and m € N. But these Young functions are of less interest to us. In section [3} we construct
a special kind of Young function QQ whose characteristic function x has an ever increasing growth. But the
growth of Q is still restricted by As-condition. These characteristic functions have a linear asymptote at
infinity, which will serve as characteristic function for Young function 3,. Now for any two Banach spaces
Xj and X5 and any Young function @ with Mulholland condition, we can assign an F-norm .|| to the space
X1 ®X,. These F-norms are actually norms if the characteristic function of @ is an affine function. Otherwise
these F-norms fails homogeneity condition in general. We will show that for our special type of Young
function Q constructed in example the F-space (X1 ®X», ||.llq) is not a Banach space and contains both X;
and X, as maximal Banach subspaces. Further they manifest an interesting geometric phenomenon. The
Banach envelope of (X1 @& Xy, ||.lla) is (X1 & X5, ||.llo,), where Q, is the Young function whose characteristic
function is the asymptotic line to the characteristic function of Q. Interestingly these spaces also enjoy the
Hahn-Banach extension property (HBEP), which is not a common appearance in F-spaces.

2. Preliminaries to Young functions and associated Orlicz spaces.

2.1. Young functions

Definition 2.1. A Young function is a convex, left semicontinuous, even function ® : R — [0, oo] such that
D(0) = 0 and limy_,oo D(x) = oo.

A Young function is said to be finite if (x) < oo for each x € R. Finite Young functions are automatically
continuous because finite convex functions are continuous. Further an Young function @ is called N-function
if it is continuous (and hence finite), lim,_, ? = o0 and lim,_,g ? = 0. A Young function @ is said to
satisfy Mulholland conditions if it is continuous and strictly increasing on [0, ) and log @(x) is a convex
function of log x. In fact it was shown in [1]][5,Cor. 1] that a strictly increasing (on positive real axis) finite
Young function @ satisfying Mulholland condition is equivalent to it taking the form ®(x) = |x|ex1°sI) for
some continuous increasing convex function y. In such situation, we say that y is the characteristic function
of P.

Example 2.2. The functions such as sinh|x|, |x|'*e!™" (a,b,c > 0) are strict Young functions which satisfies
Mulholland conditions.

A Young function @ is said to satisfy A,-condition if there exists M > 0 such that ®(2x) < M®P(x) for all
x > xp > 0. For example, if we take x to be an affine function on R with positive slope, then ®(x) = |x|ex(og)
gives us a trivial Young function which is strict and satisfies both Mulholland condition and A;-conditions.
In-fact there is an ubandance of strict Young functions which satisfy both these conditions.

Associated to a Young function ®, there exists another convex function \V given by
W(y) = supi{xlyl - @(x) : x>0}, yeR.

The function W is also a Young function and the pair (@, W) is called complementary pair of Young functions.
The complementary pair (®, V) of Young functions is said to satisfy A,-condition if both ® and W satisfy
Ap-condition.

Remark 2.3. Forp > 1, the maps t — |t| are Young functions which satisfy both the A,-condition and Mulholland’s
condition. Further the associated complementary Young function also satisfies Ay. In-fact taking x to be any affine
function of positive slope on R makes ®(t) = |teX18!) g Young function which satisfy Mulholland condition and the
complementary pair associated to it satisfies Ap-condition.
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2
Example 2.4. The Young function ® : R — R* defined as t — |t|eT}tI is strict and satisfy Mulholland’s condition.
Further the complementary pair (®, W) satisfies Ap-condition. Clearly, ®(t) = |tHes™ 181" and hence it satisfies
Mulholland condition since sinh is strictly increasing convex function on [0, c0). Now notice that
D(21)
D(t)

And hence, @ does not satisfy Ar-condition.

21241
=2 % — o

2.2. Orlicz spaces
We define Orlicz space associated to a measure space (X, u) and Young function ® as

L®(X)={f: X > C : fis measurable ,f(l)([a’lfl)dy < oo for some f > 0}
b'e

L*(X) becomes a Banach space with respect to the Gauge norm

Nq,(f)=inf{k>o : fxcp(%)dyg}

There is an another equivalent norm on L?(X), known as Orlicz norm

Ifllo = sup {fxlfgldy : ge LY(X) and fX‘I’(IgI)dy < 1}.

Further, if (®, V) are a pair of complementary Young functions, both satisfying A,-condition, then (ch (X), Ncp)

is a reflexive Banach space with (LW(X), ||.||\y) as its dual space.

2.3. F-spaces

Definition 2.5. An F-space is a vector space X over a field of real or complex numbers together with a metric
d: X x X — [0, 00) such that

o Scalar multiplication in X is continuous with respect to the metric d on X and standard metric on C (or R).
o Addition in X is continuous with respect to d.

e d is translation invariant i.e, d(x + a,y + a) = d(x, y) forall x,y,a € X.

o Metric space (X, d) is complete.

The map x v ||x|lp = d(x,0) is called F-norm. An F-space is called Fréchet space if the underlying topology is
locally convex.

Definition 2.6. A topological vector space X is called locally bounded if there exists an open neighborhood A of 0
such that for each open neighborhood U of O there exists t > 0 such that A C sU for all s > t.

F-spaces are not locally convex in general and the closed unit ball Bx is not convex. Hence, it is natural to
consider the closed convex hull co(Bx). The Gauge seminorm on X

lIxllc = inf {)\ >0 : jxf € co(BX)}

is actually a norm on X if its dual X* separate points (see [6, Ch.2, sec. 4]) and the identity mapping

i (X |llle) = (X |I.llc) is continuous. In-fact (X, ||.|lc) is the “smallest” Banach space containing (X, ||.|Ir).
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Definition 2.7. Let (X, d) be an F-space with a separating dual. The Banach space (X, ||.||c) generated by the Gauge
norm on X is called the Banach envelope of the F-space (X, d).

Example 2.8. Consider the F-space (R?, ||.||,) for any 0 < p < 1. Then the closed convex hull of the unit ball of R?
with respect to ||.Il, is same as the unit ball of (R?,I.Il1) and hence (R?, ||.|l1) is the Banach envelope of (R?,1.Il,).

Theorem 2.9. [6, Ch.2 Sec. 4] If (X, d) is an F-space then the dual space (space of continuous linear functionals on
X with respect to F-norm) of (X, d) is the same (isometrically isomorphic) as the dual space of its Banach envelope.

3. Interpolation F-spaces of Banach spaces

We notice that there is an ubundance of non-trivial Young functions which satisfy both A;-condition
and Mulholland condition. In the previous remark, we saw few trivial examples of Young functions which
satisfy Mulholland condition and the complementary pair (®, V) satisfies Ay-condition. We now construct
a non-trivial example of such a Young function ®.

Example 3.1. Let M > 0 be a fixed number and {m;}°, be a strictly increasing sequence of positive real numbers con-
verging toa fixed M > 0. Consider the convex continuous even function x : R — R* defined as piecewise straight lines
on the intervals [0,In2],[In2,2In2],--- ,[rIn2, (r+ 1) In2], ... The slope of the line in interval [rIn2, (r+1)In2] is
m,. The growth of x is depicted in figure below.

y
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Now if we define Q(t) = |teX18), then Q is a Young function which satisfies Mulholland condition. It is very
desirable for Young functions and their complementary functions to have Ay-condition because it makes the associated
Orlicz spaces reflexive and the simple functions becomes dense in L®(X). Thus we show that the above constructed
Young function is actually well behaved with respect to the growth and possess Ap-condition. Notice that for t > 0
such that logt € [rlog?2, (r + 1) log 2], we have

Q(Zt) — zex(log 2+log t)—x(log t)
Q(t)
< 2emr+1 In2

< 2eM11’12 — 2M+1.

Hence, Q) satisfies Ap-condition. Although it is not necessary for our further results in this section, we will see
that the complementary function ® also satisfies Ap-condition. To ease the computation, we fix m, = 2 — 3. Let
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O(x,t) = xt — Q(x) be a function defined for x,t > 0. On interval I, = [27,2"*1] the function Q(x) takes the form
Q(x) = C,x™*1, where C, is a constant. Let t be fixed. The derivative of O on the interval I, is

d m
Ee(x, t) =t —Cp(m, + 1)x™.

1
Thus, O(x, t) attains a maximum value in interval I, at point x,(t) = (m)"" if x,(t) € I, or on the end points of
the interval. The maximum possible value of O(x, t) on interval I, is

mr —% 14+my
o G 1)

(1 + m,)

O, (b) = tx,(t) — Co(x, (1)) =

Now ©(t) = sup,., ©,(t). For a fixed t, the supremum is attained at some r = r(t), i.e, O(t) = O (t). Now, consider

the ratio R(t) = % = 69‘2:)(5;) Since, ©,(t) grows like to

Hence,

1 . . . . . . .
, the maximizing r(t) increase with an increase in t.

©,(2t) 1+:L
R(t) < max{——+ :re N} <27 m due to|1)
() < maxt-g " 7€ N) (
As m, — 2 for large values of r, we see that R(t) < 23/? eventually. Thus the complementary function © satisfies
Ao-condition.

Note: We will also need the Mulholland Young function Q, associated to the asymptotic red line y = 2x —2In2 in
the above figure. In-fact Qy(x) = |x[e?NFI=2In2 = L|x3

Example 3.2. Let x denote a function which is a combination of rotation of the graph of f(x) = e™ about origin by
angle O and appropriate translation such that the resulting curve has the y = xtan @ — c as an asymptote. Then
Q(x) = |x|eX"XD is an Young function which satisfies Mulholland condition and Ay-condition.

Suppose (X, ||.ll;) are F- spaces for i = 1,2,..,,n and ® is a Young function which satisfies Mulholland
condition. We consider the vector space direct sum &', X;. Further we define a metricdo : ®_, X; x @, X; —
[0, 00) as

Ao ((¥1, oors %), (Y1, oy Y)) = D71

Y @ (ki - yill)
i=1

The associated F-norm is [|(x1, ..., x,)llF = @1 (X, @(||xill;)). One can easily check that this is a well defined
metric. do ((x1, ..., Xu), (Y1, -, Yu)) = 0 if and only x; = y; for each i = 1, ..., n. Due to Mulholland’s condition
on @, the following Minkowsky type inequality (also known as Mulholland’s inequality) holds true (see [1][5,
Th. 1]).

ot <ot + @1

Zn‘ (D(LZ,' + bz) i q)(ﬂj) i q)(bi)
i=1 i=1 i=1

for all a;, b; > 0. And hence the triangle inequality follows for the F-norm on ®!_, X; and hence for the metric
de. We denote this metric space by (GszlXi, d(p).

Proposition 3.3. Metric space (@?:1Xi' dq)) is an F-space if ® satisfies Mulholland condition.

Proof. We start by showing that the scalar multiplication continuous with respect to the metric de. Suppose
{Ka, (x(la), ...,ngy))}aer be a net in C x &/, X; converging to {K, (x1, ..., x,)}. Then ||Kax1(,a) — Kxj|l; = 0 for each i
due the continuity of scalar multiplications in each space (X;, ||.|l;). Combining this with the fact that ® is

strictly increasing and continuous tells us that

do ((Kox'®, ., Koxl®), (Kt .., Ky)) = @71

n
Y oK - sz-ui)] - 0.
i=1
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Thus the scalar multiplication is continuous with respect to the metric do.

Now we turn to prove that the addition in ®!_, X; is continuous with respect to the metric do. But this is
evident from the fact that addition is a short map under the metric dy and hence continuous. The fact that
dg is translation invariant follows from the fact that the F-norm, which is translation invariant, generates

dep. Only thing remains to be verified is whether (@?ZlXi, dq)) is a complete metric space. To see this,
let {(x(lr), ...,x;r))}‘;‘;l be a Cauchy sequence in (EB;’:lX,-,dq,). Then for each € > 0, there exist a N, such that
do((x"), (2)) < e for all 7,5 > N,. Then

do (), () = 7 [Z (R x?)u,-)] <e
i=1

for all r,s > N.. Hence, due to @ being strictly increasing, we have Y., (I)(Il(xgr)) - xES)IIi) < O(e) for all

1,5 > N.. Hence for each i, again due to strictly increasing nature of ®, we have IIxZ(,r) - xgs)ll,- <O lPe) =€
Y)};";l is a Cauchy sequence in the F-space X;. Thus

57)} My xi for each i = 1,2,..,n. Now, we claim that

for all ,s > N.. Thus, for each i, the sequence {x
there exists x; € X; for each i = 1,2,..,n such that {x

{(x(lr),..., Pal)] i (x1,...,xs). But this is the easy consequence of the continuity of ® and ®~!. Hence,
(EB?:lXi, dq)) is an F-space. [J

As one might have noticed, for Banach spaces Xj, .., X;, the only thing preventing (@leXi, d(p) from
being a Banach space is the homogeneity of F-norm x — dg(0,x) with respect to scalar multiplica-
tion. In-fact the F-norm is homogeneous if ®(x) = Ix|eX" ) where x(x) = ax + b is any affine func-
tion. On the contrary if @ is of the type constructed in example then it is easy to see that the
F-norm on &, X; is not homogeneous with respect to scalar multiplication (the ever changing growth
of @ would not permit homogeneity, and it also follows from the next result). Consider the set W =
{V : V<@L X, lla@)llF = lalll(x)llF Ya € C, (x;) € EB?lei}. Define the natural ordering on W induced by
inclusion i.e V1 < V5 if V; is a subspace of V,. Then (W, <) becomes a partially ordered set. Further, W is
non-empty because V = {(x,0,..,0) : x € X3} € W. If {W,} is a chain in ‘W, then UW,, is its upper bound.
Hence, by Zorn’s lemma the family ‘W has at-least one maximal member. Clearly, the maximal member
of W will be closed with respect to the metric dp. Hence, the maximal member of W will be a Banach
space with respect to the norm ||.|[r. We will see that for @ constructed in example each space X; can be
identified isometrically (w.r.t dp) with a maximal member of W.

Definition 3.4. A locally bounded F-space (X, d) is called a p-interpolation F-space for Banach spaces X1, X, and a
p € [1,00) if

1. there exists a distance preserving linear maps iy : X1 — X and iy : Xo — X such that i1(X1) and i(Xy) are
maximal Banach subspaces in X.

2. the Banach envelope of (X, d) is the p-direct sum X1 &, Xo.

Theorem 3.5. If Q) is the Young function from exampleand (Xi, II-l;) be Banach spaces for i = 1,2,...,n. Then
each Banach space (X, ||.||;) is isometrically isomorphic to a maximal Banach subspace of the F-space (@?lei, dQ).

Proof. To simplify the computations, we shall prove it for n = 2. The general case follows in similar fashion.
Consider the natural embedding 6 : (Xy,|l.|h) — (X1 ® X5,dq) given by O(x) = (x,0). This is clearly an
isometry (w.r.t metric dg). We claim that 6(X;) is a maximal Banach subspace of the F-space (X; ® X5, dq).
To prove this, suppose on the contrary, that 0(X;) is not maximal. Then there exist W € ‘W such that
0(X1) < W. Hence, there exists a (x, y) € W \ 0(X;) such that

Q7" (Qllaxlh) + Qllayll)) = 1alQ™ (Q(lIxlh) + D(llyll)) Ve € C. ()
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Without loss of generality, we can choose (f, g) to be such that u = ||x|l; = 1 and v = ||y|l = 1. Thus due to
equation 2} we have

Q(2aQ QW) + Q()))
QQlalu) + QQlalv)

YaeC 3)

Hence,

Q20 QW) + Q@) Q(2adQ QW) + QW) |Q Q) + Q)

QQlalu) + QRlal) Q- 1(QW) + Q) QQlalu) + QQ2lalv)
lal N
<MeGam + Qo '@ € Clarge enough (- Qish) @)

Now notice that for large values of t the function Q(t) ~ }£>. Hence, Q(2lalu) ~ 2|a’|u® and Q(2lalv) ~ 2|a’[v3.
For large values of a. Thus from the equation 4 we have

. Q(ZIaIQ*l(Q(u)+Q(v)))<1. ol 0
oo T Q@) + QQlal) - abe " 2aP@d 108

which is a clear contradiction to the equation 3]

Hence, 0(X;) is a maximal Banach subspace of the F-space (X1 ® Xp,dq). O

Remark 3.6. The above phenomenon is peculiar for the special Young function Q) constructed in example[3.1} For
Young functions of the type ®(x) = cx™, the subspace X; is not a maximal Banach subspace in (X1 & X5, de) because
the latter is a Banach space itself in such case.

In the preceding theorem, we have interpolated the F-space (X; ® X»,dq) from inside through maximal
Banach space. Now in the next result we interpolate it from the outside i.e we compute its Banach
envelope. Recall from example the Young function Q, whose characteristic function was an asymptote
to the characteristic function of Q. We now demonstrate an interesting phenomena which outlines that a
Banach envelope of an F-space associated to a Young function Q with Mulholland condition is nothing but
the space associated to the Young function whose characteristic function is an asymptote to the characteristic
function of Q. Since, (X; ® X, dg) has a separating dual and is locally bounded (see theorem , we have
the following result.

Theorem 3.7. If X; and X, are Banach spaces, then the Banach envelope of the F-space (X1 ® Xa,dq) is the Banach
space (X1 ® Xz, dg,).

1/3
Proof. Recall that ||(x1, x2)lla, = da, ((0,0), (x1,x2)) = (llxlll3 + ||x2||3) / . We just have to prove that the gauge

1/3
norm is p(x1, x2) = inf {/\ >0: @ € co(B)} = (||x1||3 + ||x2||3) / , where co(B) denotes the closed convex hull
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1/3
of the unit ball of (X; & X»,dq). Let k > 0 be very large. Further let A = (Ilkx1||3 + ||kx2||3) / . Then

H(kX1;\ky2) - o1 (Q(Hkil”) N Q(Hkizn))
<q! (Q(Hkilﬂ) +0 (||k;2||)) .01 < O eventually
< Qo_1 (%Q(llkxlll) + %Q(Ilklel)) "~ Qs convex and A is very large
~ 07 (g lalf + ikl £ 1) = 21 for large !
= e ) +

=1+¢
where, e — 0 as k — oo. Thus, p(kxy, kxz) < (1 + €;)A for large k. But p is a norm and hence p(kx1, kx;) =

lklp(x1, x2) for all k. Hence, p(x1,x2) < (lelll3 + ||xz||3’)l/3 = ||(x1,x2)llo,- To prove the reverse inequality, fix
a € Xy and b € X5. Then, define a functionp, : R? — [0, o) as Po(s, t) = p(sa, tb). Thisis a well defined function
and it can be easily verified that this is convex and homogeneous with respect to scalar multiplication on
R2. If p is a norm other than ||./|o,, then the associated convex functions p, should be sandwiched between
pa, and po, where po, (s, 1) = Q,( Vs? +12) and pa(s, t) = Q(Vs? + 12). But the only homogeneous convex
functions sandwiched between Q, and Q) is (), itself (since its characteristic function is asymptote to Q).
Hence, (X1 ® X3, dq,) is the Banach envelope of the F-space (X1 ® X»,dq). O

Summary: We have so far worked with Q, where the sequence of slopes for characteristic function is
assumed to be m, = 2 — 3 for the ease of computation. But all of the above results holds in a general case
as well. The following result captures the essence of if in general setup.

Theorem 3.8. Let X; and X, be two Banach spaces and (X1 @ X, ||.||p) be their p-direct sum for some 1 < p < oo.
Then there exists a p-interpolation F-space (X1 @ Xz, ||.llq) which contains X1 and X, as maximal Banach subspaces

and the Banach envelope of (X1 ® X2, ||.lq) is the p-direct sum (X1 @ Xo, ||.||,,>.

Proof. Consider the Young function Q, = %lep . Then its characteristic functionis x,(x) = (p—1)x—Inp. Now
choose a increasing sequence {m,}’?, of positive real numbers such that m, — p — 1. Construct a continuous
even function x : R — R of piece-wise straight lines of slope 1, and such that x has x, as an asymptote (this
is always possible). Then the F-space (X; @ X, dq) associated to the Young function Q(x) = |x|eX" is the
required interpolation space. [

Corollary 3.9. Let Q be an Young function with Mulholland condition such that the line x,(x) = (p — 1)x —Inp is
asymptote to Q (as constructed in preceding theorem for 1 < p < oo). Then the dual of the F-space (X1 & X»,dq) is

the Banach space (X1 o X;, ||.||q), where }7 + % =1.

Proof. Follows easily from the preceding theorem and the fact that the continuous dual of an F-space is
equal to the continuous dual of it Banach envelope. [

Remark 3.10. One might be tempted to ask- what about the F-space X1 ® X3 equipped with ||(x, y)Il, = |Ix|IP + [yl
for some p < 1? Well, these are non-locally convex F-space and they do not carry a copy of Xy or X, let alone
contain them as maximal subspaces. Also, its Banach envelope is always (X1 @ Xa, ||.ll1). Further they do not possess
Hahn-Banach extension property and hence deemed as object of less interest.

Definition 3.11. An F-space (X, d) is said to have the Hahn-Banach Extension property (HBEP) if for any closed
subspace M of X and any continuous linear functional ¢ : M — C has a continuous extension ¢’ : X — C such that
@’ (x) = @(x) for all x € M.
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It is proved in [6, Ch. 2,3] that the spaces ¢’ and H” does not have HBEP for 0 < p < 1. Motivated by
these, Duren, Romberg and Shields formulated the problem in 1969-“Is every F-space X with HBEP locally
convex?”. Shapiro answered this question in affirmative if X has a basis [2] . The answer to this question
was proved to be affirmative in general by N.J Kalton (see [6, Theorem 4.8]). For two Banach spaces X, X»
and the Young function Q from example the interpolation F-space (X1 ®q X2, dq) turns out to be locally
convex and hence a Fréchet space, since it posses HBEP, as proved in the next result.

Theorem 3.12. Let Xy, X5 be two Banach spaces and ® be a Young function with Mulholland condition. Then, the
F-space (X1 ® X2, do) has the HBEP.

Proof. Let M be a closed subspace of (X; @9 X»,de) and ¢ : M — C be a continuous linear functional.
Consider the projection subspace m71(M) and (M) in X; and X, respectively. Let @, : m1(M) — C and
@r, : T2(M) — C be the restriction maps i.e ¢, (x) = @(x,0) and @, (y) = ¢(0,y). Then ¢,, and ¢, are
continuous linear maps. By Hahn-Banach theorem, there exists a continuous extensions ¢; : X; — C and
@2 : Xo = Cof ¢r, and @, respectively. Let ¢ : X; @ X, — C be defined as ¢’ (x, y) = @1(x) + @2(y). Clearly,
¢’ is an extension of ¢ : M — C. We claim that it is continous with respect to the metric dp. Suppose (x,, y»)
is a sequence in X; ® X, converging to (x1, x;) with respect to the metric dyp. Then

lim @~ (@ (|l — ) + @(lly. — i) = 0.

Since @' and @ are strictly increasing continuous functions, we can deduce that ||x,—x|| — 0and ||y,—y|| — 0.
Hence, x, — x and y, — y. Using the continuity of ¢; and ¢,, we know that ¢i(x,) — @i(x) and

©2(y) = @(y). Hence, ¢’ (xy, yu) = @1(xn) + @2(yn) = @1(x) + @2(y) = ¢’ (x, y). Thus, ¢’ is an continuous
extension of . [J

Theorem 3.13. For a family of locally bounded F-spaces { X}, and an Young function ® which satisfies Mulholland
condition, the F-space (8,X;, do) is locally bounded.

Proof. It would be sulfficient to prove this for the case n = 2. Let BY denote the open ball of the F-space X;

of radius r and centered at 0. The open ball of (X ® X;, dp) centered at (0,0) and of radius r will be denoted
by BP. Notice that for (x,y) € By, we have @1 (O(||x[)) + (|lyll)) < 1. Thus ®(||x]|) < ®(1) and P(||yll) < 1.

Hence, ||x]| < 1 and similarly ||y|| < 1. Thus, (x,y) € B(ll) X Bgz) and
o 2
BY c BY” x B{". (5)

Further, if ¢, r > 0 then for any (cx, cy) € cBil) X cB£2), we have

(%%) = ¢! (@(M) + @(M))

o 2c 2c
<! (%@(Hxll) + %q)(”y“)) due to convexity of @
<@l (%q)(r) + %q)(r)) due to @ being increasing
-y (6)
Thus,
cBgl) X cB? c 2cBY foreachc, 7> 0 (7)

Now fix a r, < 1. Since X; and Xj are locally, we can find a t such that Bgl) C ng) and Bgz) C sBif) for all
s > t. Hence,

B x B? c sBYY x sBY Vs > t. 8)

To
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Combining the above inclusion with the inclusion in equation{5|and [7} we get
B? c B x B c sBY x sBY ¢ 2sBY Vs > . 9)
Thus, the collection of open balls of radius less than one and centered at origin forms a neighborhood base
at origin. The set B; is bounded and hence (X; ® X5, do) is a locally bounded F-space. [
3.1. Coefficient of non-homogeneity of F-spaces

Since F-norms are non-homogeneous, the best property an F-space (X, ||.|[r) they could exhibit is that
there exists M > 0 such that |[kx||r < M|k| - ||X||r holds for all x € X and k € C. We define the coefficient of
non homogeneity for F-spaces in the obvious way as follows.

Definition 3.14. Let (X, ||.|lr) be an F-space. Then the coefficient of non-homogeneity of X is
VI = inf{M > 0 : |lkx|| < M|k|.||x]|, Vk € C,x € X}.

Obviously not all spaces have a finite coefficient of non-homogeneity. For example, if 0 < p < 1, then
(R%,11.ll,) does not have finite coefficient of non-homogeneity because ||(kx, ky)ll, = k¥”l|(x, y)Il,. We will show
that F-norms associated to the Young functions with Mulholland condition, whose characteristic function
has linear asymptote, have finite coefficient of non-homogeneity.

Lemma 3.15. If @ isa Young function with Mulholland condition such that its characteristic function has a line as its
asymptote and Xy, X, are F-spaces with finite coefficient of non-homogeneity, then the coefficient of non-homogeneity
of the F-space (X1 & Xy, ||.llo) is max{vx,, vVx,}. i.e, Vx,exallle) = Max{Vx,, vx,}.

Proof. Let x(x) be the characteristic function of ® and x’(x) = mx — ¢ be the asymptote to x. Further, let @’
be the Young function whose characteristic function is x’. Then, mx < x(x) < x’(x). And hence,

1
D" (x) = ¥ < D(x) < ;xm” = @' (x).

Let m; = vx, and my = vx, and M = max{m;,, my}. Now notice that

Ik, Pl = @~ (@(Ilkxll) + P(Ilkyll))
< @7 (@ (maKllxll) + @' (malKllyl]))

e Mkm+1
<o (M e 4 i)
Mik L
= 2 (gt 4 )
e m+1
Mk /= ’ ’
= —L]'@ 1@ (Il + @ (IlylD)
MK
< 2o (@i + oy
Mk c ’—
= 2w (i) + O(ly1)
< MKl - &7 @(1) + (ly1D) (10)

Thus, ||(kx, ky)llo < MIkl-|I(x, y)llo holds forallk € Cand x € X3, y € Y. Hence, v(x,ex, 1) = Max{vx,, vx,}. O
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4. Direct Sums of Orlicz spaces

This section is dedicated to establishing a proper notion of direct sums of Orlicz spaces. Recall that if
(S, A, u) is a sigma-finite measure space, then we can define the p-direct sum L7 (S)®, L7 (S) equipped with the
p-norm ||(f, pll, = (I + ||g||F’)1/” . Further the L7(S) &, LF(S) is isometrically isomorphic to L7 ({1, 2}, LP(S))
(Bochner space, see [9] 1.2b]) through the identification 6(f, g)(1) = f, 6(f, 9)(2) = g. Further L7 ({1, 2}, L?(S))
is isometrically isomorphic to L”({1,2} X S) (see [9] Prop. 1.2.24]). Hence, the p-direct sum of L*(S) is again
an L7 space, albeit over a different measure space {1,2} X S (product measure of counting measure space
{1,2} and measure space S.)
Now suppose @ is any Young function and (S, A, ) be a measure space. Consider the Orlicz space L*(S)
as defined in section 2.2} We aim to define an appropriate norm Nr on the vector space L?(S) @ L®(S) such
that it becomes a L® space on some measure space.

Let I' : R? — [0, o) be any convex continuous function which is radially increasing (i.e, I'(rx, ry) is an
increasing function of r for a fixed (x, y)) and the contours U. = {(x,y) : I'(x,y) = c} for any ¢ > 0 are
all convex polygons with fixed number of sides and centered at origin. Further the extreme points of the
polygon Uj are no farther than one unit from origin and T'(0,0) = 0. Define Nr on L®(S) ® L?(S) as

Nr(f,g)zinf{)t>0 : r(ﬁ@(@)dt,j;@(lg;—t)')dt)g}

We need to verify that this is a well defined norm. Clearly Nr(f,g) > 0. If f = h = 0 then Nr(f, g) = 0 follows

easily. Furtherif No(f, g) = 0, then there exists asequence {A,})” ; — OsuchthatT ( fs (lf (t)l) dt, fs (IgA(i)l) dt) <
1 for each n. Hence,

/() lg(®)]
L0220, {22} sy

In particular fs (lf (t)l) dt <1 for each n. Now suppose that f is a non-zero function, then there exists a set
A of positive measure and an € > 0 such that |f()| > e for all t € A. Thus,

M(A)cp(%) < L@(lf/\(—?')dt

<1 for each n

Which means ®(3-) < 75 for each n. But this is absurd because - increases indefinitely and @ is

an increasing function. Hence, contrary to our assumption, f must be a zero almost everywhere func-
tion. Similarly, g also vanishes almost everywhere. Now we verify the triangle inequality. Suppose
(f1,91), (f2, 92) € L2(S) ® L*(S) and Nr(f1,91) = ki and Nr(f2, g2) = k2. Now notice that

lf1(t) + fa(B) lg1(t) + g2(t)]
r(fscp( ki + ko )dt'fsq)( ki + ko )dt)
ky If1 (B lg1(B)l If1 (Bl lg1(B)l
_r(k1+kz(f ( ky )dt'fsq)( ky ) ) k1+k2(fs ( ) fsq)( ky )dt))
k1 LA lg1(2)] |f2(t)| lg2(8)l
Sk1+k2r(fsq)(7)dt'fsq)( kn )dt) _k1+kzr( ( ) 'fs(p( ko )dt)
k1 ks

<
*htk Ktk
—1

Hence, Nr((f1, 91) + (f2, 92)) < Nr(f1, 91) + Nr(f2, 92).
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Finally, we verify that L®(S) @ L®(S) is complete with respect to the norm Nr. Let {(f;, g1)}%>, be a Cauchy
sequence in L?(S) @ L?(S) with respect to norm Nr. Then for each € > 0, there exists N. € N such that
Nr((fu, gn) = (fin, gm)) < € for all n,m > N.. Hence for each pair of positive integers (1, m) such that n,m > N,
we can choose a 0 < A, < € such that

|fn(t) - fm(t)| |gn(t) - gm(t)|
F(LQ(T)W,LCD(T))S 1 Vn,m > N,.

Hence, fxtl)(w)dt < 1 for all n,m > N, which in turn means No(f, — fn) < Aym < € for each

n,m > N Hence { fn}i‘;"’:1 and similarly {g,} >, are Cauchy sequences in L®(S). Suppose f, — f € L*(S) and
gn — g € L2(S). Then with easy computations similar to above, one can conclude that (f,, 7,) converges to
(f, g) with respect to Nr norm. Hence (L*(S)) ® L®(S) is complete with respect to Nr.

We now establish that the appropriate norm for the direct sum L*(S) ® L?(S) corresponds to the function

I'(x,y) = |x| + [yl

Theorem 4.1. Let I' : R* — [0, 00) be the function T(x, y) = |x| + [yl and (S, A, ) be a measure space. Then the map
n: (L2(S) ® L2(S), Nr) — L®({1,2} x S) defined as

n(f, 9, x) = f(x), 0(f, 92, x) = g(x)
is an isometric isomorphism of Banach spaces.

Proof. Clearly 7is a linear bijection, as can be verified easily. Further for any (f, g) € L?(S) ® L®(S), we have

No(n(f,9)) =inf{A >0 : fm} Sq,(w

In(ffg)(t,s)l)d _ (If(_x)l)d (M)d
j{;,z}xsq)( 1 u(s, t) L@ 1 x+£® 1 x

_ f )l lg(x)|
i r(fsq}( A )dx’fsq)( 2 )dx)
Hence, by equation [T} we have

No(n(f,9)) =inf{A>0 : F(fsql(@)dx,fstb(lgg—x)')dx)s 1}

= Nr(f, 9)

Thus, the isometric isomorphism is established. O

)dy(s, £) < 1}. 11)

But
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