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Abstract. In this article we explore a new growth condition on Young functions, which we call Mulholland
condition, pertaining to the mathematician H.P Mulholland, who studied these functions for the first time,
albeit in a different context. We construct a non-trivial Young function Ω which satisfies Mulholland
condition and ∆2-condition. We then associate F-norms to the vector space X1 ⊕ X2, where X1 and X2 are
Banach spaces, using the function Ω. This F-space contains the Banach space X1 and X2 as a maximal
Banach subspace. Further, the Banach envelope (X1 ⊕ X2, ||.||Ωo ) of this F-space corresponds to the Young
function Ωo who characteristic function is an asymptotic line to the characteristic function of the Young
function Ω. Thus these F-spaces serves as ”interpolation space” for Banach spaces X1 and (X1 ⊕ X2, ||.||Ωo )
in some sense. These F-space are well behaved in regards to Hahn-Banach extension property, which is
lacking in classical F-spaces like Lp and Hp for 0 < p < 1. Towards the end, some direct sums for Orlicz
spaces are discussed.

1. Introduction

F-spaces often arise in various subdomains of operator theory. For an introductory literature on F-
spaces one can refer the book “An F-space sampler” by N.J Kalton [6], where he studies non-locally convex
topological vector spaces (F-spaces in particular). Most of the text is dedicated to the study of F-space
Lp[0, 1] and Hp for 0 < p < 1 (the p-norm being || f ||p =

∫
| f |pdµ). One can construct Banach envelope of

any F-space, which in some sense is the “smallest” Banach space containing the original F-space by giving
a new norm to the underlying vector space. As mentioned by Kalton, modern functional analysis mostly
focuses on locally convex space, and rightly so. But in some cases, there is no reason to restrict the study to
locally convex space, for example there is no reason to restrict the study of Hp spaces only for p ≥ 1. Several
important results regarding F-spaces are explored in [11],[10],[3],[7] and [6].

In this article we consider a family of special type of Young functions Φ(x) = |x|eχ(ln |x|), where χ is a
continuous even convex function on Rwhich is also strictly increasing on positive axis. The function χwill

2020 Mathematics Subject Classification. 46A16, 46E30, 46B70
Keywords. F-spaces, Frechet Spaces, Banach spaces, Metric space, Banach envelope, Interpolation spaces, Orlicz spaces
Received: 18 September 2025; Accepted: 17 December 2025
Communicated by Dragan S. Djordjević
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be called the characteristic function of Φ. Such Young functions are said to satisfy Mulholland condition.
Whenχ is an affine function of the typeχ(x) = ax+b, then the associated Young function is of typeΦ(x) = Cxm

for some C > 0 and m ∈ N. But these Young functions are of less interest to us. In section 3, we construct
a special kind of Young function Ω whose characteristic function χ has an ever increasing growth. But the
growth of Ω is still restricted by ∆2-condition. These characteristic functions have a linear asymptote at
infinity, which will serve as characteristic function for Young functionΩo. Now for any two Banach spaces
X1 and X2 and any Young functionΦwith Mulholland condition, we can assign an F-norm ||.||Φ to the space
X1⊕X2. These F-norms are actually norms if the characteristic function ofΦ is an affine function. Otherwise
these F-norms fails homogeneity condition in general. We will show that for our special type of Young
functionΩ constructed in example 3.1, the F-space (X1⊕X2, ||.||Ω) is not a Banach space and contains both X1
and X2 as maximal Banach subspaces. Further they manifest an interesting geometric phenomenon. The
Banach envelope of (X1 ⊕ X2, ||.||Ω) is (X1 ⊕ X2, ||.||Ωo ), where Ωo is the Young function whose characteristic
function is the asymptotic line to the characteristic function of Ω. Interestingly these spaces also enjoy the
Hahn-Banach extension property (HBEP), which is not a common appearance in F-spaces.

2. Preliminaries to Young functions and associated Orlicz spaces.

2.1. Young functions

Definition 2.1. A Young function is a convex, left semicontinuous, even function Φ : R → [0,∞] such that
Φ(0) = 0 and limx→∞Φ(x) = ∞.

A Young function is said to be finite if Φ(x) < ∞ for each x ∈ R. Finite Young functions are automatically
continuous because finite convex functions are continuous. Further an Young functionΦ is called N-function
if it is continuous (and hence finite), limx→∞

Φ(x)
x = ∞ and limx→0

Φ(x)
x = 0. A Young function Φ is said to

satisfy Mulholland conditions if it is continuous and strictly increasing on [0,∞) and logΦ(x) is a convex
function of log x. In fact it was shown in [1][5,Cor. 1] that a strictly increasing (on positive real axis) finite
Young function Φ satisfying Mulholland condition is equivalent to it taking the form Φ(x) = |x|eχ(log |x|) for
some continuous increasing convex function χ. In such situation, we say that χ is the characteristic function
of Φ.

Example 2.2. The functions such as sinh |x|, |x|1+aeb|x|c (a, b, c > 0) are strict Young functions which satisfies
Mulholland conditions.

A Young function Φ is said to satisfy ∆2-condition if there exists M > 0 such that Φ(2x) ≤ MΦ(x) for all
x ≥ x0 ≥ 0. For example, if we take χ to be an affine function on Rwith positive slope, thenΦ(x) = |x|eχ(log |x|)

gives us a trivial Young function which is strict and satisfies both Mulholland condition and ∆2-conditions.
In-fact there is an ubandance of strict Young functions which satisfy both these conditions.

Associated to a Young function Φ, there exists another convex functionΨ given by

Ψ(y) = sup{x|y| −Φ(x) : x ≥ 0}, y ∈ R.

The functionΨ is also a Young function and the pair (Φ,Ψ) is called complementary pair of Young functions.
The complementary pair (Φ,Ψ) of Young functions is said to satisfy ∆2-condition if both Φ and Ψ satisfy
∆2-condition.

Remark 2.3. For p ≥ 1, the maps t 7→ |t|p are Young functions which satisfy both the ∆2-condition and Mulholland’s
condition. Further the associated complementary Young function also satisfies ∆2. In-fact taking χ to be any affine
function of positive slope on R makes Φ(t) = |t|eχ(log |t|) a Young function which satisfy Mulholland condition and the
complementary pair associated to it satisfies ∆2-condition.
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Example 2.4. The Young function Φ : R → R+ defined as t 7→ |t|e
t2−|t|

2|t| is strict and satisfy Mulholland’s condition.
Further the complementary pair (Φ,Ψ) satisfies ∆2-condition. Clearly, Φ(t) = |t|esinh(log |t|) and hence it satisfies
Mulholland condition since sinh is strictly increasing convex function on [0,∞). Now notice that

Φ(2t)
Φ(t)

= 2e
2t2+1

4t →∞

And hence, Φ does not satisfy ∆2-condition.

2.2. Orlicz spaces
We define Orlicz space associated to a measure space (X, µ) and Young function Φ as

LΦ(X) = { f : X→ C : f is measurable ,
∫

X
Φ(β| f |)dµ < ∞ for some β > 0}

LΦ(X) becomes a Banach space with respect to the Gauge norm

NΦ( f ) = inf
{

k > 0 :
∫

X
Φ

(
| f |
k

)
dµ ≤ 1

}
There is an another equivalent norm on LΦ(X), known as Orlicz norm

∥ f ∥Φ = sup
{∫

X
| f1|dµ : 1 ∈ LΨ(X) and

∫
X
Ψ(|1|)dµ ≤ 1

}
.

Further, if (Φ,Ψ) are a pair of complementary Young functions, both satisfying∆2-condition, then
(
LΦ(X),NΦ

)
is a reflexive Banach space with

(
LΨ(X), ∥.∥Ψ

)
as its dual space.

2.3. F-spaces
Definition 2.5. An F-space is a vector space X over a field of real or complex numbers together with a metric
d : X × X→ [0,∞) such that

• Scalar multiplication in X is continuous with respect to the metric d on X and standard metric on C (or R).

• Addition in X is continuous with respect to d.

• d is translation invariant i.e, d(x + a, y + a) = d(x, y) for all x, y, a ∈ X.

• Metric space (X, d) is complete.

The map x 7→ ∥x∥F = d(x, 0) is called F-norm. An F-space is called Fréchet space if the underlying topology is
locally convex.

Definition 2.6. A topological vector space X is called locally bounded if there exists an open neighborhood A of 0
such that for each open neighborhood U of 0 there exists t > 0 such that A ⊂ sU for all s > t.

F-spaces are not locally convex in general and the closed unit ball BX is not convex. Hence, it is natural to
consider the closed convex hull co(BX). The Gauge seminorm on X

∥x∥C = inf
{
λ > 0 :

f
λ
∈ co(BX)

}
is actually a norm on X if its dual X∗ separate points (see [6, Ch.2, sec. 4]) and the identity mapping
i : (X, ∥.∥F)→ (X, ∥.∥C) is continuous. In-fact (X, ∥.∥C) is the “smallest” Banach space containing (X, ∥.∥F).
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Definition 2.7. Let (X, d) be an F-space with a separating dual. The Banach space (X, ∥.∥C) generated by the Gauge
norm on X is called the Banach envelope of the F-space (X, d).

Example 2.8. Consider the F-space (R2, ∥.∥p) for any 0 < p < 1. Then the closed convex hull of the unit ball of R2

with respect to ∥.∥p is same as the unit ball of (R2, ∥.∥1) and hence (R2, ∥.∥1) is the Banach envelope of (R2, ∥.∥p).

Theorem 2.9. [6, Ch.2 Sec. 4] If (X, d) is an F-space then the dual space (space of continuous linear functionals on
X with respect to F-norm) of (X, d) is the same (isometrically isomorphic) as the dual space of its Banach envelope.

3. Interpolation F-spaces of Banach spaces

We notice that there is an ubundance of non-trivial Young functions which satisfy both ∆2-condition
and Mulholland condition. In the previous remark, we saw few trivial examples of Young functions which
satisfy Mulholland condition and the complementary pair (Φ,Ψ) satisfies ∆2-condition. We now construct
a non-trivial example of such a Young function Φ.

Example 3.1. Let M > 0 be a fixed number and {mi}
∞

i=0 be a strictly increasing sequence of positive real numbers con-
verging to a fixed M > 0. Consider the convex continuous even functionχ : R→ R+ defined as piecewise straight lines
on the intervals [0, ln 2], [ln 2, 2 ln 2], · · · , [r ln 2, (r+ 1) ln 2], ....The slope of the line in interval [r ln 2, (r+ 1) ln 2] is
mr. The growth of χ is depicted in figure below.

L 2L 3L 4L 5L

L

2.5L

4.25L

6.125L

y =
2x −

2 ln
2

χ(
x)

m1 =
3
2

m2 =
7
4

m3 =
15
8

m4 =
31
16

Figure: Plot of χ(x)
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Now if we define Ω(t) = |t|eχ(log |t|), then Ω is a Young function which satisfies Mulholland condition. It is very
desirable for Young functions and their complementary functions to have ∆2-condition because it makes the associated
Orlicz spaces reflexive and the simple functions becomes dense in LΦ(X). Thus we show that the above constructed
Young function is actually well behaved with respect to the growth and possess ∆2-condition. Notice that for t > 0
such that log t ∈ [r log 2, (r + 1) log 2], we have

Ω(2t)
Ω(t)

= 2eχ(log 2+log t)−χ(log t)

≤ 2emr+1 ln 2

≤ 2eM ln 2 = 2M+1.

Hence, Ω satisfies ∆2-condition. Although it is not necessary for our further results in this section, we will see
that the complementary function Θ also satisfies ∆2-condition. To ease the computation, we fix mr = 2 − 1

2r . Let
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θ(x, t) = xt − Ω(x) be a function defined for x, t ≥ 0. On interval Ir = [2r, 2r+1] the function Ω(x) takes the form
Ω(x) = Crxmr+1, where Cr is a constant. Let t be fixed. The derivative of θ on the interval Ir is

d
dx
θ(x, t) = t − Cr(mr + 1)xmr .

Thus, θ(x, t) attains a maximum value in interval Ir at point xr(t) =
(

t
Cr(mr+1)

) 1
mr if xr(t) ∈ Ir or on the end points of

the interval. The maximum possible value of θ(x, t) on interval Ir is

Θr(t) = txr(t) − Cr(xr(t))1+mr =
mr

(1 +mr)
1+mr

mr

C
−

1
mr

r t
1+mr

mr (1)

NowΘ(t) = supr≥0Θr(t). For a fixed t, the supremum is attained at some r = r(t), i.e, Θ(t) = Θr(t)(t). Now, consider

the ratio R(t) = Θ(2t)
Θ(t) =

Θr(2t)(2t)
Θr(t)(t)

. Since, Θr(t) grows like t
mr+1

mr , the maximizing r(t) increase with an increase in t.
Hence,

R(t) ≤ max{
Θr(2t)
Θr(t)

: r ∈ N} ≤ 21+ 1
mr (due to 1)

As mr → 2 for large values of r, we see that R(t) ≤ 23/2 eventually. Thus the complementary function Θ satisfies
∆2-condition.

Note: We will also need the Mulholland Young function Ωo associated to the asymptotic red line y = 2x − 2 ln 2 in
the above figure. In-fact Ωo(x) = |x|e2 ln |x|−2 ln 2 = 1

4 |x|
3

Example 3.2. Let χ denote a function which is a combination of rotation of the graph of f (x) = e−x about origin by
angle θ and appropriate translation such that the resulting curve has the y = x tanθ − c as an asymptote. Then
Ω(x) = |x|eχ(ln |x|) is an Young function which satisfies Mulholland condition and ∆2-condition.

Suppose (Xi, ∥.∥i) are F- spaces for i = 1, 2, ..,n and Φ is a Young function which satisfies Mulholland
condition. We consider the vector space direct sum⊕n

i=1Xi. Further we define a metric dΦ : ⊕n
i=1Xi×⊕

n
i=1Xi →

[0,∞) as

dΦ
(
(x1, ..., xn), (y1, ..., yn)

)
= Φ−1

 n∑
i=1

Φ
(
∥xi − yi∥i

) .
The associated F-norm is ∥(x1, ..., xn)∥F = Φ−1 (∑n

i=1Φ(∥xi∥i)
)
. One can easily check that this is a well defined

metric. dΦ
(
(x1, ..., xn), (y1, ..., yn)

)
= 0 if and only xi = yi for each i = 1, ...,n. Due to Mulholland’s condition

onΦ, the following Minkowsky type inequality (also known as Mulholland’s inequality) holds true (see [1][5,
Th. 1]).

Φ−1

 n∑
i=1

Φ(ai + bi)

 ≤ Φ−1

 n∑
i=1

Φ(ai)

 + Φ−1

 n∑
i=1

Φ(bi)


for all ai, bi ≥ 0. And hence the triangle inequality follows for the F-norm on ⊕n

i=1Xi and hence for the metric
dΦ. We denote this metric space by

(
⊕

n
i=1Xi, dΦ

)
.

Proposition 3.3. Metric space
(
⊕

n
i=1Xi, dΦ

)
is an F-space if Φ satisfies Mulholland condition.

Proof. We start by showing that the scalar multiplication continuous with respect to the metric dΦ. Suppose{
Kα, (x

(α)
1 , ..., x

(α)
n )

}
α∈Γ

be a net in C × ⊕n
i=1Xi converging to {K, (x1, ..., xn)}. Then ||Kαx

(α)
i − Kxi||i → 0 for each i

due the continuity of scalar multiplications in each space (Xi, ∥.∥i). Combining this with the fact that Φ is
strictly increasing and continuous tells us that

dΦ
(
(Kαx

(α)
1 , ...,Kαx

(α)
n ), (Kx1, ...,Kxn)

)
= Φ−1

 n∑
i=1

Φ(∥Kαx
(α)
i − Kxi∥i)

→ 0.
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Thus the scalar multiplication is continuous with respect to the metric dΦ.
Now we turn to prove that the addition in ⊕n

i=1Xi is continuous with respect to the metric dΦ. But this is
evident from the fact that addition is a short map under the metric dΦ and hence continuous. The fact that
dΦ is translation invariant follows from the fact that the F-norm, which is translation invariant, generates
dΦ. Only thing remains to be verified is whether

(
⊕

n
i=1Xi, dΦ

)
is a complete metric space. To see this,

let {(x(r)
1 , ..., x

(r)
n )}∞r=1 be a Cauchy sequence in

(
⊕

n
i=1Xi, dΦ

)
. Then for each ϵ > 0, there exist a Nϵ such that

dΦ((x(r)
i ), (x(s)

i )) < ϵ for all r, s > Nϵ. Then

dΦ
(
(x(r)

i ), (x(s)
i )

)
= Φ−1

 n∑
i=1

Φ(∥x(r)
i − x(s)

i ∥i)

 < ϵ
for all r, s > Nϵ. Hence, due to Φ being strictly increasing, we have

∑n
i=1Φ(∥(x(r)

i ) − x(s)
i ∥i) < Φ(ϵ) for all

r, s > Nϵ. Hence for each i, again due to strictly increasing nature of Φ, we have ∥x(r)
i − x(s)

i ∥i < Φ
−1Φ(ϵ) = ϵ

for all r, s > Nϵ. Thus, for each i, the sequence {x(r)
i }
∞

r=1 is a Cauchy sequence in the F-space Xi. Thus

there exists xi ∈ Xi for each i = 1, 2, ..,n such that {x(r)
i }

∥.∥i
→ xi for each i = 1, 2, ..,n. Now, we claim that

{(x(r)
1 , ..., x

(r)
n )}

dΦ
→ (x1, ..., xn). But this is the easy consequence of the continuity of Φ and Φ−1. Hence,(

⊕
n
i=1Xi, dΦ

)
is an F-space.

As one might have noticed, for Banach spaces X1, ..,Xn, the only thing preventing
(
⊕

n
i=1Xi, dΦ

)
from

being a Banach space is the homogeneity of F-norm x 7→ dΦ(0, x) with respect to scalar multiplica-
tion. In-fact the F-norm is homogeneous if Φ(x) = |x|eχ(ln |x|), where χ(x) = ax + b is any affine func-
tion. On the contrary if Φ is of the type constructed in example 3.1, then it is easy to see that the
F-norm on ⊕n

i=1Xi is not homogeneous with respect to scalar multiplication (the ever changing growth
of Φ would not permit homogeneity, and it also follows from the next result). Consider the set W ={
V : V ≺ ⊕n

i=1Xi, ∥α(xi)∥F = |α|.∥(xi)∥F ∀α ∈ C, (xi) ∈ ⊕n
i=1Xi

}
. Define the natural ordering onW induced by

inclusion i.e V1 ≺ V2 if V1 is a subspace of V2. Then (W,≺) becomes a partially ordered set. Further,W is
non-empty because V = {(x, 0, .., 0) : x ∈ X1} ∈ W. If {Wα} is a chain inW, then ∪Wα is its upper bound.
Hence, by Zorn’s lemma the familyW has at-least one maximal member. Clearly, the maximal member
of W will be closed with respect to the metric dΦ. Hence, the maximal member of W will be a Banach
space with respect to the norm ∥.∥F. We will see that for Φ constructed in example 3.1, each space Xi can be
identified isometrically (w.r.t dΦ) with a maximal member ofW.

Definition 3.4. A locally bounded F-space (X, d) is called a p-interpolation F-space for Banach spaces X1, X2 and a
p ∈ [1,∞) if

1. there exists a distance preserving linear maps i1 : X1 → X and i2 : X2 → X such that i1(X1) and i2(X2) are
maximal Banach subspaces in X.

2. the Banach envelope of (X, d) is the p-direct sum X1 ⊕p X2.

Theorem 3.5. If Ω is the Young function from example 3.1 and (Xi, ∥.∥i) be Banach spaces for i = 1, 2, ...,n. Then
each Banach space (Xi, ∥.∥i) is isometrically isomorphic to a maximal Banach subspace of the F-space

(
⊕

n
i=1Xi, dΩ

)
.

Proof. To simplify the computations, we shall prove it for n = 2. The general case follows in similar fashion.
Consider the natural embedding θ : (X1, ∥.∥1) → (X1 ⊕ X2, dΩ) given by θ(x) = (x, 0). This is clearly an
isometry (w.r.t metric dΩ). We claim that θ(X1) is a maximal Banach subspace of the F-space (X1 ⊕ X2, dΩ).
To prove this, suppose on the contrary, that θ(X1) is not maximal. Then there exist W ∈ W such that
θ(X1) ≺W. Hence, there exists a (x, y) ∈W \ θ(X1) such that

Ω−1 (
Ω(∥αx∥1) +Ω(∥αy∥2)

)
= |α|Ω−1 (

Ω(∥x∥1) + Φ(∥y∥2)
)
∀α ∈ C. (2)
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Without loss of generality, we can choose ( f , 1) to be such that u = ∥x∥1 = 1 and v = ∥y∥2 = 1. Thus due to
equation 2, we have

Ω
(
2|α|Ω−1(Ω(u) +Ω(v))

)
Ω(2|α|u) +Ω(2|α|v)

= 1 ∀α ∈ C (3)

Hence,

Ω
(
2|α|Ω−1(Ω(u) +Ω(v))

)
Ω(2|α|u) +Ω(2|α|v)

=
Ω

(
2|α|Ω−1(Ω(u) +Ω(v))

)
|α|Ω−1(Ω(u) +Ω(v))

|α|Ω−1(Ω(u) +Ω(v))
Ω(2|α|u) +Ω(2|α|v)

≤M
|α|

Ω(2|α|u) +Ω(2|α|v)
∀α ∈ C large enough (∵ Ω is ∆2) (4)

Now notice that for large values of t the functionΩ(t) ≈ 1
4 t3. Hence,Ω(2|α|u) ≈ 2|α3

|u3 andΩ(2|α|v) ≈ 2|α3
|v3.

For large values of α. Thus from the equation 4, we have

lim
α→∞

Ω
(
2|α|Ω−1(Ω(u) +Ω(v))

)
Ω(2|α|u) +Ω(2|α|v)

≤ lim
α→∞

M
|α|

2|α|3(u3 + v3)
= 0,

which is a clear contradiction to the equation 3.

Hence, θ(X1) is a maximal Banach subspace of the F-space (X1 ⊕ X2, dΩ).

Remark 3.6. The above phenomenon is peculiar for the special Young function Ω constructed in example 3.1. For
Young functions of the type Φ(x) = cxm, the subspace Xi is not a maximal Banach subspace in (X1 ⊕ X2, dΦ) because
the latter is a Banach space itself in such case.

In the preceding theorem, we have interpolated the F-space (X1 ⊕ X2, dΩ) from inside through maximal
Banach space. Now in the next result we interpolate it from the outside i.e we compute its Banach
envelope. Recall from example 3.1, the Young functionΩo whose characteristic function was an asymptote
to the characteristic function of Ω. We now demonstrate an interesting phenomena which outlines that a
Banach envelope of an F-space associated to a Young functionΩwith Mulholland condition is nothing but
the space associated to the Young function whose characteristic function is an asymptote to the characteristic
function ofΩ. Since, (X1 ⊕X2, dΩ) has a separating dual and is locally bounded (see theorem 3.13), we have
the following result.

Theorem 3.7. If X1 and X2 are Banach spaces, then the Banach envelope of the F-space (X1 ⊕ X2, dΩ) is the Banach
space (X1 ⊕ X2, dΩo ).

Proof. Recall that ∥(x1, x2)∥Ωo = dΩo ((0, 0), (x1, x2)) =
(
∥x1∥

3 + ∥x2∥
3
)1/3

. We just have to prove that the gauge

norm is p(x1, x2) = inf
{
λ > 0 : (x1,x2)

λ ∈ co(B)
}
=

(
∥x1∥

3 + ∥x2∥
3
)1/3

, where co(B) denotes the closed convex hull
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of the unit ball of (X1 ⊕ X2, dΩ). Let k > 0 be very large. Further let λ =
(
∥kx1∥

3 + ∥kx2∥
3
)1/3

. Then∣∣∣∣∣∣∣∣∣∣ (kx1, ky2)
λ

∣∣∣∣∣∣∣∣∣∣
Ω
= Ω−1

(
Ω

(
∥kx1∥

λ

)
+Ω

(
||kx2||

λ

))
≤ Ω−1

o

(
Ω

(
∥kx1∥

λ

)
+Ω

(
∥kx2∥

λ

))
∵ Ω−1

≤ Ω−1
o eventually

≤ Ω−1
o

( 1
λ
Ω(∥kx1∥) +

1
λ
Ω(∥kx2∥)

)
∵ Ω is convex and λ is very large

≈ Ω−1
o

( 1
4λ
∥kx1∥

3 +
1

4λ
∥kx2∥

3
)

∵ Ω(t) =
1
4

t3 for large t

∴

∣∣∣∣∣∣∣∣∣∣ (kx1, ky2)
λ

∣∣∣∣∣∣∣∣∣∣
Ω
=

1
λ

(
∥kx1∥

3 + ∥kx2∥
3
)1/3
+ ϵk

= 1 + ϵk

where, ϵk → 0 as k → ∞. Thus, p(kx1, kx2) ≤ (1 + ϵk)λ for large k. But p is a norm and hence p(kx1, kx2) =

|k|p(x1, x2) for all k. Hence, p(x1, x2) ≤
(
∥x1∥

3 + ∥x2∥
3
)1/3
= ∥(x1, x2)∥Ωo . To prove the reverse inequality, fix

a ∈ X1 and b ∈ X2. Then, define a function po : R2
→ [0,∞) as po(s, t) = p(sa, tb). This is a well defined function

and it can be easily verified that this is convex and homogeneous with respect to scalar multiplication on
R2. If p is a norm other than ∥.∥Ωo , then the associated convex functions po should be sandwiched between
pΩo and pΩ, where pΩo (s, t) = Ωo(

√

s2 + t2) and pΩ(s, t) = Ω(
√

s2 + t2). But the only homogeneous convex
functions sandwiched between Ωo and Ω is Ωo itself (since its characteristic function is asymptote to Ω).
Hence, (X1 ⊕ X2, dΩo ) is the Banach envelope of the F-space (X1 ⊕ X2, dΩ).

Summary: We have so far worked with Ω, where the sequence of slopes for characteristic function is
assumed to be mr = 2 − 1

2r for the ease of computation. But all of the above results holds in a general case
as well. The following result captures the essence of if in general setup.

Theorem 3.8. Let X1 and X2 be two Banach spaces and
(
X1 ⊕ X2, ∥.∥p

)
be their p-direct sum for some 1 ≤ p < ∞.

Then there exists a p-interpolation F-space (X1 ⊕ X2, ∥.∥Ω) which contains X1 and X2 as maximal Banach subspaces
and the Banach envelope of (X1 ⊕ X2, ∥.∥Ω) is the p-direct sum

(
X1 ⊕ X2, ∥.∥p

)
.

Proof. Consider the Young functionΩp =
1
p |x|

p. Then its characteristic function is χp(x) = (p−1)x− ln p. Now
choose a increasing sequence {mr}

∞

r=1 of positive real numbers such that mr → p− 1. Construct a continuous
even function χ : R→ R of piece-wise straight lines of slope mr and such that χ has χp as an asymptote (this
is always possible). Then the F-space (X1 ⊕ X2, dΩ) associated to the Young function Ω(x) = |x|eχ(ln |x|) is the
required interpolation space.

Corollary 3.9. Let Ω be an Young function with Mulholland condition such that the line χp(x) = (p − 1)x − ln p is
asymptote to Ω (as constructed in preceding theorem for 1 ≤ p < ∞). Then the dual of the F-space (X1 ⊕ X2, dΩ) is
the Banach space

(
X∗1 ⊕ X∗2, ∥.∥q

)
, where 1

p +
1
q = 1..

Proof. Follows easily from the preceding theorem and the fact that the continuous dual of an F-space is
equal to the continuous dual of it Banach envelope.

Remark 3.10. One might be tempted to ask- what about the F-space X1 ⊕ X2 equipped with ∥(x, y)∥p = ∥x∥p + ∥y∥p

for some p < 1? Well, these are non-locally convex F-space and they do not carry a copy of X1 or X2, let alone
contain them as maximal subspaces. Also, its Banach envelope is always (X1 ⊕ X2, ∥.∥1). Further they do not possess
Hahn-Banach extension property and hence deemed as object of less interest.

Definition 3.11. An F-space (X, d) is said to have the Hahn-Banach Extension property (HBEP) if for any closed
subspace M of X and any continuous linear functional φ : M→ C has a continuous extension φ′ : X→ C such that
φ′(x) = φ(x) for all x ∈M.
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It is proved in [6, Ch. 2,3] that the spaces ℓp and Hp does not have HBEP for 0 < p < 1. Motivated by
these, Duren, Romberg and Shields formulated the problem in 1969-“Is every F-space X with HBEP locally
convex?”. Shapiro answered this question in affirmative if X has a basis [2] . The answer to this question
was proved to be affirmative in general by N.J Kalton (see [6, Theorem 4.8]). For two Banach spaces X1, X2
and the Young functionΩ from example 3.1, the interpolation F-space (X1 ⊕Ω X2, dΩ) turns out to be locally
convex and hence a Fréchet space, since it posses HBEP, as proved in the next result.

Theorem 3.12. Let X1, X2 be two Banach spaces and Φ be a Young function with Mulholland condition. Then, the
F-space (X1 ⊕ X2, dΦ) has the HBEP.

Proof. Let M be a closed subspace of (X1 ⊕Φ X2, dΦ) and φ : M → C be a continuous linear functional.
Consider the projection subspace π1(M) and π2(M) in X1 and X2 respectively. Let φπ1 : π1(M) → C and
φπ2 : π2(M) → C be the restriction maps i.e φπ1 (x) = φ(x, 0) and φπ2 (y) = φ(0, y). Then φπ1 and φπ2 are
continuous linear maps. By Hahn-Banach theorem, there exists a continuous extensions φ1 : X1 → C and
φ2 : X2 → C of φπ1 and φπ2 respectively. Let φ′ : X1 ⊕X2 → C be defined as φ′(x, y) = φ1(x)+φ2(y). Clearly,
φ′ is an extension of φ : M→ C. We claim that it is continous with respect to the metric dΦ. Suppose (xn, yn)
is a sequence in X1 ⊕ X2 converging to (x1, x2) with respect to the metric dΦ. Then

lim
n→∞
Φ−1 (

Φ(∥xn − x∥) + Φ(∥yn − y∥)
)
= 0.

SinceΦ−1 andΦ are strictly increasing continuous functions, we can deduce that ∥xn−x∥ → 0 and ∥yn−y∥ → 0.
Hence, xn → x and yn → y. Using the continuity of φ1 and φ2, we know that φ1(xn) → φ1(x) and
φ2(yn) → φ(y). Hence, φ′(xn, yn) = φ1(xn) + φ2(yn) → φ1(x) + φ2(y) = φ′(x, y). Thus, φ′ is an continuous
extension of φ.

Theorem 3.13. For a family of locally bounded F-spaces {Xi}
n
i=1 and an Young functionΦwhich satisfies Mulholland

condition, the F-space (⊕nXi, dΦ) is locally bounded.

Proof. It would be sufficient to prove this for the case n = 2. Let B(i)
r denote the open ball of the F-space Xi

of radius r and centered at 0. The open ball of (X ⊕ X2, dΦ) centered at (0, 0) and of radius r will be denoted
by BΦr . Notice that for (x, y) ∈ B1, we have Φ−1 (

Φ(∥x∥) + Φ(∥y∥)
)
< 1. Thus Φ(∥x∥) < Φ(1) and Φ(∥y∥) < 1.

Hence, ∥x∥ < 1 and similarly ∥y∥ < 1. Thus, (x, y) ∈ B(1)
1 × B(2)

1 and

BΦ1 ⊂ B(1)
1 × B(2)

1 . (5)

Further, if c, r > 0 then for any (cx, cy) ∈ cB(1)
r × cB(2)

r , we have∣∣∣∣∣∣∣∣∣∣(cx
2c
.
cy
2c

)∣∣∣∣∣∣∣∣∣∣
Φ
= Φ−1

(
Φ(
∥cx∥
2c

) + Φ(
∥cy∥
2c

)
)

≤ Φ−1
(1

2
Φ(∥x∥) +

1
2
Φ(∥y∥)

)
due to convexity of Φ

≤ Φ−1
(1

2
Φ(r) +

1
2
Φ(r)

)
due to Φ being increasing

= r. (6)

Thus,

cB(1)
r × cB2

r ⊂ 2cBΦr for each c, r > 0 (7)

Now fix a ro < 1. Since X1 and X2 are locally, we can find a t such that B(1)
1 ⊂ sB(1)

ro
and B(2)

1 ⊂ sB(2)
ro

for all
s > t. Hence,

B(1)
1 × B(2)

1 ⊂ sB(1)
ro
× sB(2)

ro
∀s > t. (8)
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Combining the above inclusion with the inclusion in equation-5 and 7, we get

BΦ1 ⊂ B(1)
1 × B(2)

1 ⊂ sB(1)
ro
× sB(2)

ro
⊂ 2sBΦro

∀s > t. (9)

Thus, the collection of open balls of radius less than one and centered at origin forms a neighborhood base
at origin. The set B1 is bounded and hence (X1 ⊕ X2, dΦ) is a locally bounded F-space.

3.1. Coefficient of non-homogeneity of F-spaces

Since F-norms are non-homogeneous, the best property an F-space (X, ∥.∥F) they could exhibit is that
there exists M > 0 such that ∥kx∥F ≤ M|k| · ∥X∥F holds for all x ∈ X and k ∈ C. We define the coefficient of
non homogeneity for F-spaces in the obvious way as follows.

Definition 3.14. Let (X, ∥.∥F) be an F-space. Then the coefficient of non-homogeneity of X is

ν(X,∥.∥F) = inf{M > 0 : ∥kx∥ ≤M|k|.∥x∥, ∀k ∈ C, x ∈ X}.

Obviously not all spaces have a finite coefficient of non-homogeneity. For example, if 0 < p < 1, then
(R2, ∥.∥p) does not have finite coefficient of non-homogeneity because ∥(kx, ky)∥p = kp

∥(x, y)∥p. We will show
that F-norms associated to the Young functions with Mulholland condition, whose characteristic function
has linear asymptote, have finite coefficient of non-homogeneity.

Lemma 3.15. IfΦ is a Young function with Mulholland condition such that its characteristic function has a line as its
asymptote and X1, X2 are F-spaces with finite coefficient of non-homogeneity, then the coefficient of non-homogeneity
of the F-space (X1 ⊕ X2, ∥.∥Φ) is max{νX1 , νX2 }. i.e, ν(X1⊕X2,∥.∥Φ) = max{νX1 , νX2 }.

Proof. Let χ(x) be the characteristic function of Φ and χ′(x) = mx − c be the asymptote to χ. Further, let Φ′

be the Young function whose characteristic function is χ′. Then, mx ≤ χ(x) ≤ χ′(x). And hence,

Φ′′(x) = xm+1
≤ Φ(x) ≤

1
ec xm+1 = Φ′(x).

Let m1 = νX1 and m2 = νX2 and M = max{m1,m2}. Now notice that

||k(x, y)||Φ = Φ−1 (
Φ(||kx||) + Φ(||ky||)

)
≤ Φ′′−1 (

Φ′(m1|k|||x||) + Φ′(m2|k|||y||)
)

≤ Φ′′−1

(
M|k|m+1

ec (∥x∥m+1 + ∥y∥m+1)
)

=
M|k|
e

c
m+1

(
∥x∥m+1 + ∥y∥m+1

) 1
m+1

=
M|k|
e

c
m+1
Φ′−1 (

Φ′(∥x∥) + Φ′(∥y∥)
)

≤
M|k|
e

c
m+1
Φ′−1 (

ec(Φ(∥x∥) + Φ(∥y∥))
)

=
M|k|
e

c
m+1
· e

c
m+1Φ′−1 (

Φ(∥x∥) + Φ(∥y∥)
)

≤M|k| ·Φ−1 (
Φ(∥x∥) + Φ(∥y∥)

)
(10)

Thus, ∥(kx, ky)∥Φ ≤M|k|·∥(x, y)∥Φ holds for all k ∈ C and x ∈ X1, y ∈ Y1. Hence, ν(X1⊕X2,∥.∥Φ) = max{νX1 , νX2 }.
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4. Direct Sums of Orlicz spaces

This section is dedicated to establishing a proper notion of direct sums of Orlicz spaces. Recall that if
(S,A, µ) is a sigma-finite measure space, then we can define the p-direct sum Lp(S)⊕p Lp(S) equipped with the
p-norm ||( f , 1)||p =

(
|| f ||p + ||1||p

)1/p . Further the Lp(S) ⊕p Lp(S) is isometrically isomorphic to Lp ({1, 2},Lp(S))
(Bochner space, see [9, 1.2b]) through the identification θ( f , 1)(1) = f , θ( f , 1)(2) = 1. Further Lp ({1, 2},Lp(S))
is isometrically isomorphic to Lp({1, 2} × S) (see [9, Prop. 1.2.24]). Hence, the p-direct sum of Lp(S) is again
an Lp space, albeit over a different measure space {1, 2} × S (product measure of counting measure space
{1, 2} and measure space S.)
Now suppose Φ is any Young function and (S,A, µ) be a measure space. Consider the Orlicz space LΦ(S)
as defined in section 2.2. We aim to define an appropriate norm NΓ on the vector space LΦ(S) ⊕ LΦ(S) such
that it becomes a LΦ space on some measure space.

Let Γ : R2
→ [0,∞) be any convex continuous function which is radially increasing (i.e, Γ(rx, ry) is an

increasing function of r for a fixed (x, y)) and the contours Uc = {(x, y) : Γ(x, y) = c} for any c > 0 are
all convex polygons with fixed number of sides and centered at origin. Further the extreme points of the
polygon U1 are no farther than one unit from origin and Γ(0, 0) = 0. Define NΓ on LΦ(S) ⊕ LΦ(S) as

NΓ( f , 1) = inf
{
λ > 0 : Γ

(∫
S
Φ

(
| f (t)|
λ

)
dt,

∫
S
Φ

(
|1(t)|
λ

)
dt

)
≤ 1

}
We need to verify that this is a well defined norm. Clearly NΓ( f , 1) ≥ 0. If f = h = 0 then NΓ( f , 1) = 0 follows
easily. Further if NΦ( f , 1) = 0, then there exists a sequence {λn}

∞

n=1 → 0 such thatΓ
(∫

SΦ
(
| f (t)|
λn

)
dt,

∫
SΦ

(
|1(t)|
λn

)
dt

)
≤

1 for each n. Hence, ∫
S
Φ

(
| f (t)|
λn

)
dt,

∫
S
Φ

(
|1(t)|
λn

)
dt ∈ Int(U1)

In particular
∫

SΦ
(
| f (t)|
λn

)
dt ≤ 1 for each n. Now suppose that f is a non-zero function, then there exists a set

A of positive measure and an ϵ > 0 such that | f (t)| ≥ ϵ for all t ∈ A. Thus,

µ(A)Φ
(
ϵ
λn

)
≤

∫
X
Φ

(
| f (t)|
λn

)
dt

≤ 1 for each n

Which means Φ( ϵλn
) ≤ 1

µ(A) for each n. But this is absurd because ϵ
λn

increases indefinitely and Φ is
an increasing function. Hence, contrary to our assumption, f must be a zero almost everywhere func-
tion. Similarly, 1 also vanishes almost everywhere. Now we verify the triangle inequality. Suppose
( f1, 11), ( f2, 12) ∈ LΦ(S) ⊕ LΦ(S) and NΓ( f1, 11) = k1 and NΓ( f2, 12) = k2. Now notice that

Γ

(∫
S
Φ

(
| f1(t) + f2(t)|

k1 + k2

)
dt,

∫
S
Φ

(
|11(t) + 12(t)|

k1 + k2

)
dt

)
≤ Γ

(
k1

k1 + k2

(∫
S
Φ

(
| f1(t)|

k1

)
dt,

∫
S
Φ

(
|11(t)|

k1

)
dt

)
+

k2

k1 + k2

(∫
S
Φ

(
| f1(t)|

k1

)
dt,

∫
S
Φ

(
|11(t)|

k1

)
dt

))
≤

k1

k1 + k2
Γ

(∫
S
Φ

(
| f1(t)|

k1

)
dt,

∫
S
Φ

(
|11(t)|

k1

)
dt

)
+ ≤

k2

k1 + k2
Γ

(∫
S
Φ

(
| f2(t)|

k2

)
dt,

∫
S
Φ

(
|12(t)|

k2

)
dt

)
≤

k1

k1 + k2
+

k1

k1 + k2

= 1

Hence, NΓ(( f1, 11) + ( f2, 12)) ≤ NΓ( f1, 11) +NΓ( f2, 12).
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Finally, we verify that LΦ(S)⊕ LΦ(S) is complete with respect to the norm NΓ. Let {( fi, 1i)}∞i=1 be a Cauchy
sequence in LΦ(S) ⊕ LΦ(S) with respect to norm NΓ. Then for each ϵ > 0, there exists Nϵ ∈ N such that
NΓ(( fn, 1n)− ( fm, 1m)) < ϵ for all n,m ≥ Nϵ. Hence for each pair of positive integers (n,m) such that n,m ≥ Nϵ,
we can choose a 0 < λn,m < ϵ such that

Γ

(∫
X
Φ

(
| fn(t) − fm(t)|
λn,m

)
dt,

∫
X
Φ

(
|1n(t) − 1m(t)|
λn,m

))
≤ 1 ∀n,m ≥ Nϵ.

Hence,
∫

X Φ
(
| fn(t)− fm(t)|
λn,m

)
dt ≤ 1 for all n,m ≥ Nϵ, which in turn means NΦ( fn − fm) ≤ λn,m ≤ ϵ for each

n,m ≥ Nϵ Hence { fn}∞n=1 and similarly {1n}
∞

n=1 are Cauchy sequences in LΦ(S). Suppose fn → f ∈ LΦ(S) and
1n → 1 ∈ LΦ(S). Then with easy computations similar to above, one can conclude that ( fn, 1n) converges to
( f , 1) with respect to NΓ norm. Hence (LΦ(S)) ⊕ LΦ(S) is complete with respect to NΓ.

We now establish that the appropriate norm for the direct sum LΦ(S)⊕LΦ(S) corresponds to the function
Γ(x, y) = |x| + |y|.

Theorem 4.1. Let Γ : R2
→ [0,∞) be the function Γ(x, y) = |x|+ |y| and (S,A, µ) be a measure space. Then the map

η : (LΦ(S) ⊕ LΦ(S),NΓ)→ LΦ({1, 2} × S) defined as

η( f , 1)(1, x) = f (x), η( f , 1)(2, x) = 1(x)

is an isometric isomorphism of Banach spaces.

Proof. Clearly η is a linear bijection, as can be verified easily. Further for any ( f , 1) ∈ LΦ(S)⊕ LΦ(S), we have

NΦ(η( f , 1)) = inf
{
λ > 0 :

∫
{1,2}×S

Φ

(
|η( f , 1)(t, s)|

λ

)
dµ(s, t) ≤ 1

}
. (11)

But ∫
{1,2}×S

Φ

(
|η( f , 1)(t, s)|

λ

)
dµ(s, t) =

∫
S
Φ

(
| f (x)|
λ

)
dx +

∫
S
Φ

(
|1(x)|
λ

)
dx

= Γ

(∫
S
Φ

(
| f (x)|
λ

)
dx,

∫
S
Φ

(
|1(x)|
λ

)
dx

)
Hence, by equation 11, we have

NΦ(η( f , 1)) = inf
{
λ > 0 : Γ

(∫
S
Φ

(
| f (x)|
λ

)
dx,

∫
S
Φ

(
|1(x)|
λ

)
dx

)
≤ 1

}
= NΓ( f , 1)

Thus, the isometric isomorphism is established.
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