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A study of the properties of the gDMP inverse of an operator
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Abstract. This paper investigates the gDMP inverse of generalized Drazin invertible operators with closed
range. Several characterizations and properties of the gDMP inverse are established. Furthermore, key
properties are derived, and applications to the solution of certain linear operator equations are presented.

1. Introduction and Notation

Let H and K be arbitrary Hilbert spaces. Denote by B(H ,K ) the set of all bounded linear operators
from H to K and IH to denote the identity operator on H . Especially, B(H) = B(H ,H). For an operator
T ∈ B(H), we denote by T∗,N(T), R(T) and σ(T), respectively, the adjoint, the null space, the range and the
spectrum of T. An operator R ∈ B(H) is quasinilpotent if σ(R) = {0}.

Recall that T ∈ B(H) is generalized Drazin invertible (or Koliha Drazin invertible), if there exists some
X ∈ B(H) such that

XTX = X, TX = XT, T − T2X is quasinilpotent.

The generalized Drazin inverse X of T is unique (if exists) and it is denoted by Td [1, 4]. The Drazin
inverse is a special case of the generalized Drazin inverse for which T − T2X is nilpotent, and it is denoted
by TD. The condition T − T2X is nilpotent is equivalent to Tk+1X = Tk, for some nonnegative integer k.
The smallest nonnegative integer k such that Tk+1X = Tk holds, is called the index of T and it is denoted
by ind(T). If an operator T ∈ B(H) has an index of at most 1, it is called group invertible and TD is called
group inverse of T denoted by T#. Recent results about expressions for the Drazin inverse can be found in
[13, 16–19].

An operator X ∈ B(K ,H) is the Moore–Penrose inverse of an operator T ∈ B(H ,K ) if satisfied the
following four operator equations

TXT = T, XTX = X, (TX)∗ = TX, (XT)∗ = XT.

The Moore–Penrose inverse of T is unique (if it exists) and denoted by T† [1, 5]. As we know the operator
T ∈ B(H ,K ) has a Moore–Penrose inverse if and only if R(T) is closed in K . Recall that an operator
T ∈ B(H) is called EP operator, if R(T) is closed and T†T = TT†.
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Let us recall that an operator X ∈ B(K ,H) is called an outer inverse of an operator T ∈ B(H ,K ) if
XTX = X , 0. On the other hand, if X satisfies only the condition TXT = T , then X is called an inner
generalized inverse of T.

In [6], Malik and Thome introduced a new generalized inverse, called the DMP inverse, by combining
the Drazin inverse and the Moore–Penrose inverse of square matrices of arbitrary index. This generalized
inverse was later extended in [15] to the setting of bounded linear operators that are Drazin invertible with
closed range: let T ∈ B(H) with index k and has closed range, then the DMP inverse of T, denoted by
X = TD,† = TDTT†, is the unique operator X ∈ B(H) satisfying

XTX = X, TkX = TkT†, XT = TTD.

In 2018, Dijana Mosić et al. introduced a new generalized inverse, called the gDMP inverse, for a gener-
alized Drazin invertible operator with closed range. This inverse was defined using both the generalized
Drazin inverse and the Moore–Penrose inverse, as a generalization of the DMP inverse to bounded oper-
ators [11]. Let T ∈ B(H) be a generalized Drazin invertible operator such that R(T) is closed. The gDMP
inverse of T, denoted by Td,†, is defined as

Td,† = TdTT†.

The authors also introduced another inverse, called the MPgD inverse, defined for a generalized Drazin
invertible operator T ∈ B(H) with closed range, as T†,d = T†TTd. In the case where the operator T ∈ B(H)
is Drazin invertible with closed range, Td,† is reduced to TD,†.

These generalized inverses play a significant role in various applications: the Drazin and DMP inverses
are used in solving singular linear control systems, the Moore–Penrose inverse is applied to least-squares
problems and the group inverse finds applications in Markov chain[1, 3].

In recent years, the DMP inverse has become a subject of growing interest, with numerous studies
addressing its extensions, characterizations, properties, and applications [2, 3, 7–10, 12, 20].

The purpose of this work is to present new properties and applications of the gDMP and MPgD inverses
of a bounded operator that is generalized Drazin invertible with closed range.

2. Some properties of gDMP inverse

To establish certain properties of the gDMP inverse, we first present an auxiliary result regarding the
expressions of its powers.

Lemma 2.1 ([3]). Let T ∈ B(H) be a generalized Drazin invertible operator such that R(T) is closed. Then
(i) For all nonnegative integer m ≥ 1,

(Td,†)m = (Td)mTT†.

(ii) For all nonnegative integer m ≥ 1,

Tm(Td,†)m = TTd,† and (Td,†)mTm = Td,†T.

The following corollary is an immediate consequence of Lemma 2.1.

Corollary 2.2. Let T ∈ B(H) be a generalized Drazin invertible operator with closed range. Then the operator
(Td,†)m is an outer inverse of Tm, for all nonnegative integer m ≥ 1.

Proof. Since

(Td,†)mTm(Td,†)m = (Td,†)mTm(Td)mTT†

= (Td,†)mTTdTT†

= (Td)mTT†TTdTT†

= (Td)mTT†

= (Td,†)m,
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for all m ≥ 1, it follows that (Td,†)m is an outer inverse of Tm.

We now present a necessary and sufficient condition for Td,† to be an inner inverse of T.

Theorem 2.3. Let T ∈ B(H) be a generalized Drazin invertible operator with closed range. Then Td,† is an inner
inverse of T if and only if T is group invertible.

Proof. The equality TTd,†T = T holds if and only if TTdT = T, which is equivalent to the fact that T is group
invertible.

We now discuss the idempotent property of the Td,† inverse.

Theorem 2.4. Let T ∈ B(H) be a generalized Drazin invertible operator such that R(T) is closed. Then Td,† is
idempotent if and only if Td is idempotent.

Proof. Assume that Td,† is idempotent. Since (Td,†)2 = (Td)2TT† = TdT†, we obtain TdTT† = TdT†. Postmulti-
plying this equality by T, we get TdT = Td.Thus, Td is idempotent. Conversely, postmultiplying the equality
(Td)2 = Td by TT†, we have (Td)2TT† = TdTT†, which implies (Td,†)2 = Td,†. Hence, Td,† is idempotent.

Let T ∈ B(H) be an operator with closed range and let U ∈ B(H) be unitary. It is well known that
UTU∗ ∈ B(H) also has closed range and satisfies (UTU∗)† = UT†U∗. Based on this fact, we can state the
following proposition.

Proposition 2.5. Let T,U ∈ B(H) where T is a generalized Drazin invertible operator with closed range, and U is
unitary. Then

(UTU∗)d,† = UTd,†U∗.

Proof. Since (UTU∗)d = UTdU∗, we compute

(UTU∗)d,† = (UTU∗)d(UTU∗)(UTU∗)†

= UTdU∗ ·UTU∗ ·UT†U∗

= UTdTT†U∗

= UTd,†U∗.

Proposition 2.6. Let T ∈ B(H) be a generalized Drazin invertible operator with closed range. Then

(Td,†)∗ = (T∗)†,d.

Proof. It is known that (T∗)d = (Td)∗ and (T∗)† = (T†)∗. Therefore,

(Td,†)∗ = (TdTT†)∗

= (T†)∗T∗(Td)∗

= (T∗)†T∗(T∗)d

= (T∗)†,d.

The following theorem shows that the gDMP inverse of a generalized Drazin invertible operator with closed
range is group invertible.
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Theorem 2.7. Let T ∈ B(H) be generalized Drazin invertible with closed range. Then Td,† and T2Td,† are group
invertible. Furthermore,

(Td,†)# = T2Td,†.

Proof. We show that Td,† is group invertible. Define X = T2Td,†. We then verify that

• Td,†X = Td,†T2Td,† = T(TdTTd,†) = TTd,†, and XTd,† = T2(Td,†)2 = TTd,†.

• XTd,†X = T2(Td,†)2X = TTd,†T2Td,† = T2Td,† = X.

• Td,†XTd,† = T(Td,†)2 = Td,†.

Hence, Td,† is group invertible and (Td,†)# = T2Td,†.

The following corollary is a direct consequence of Theorem 2.7.

Corollary 2.8. Let T ∈ B(H) be generalized Drazin invertible with closed range. Then

Td,† =
(
(Td,†)#

)#
.

Zuo et al. [20, Theorem 3.8] proved an interesting result concerning the DMP inverse of a square matrix A:

AD,† = AA†
(
In − AAA†

)D
=
(
In − AAA†

)D
AA†,

where A = In −A, AD denotes the Drazin inverse of A, and In is the n× n identity matrix. The next theorem
provides a generalization of this for the gDMP inverse. We begin by presenting an important preliminary
result.

Theorem 2.9. Let T ∈ B(H) be generalized Drazin invertible with closed range. Then T2T† is generalized Drazin
invertible, and

(T2T†)d = Td,†.

Proof. Define X = Td,†. Then we have

• T2T†X = T2T†TTdT† = TX, and XT2T† = TdTT†T2T† = TX.

• XT2T†X = XTX = X.

• The spectrum satisfies

σ
(
T2T† − (T2T†)2Td,†

)
∪ {0} = σ

(
(TT† − T2TdT†)T

)
∪ {0} = σ

(
T − T2Td

)
∪ {0} = {0}.

Therefore, T2T† is generalized Drazin invertible and (T2T†)d = Td,†.

It is well-known that for two generalized Drazin invertible operators A,B ∈ B(H) satisfying AB = BA = 0,
we have (A + B)d = Ad + Bd. From this fact, we can derive the following theorem.

Theorem 2.10. Let T ∈ B(H) be generalized Drazin invertible with closed range. Then

Td,† = TT†
(
IH − TTT†

)d
=
(
IH − TTT†

)d
TT†,

where T = IH − T.
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Proof. Note that IH − TTT† = IH − TT† + T2T†. Since (IH − TT†)T2T† = T2T†(IH − TT†) = 0, it follows that(
IH − TTT†

)d
=
(
IH − TT† + T2T†

)d
= IH − TT† + (T2T†)d.

By Theorem 2.9, we have (T2T†)d = Td,†. Therefore,
(
IH −TTT†

)d
= IH −TT†+Td,†.Multiplying by TT† on the

left, TT†
(
IH −TTT†

)d
= TT†Td,† = Td,†. Similarly, multiplying on the right,

(
IH −TTT†

)d
TT† = Td,†TT† = Td,†.

Hence,

Td,† = TT†
(
IH − TTT†

)d
=
(
IH − TTT†

)d
TT†.

Theorem 2.11. Let T ∈ B(H) be a generalized Drazin invertible operator with closed range. Then the operator
T − T2Td,† is quasinilpotent.

Proof. Since T − T2Td is quasinilpotent, we have

σ(T − T2Td,†) ∪ {0} = σ
(
(IH − TTd,†)T

)
∪ {0} = σ

(
(IH − TdT)T

)
∪ {0} = {0}.

Hence, T − T2Td,† is quasinilpotent.

The following proposition is a consequence of Theorems 2.7 and 2.11.

Proposition 2.12. Let T ∈ B(H) be generalized Drazin invertible with closed range. Then there exist operators
X,Y ∈ B(H) such that

T = X + Y and YX = 0,

where X is group invertible and Y is quasinilpotent.

Proof. Let Td,† denote the gDMP inverse of T. Define X = T2Td,† and Y = T − T2Td,†. Clearly T = X + Y
and YX = (T − T2Td,†)T2Td,† = 0. By Theorem 2.7, X is group invertible, and by Theorem 2.11, Y is
quasinilpotent.

Theorem 2.13. Let T ∈ B(H) be group invertible operator with closed range. Then the gDMP inverse T#,† is
Moore–Penrose invertible, and

(T#,†)† = T2T†.

Proof. We will show that T2T† is the Moore–Penrose inverse of T#TT†. Let X = T#TT†. Then we verify that

• T2T†XT2T† = TT†T2T† = T2T†,

• XT2T†X = T#TT†T2T† = T#TT† = X,

• (T2T†X)∗ = (TT†)∗ = TT† = T2T†T#TT† = T2T†X,

• (XT2T†)∗ = (TT†)∗ = TT† = T#TT†T2T† = XT2T†.

Thus, (T#,†)† = T2T†.

Corollary 2.14. Let T ∈ B(H) be group invertible with closed range. Then the gDMP inverse T#,† is an EP operator.
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In [4], it is shown that an operator T ∈ B(H) is Drazin invertible if and only if there exists an idempotent
operator P ∈ B(H) commuting with T such that

TP is quasinilpotent and T + P is invertible.

In this case, the Drazin inverse of T is uniquely determined and is given by

TD = (T + P)−1(IH − P).

In the same spirit, we establish analogous results for the DMP inverse of Drazin invertible operators
with closed range. We begin with the following proposition.

Proposition 2.15. Let T ∈ B(H) be Drazin invertible with index k and has closed range. Then the operator
T + IH − TTD,† is invertible. Moreover, we have

(T + IH − TTD,†)−1 = TD,† + Tπ
k−1∑
i=0

(−T)i,

where Tπ = IH − TTD.

Proof. Let TD,† be the DMP inverse of T. Define P = IH − TTD,†, Tπ = IH − TTD and S =
∑k−1

i=0 (−T)i. Note
that TS + S = IH + (−1)k−1Tk, PTπ = P and TπP = Tπ. Then

(T + P)(TD,† + TπS) = TTD,† + TTπS + PTD,† + PS

= TTD,† + TS + S − TTD,†TS − TTD,†S

= TTD,†(IH − TS − S) + TS + S

= TTD,†(IH − (IH + (−1)k−1Tk)) + IH + (−1)k−1Tk

= −(−1)k−1TTD,†Tk + IH + (−1)k−1Tk

= IH .

Similarly, we can get

(TD,† + TπS)(T + P) = TD,†T + TD,†P + TπST + TπSP

= TDT + TS + S − TTDST − TdTS

= TTD(IH − TS − S) + TS + S

= TTD(IH − (IH + (−1)k−1Tk)) + IH + (−1)k−1Tk

= −(−1)k−1TTDTk + IH + (−1)k−1Tk

= IH .

Theorem 2.16. Let T ∈ B(H) be Drazin invertible with index k and has closed range. Then there exists an idempotent
P ∈ B(H) such that both TP and PT are nilpotent and T + P is invertible. Moreover,

TD,† = (T + P)−1(IH − P).

Proof. Assume that TD,† is the DMP inverse of T. Let P = IH − TTD,†.We verify that P is idempotent

P2 = (IH − TTD,†)2 = IH − 2TTD,† + (TTD,†)2 = IH − TTD,† = P.

Next, we compute PT = (IH − TTD,†)T = T − T2TD, and TP = T(IH − TTD,†) = T − T2TD,†. Since both TP and
PT are nilpotent, from Proposition 2.15, we know that T + P is invertible.
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We now verify (T + P)TD,† = TTD,† + PTD,† = TTD,†, since PTD,† = 0. Therefore, (T + P)TD,† = TTD,† = IH − P,
and multiplying both sides on the left by (T + P)−1 gives

TD,† = (T + P)−1(IH − P).

Proposition 2.17. Let T ∈ B(H) be generalized Drazin invertible with closed range. Then the operator Td,† + IH −
TTd,† is invertible. Moreover,(

Td,† + IH − TTd,†
)−1
= T2Td,† + IH − TTd,†.

Proof. We verify that (Td,† + IH − TTd,†)(T2Td,† + IH − TTd,†) = IH and similarly, (T2Td,† + IH − TTd,†)(Td,† +
IH − TTd,†) = IH . Hence, the inverse of Td,† + IH − TTd,† is given by

(Td,† + IH − TTd,†)−1 = T2Td,† + IH − TTd,†.

Theorem 2.18. Let T ∈ B(H) be generalized Drazin invertible with closed range. Then there exists an idempotent
P ∈ B(H) such that both TP and PT are quasinilpotent, and the operator Td,† + P is invertible. Moreover,

Td,† = (Td,† + P)−1TdT†.

Proof. Assume that Td,† is the gDMP inverse of T. Define P = IH − TTd,† is idempotent By Theorem 2.11,
both PT and TP are quasinilpotent. From Proposition 2.17, the operator Td,† + P is invertible, and its
inverse is (Td,† + P)−1 = T2Td,† + P. Now, observe that (Td,† + P)Td,† = (Td,†)2 + PTd,† = TdT†. Hence,
Td,† = (Td,† + P)−1TdT†.

Theorem 2.19. Let T ∈ B(H) be Drazin invertible operator with index k and has closed range. Then there exists an
idempotent P ∈ B(H) such that

TpT†P = 0, PTp = 0 and TD,† + P is invertible,

for every nonnegative integer p ≥ k.

Proof. Suppose TD,† is the DMP inverse of T and p ≥ k. Set P = IH − TTD,†.
It is easy to verify that P is idempotent, and

TpT†P = TpT†(IH − TTD,†) = TpT† − Tp+1TDT† = 0,

PTp = (IH − TTd,†)Tp = Tp
− Tp = 0.

By Proposition 2.17, TD,† + P is invertible.

Solving certain types of operator equations, we present the gDMP inverse.

Theorem 2.20. Assume that T ∈ B(H) is Drazin invertible with index k and has closed range. Then the operator
system

TDTX = X and Tp+1X = Tp+1T† (1)

has a unique solution X = TD,† for every nonnegative integer p ≥ k.

Proof. We can easily show that (1) holds for X = TD,†. Now suppose X and X1 are two solutions of the
system (1), then

Tp+1X = Tp+1X1,

which further implies

X1 = TDTX1 = (TD)p+1(Tp+1X1) = (TD)p+1(Tp+1X) = TDTX = X.

Thus, the solution TD,† of the system (1) is unique.



M. El Bilali, M. Mouçouf / Filomat 40:4 (2026), 1555–1564 1562

3. Applications of gDMP inverse

In [14], the authors applied the Inner-gMP and gMP-inner inverses to solve certain types of linear
equations. Motivated by this, we apply the gDMP inverse to solve some systems of linear equations.

Theorem 3.1. Let T ∈ B(H) be Drazin invertible with index k and has closed range. Then the linear system

Tp(x) = Tp(T†(h)) (2)

is consistent for each h ∈ H and every p ≥ k, its general solution is given by

x = TD,†(h) + Tπ(y), (3)

where y ∈ H is arbitrary and Tπ = IH − TTD. Moreover,

x = TD,†(h)

is the unique solution to the system in R(Tp) with respect to the space decompositionH = R(Tp) ⊕N(Tp).

Proof. For x = TD,†(h) + Tπ(y), we have

Tp(x) = Tp(TD,†(h) + Tπ(y)) = TpTD,†(h) + Tp(y) − Tp+1TD(y) = TpTD,†(h) = TpT†(h).

Therefore, x is a solution of (2).
Conversly, suppose that x satisfies (2). Then

TDT(x) = (TDT)p(x) = (TD)pTpT†(h) = TDTT†(h) = TD,†(h),

implies
x = TD,†(h) + x − TDT(x) = TD,†(h) + Tπ(h),

Hence, x has the form given in (3).
To prove that x = TD,†(h) is the unique solution to the system in R(Tp), suppose that there is another

solution x1 ∈ R(Tp) of (2). Since, x − x1 ∈ N(Tp), then we have x − x1 ∈ R(Tp) ∩N(Tp) = {0}. Therefore,

x = x1.

The following corollary follows from Theorem 3.1.

Corollary 3.2. Let T ∈ B(H) be Drazin invertible with index k and has closed range. Then

TD,†(h) − T†(h) ∈ N(Tp)

for all h ∈ H and every nonnegative integer p ≥ k.

Theorem 3.3. Let T ∈ B(H) be generalized Drazin invertible with closed range. Then the system

T(x) = TTd(h) (4)

is consistent and its general solution is given by

x = T†,d(h) + (IH − T†T)(y), (5)

where y ∈ H is arbitrary.
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Proof. For x = T†,d(h) + (IH − T†T)(y), we have

T(x) = T(T†,d(h) + (IH − T†T)(y)) = TTd(h).

Hence, x is a solution of (4).
On the other hand, assume that x is a solution to (7). Then

T†T(x) = T†TTd(h) = T†,d(h).

Therefore,
x = T†,d(h) + x − T†T(x) = T†,d(h) + (IH − T†T)(y),

which is of the form given.

Theorem 3.4. Let T ∈ B(H) be generalized Drazin invertible with closed range. Then the system

TTd(x) = Td(h), (6)

is consistent and its general solution is given by

x = T†,d(h) + (IH − T†,dT)(y), (7)

where y ∈ H is arbitrary.

Proof. Let x = T†,d(h) + (IH − T†,dT)(y), where y ∈ H . Then

TTd(x) = TTd
(
T†,d(h) + (IH − T†,dT)(y)

)
= TTdT†,d(h)

= Td(h),

which shows that x is a solution of (6).
Conversely, suppose that equation (6) has a solution x. Then

T†,dT(x) = T†TTd(h) = T†,d(h).

Hence,

x = T†,d(h) + x − T†,dT(x)

= T†,d(h) + (IH − T†,dT)(x),

which implies that x is of the form (7).
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[13] M. Mouçouf, P-canonical forms and Drazin inverses of matrices, Filomat. 38(2024), 2399–2417.
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