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Abstract. The aim of this work is to prove the existence of weak solutions of a two-phase (aqueous and
oil) immiscible and incompressible flow model with dynamic capillary pressure in porous media and three
components (water, polymer and oil). The mathematical model is obtained by writing down the mass
conservation for wetting and non-wetting phase and the mass conservation for polymer component in the
wetting phase. We obtain a nonlinear parabolic degenerate problem of equations in term of oil and water
saturations, and polymer concentration in wetting phase.

1. Introduction

The primary and secondary enhanced oil recovery methods leave more than helf of hydrocarbon reserves
in place, so tankers rely on tertiary assisted recovery methods. This mathematical model under study has
applications in the tertiary oil recovery.

In [23], we prove the existence of weak solutions of a two-incompressible immiscible phase flow model
in porous medium with dynamic capillary pressure, the authors to prove the existence of a solution of the
problem after using the Galerkin approximation method.
In [25], we prove the existence of weak solutions of a two-incompressible immiscible phase flow model with
dynamic capillary pressure in porous media with three components, the authors used the Leray-Schauder
pixed point theorem, see [30], for to analyze mathematically a two-phase flow with three components
modeling the enhanced oil recovery by polymer flooding. We prove existence of weak solutions of a
two-incompressible immiscible “aqueous and oil” phase flow model with dynamic capillary pressure in
porous media with three components (polymer, water and oil). This model is obtained by writing down
the mass conservation for each phase and the mass conservation for polymer component in the wetting
phase (water).

The aim of this paper is to analyze a two-phase flow with three-components modeling the Enhanced Oil
Recovery (EOR) by polymer flooding with dynamic capillary pressure. The study of degenerate parabolic
problems modeling the displacement of incompressible immiscible two-phase flows, for more details see
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[17, 18, 23] and [19] in case assumption that densities are increasing under a global pressure, also, we
consider the dynamic capillary pressure in [23]. In [25], the authors demonstrated the existence of solutions
of a two-phase with three components immiscible incompressible flow model in porous media, Also in
[21], an existence result has been shown in the case where the density of wetting and non-wetting phase
is fixed. There is only few mathematical study of two-phase three-components flow models. A partial
existence according to [7, 24], in porous media the mixture of two phases water and oil are immiscible, the
authors establish the existence of a weak solution; the authors derive a compositional model of multiphase
incompressible flow in porous media.

The author, in [28], uses this model to prove another existence result, assuming that non degeneracy and
of strictly liquid saturation. In [29], a nonlinear elliptic/parabolic problem describing the compositional of
water oil incompressible flow modeling the process of infiltration of hydrocarbons in an aquifer is studied.
The aurhors, in [8], present a technique consisting in the use of yield stress fluids as blocking agents in
porous media presenting pore-scale heterogeneities concentrated polymer solutions developing a yield
stress were used as microscopic blocking agents. The aurthors, in [2, 3], analyse and study of numerical
simulation for nonisothermal multiphase immiscible compressible flow model in porous medium. The
authors, in [1], introduce a model of the time evolution of a flow of compressible fluids and immiscible in
porous medium, taking into account the thermal effects, the existence result of weak solutions of the more
general model is obtained based on assumptions that are physically relevant to the problem data. This result
is obtained in several steps involving an appropriate regularization and a time discretization. In [4, 5], the
authors study the existence of weak solution of non-isothermal multiphase flows models in porous media.
The model used in [29] combines two-phase incompressible which are dissolution of hydrocarbons in the
wetting phase, also, the model is assumed that the transfer velocity of a dissolved chemical is finite.

In [13], the authors present a convergence analysis of the finite difference method for multicomponent
transport in porous media. For the analysis, the authors consider a reduced system of equations in
one spatial dimension involving only one component (polymer). This reduced system models Chemical
Enhanced Oil Recovery (CEOR) by polymer flooding , see [14, 16], in one spatial dimension.

Now, we propose and analyze a mathematical model for incompressible, immiscible, three-component
(water, polymer and oil) two-phase flow (wetting and non-wetting) with dynamic capillary pressure model-
ing the enhanced oil recovery by polymer flooding in porous media, it is using a global pressure introduced
by [10, 12, 14, 16] and [11]. The mathematical model couples three non-linear degenerate parabolic equa-
tions arising from mass conservation of each component in wetting and non-wetting phases, we prove the
existence of weak solutions of the problem with the assumption that the viscosity of water is increasing
with respect to its own polymer concentration. Let us state the model used in this paper, we consider herein
a porous medium saturated with a fluid composed of two phases (aqueous and oil). The water is supposed
only in the liquid phase (no vapor of water due to evaporation).

In order to define the model, we write the governing equations for incompressible, immiscible, three-
component two-phase flow , with dynamic capillary pressure, of fluids through porous media:

ϕ
∂sw

∂t
+ div(uw) = 0, (1)

ϕ
∂so

∂t
+ div(uo) = 0, (2)

ϕ
∂(csw)
∂t

+ div(cuw) − div(D(sw)∇c) = 0, (3)

here div = ∇· denotes the divergence operator, where the subscripts w and o represent respectively the
wetting phase and the nonwetting phase. Quantities sα,uα, c,D and ϕ represent respectively the saturation
of the α phase (α = w, o), the velocity of the α phase, and the polymer concentration in wetting phase and
the diffusion-dispersion tensor of the polymer in the aqueous phase and the porosity of the medium. We
work under the hypotheses that

sw + so = 1, (4)
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and the velocity of each phase uα is given by the Darcy’s law

uw = −λw(sw, c)K(x)∇pw, uo = −λo(so)K(x)∇po, (5)

with K is the intrinsic permeability tensor of the porous media and pα is the pressure of α-phase. Where
λw(sw, c) is the mobility of the wetting phase and λo(so) is the mobility of the nonwetting one, they are
defined by

λw(sw, c) =
krw(sw)
µw(c)

and λo(so) =
kro(so)
µo

,

where krα the relative permeability of the α phase, µα the α-phase’s viscosity, µo is supposed constant,
also, the wetting phase (aqueous phase) viscosity “µw” is modeled by a linear function of the polymer
concentration “c”

µw(c) = (1 + κc)µp, (6)

here µp is the viscosity of pure water and the coefficient κ characterizes the particular polymer, for more
details, see [14, 16]. It is known that when two fluids immiscible are in contact with each other in porous
space, a clear interface exists between them, also, the interface is a curved surface and the pressure on
the concave side exceeds that in the convex side. In this work, the pressure difference is known as with
dynamic capillary pressure:

po − pw = pc(sw) + ζ∂tsw. (7)

the function sw 7−→ pc(sw) is increasing and stands for classical static capillary pressure ( dpc

dsw
< 0) for all

sw ∈ [0, 1] and pc(1) = 0, and ζ = ζ(sw) is the damping coefficient. Note that our problem (1)–(7) is closed.
The unknowns are saturations so, sw, pressures po, pw, and concentration c.

It is known that equations originating from multiphase flow in porous medium are degenerated. The
first type of degeneracy arises from the behavior of relative permeability of the phases which disappears
when his saturation goes to 0. Also, the second type of degeneracy is due to the temporal term when the
flow goes to a saturated state. In this paper, the strategy we base those difficulties is to introduce some
regularizations as follows. Firstly, we regularize the problem (S) by adding diffusive terms on dynamic
capillary pressure to obtain a non degenerate problem (Sν) as described in the beginning of Section 3.
Secondly, we make a time discretization of problem (Sν) to treat the time degeneracy. This gives an elliptic
problem (Sν,δt) which is helpful to prove the existence of a solution of (Sν). This is the goal of Sections 3.1
and 3.2 Finally, Section 4 is devoted to establish uniform energy estimates independently of ν to pass to
the limit (ν goes to zero) and demonstrate the existence of a weak solution of problem (S) in the sense of
Theorem 2.3.

2. Main result and hypotheses

Let us begining by introducing the global pressure p, it is the function given by

p = po + p̃(sw, c) = pw − p̄(sw, c) − ζ(sw)∂tsw, (8)

such that p̃(sw, c) and p̄(sw, c) are two functions where

dp̃
dsw
=
λw(sw, c)
λ(sw, c)

dpc

dsw
and

dp̄
dsw
= −

λo(so)
λ(sw, c)

dpc

dsw
. (9)

One can demonstrate that, see for instance the above references,

λ(sw, c)∇p = λw(sw, c)∇pw + λo(so)∇po, (10)
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with the total mobility λ(sw, c) is defined by

λ(sw, c) = λw(sw, c) + λo(so). (11)

We have the equality∫
ΩT

λ|∇p|2dxdt +

∫
ΩT

λwλo

λ
|∇pc|

2dxdt

=

∫
ΩT

λw|∇pw|
2dxdt +

∫
ΩT

λo|∇po|
2dxdt ≤ C, (12)

where the constant C is positive.

We introduce, see [7], the contribution of capillary terms by

γ(sw, c) = −
λw(sw, c)λo(so)

λ(sw, c)
dpc

dsw
(sw) ≥ 0 and B(sw, c) =

∫ sw

0
γ(y, c) dy. (13)

We define the function Bc by Bc(sw) = B(sw, c) for sw ∈ [0, 1] and c fixed in [0, cequ].
Now, we complete the description of the our model (1)–(7) by introducing boundary and initial condi-

tions. Let T > 0 be the final time fixed, and let be Ω a bounded open subset of Rd (d ≥ 1), whose boundary
is denoted by Γ or ∂Ω.

Now, we denote by Γw the part of the boundary of Ω where the wetting saturation is imposed to one;
the imprevious part of the boundary is thus denoted Γimp = Γ \ Γw and we impose the following boundary
conditions on pressures, concentration and no fluxes through Γimp:

c = cΓw (t, x) on (0,T) × Γw,
po(t, x) = pw(t, x) = 0 on (0,T) × Γw,
uw · n = uo · n = 0 on (0,T) × Γimp,
(cuw −D∇c) · n = 0 on (0,T) × Γimp,

 (14)

with n is the outward unit normal to Γ.
The initial conditions are defined on saturations of each phase and polymer concentration

sα(t = 0, ·) = s0
α for α = w, o and c(t = 0, ·) = c0 in Ω. (15)

In the sequel we note by (S) the problem consisting of partial differential equations (1)–(3), Darcy-
Muskat’s laws (5), the capillary relation (7), and boundary and intial conditions (14) and (15).

We note
ΩT = (0,T) ×Ω and ΣT = (0,T) × ∂Ω.

Now, we introduce some relevant hypotheses on the coefficients of this problem. We assume the following:

(A1) The function ϕ ∈ L∞(Ω) and there exist two constants ϕ⋆ > 0, ϕ⋆ > 0 such that ϕ⋆ ≤ ϕ(x) ≤ ϕ⋆ a.e.
x ∈ Ω.

(A2) The permeability tensor K ∈ (L∞(Ω))d×d and there exist two constants k0 > 0 and k∞ > 0 such that
∥K∥(L∞(Ω))d×d ≤ k∞ and

⟨K(x)ξ, ξ⟩ ≥ k0|ξ|
2 a.e. x ∈ Ω, ∀ξ ∈ Rd.

(A3) The function λo ∈ C0([0, 1],R+) such that λo(so = 0) = 0 and the function λw ∈ C0([0, 1] × [0, cequ],R+)
such that λw(sw = 0, ·) = 0. And there is a positive constant m0 > 0 with for all sw ∈ [0, 1] and
c ∈ [0, cequ],

λ(sw, c) = λw(sw, c) + λo(so) ≥ m0.
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(A4) The capillary pressure function pc(sw, ∂tsw) ∈ C1([0, 1]×]0,+∞[;R+) and there exists pc > 0 such that

0 < pc ≤

∣∣∣∣ dpc

dsw

∣∣∣∣ and the damping coefficient ζ(sw) ∈ C1([0, 1];R).

(A5) The equilibrium concentration cequ ≥ 0 is a constant.

(A6) The function γ ∈ C2([0, 1] × [0, cequ];R+) and satisfies γ(sw, c) > 0 for sw ∈]0, 1[ and c ∈]0, cequ[ where
γ(0, ·) = γ(1, ·) = 0. The functionB−1

c , inverse of the function sw 7−→ Bc(sw) = B(sw, c) =
∫ sw

0 γ(y, c) dy, c
fixed, is Hölderian of order θ, where 0 < θ ≤ 1, on the interval [0,B(1, cequ)].

(A7) There exists a function ĉΓw ∈ L2(0,T; H1(Ω)) where ĉΓw = cΓw on (0,T) × Γw, cΓw being the prescribed
concentration on (0,T) × Γw.

(A8) The diffusion-dispersion symmetric tensor D is a non-linear continuous function of the saturation sw
and is bounded for sw ∈ [0, 1]. There exists a positive constant δ where

∀v ∈ Rd, ∀ sw ∈ [0, 1], ⟨D(sw)v, v⟩ ≥ δ∥v∥2.

Now, we put

F(sw) =
∫ sw

0
pc(z)dz so that ∂tF(sw) = F′(sw)∂tsw = pc(sw)∂tsw. (16)

Remark 2.1. Our problem is degenerate because, as stated in assumption (A3), λo(so = 0) = 0 and λw(sw = 0, c =
0) = 0.

Remark 2.2. In assumption (A6), the function B−1
c is supposed Hölderian, it means there exists a constant b ≥ 0

such that
|B−1

c (σ1) −B−1
c (σ2)| ≤ b|σ1 − σ2|

θ, ∀σ1, σ2 ∈ [0,B(1, cequ)].

Also, for σ1 and σ2 fixed in [0,B(1, cequ)], there exists two numbers s1
w, s2

w ∈ [0, 1] withBc(s1
w) = σ1 andBc(s2

w) = σ2.
We have

|σ1 − σ2| = |Bc(s1
w) −Bc(s2

w)|

=
∣∣∣∣ ∫ s1

w

s2
w

γ(y, c)dy
∣∣∣∣ ≤ cM|s1

w − s2
w|, M = sup

y∈[0,1]
z∈[0,cequ]

γ(y, z).

we get

|B−1
c (σ1) −B−1

c (σ2)| ≤ bcθMθ
|s1

w − s2
w|
θ with Bc(s1

w) = σ1, Bc(s2
w) = σ2. (17)

Now, we denote B−1
c simply by B−1.

In all what follows, we define the following Sobolev space

V � H1
Γw

(Ω) = {u ∈ H1(Ω) | u = 0 on Γw}

which is a Hilbert space such that the norm ∥u∥V = ∥∇u∥(L2(Ω))d .

Now, let us state the main result of this work

Theorem 2.3. Let (A1) − (A8) hold and let the initial conditions s0
o , s0

w, and c0
∈ L2(Ω), with 0 ≤ c0(x) ≤ cequ,

and 0 ≤ s0
w ≤ 1. Then, there exists a solution (so, sw, po, pw, c) satisfying

po, pw,
√
λw(sw, c)∇pw,

√
λo(so)∇po ∈ L2(ΩT), ϕ∂tsα ∈ L2(0,T; V′), α = w, o, (18)

0 ≤ sα ≤ 1, α = w, o, 0 ≤ c ≤ cequ a.e. in ΩT and B(sw, c) ∈ L2(0,T; V), (19)

c − ĉΓw ∈ L2(0,T; V), ϕ∂t(swc) ∈ L2(0,T; V′), (20)
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and satisfying for all φ, ψ, χ ∈ V, and a.e. t ∈ (0,T) the following integral identities

⟨ϕ∂tsw, φ⟩ +

∫
Ω

λw(sw, c)K∇pw · ∇φ dx = 0, (21)

⟨ϕ∂tso, ψ⟩ +

∫
Ω

λo(so)K∇po · ∇ψ dx = 0, (22)

⟨ϕ∂t(csw), χ⟩ +
∫
Ω

cλw(sw, c)K∇pw · ∇χ dx +
∫
Ω

D(sw)∇c · ∇χ dx = 0. (23)

and the initial conditions, in the sense that for all ξ ∈ V, the functions

t 7−→
∫
Ω

ϕ(x)sα(t, x)ξ(x)dx for α = o,w and t 7−→
∫
Ω

ϕ(x)(csw)(t, x)ξ(x)dx

are in C0([0,T]), and we have( ∫
Ω

ϕsαξdx
)
(0) =

∫
Ω

ϕs0
αξdx, α = o,w, (24)( ∫

Ω

ϕcswξdx
)
(0) =

∫
Ω

ϕc0s0
wξdx. (25)

Let us explain the origin of the requirements (18)-(20). The main point is to handle a priori estimates on
pressure, saturation and concentration. The studied problem represents two kinds of degeneracy: the
degeneracy for evolution terms (∂t(sα) and ∂t(c sw)), and the degeneracy for dissipative terms (div(λα∇pα)).
We will see that even if we control the quantities λα∇pα in the L2

−norm, this does not permit the control
of the gradient of pressure of wetting and non-wetting phase since the mobility of two phase vanishes in
the region where the phase is absent. We will get estimation on the gradient of the global pressure and the
gradient of the capillary termB to treat the degeneracy of our problem. Also, we can give the estimates on
the gradient of the global pressure p and on the gradient of the capillary termB, after using the assumptions
(A1) − (A8), we indicate that p ∈ L2(0,T; V) and B(sw, c) ∈ L2(0,T; H1(Ω)), see [25].

3. Construction of a regularized problem

We treat the degeneracy of pressures due to disappearance of mobilities, for (sw, c) = (0, 0) and so = 0,
we regularize the problem (S) by adding a dissipative capillary term.

We consider the non degenerate problem:

ϕ
∂sνw
∂t

− div (λw(sνw, c
ν)K∇pνw) + νδ(pνo − pνw) = 0, (26)

ϕ
∂sνo
∂t

− div (λo(sνo)K∇pνo) + νδ(pνw − pνo) = 0, (27)

ϕ
∂(cνsνw)
∂t

− div (cνλw(sνw, c
ν)K∇pνw) + νdiv (cν∇(pνo − pνw)) − div(D∇cν) = 0, (28)

where ν > 0 is a positive parameter intended to tend towards zero, here δ denotes the Laplacian operator,
with the boundary conditions

cν(t, x) = cΓw (t, x), on (0,T) × Γw,
pνo(t, x) = pνw(t, x) = 0, on (0,T) × Γw,
(uνw + ν∇(pνo − pνw)) · n = 0, on (0,T) × Γimp,
(uνo − ν∇(pνo − pνw)) · n = 0, on (0,T) × Γimp,(
uνwcν + ν∇(pνo − pνw) −D∇cν

)
· n = 0, on (0,T) × Γimp,


(29)
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and initial conditions

sνα(t = 0, ·) = s0
α for α = w, o and cν(t = 0, ·) = c0 in Ω, (30)

where, n is the outward unit normal to Γimp, the impervious part of the boundary, and

uνw = −λw(sνw, c
ν)K∇pνw, uνo = −λo(sνo)K∇pνo .

We use (Sν) to denote the problem (26)–(28) with initial and boundary conditions (29)–(30). Let us state
the following result about existence of solutions to the above non degenerated the problem (Sν).

Theorem 3.1. Let (A1)-(A8) hold. Assume that p0
o , p0

w, c0
∈ L2(Ω) with 0 ≤ c0(x) ≤ cequ and 0 ≤ s0

w(x) ≤ 1 a.e. inΩ.
For all ν > 0 fixed, there exists (pνo , pνw, cν) satisfying pνα ∈ L2(0,T; V), ϕ∂t(sνα) ∈ L2(0,T; V′), sνα ∈ C0([0,T]; L2(Ω)),
sνw ∈ L2(0,T; H1(Ω)), sνo ∈ L2(0,T; V), c − ĉΓw ∈ L2(0,T; V), ∇cν ∈ L2(0,T; L2(Ω)), ϕ∂t(sνwcν) ∈ L2(0,T; V′),
sνwcν ∈ C0(0,T; L2(Ω)), and for all φ, ψ, χ ∈ V the following hold true a.e. in ]0,T[:

⟨ϕ∂tsνw, φ⟩ +
∫
Ω

λw(sνw, c
ν)K∇pνw · ∇φ dx − ν

∫
Ω

∇(pνo − pνw) · ∇φ dx = 0, (31)

⟨ϕ∂tsνo , ψ⟩ +
∫
Ω

λo(sνo)K∇pνo · ∇ψ dx − ν
∫
Ω

∇(pνw − pνo) · ∇ψ dx = 0, (32)

⟨ϕ∂t(cνsνw), χ⟩ +
∫
Ω

cνλw(sνw, c
ν)K∇pνw · ∇χ dx +

∫
Ω

D∇cν · ∇χ dx

−ν

∫
Ω

cν∇(pνo − pνw) · ∇χ dx = 0, (33)

here the bracket ⟨·, ·⟩ is the duality product between V′ and V. The water saturation sνw and the concentration cν of
dissolved polymer verify the maximum principle in the sense that 0 ≤ sνw ≤ 1 and 0 ≤ cν ≤ cequ a.e. in ΩT.

The proof of the above Theorem 3.1 needs several steps. We begin by approximating the nondegenerate
parabolic problem (Sν) by a family of elliptic problems parametrized by a time step for which we prove the
existence of solution and making this time step goes to zero, we obtain a solution for (Sν). The maximum
principles hold for saturations solution of these elliptic problems. In substance, let M ∈ ⋗∗ be an integer.
We subdivide the time interval [0,T] in M subintervals. We get the time step δt = T/M. Starting from the
initial conditions s0

o , s0
w, and c0, we construct recursively sequences of functions solutions of approximating

elliptic problems as follows. If at the time level tn = nδt, the quintuplet of approximating solutions
(sν,nw , sν,no , pν,nw , pν,no , cν,n) ∈ (L2(Ω))5 with sν,nα ≥ 0 and cν,nsν,nw ≥ 0 is known, using sν,no , sν,nw , and cν,n as initial
conditions, we define the quintuplet (sν,n+1

w , sν,n+1
o , pν,n+1

w , pν,n+1
o , cν,n+1) as a solution of the problem

ϕ
sν,n+1

w − sν,nw

δt
− div(λw(sν,n+1

w , cν,n+1)K∇pν,n+1
w )

+ νdiv(∇(pν,n+1
o − pν,n+1

w )) = 0, (34)

(Sν,δt) ϕ
sν,n+1

o − sν,no

δt
− div(λo(sν,n+1

o )K∇pν,n+1
o )

+ νdiv(∇(pν,n+1
w − pν,n+1

o )) = 0, (35)

ϕ
cν,n+1sν,n+1

w − cν,nsν,nw

δt
− div(cν,n+1λw(sν,n+1

w , cν,n+1)K∇pν,n+1
w )

−div(D∇cν,n+1) + νdiv(cν,n+1
∇(pν,n+1

o − pν,n+1
w )) = 0, (36)

satisfying the boundary conditions (29), such that the upper index ν is replaced by ν,n. In this problem the
main unknowns are po, pw, and c. The remaining unknowns, the saturations sα are obtained from inverting
the function of capillarity pc. So, to keep the property of inversion, we extend the capillary pressure
function pc by continuity and strict monotony outside [0, 1] to get p̄c. This is possible in the case when the
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capillary function pc is bounded, in another sense when |pc(0)| < ∞. Therefore, we put sw = p̄−1
c (po − pw) and

so = 1 − p̄−1
c (po − pw).

In the next section, we are looking for the existence of solutions of the elliptic problem (Sν,δt) at fixed ν
and δt.

3.1. Study of a nonlinear elliptic problem

To simplify notations, we will omit the upper indexes ν and n (or n + 1) in the Equations of problem
(Sν,δt). We add two regularizations, we replace the mobilities λα, by two strictly positive functions,

λεα = λα + ε ≥ ε, ε > 0,

chosen to reinforce the passage to the limit in the regularization using ν. We denote that the above
regularization of the mobilities can lead to the loss of maximum principle property of the saturations and
concentration. For this reason, the functions λα are extended on R by continuity outside [0, 1] and, for the
same reason, we introduce

Z(sα) =


0 if sα ≤ 0,
sα if sα ∈ [0, 1],
1 if sα ≥ 1,

and Y(c) =


0 if c ≤ 0,
c if c ∈ [0, cequ],
cequ if c ≥ cequ.

The aim of the following is to prove the existence of solution to (34)–(36). This needs three steps.
Firstly, we introduce the orthogonal projection Pm of L2(Ω) on its subspace spanned by the first m

eigenfunctions {p1, ..., pm} of the eigenvalue problem

∆pi = λipi in Ω,
pi = 0 on Γw,
∇pi · n = 0 on Γimp.

 (37)

The operator Pm is defined by

L2(Ω) ∋ p̄ 7−→ Pmp̄ =
m∑

i=1

(p̄, pi) pi ∈ Πm = Vec{p1, ..., pm} ⊂ L2(Ω),

here Πm is the subspace spanned by the eigenvectors p1, ..., pm; (·, ·) stands for the scalar product of L2(Ω).
The first step consists therefore to study the following weak formulation of the non-degenerate problem

(Sν,δt), for fixed parameters ε > 0 and m > 0:∫
Ω

ϕ
Z(sε,mw ) − s∗w

δt
φdx − ν

∫
Ω

∇(Pmpε,mo − Pmpε,mw ) · ∇φdx

+

∫
Ω

λεw(sε,mw , cε,m)K∇pε,mw · ∇φdx = 0, (38)∫
Ω

ϕ
Z(sε,mo ) − s∗o

δt
ψdx + ν

∫
Ω

∇(Pmpε,mo − Pmpε,mw ) · ∇ψdx

+

∫
Ω

λεo(sε,mo )K∇pε,mo · ∇ψdx = 0, (39)∫
Ω

ϕ
Z(sε,mw )Y(cε,m) − c∗s∗w

δt
χdx − ν

∫
Ω

Y(cε,m)∇(Pmpε,mo − Pmpε,mw ) · ∇χdx

+

∫
Ω

D∇cε,m · ∇χdx +

∫
Ω

Y(cε,m)λεw(sε,mw , cε,m)K∇pε,mw · ∇χdx = 0, (40)

∀(φ,ψ, χ) ∈ V3.
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We note the above problem by (Sε,mν,δt). This is an elliptical problem to be solved at each step n = 1, . . . ,M.
The work to be done at each time level is the same. Assuming known sn, an approximation of the solution
at the level tn = nδt, we determine sn+1, an approximation of the solution at the level tn+1 by solving the
above problem where, to simplify, we set sn+1 = sm and sn = s∗. We use recurrence, covering the whole time
interval.

Step 1.
The first one consists in studying the problem (Sε,mν,δt) for fixed parameters ε > 0 and m > 0. We will show

for fixed m > 0 and ε > 0 the existence of solutions (pε,mw , pε,mo , cε,m) of (38)–(40).

Proposition 3.2. For fixed m > 0 and ε > 0, assume s∗α and s∗wc∗ belonging to L2(Ω), s∗α ≥ 0 and s∗wc∗ ≥ 0. Then
there exists pε,mw ∈ V, pε,mo ∈ V and cε,m ∈ H1(Ω), solution of the problem (38)-(40).

Proof. We omit for the time being the dependence of solutions on parameters m > 0 and ε > 0. We shall use
the Leray-Schauder Fixed Point Theorem [30]. Let T be the map from (L2(Ω))3 to (L2(Ω))3 defined by

T (p̄w, p̄o, c̄) = (pw, po, c),

where (pw, po, c) is the unique solution of the following problem∫
Ω

ϕ
Z(s̄w) − s∗w

δt
φ dx +

∫
Ω

λεw(s̄w, c̄)K∇pw · ∇φ dx

− ν

∫
Ω

∇(Pmp̄o − Pmp̄w) · ∇φ dx = 0, (41)∫
Ω

ϕ
Z(s̄o) − s∗o

δt
ψdx +

∫
Ω

λεo(s̄o)K∇po · ∇ψ dx

+ ν

∫
Ω

∇(Pmp̄o − Pmp̄w) · ∇ψ dx = 0, (42)∫
Ω

ϕ
Z(s̄w)Y(c̄) − s∗wc∗

δt
χdx = −

∫
Ω

Y(c̄)λεw(s̄w, c̄)K∇pw · ∇χ dx

−

∫
Ω

D∇c · ∇χ dx + ν
∫
Ω

Y(c̄)∇(po − pw) · ∇χ dx, (43)

∀φ, ψ, χ ∈ V.

The mapping T is well defined on (L2(Ω))3. To see this, we use the Lax-Milgram Theorem (see for instance
[26]). Let us begin by Equation (41). To prove the existence of an unique function pw ∈ V solution of this
equation, we consider the bilinear form

a(pw, φ) =

∫
Ω

λεw(s̄w, c̄)K∇pw · ∇φdx,

and the linear functional

ℓ(φ) = ν
∫
Ω

∇(Pmp̄o − Pmp̄w) · ∇φ dx −
∫
Ω

ϕ
Z(s̄w) − s∗w

δt
φ dx.

It is easy to see that a(·, ·) is bilinear symmetric and ℓ is linear on V.
To see the continuity of a(·, ·), we use the fact that λεw ∈ L∞(Ω) and K ∈ (L∞(Ω))d×d to write

|a(pw, φ)| =
∣∣∣∣ ∫
Ω

λεw(s̄w, c̄)K∇pw · ∇φ dx
∣∣∣∣

(Cauchy-Schwarz Ineq.) ≤ sup |λεw|∥K∥(L∞(Ω))d×d∥∇pw∥L2(Ω)∥∇φ∥L2(Ω)

≤ C∥pw∥V∥φ∥V.
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The bilinear form a(·, ·) is coercive, since λε ≥ ε, using the hypothesis (H2), we can write:

|a(pw, pw)| =
∣∣∣∣ ∫
Ω

λεw(s̄w, c̄)K∇pw · ∇pw dx
∣∣∣∣

≥ ε

∫
Ω

K∇pw · ∇pw dx ≥ εk0∥pw∥
2
V.

The functional ℓ(·) is continuous on V:

|ℓ(φ)| =
∣∣∣∣ν∫

Ω

∇(Pmp̄o − Pmp̄w) · ∇φ dx −
∫
Ω

ϕ
Z(s̄w) − s∗w

δt
φ dx
∣∣∣∣

≤ ν

∫
Ω

|∇(Pmp̄o − Pmp̄w) · ∇φ| dx +
∫
Ω

∣∣∣∣ϕZ(s̄w) − s∗w
δt

φ
∣∣∣∣ dx

≤ ν∥∇(Pmp̄o − Pmp̄w)∥L2(Ω) ∥∇φ∥L2(Ω) + ϕ
⋆
∥∥∥∥Z(s̄w) − s∗w

δt

∥∥∥∥
L2(Ω)
∥φ∥L2(Ω)

≤ C∥φ∥V (by the Poincaré Inequality).

Thus, we can use Lax-Milgram Theorem to see that the equation (41) has an unique solution pw in V. The
same argument shows the existence of an unique solution po ∈ V to the equation (42). Now plugging these
found functions po and pw into the equation (43).

We get a linear equation to determine the unknown function c. To do this we will use the following
result, given for instance in [6], which asserts that if B is a reflexive Banach space and C ⊂ B is a nonempty,
closed, convex subset of B, each convex lower semi-continuous functional F : C −→ (−∞,+∞] such that
F . +∞ and lim

v∈C,∥v∥→∞
F(v) = +∞ (no assumption if C is bounded), achieves its minimum on C. Let us

therefore consider C, the convex closed subset of H1(Ω) given by C = V + ĉΓw , and define the functional F
on C by

C ∋ v 7−→ F(v) =
1
2
σ(v, v) − τ(v) ∈ R,

with

σ(v, v) =

∫
Ω

D∇v · ∇v dx,

τ(v) = ν

∫
Ω

Y(c̄)∇(po − pw) · ∇v dx −
∫
Ω

ϕ
Z(s̄w)Y(c̄) − s∗wc∗

δt
v dx

−

∫
Ω

Y(c̄)λεw(s̄w, c̄)K∇pw · ∇v dx.

As above, we can prove that σ(·, ·) is a continuous bilinear form and τ(·) is a linear continuous form on
H1(Ω); this implies the continuity of the functional F. This functional is convex on H1(Ω). In fact, for v, w
two functions of H1(Ω) and t ∈ [0, 1] a real number, we can write

σ((1 − t)v + tw, (1 − t)v + tw) = (1 − t)2σ(v, v) + t(1 − t){σ(v,w) + σ(w, v)} + t2σ(w,w).

Then

σ((1 − t)v + tw, (1 − t)v + tw) − (1 − t)σ(v, v) − tσ(w,w) = t(1 − t){− σ(v, v) + σ(v,w)
+ σ(w, v) − σ(w,w)}

= − t(1 − t)σ(w − v,w − v) ≤ 0.

Since τ is linear, the functional F is convex.



M.L. Mostefai / Filomat 40:4 (2026), 1225–1251 1235

Now, using the continuity of the linear form τ and the Hypothesis (H8), we see that F(v + ĉΓw ) ≥
δ
2∥v∥

2
−C′∥v∥ −C′′, ∀v ∈ H1(Ω), with C′,C′′ > 0 the constants. This shows that lim

∥v∥→∞
F(v) = +∞. We are now

ready to use the above mentioned result to see the existence of a function c such that

c ∈ C, F(c) =
1
2
σ(c, c) − τ(c) = min

{1
2
σ(v, v) − τ(v) | v ∈ C

}
.

Note that (1 − t)v + tw ∈ C for all v,w ∈ C and all t ∈ R. This means that the function R ∋ t 7−→ ξ(t) =
F((1 − t)c + tw) ∈ R reaches its minimum at t = 0. Since (we use the symmetry of D)

σ(c + t(w − c), c + t(w − c)) = σ(c, c) + 2tσ(c,w − c) + t2σ(w − c,w − c)

we get ξ′(t) = σ(c,w − c) + tσ(w − c,w − c) − τ(w − c), for all t ∈ R. This gives

σ(c,w − c) = τ(w − c), ∀w ∈ C.

Put χ = w − c, which is in V, we that the function c is a solution of Equation (43): σ(c, χ) = τ(χ), ∀χ ∈ V.
This solution is unique, by virtue of the coerciveness of the diffusion-dispersion tensor D.

Lemma 3.3. The mapT is a continuous operator which maps every bounded subset of L2(Ω) into a relatively compact
set.

Proof. Let us consider a sequence {(p̄wk, p̄ok, c̄k)} bounded in (L2(Ω))3 and converging to (p̄w, p̄o, c̄) ∈ (L2(Ω))3.
We have prove that the image sequence {(pwk, pok, ck)} = {T (p̄wk, p̄ok, c̄k)} is bounded in V3 and converges to
(pw, po, c) = T (p̄w, p̄o, c̄). In fact, the sequences {pwk}, {pok}, {ck} verify respectively, for all (φ,ψ, χ) ∈ V3:∫

Ω

ϕ
Z(s̄wk) − s∗w

δt
φdx +

∫
Ω

λεw(s̄wk, c̄k)K∇pwk · ∇φ dx

− ν

∫
Ω

∇(Pmp̄ok − Pmp̄wk) · ∇φ dx = 0, (44)∫
Ω

ϕ
Z(s̄ok) − s∗o

δt
ψ dx +

∫
Ω

λεo(s̄ok)K∇pok · ∇ψ dx

+ ν

∫
Ω

∇(Pmp̄ok − Pmp̄wk) · ∇ψ dx = 0, (45)

and ∫
Ω

ϕ
Z(s̄wk)Y(c̄k) − s∗wc∗

δt
χdx +

∫
Ω

D∇ck · ∇χdx = −
∫
Ω

Y(c̄k)λεw(s̄wk, c̄k)K∇pwk · ∇χdx

+ ν

∫
Ω

Y(c̄k)∇(pok − pwk) · ∇χdx. (46)

Let us take φ = pwk in (44), we get∫
Ω

ϕ
Z(s̄wk) − s∗w

δt
pwk dx +

∫
Ω

λεw(s̄wk, c̄k)K∇pwk · ∇pwk dx

− ν

∫
Ω

∇(Pmp̄ok − Pmp̄wk) · ∇pwk dx = 0.

Leading to∫
Ω

λεw(s̄wk, c̄k)K∇pwk · ∇pwk dx ≤

∫
Ω

∣∣∣∣ϕZ(s̄wk) − s∗w
δt

pwk

∣∣∣∣ dx

+ ν

∫
Ω

|∇(Pmp̄ok − Pmp̄wk) · ∇pwk| dx.



M.L. Mostefai / Filomat 40:4 (2026), 1225–1251 1236

Now, using the Cauchy-Schwarz Inequality, one gets∫
Ω

(λw(s̄wk, c̄k) + ε)K∇pwk · ∇pwk dx ≤

( ∫
Ω

∣∣∣∣ϕZ(s̄wk) − s∗w
δt

∣∣∣∣2dx
) 1

2
( ∫
Ω

|pwk|
2 dx
) 1

2

+ ν
( ∫
Ω

|∇(Pmp̄ok − Pmp̄wk)|2 dx
) 1

2
∥pwk∥V.

Now, according to hypothesis (H2) and Poincaré Inequality, we obtain

εk0∥pwk∥
2
V ≤ C

(
1 +
∑
α=o,w

∥∇(Pmp̄αk)∥L2(Ω)

)
∥pwk∥V, (47)

where C is a positive constant depending on Ω, ν, δt, ϕ⋆, k∞, and ∥s∗w∥L2(Ω).

Since∇Pmp̄αk =
m∑

i=1
(p̄αk, pi)∇pi, there exists a constant Cm, depending on the norms of eigenfunctions such

that
∥∇Pmp̄αk∥L2(Ω) ≤ Cm∥p̄αk∥L2(Ω) α = o,w.

As the sequence {(p̄wk, p̄ok, c̄k)} is taken bounded in (L2(Ω))3, the estimate (47) ensures that the sequence {pwk}k
is uniformly bounded in V.

Using the same argument, we can prove that the sequence {pok}k is uniformly bounded in V.
To estimate the sequence {ck}k, we take χ = ck − ĉΓw � zk as a test function in (46). We have∫

Ω

D∇ck · ∇(ck − ĉΓw ) dx = −

∫
Ω

ϕ
Z(s̄wk)Y(c̄k) − s∗wc∗

δt
(ck − ĉΓw ) dx

−

∫
Ω

Y(c̄k)λεw(s̄wk, c̄k)K∇pwk · ∇(ck − ĉΓw ) dx

+ ν

∫
Ω

Y(c̄k)∇(Pmp̄ok − Pmp̄wk) · ∇(ck − ĉΓw ) dx.

Using hypothesis (H1), (H2), (H3), (H8) and using Cauchy-Schwartz inequality and Poincaré Inequality, we
obtain

δ

∫
Ω

|∇ck|
2 dx ≤

∫
Ω

ϕ
∣∣∣∣Z(s̄wk)Y(c̄k) − s∗wc∗

δt
(ck − ĉΓw )

∣∣∣∣dx

+

∫
Ω

|Y(c̄k)λεw(s̄wk, c̄k)K∇pwk · ∇(ck − ĉΓw )|dx

+ν

∫
Ω

|Y(c̄k)∇(Pmp̄ok − Pmp̄wk) · ∇(ck − ĉΓw )|dx

+
1
2
∥ D ∥(L∞(Ω))d×d

[ ∫
Ω

|∇ck|
2dx +

∫
Ω

|∇̂cΓw |
2dx
]
,

we deduce similarly that∫
Ω

|∇zk|
2dx ≤ C(1 + ∥∇pwk∥L2(Ω) + ∥∇pok∥L2(Ω)) (48)

where C depends on Ω, δt, ϕ⋆, k∞, δ and ∥s∗wc∗∥L2(Ω).
This establishes the relative compactness property of the map T in (L2(Ω))3.
Furthermore, up to a subsequence, we have the convergences

pαk −→ pα weakly in L2(0,T; V), α = o,w (49)
zk −→ z weakly in L2(0,T; V), (50)

pαk −→ pα strongly in L2(Ω) and a.e. in Ω (51)
zk −→ z strongly in L2(Ω) and a.e. in Ω. (52)
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We have C = V + ĉΓw , the convex closed subset of H1(Ω), then

ck −→ c weakly in L2(0,T; H1(Ω)), (53)
ck −→ c strongly in L2(Ω) and a.e. in Ω. (54)

Using the above convergence and the theorem of Lebesgue concerning dominated convergence, we show
classically that T is continuous operator.

Lemma 3.4. (A priori estimate)
There exists r > 0 such that, if (pw, po, c) = βT (pw, po, c) with β ∈ (0, 1), then

∥(pw, po, c)∥(L2(Ω))3 ≤ r.

Proof. Assume that (pw, po, c) = βT (pw, po, c) exists, then (pw, po, c) satisfies∫
Ω

Kλεw(sw, c)∇pw · ∇φdx = − β

∫
Ω

ϕ
Z(sw) − s∗w

δt
φdx

+ βν

∫
Ω

∇(Pmpo − Pmpw) · ∇φdx, (55)

∫
Ω

Kλεo(so)∇po · ∇ψdx = − β

∫
Ω

ϕ
Z(so) − s∗o

δt
ψdx

− βν

∫
Ω

∇(Pmpo − Pmpw) · ∇ψdx, (56)

and ∫
Ω

D∇c · ∇χdx = − β

∫
Ω

ϕ
Z(sw)Y(c) − s∗wc∗

δt
χdx − β

∫
Ω

Y(c)Kλεw(sw, c)∇pw · ∇χdx

+ βν

∫
Ω

Y(c)∇(po − pw) · ∇χdx, (57)

for all (φ,ψ, χ) ∈ (V)3.
Taking φ = pw ∈ V in (55), ψ = po ∈ V in (56), adding them and using again the Cauchy-Schwarz and
Poincaré inequalities, we deduce

ε

∫
Ω

|∇pw|
2dx + ε

∫
Ω

|∇po|
2dx + βν

∫
Ω

|∇(Pmpo − Pmpw)|2dx ≤ C
(
∥s∗w∥L2(Ω) + ∥s∗o∥L2(Ω)

)
, (58)

where C depends on ε and not on β.
In the same manner, we obtain by taking χ = c − ĉΓw in (57), that

1
2
δ

∫
Ω

|∇c|2dx ≤ C(∥∇po∥L2(Ω) + ∥∇pw∥L2(Ω)

+∥∇c∥L2(Ω) + ∥s∗wc∗∥L2(Ω) + ∥∇̂cΓw∥
2
L2(Ω)), (59)

where C depends on ε and not on β.

Lemma 3.3 and Lemma 3.4 allow to apply the Leray-Schauder fixed point theorem [30], thus the proof of
Proposition 3.2 is completed.
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Step 2.
This step consists to pass to the limit when m goes to infinity, and the last step concerns to pass to the

limit when ε goes to 0. This step is devoted go by the limit when m goes to∞.
The estimates (58) and (59) are uniform with respect to m and β, then taking these estimates with β = 1, we
get

ε

∫
Ω

|∇pε,mw |
2dx + ε

∫
Ω

|∇pε,mo |
2dx + ν

∫
Ω

|(∇(Pmpε,mo − Pmpε,mw ))|2dx ≤ C, (60)

and

δ

∫
Ω

|∇cε,m|2dx ≤ C, (61)

where C depends on ε and not on m.
Then up to a subsequence, when m goes to infinity, we have the convergences

pε,mα −→ pεα weakly in V, strongly in L2(Ω) and a.e. in Ω with α = w, o
cε,m −→ cε weakly in H1(Ω), strongly in L2(Ω).

We pass to the limit when m goes to infinity in (38)-(40) to obtain, for all ε > 0, the existence of (pεw, pεo) ∈ (V)2

and cε ∈ H1(Ω) , satisfying∫
Ω

ϕ
Z(sεw) − s∗w

δt
φdx +

∫
Ω

Kλεw(sεw, c
ε)∇pεw · ∇φdx − ν

∫
Ω

∇(pεo − pεw)∇φdx = 0, (62)

∫
Ω

ϕ
Z(sεo) − s∗o

δt
ψdx +

∫
Ω

Kλεo(sεo , )∇pεo · ∇ψdx + ν
∫
Ω

∇(pεo − pεw)∇ψdx = 0, (63)

and∫
Ω

ϕ
Z(sεw)Y(cε) − s∗wc∗

δt
χdx +

∫
Ω

Y(cε)Kλεw(sεw, c
ε)∇pεw · ∇χdx

− ν

∫
Ω

Y(cε)∇(pεo − pεw)∇χdx +
∫
Ω

D∇cε · ∇χdx = 0, (64)

for all (φ,ψ, χ) ∈ (V)3.

Step 3.
The third step is devoted go by the limit when ε goes to 0. We resort to make use of use the feature of

global pressure to get uniform estimates on the solutions independent of the regularization ε. A maximum
principle on saturation is possible after going to the limit in ε.

We state the following two lemmas in order to pass to the limit in ε.

Lemma 3.5. (Uniform estimates with respect to ε)
The sequences (sεw)ε, (cε)ε, and (pε = pεw + p̄(sεw, cε))ε defined by (62)-(64) satisfy

(pε)ε is uniformly bounded in V (65)
(B(sεw, c

ε))ε is uniformly bounded in H1(Ω) (66)
(∇pc(sεw))ε is uniformly bounded in L2(Ω) (67)
(pεα)ε is uniformly bounded in V, α = o,w (68)

(cε)ε is uniformly bounded in H1(Ω) (69)
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Proof. Consider the test function φ = pεw ∈ V in (62) and ψ = pεo ∈ V in (63) and add them. We deduce
with the help of Cauchy-Schwarz inequality and the relationship (8) between the global pressure and the
pressure of each phase that∫

Ω

Kλεw(sεw, c
ε)∇pεw∇pεwdx +

∫
Ω

Kλεo(sεo)∇pεo∇pεodx + ν
∫
Ω

∇pc(sεw) · ∇pc(sεw)dx

≤ C(1 + ∥pε∥2L2(Ω) + ∥p̄(sεw)∥2L2(Ω)) + ∥p̃(sεo)∥2L2(Ω)),

here C = C(δt, λα, ϕ, k∞, s∗w, s∗o) independent of ε.
Using the identity (12) which links the gradient of the pressure of each phase to the global pressure, we
obtain

ko

∫
Ω

λ(sεw, c
ε)|∇pε|2dx + ko

∫
Ω

λw(sεw, cε)λo(sεo)
λ(sεw, cε)

|∇pc(sεw)|2dx + ν
∫
Ω

∇pc(sεw) · ∇pc(sεw)dx

+εk0

∫
Ω

∇pεw · ∇pεwdx + εk0

∫
Ω

∇pεo · ∇pεodx ≤ C1, (70)

here k0 is the constant of coercivity of the tensor K and C1 is a constant independent of ε.
Then, the assumption (A3) ensures the estimate (65).
For the estimate (66), we have∫

Ω

|B(sεw, c
ε)|2dx ≤ sup

s∈[0,1];c∈[0,cequ]
|λ(s, c)|

∫
Ω

λw(sεw, cε)λo(sεo)
λ(sεw, cε)

|∇pc(sεw)|2dx ≤ C2,

such that C2 is independent of ε.
The estimate (67) is a consequence of (70). The estimate (68) is a direct consequence of (8) and the estimates
(65) and (67).
The last estimate (69) is obtained by takingχ = cε−ĉΓw in the formulation (64), and from the Cauchy-Schwarz
inequality, we deduce

∥∇cε∥L2(Ω) ≤ C(∥cε∥L2(Ω) + ∥̂cΓw∥L2(Ω) + ∥∇̂cΓw∥
2
L2(Ω) + ∥∇pεw∥

2
L2(Ω)) + ∥∇pεo∥

2
L2(Ω)).

We use the Poincaré inequality and the estimate (68) to obtain (69).

From Lemma 3.5 (up to a subsequence), the sequences (sεα)ε, (pε)ε, (pεα)ε, verify the following convergences

pε −→ p weakly in V and a.e. in Ω (71)
B(sεw, c

ε) −→ B(sw, c) weakly in H1(Ω) and a. e. in Ω (72)
Z(sεw) −→ Z(sw) weakly in L2(Ω) and almost evreywhere in Ω (73)

pεα −→ pα weakly in L2(Ω) and almost evreywhere in Ω (74)
cε −→ c weakly in H1(Ω) and almost evreywhere in Ω. (75)

Then, we pass to the limit as ε goes to 0 in formulations (62)-(64) to get (pw, po) ∈ (V)2 and c ∈ H1(Ω) solution
of ∫

Ω

ϕ
Z(sw) − s∗w

δt
φdx +

∫
Ω

Kλw(sw, c)∇pw · ∇φdx − ν
∫
Ω

∇(po − pw) · ∇φdx = 0, (76)

∫
Ω

ϕ
Z(so) − s∗o

δt
ψdx +

∫
Ω

Kλo(so)∇po · ∇ψdx + ν
∫
Ω

∇(po − pw) · ∇ψdx = 0, (77)

and ∫
Ω

ϕ
Z(sw)Y(c) − s∗wc∗

δt
χdx +

∫
Ω

Y(c)Kλw(sw, c)∇pw · ∇χdx

−ν

∫
Ω

Y(c)∇(po − pw) · ∇χdx +
∫
Ω

D∇c · ∇χdx = 0, (78)
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for all φ,ψ, χ ∈ V.

Let us show the following the maximum principle.

Proposition 3.6. Assume s∗α ≥ 0, c∗ ≥ 0, s∗α and s∗wc∗ belong to L2(Ω). Then, for all δt > 0, the solutions (pw, po, c)
of (76)-(78) satisfy

0 ≤ sα ≤ 1 and 0 ≤ c ≤ cequ a.e. in Ω.

Proof. Let us show sα ≥ 0 and c ≥ 0 a.e. in Ω. For that consider φ = −s−w, ψ = −s−o , and χ = −(c − ĉΓw )−

respectively in (76)-(78) with the notation u = u+ − u−, u+ = max(0,u) and u− = −min(0,u). Note that,
according to the extension of the mobility of two phase we have λw(sw, c)s−w = λo(so)s−o = 0 and from the
definition of the function Z we have also Z(sα)s−α = Y(c)(c − ĉΓw )− = 0. We obtain∫

Ω

ϕ
s∗w
δt

s−wdx − ν
∫
Ω

p̄′c(sw)∇s−w · ∇s−wdx = 0,∫
Ω

ϕ
s∗o
δt

s−o dx − ν
∫
Ω

p̄′c(sw)∇s−o · ∇s−o dx = 0,∫
Ω

s∗w(c∗ − ĉΓw )
δt

(c − ĉΓw )−dx +
∫
Ω

D∇(c − ĉΓw )− · ∇(c − ĉΓw )−dx = 0.

Since it is possible to choose an extension p̄c of pc outside [0, 1] in a way that ensures p̄′c(sw) different from
zero outside [0, 1], we obtain∫

Ω

|∇s−α |
2dx ≤ 0 and δ

∫
Ω

|∇c−|2dx ≤ 0,

which indicate that s−α = 0 and c− = 0 a. e. in Ω since s−α and c− vanish on Γw.
To prove c ≤ cequ, we multiply (76) by −cequ, and consider φ = χ = (c − cequ)+ respectively in (76) and (78),
and adding them, we get∫

Ω

ϕ
−s∗w(c∗ − cequ)

δt
(c − cequ)+dx + δ

∫
Ω

|∇(c − cequ)+|2dx ≤ 0,

which indicates that (c − cequ)+ = 0 a. e. in Ω since (c − cequ)+ vanishes on Γw .

3.2. Study of the regularized problem (Sν)
We have shown the existence of a solution (sν,n+1

w , sν,n+1
o , pν,n+1

w , pν,n+1
o , cν,n+1) of (76)-(78) in Section 3.1. So

that, the sequence (sν,n+1
w , sν,n+1

o , pν,n+1
w , pν,n+1

o , cν,n+1) defined in (34)-(36) is well defined. Moreover, for given
sν,nα ≥ 0, sν,nw cν,n ≥ 0 and sν,nα ∈ L2(Ω), sν,nw cν,n ∈ L2(Ω), (α = w, o), we construct (sν,n+1

w , sν,n+1
o , pν,n+1

w , pν,n+1
o , cν,n+1)

so sν,n+1
α ∈ [0, 1] and cν,n ∈ [0, cequ].
We now omit the index ν (for the sake of clarity).
This section is devoted go by the limit as δt goes to 0 to prove a existing solution of the problem (Sν).

We will show some uniform estimates with respect to δt to obtain uniformly bounded on some quantities.
Next, these estimations allow us go by the limit as δt goes to zero in the problem (34)-(36).

The next lemma gives some uniform estimates with respect to δt.

Lemma 3.7. (Uniform estimates with respect to δt)
The solution of (34)-(36) satisfies

1
δt

∫
Ω

ϕ(x)(sn+1
w pn+1

w − sn
wpn

w)dx +
1
δt

∫
Ω

ϕ(x)(sn+1
o pn+1

o − sn
o pn

o )dx + ν
∫
Ω

|∇(pn+1
o − pn

w)|2dx

−
1
δt

∫
Ω

ϕ(x)(F (sn+1
w ) − F (sn

w))dx + k0

∫
Ω

λw(sn+1
w , cn+1)∇pn+1

w · ∇pn+1
w dx

+k0

∫
Ω

λo(sn+1
o )∇pn+1

o · ∇pn+1
o dx ≤ C, (79)
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and

1
δt

∫
Ω

ϕ(x)(sn+1
w ((c − ĉΓw )n+1)2

− sn
w((c − ĉΓw )n)2dx + δ

∫
Ω

∇((c − ĉΓw )n+1)2dx

≤ C(∥
√
λw(sn+1

w , cn+1)∇pn+1
w )∥L2(Ω) + ν∥∇(pn+1

o − pn+1
w )∥2L2(Ω)), (80)

such that C does not depend on δt. The function F is defined by

F (sw) =
∫ sw

0
pc(z)dz. (81)

Proof. Let forget the exponent n + 1 in the proof and let note with the exponent (∗) the physical quantities
at time tn.

(sw − s∗w)pw + (so − s∗o)po = swpw − s∗wpw + sopo − s∗opo
≥ swpw − s∗wpw + sopo − s∗opo − (sw − s∗w)pc(sw). (82)

Using the concavity of F we have the inequality: (sw − s∗w)pc(sw) ≤ F (sw) − F (s∗w), and the above inequality
(82), we obtain that for all sα ≥ 0 and s∗α ≥ 0 where sw + so = s∗w + s∗o = 1 the following inequality

(sw − s∗w)pw + (so − s∗o)po ≥ swpw − s∗wpw + sopo − s∗opo − F (sw) + F (s∗w). (83)

To obtain the inequality (79), we just have to multiply (34) by pw and (35) by po, sum this two equations and
use the inequality (83).
In the same way, to obtain the inequality (80), we just have to multiply (36) by c − ĉΓw and use Cauchy-
Schwarz inequality.
To multiply (34) by pw and (35) by po, after integration and sum this two equations and use the inequality
(83), we obtain

1
δt

∫
Ω

ϕ(x)(sn+1
w pn+1

w − sn
wpn

w)dx +
1
δt

∫
Ω

ϕ(x)(sn+1
o pn+1

o − sn
o pn

o )dx + ν
∫
Ω

|∇(pn+1
o − pn

w)|2dx

−
1
δt

∫
Ω

ϕ(x)(F (sn+1
w ) − F (sn

w))dx + k0

∫
Ω

λw(sn+1
w , cn+1)∇pn+1

w · ∇pn+1
w dx

+k0

∫
Ω

λo(sn+1
o )∇pn+1

o · ∇pn+1
o dx ≤ C.

For (80), we replace c by ĉΓw in (36), we get

ϕ
ĉn+1
Γw

sn+1
w − ĉn

Γw
sn

w

δt
− div(̂cn+1

Γw
λw(sn+1

w , cn+1)K∇pn+1
w )

−div(D∇̂cn+1
Γw

) + νdiv(̂cn+1
Γw
∇(pn+1

o − pn+1
w )) = 0, (84)

we just have to multiply (36) by c− ĉΓw and (84) by −(c− ĉΓw ), and summation and integration the equations,
we get

1
δt

∫
Ω

ϕ(x)(sn+1
w ((c − ĉΓw )n+1)2

− sn
w((c − ĉΓw )n))2dx

+

∫
Ω

((cn+1λw(sn+1
w , cn+1) − ĉn+1

Γw
λw(sn+1

w , ĉn+1
Γw

))K∇pn+1
w ∇(c − ĉΓw )n+1dx

+

∫
Ω

(D(∇(c − ĉΓw )n+1)2dx

−
1
2
ν

∫
Ω

(∇(pn+1
o − pn+1

w ))∇((c − ĉΓw )n+1)2dx = 0,
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hence

1
δt

∫
Ω

ϕ(x)(sn+1
w ((c − ĉΓw )n+1)2

− sn
w((c − ĉΓw )n))2dx + δ

∫
Ω

(∇(c − ĉΓw )n+1)2dx

≤
1
2

k∞

∫
Ω

(λw(sn+1
w , cn+1))∇pn+1

w (∇(c − ĉΓw )n+1)2dx

+
1
2
ν

∫
Ω

(∇(pn+1
o − pn+1

w ))∇((c − ĉΓw )n+1)2dx,

after using Cauchy-Schwarz inequality,

1
δt

∫
Ω

ϕ(x)(sn+1
w ((c − ĉΓw )n+1)2

− sn
w((c − ĉΓw )n)2dx + δ

∫
Ω

∇((c − ĉΓw )n+1)2dx

≤ C(∥
√
λw(sn+1

w , cn+1)∇pn+1
w )∥L2(Ω) + ν∥∇(pn+1

o − pn+1
w )∥2L2(Ω)),

such that C does not depend on δt.

The next goal is to get uniform estimates on the solutions reconstructed in time, namely the time piecewise
constant function and the corresponding continuous linear function in time. To do that, by introducing
some of notations. For a given sequence (un)n=0,M, we define the time piecewise constant function as

uδt(0) = u0 and uδt(t) =
M−1∑
n=0

un+11]nδt,(n+1)δt](t), ∀ ∈]0,T], (85)

here 1]nδt,(n+1)δt](t) = 1 for t ∈]nδt, (n + 1)δt] and zero otherwise. We also define ũδt by

ũδt(t) =
M−1∑
n=0

[(
1 + n −

t
δt

)
un +

( t
δt
− n
)
un+1
]
1]nδt,(n+1)δt](t), t ∈ [0,T]. (86)

so that, we can compute

∂tũδt(t) =
1
δt

M−1∑
n=0

(un+1
− un)1]nδt,(n+1)δt[(t), ∀t ∈ [0,T] \

{
∪

M
n=0 nδt

}
.

For α = w, o, we note by sδt
α the function defined by (85), we note by vδt the function defined by (85)

corresponding to vn = sn
wcn. Finally, consider s̃δt

α , ṽδt the functions defined by (86) corresponding to sδt
α and

vδt.

Proposition 3.8. The sequence

(sδt
α ) is uniformly bounded in L2(0,T; V), (87)

(pδt
α ) is uniformly bounded in L2(0,T; V), (88)

(cδt) is uniformly bounded in L2(0,T; H1(Ω)), (89)
(vδt) is uniformly bounded in L2(0,T; H1(Ω)), (90)
(ṽδt) is uniformly bounded in L2(0,T; H1(Ω)), (91)

(ϕ∂ts̃δt
α ) is uniformly bounded in L2(0,T; V′), (92)

(ϕ∂tṽδt) is uniformly bounded in L2(0,T; V′). (93)
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Proof. We remark that∫
ΩT

λw(sδt
w , c

δt)|∇pδt
w |

2dxdt = δt
M−1∑
n=0

∫
Ω

λw(sn+1
w , cn+1)|∇pn+1

w |
2dx,

∫
ΩT

λo(sδt
o )|∇pδt

o |
2dxdt = δt

M−1∑
n=0

∫
Ω

λo(sn+1
o )|∇pn+1

o |
2dx,

and ∫
ΩT

|∇pc(sδt
w )|2dxdt = δt

M−1∑
n=0

∫
Ω

|∇pc(sn+1
w )|2dx.

We multiply (79) by δt and summing it from n = 0 to M − 1 to get the following estimation

1
δt

∫
Ω

ϕ(x)(sδt
w (T) − sδt

w (0))dx +
1
δt

∫
Ω

ϕ(x)(sδt
o (T) − sδt

o (0))dx

−
1
δt

∫
Ω

ϕ(x)(F (sδt
w (T)) − F (sδt

w (0)))dx + ν
∫
ΩT

|∇pc(sδt
w )|2dx

+ k0

∫
Ω

λw(sδt
w , c

δt)|∇pδt
w |

2dxdt + k0

∫
Ω

λo(sδt
o )|∇pδt

o |
2dxdt ≤ C1.

If we use the fact that pδt
α (0) ∈ L2(Ω), 0 ≤ sδt

α ≤ 1 for α = w, o, we deduce that

k0

( ∫
ΩT

λw(sδt
w , c

δt)|∇pδt
w |

2dxdt +
∫
ΩT

λo(sδt
o )|∇pδt

o |
2dxdt

)
+ ν
( ∫
ΩT

|∇pc(sδt
w )|2dxdt

)
≤ C2,

then, one gets by the help of (12), the relationship between global pressure, capillary pressure and pressures,
that ∫

ΩT

λ(sδt
w , c

δt)|∇pδt
|
2dxdt + ν

∫
ΩT

|∇pc(sδt
w )|2dxdt ≤ C3, (94)

here C1, C2, C3 are constant independent of δt.
The assumption (A4) on the capillary function pc with the second term of (94) achieves the estimate (87).
Since we have the relationship (8) between the pressure of two phase, the capillary pressure and the global
pressure, then the estimate (88) becomes a consequence of (94). The estimate (89) is a consequence of (80)
and (87)-(88).
To get the uniform estimate (87), we compute the gradient of δt.

∇sδt
α =

M−1∑
n=0

(∇sn+1
α )1]nδt,(n+1)δt](t).

In the same method, we get the uniform estimate for (90) and (91). From equations (34), we have for all
φ ∈ L2(0,T; V),

⟨ϕ∂ts̃δt
w , φ⟩ = −

∫
ΩT

Kλw(sδt
w , c

δt)∇pδt
w · ∇φdxdt − ν

∫
ΩT

∇(pδt
o − pδt

w ) · ∇φdxdt.

The above estimates (87)-(88) with (94) ensure that (ϕ∂ts̃δt
α )h is uniformly bounded in L2(0,T; V). In the same

way, we get (92) for α = o,w and (93).

The next step is devoted to pass to the limit as δt goes to 0 in order to study the problem (Sν). This is the
subject of the next proposition.
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Proposition 3.9. (Convergence as δt goes to 0)
We have the following convergences as δt goes to 0,

∥sδt
α − s̃δt

α ∥L2(ΩT) −→ 0, with α = o,w (95)

∥vδt
− ṽδt

∥L2(ΩT) −→ 0, (96)

sδt
α −→ sα weakly in L2(0,T; V), (97)

pδt
α −→ pα weakly in L2(0,T; V), (98)
cδt
−→ c weakly in L2(0,T; H1(Ω)), (99)

vδt
−→ v strongly in L2(ΩT). (100)

Furthermore

sδt
α −→ sα a. e. in ΩT (101)

0 ≤ sα ≤ 1 a. e. in ΩT (102)
pδt
α −→ pα a. e. in ΩT (103)
cδt
−→ c a. e. in ΩT (104)

0 ≤ c ≤ cequ a. e. in ΩT (105)

and

v = swc a. e. in ΩT. (106)

Finally, we have

ϕ∂ts̃α −→ ϕ∂tsα weakly in L2(0,T; V′), (107)
ϕ∂tṽα −→ ϕ∂t(swc) weakly in L2(0,T; V′). (108)

Proof. Note that

∥sδt
α − s̃δt

α ∥
2
L2(ΩT) =

M−1∑
n=0

∫ (n+1)δt

nδt
∥(1 + n −

t
δt

)(sn+1
α − sn

α)∥2L2(Ω)dt

=
δt
2

M−1∑
n=1

∥sn+1
α − sn

α∥
2
L2(Ω).

Now, we multiply (34) by sn+1
w − sn

w and sum it from n = 0 to M − 1 to obtain the following estimation

ϕ⋆
δt

M−1∑
n=0

∥sn+1
w − sn

w∥
2
L2(Ω) ≤

M−1∑
n=0

[
∥∇sn

w∥
2
L2(Ω) + ∥∇sn+1

w ∥
2
L2(Ω) + ∥∇pn+1

w ∥
2
L2(Ω)

]
.

This yields

M−1∑
n=0

∥sn+1
w − sn

w∥
2
L2(ΩT) ≤ C

(
1 + ∥∇sδt

w∥
2
L2(ΩT) + ∥∇sδt

w∥
2
L2(ΩT) + ∥∇pδt

w∥
2
L2(ΩT)

)
.

And from (87) and (88), we conclude that

∥sδt
w − s̃δt

w ∥
2
L2(ΩT) −→ 0.

We multiply scalary (35) with sn+1
o − sn

o and this gives us (95). For (96), we multiply (36) with (vn+1
− vn), and

from (88), (89) and (90), we deduce (96). Next, from (87), (88) and (89), the sequences (sδt
o ), (pδt

α ) and (cδt) are
uniformly bounded in L2(0,T; V), then, we have up to a subsequence the convergence result (97), (98) and
(99).
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The sequence (s̃δt
α ) and (ṽδt) are uniformly bounded in L2(0,T; H1(Ω)). Due to (92) and (93) we have the

strong convergence

s̃δt
α −→ sα strongly in L2(ΩT), (109)
ṽδt
−→ v strongly in L2(ΩT). (110)

This compactness result is classical and can be found in [10] when the porosity is constant, and under the
assumption (A1) (the porosity belongs to W1,∞(Ω)) but the proof can be adapted with minor modifications.
The convergences (109) and (110) with (95) and (96) ensure the following strong convergences

sδt
w −→ sw strongly in L2(ΩT) and a.e. in ΩT (111)
sδt

o −→ so strongly in L2(ΩT) and a.e. in ΩT (112)
sδt

w cδt
−→ v strongly in L2(ΩT) and a.e. in ΩT (113)

and this achieves (100). We are looking for the almost everywhere convergence on pressures pδt
α , saturations

sδt
α and concentration cδt. For this, let define a map G : R+ ×R+ −→ R× [0, 1], G(ξ, ζ) = (pδt

w , sδt
w ) where ξ and

ζ are solutions of the problem{
ξ(pδt

w , sδt
w ) = pδt

w sδt
w ,

ϱ(pδt
w , sδt

w ) = (pδt
w + pc(sδt

w ))(1 − sδt
w ). (114)

Note that G is well defined by computing the Jacobian of G∣∣∣∣∣∣∣∣∣∣∣
∂ξ

∂pδt
w

∂ξ

∂sδt
w

∂ϱ

∂pδt
w

∂ϱ

∂sδt
w

∣∣∣∣∣∣∣∣∣∣∣ = (1 − sδt
w )sδt

w p′c(s
δt
w ) − sδt

w pc(sδt
w ) − pδt

w < 0.

As we have the almost everywhere convergences (111)-(112) and the map G defined in (114) is continuous,
we deduce that

pδt
w −→ pw a. e. in ΩT,

sδt
w −→ sw a. e. in ΩT.

The identification of the limit is due to (87), (88). The continuity of the capillary pressure function ensures
that

pδt
o −→ po a. e. in ΩT,

and the saturation equation ensures also

sδt
o −→ so a. e. in ΩT,

and this achieves (101)-(103), also, we have

pδt
w −→ pw a. e. in ΩT,

we deduce

pδt
w −→ pw strongly in L1(ΩT),

and then we have the following convergence

cδt
−→ c strongly in L1(ΩT).

This achieves (104). Finally the weak convergence (107)-(108) are a consequence of (92) and (93) and the
identification of the limit is a due to (106).
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Let us consider the weak formulations obtained from the problem (34)-(36) written after summation from
n = 0 to M − 1 on which we have to go by the limit as δt goes to 0,

⟨ϕ∂ts̃δt
w , φ⟩ +

∫
ΩT

Kλw(sδt
w , c

δt)∇pδt
w · ∇φdxdt − ν

∫
ΩT

∇(pδt
o − pδt

w ) · ∇φdxdt = 0, (115)

⟨ϕ∂ts̃δt
o , ψ⟩ +

∫
ΩT

Kλo(sδt
o )∇pδt

o · ∇ψdxdt − ν
∫
ΩT

∇(pδt
w − pδt

o ) · ∇ψdxdt = 0, (116)

and

⟨ϕ∂t(ṽδt), χ⟩ +
∫
ΩT

Kcδtλw(sδt
w , c

δt)∇pδt
w · ∇χdxdt

+

∫
ΩT

D∇cδt
· ∇χdxdt − ν

∫
ΩT

cδt
∇(pδt

o − pδt
w ) · ∇χdxdt = 0, (117)

where φ,ψ, χ ∈ L2(0,T; V).
Then, the convergences obtained in Proposition 3.9 let us to access to the limit on each term of (115), (117).
Then, we have established the weak formulation (31)-(33) of Theorem 3.1.
Furthermore, we have obtained by Proposition 3.9 the following properties

0 ≤ sα(t, x) ≤ 1 a.e. in ΩT, sα ∈ L2(0,T; V),
pα ∈ L2(0,T; V), ϕ∂tsα ∈ L2(0,T; V′), α = 0,w
0 ≤ c ≤ cequ, c ∈ L2(0,T; V), ϕ∂t(csw) ∈ L2(0,T; V′).

The compactness property on sδt
α implies that sα ∈ C0(0,T; L2(Ω)).

In the same way also the compactness property on cδtsδt
w implies that csw ∈ C0([0,T]; L2(Ω)) and Theorem 3.1

is proved.

4. Existence of solutions of the degenerate problem

In the Section 3.2, we have shown a existing solution (sνw, sνo , pνw, pνo , cν) of the problem (Sν) given in Section
3. The goal of the section is to pass to the limit as ν goes to the 0 to demonstrate the main result of this
work: the existence of solution for the problem (1)-(3) with some estimations in the sense of Theorem 2.3.

The first point to do this is to obtain regular estimates respect to ν to deduce strong convergences as ν
goes to 0. Next we will be able to pass to the limit as ν goes to 0.

4.1. Uniform estimates with respect to ν
We state the following two lemmas in order to establish uniform estimates with respect to ν.

Lemma 4.1. The sequence (sνα)ν, (cν)ν and (pν = pνw + p̄(sνw, cν))ν and defined by Theorem 3.1 satisfy

0 ≤ sνα ≤ 1 a. e. in ΩT, (118)
0 ≤ cν ≤ cequ a. e. in ΩT, (119)

(pν)ν is uniformly bounded in L2(0,T; V), (120)

(
√
ν∇pc(sνw))ν is uniformly bounded in L2(ΩT), (121)

(
√
λα(sνα, cν)∇pνα)ν is uniformly bounded in L2(ΩT), (122)

(cν)ν is uniformly bounded in L2(0,T; H1(Ω)), (123)
(B(sνw, c

ν))ν is uniformly bounded in L2(0,T; V), (124)
(ϕ∂t(sνα))ν is uniformly bounded in L2(0,T; V′), (125)

(ϕ∂t(cνsνw))ν is uniformly bounded in L2(0,T; V′). (126)
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Proof. It is easy to verify that the maximum principle (118)-(119) is conserved through the limit process.
For the next estimates, we have to multiply (26) by pνw and (27) by pνo and add these two equations. Using
the assumptions (A1)-(A8), the Cauchy-Schwarz inequality and (12), we deduce the following estimation.

d
dt

∫
Ω

ϕ
∑
α

(sναpνα)dx +

∫
Ω

K
∑
α

λα(sνα, c
ν)|∇pνα|

2dx + ν
∫
Ω

|∇pc(sνw)|2dx

≤ C(∥∇pν∥L2(Ω) + ∥p̃(sνw)∥L2(Ω) + ∥p̄(sνw)∥L2(Ω)).

We use again (12) and the assumptions (A1)-(A8), Cauchy-Schwarz and Young inequalities, the fact that
the function pα is nonnegative to obtain after integration over (0,T) the following estimation∫

ΩT

λ(sνw, c
ν)|∇pν|2dxdt +

∫
ΩT

λw(sνw, cν)λo(sνo)
λ(sνw, cν)

|∇pc(sνw)|2dxdt

+ν

∫
ΩT

|∇pc(sνw)|2dxdt +
1
2

k0

∑
α

[ ∫
ΩT

λα(sνα, c
ν)|∇pνα|

2dxdt
]
≤ C′. (127)

The previous estimation (127) and the assumption (A3) ensure the estimate (120). The estimations (121)-
(122) come directly from (127).

For the estimate (123), we multiply (28) by cν and (26) by−
1
2

(cν)2, we add them and this gives us the equality

1
2

d
dt

∫
Ω

ϕ|sνw(cν)2
|dx +

∫
Ω

D∇cν · ∇cνdx = 0. (128)

After integration in time of this equation, assumption (A5) and the fact that cν is bounded, we get estimation
(123).
The estimation (124) is a consequence of the assumption (A3) and the following estimation∫

ΩT

|∇B(sνw, c
ν)|2dxdt =

∫
ΩT

λ2
w(sνw, cν)λ2

o(sνo)
λ2(sνw, cν)

|∇pc(sνw)|2dxdt

≤ C,

here C is a constant independent of ν. For all φ,ψ, χ ∈ L2(0,T; V), we have

⟨ϕ∂tsνw, φ⟩ +
∫
ΩT

Kλw(sνw, c
ν)∇pνw · ∇φdxdt −

∫
ΩT

∇(pνo − pνw) · ∇φdxdt = 0, (129)

⟨ϕ∂tsνo , ψ⟩ +
∫
ΩT

Kλo(sνo)∇pνo · ∇ψdxdt −
∫
ΩT

∇(pνw − pνo) · ∇ψdxdt = 0, (130)

and

⟨ϕ∂t(cνsνw), χ⟩ +
∫
ΩT

cνKλw(sνw, c
ν)∇pνw · ∇χdxdt

−

∫
ΩT

D∇cν · ∇χdxdt −
∫
ΩT

cν∇(pνo − pνw) · ∇χdxdt = 0, (131)

here the bracket ⟨·, ·⟩ represents the duality product between L2(0,T; V′) and L2(0,T; V). After using (8), one
gets

|⟨ϕ∂tsνα, φ⟩| ≤ ν

∣∣∣∣∣ ∫
ΩT

∇pc(sνw) · ∇φdxdt
∣∣∣∣∣

+

∣∣∣∣∣ ∫
ΩT

K(λα(sνα, c
ν)∇pν + ∇B(sνw, c

ν)) · ∇φdxdt
∣∣∣∣∣, (132)
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and

|⟨ϕ∂t(cνsνw), χ⟩| ≤
∣∣∣∣∣ ∫
ΩT

D∇cν · ∇χdxdt
∣∣∣∣∣

+

∣∣∣∣∣ ∫
ΩT

cνK(λw(sνw, c
ν)∇pνw) · ∇χdxdt

∣∣∣∣∣
+ ν

∣∣∣∣∣ ∫
ΩT

cν∇pc(sνw) · ∇χdxdt
∣∣∣∣∣. (133)

From estimations (119)-(124), we deduce

|⟨ϕ∂tsνα, φ⟩| ≤ C∥φ∥L2(0,T;V), for α = w, o

and

|⟨ϕ∂t(cνsνw), χ⟩| ≤ C∥χ∥L2(0,T;V).

This establishes (125)-(126) and demonstrates the lemma.

Lemma 4.2. (Compactness result for degenerate case)
For every M > 0, the following implicit set

SM = {(sw, so, c) ∈ L2(ΩT) × L2(ΩT) × L2(ΩT), such that
∥B(sw, c)∥L2(0,T;H1(Ω)) ≤M, ∥

√
λw(sw, c)∇pw∥L2(ΩT) + ∥

√
λo(so)∇po∥L2(ΩT) ≤M,

∥ϕ∂tsw∥L2(0,T;V′) ≤M, ∥ϕ∂tso∥L2(0,T;V′) ≤M,
∥ϕ∂t(csw)∥L2(0,T;V′) ≤M}

is relatively compact in L2(ΩT) × L2(ΩT) × L2(ΩT) and γ(SM) is relatively compact in L2(ΣT) × L2(ΣT) × L2(ΣT), (γ
denotes the trace on ΣT operator).

Proof. The demonstration is inspired by the compactness lemma in the reference [18] which is introduced
for compressible degenerate model, we use the compactness result of Jacques Simon, see [27].

We deduce the following convergences.

Lemma 4.3. (Weak and strong convergences) Up to a subsequence the sequence (sνα)ν, (pν)ν, and (pνα)ν verify the
following convergence

pν −→ p weakly in L2(0,T; V) (134)
B(sνw, c

ν) −→ B(sw, c) weakly in L2(0,T; V) (135)
cν −→ c weakly in L2(0,T; V) (136)
pν −→ p a. e. in ΩT (137)

sνα −→ sα a. e. in ΩT with α = w, o (138)
0 ≤ sα(t, x) ≤ 1 a. e. in ΩT (139)

0 ≤ c(t, x) ≤ cequ a. e. in ΩT (140)
pνα −→ pα a. e. in ΩT with α = w, o (141)

cν −→ c a. e. in ΩT (142)
ϕ∂t(sνα) −→ ϕ∂t(sα) weakly in L2(0,T; V′) with α = w, o (143)

ϕ∂t(cνsνw) −→ ϕ∂t(csw) weakly in L2(0,T; V′) (144)
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Proof. Firstly, the weak convergences (134)-(136) follows from the uniform estimates (120), (123) and (124)
of Lemma 4.1.
Secondly, the Lemma 4.2 ensures the following strong convergences

sνw −→ sw in L2(ΩT) and a.e. in ΩT,

sνw −→ sw in L2(ΣT) and a.e. in ΣT.

As the map G defined in (114) is continuous, we can deduce

pνw −→ pw in ΩT and a.e. in ΣT,

and consequently the following convergences hold

pν, pνo −→ p, po in ΩT and a.e. in ΣT.

From (118), the estimate (139) is holds.
By the help of (136), we get

cν −→ c strongly in L1(0,T; L1(Ω)),

this achieve the convergence (142), the limits have been identified by (136), and then the maximum principle
(140) has been establish. The following convergences hold

B(sνw, c
ν) −→ B(sw, c) in ΩT and a.e. in ΣT.

At last, the weak convergence (143) and (144) is a consequence of the estimate (125) and (126), and the
identification of the limit follows from the previous convergence.

4.2. Proof of the main result
In order to achieve the demonstration of Theorem 2.3, it remains to pass to the limit as ν goes to 0 in the

formulations (31)-(33), for all smooth test functions φ, ψ and χ belongs in C1([0,T]; V)∩L2(0,T; H2(Ω)) such
that φ(T, ·) = ψ(T, ·) = χ(T, ·) = 0

−

∫
ΩT

ϕsνw∂tφdxdt +

∫
ΩT

Kλw(sνw, c
ν)∇pνw · ∇φdxdt

− ν

∫
ΩT

∇(pνo − pνw) · ∇φdxdt =
∫
Ω

ϕs0
wφ(0, x)dx, (145)

−

∫
ΩT

ϕsνo∂tψdxdt +

∫
ΩT

Kλo(sνo)∇pνw · ∇ψdxdt

− ν

∫
ΩT

∇(pνw − pνo) · ∇ψdxdt =
∫
Ω

ϕs0
wψ(0, x)dx, (146)

and

−

∫
ΩT

ϕcνsνw∂tχdxdt +

∫
ΩT

cνKλw(sνw, c
ν)∇pνw · ∇χdxdt +

∫
ΩT

D∇cν · ∇χdxdt

− ν

∫
ΩT

cν∇(pνo − pνw) · ∇χdxdt =
∫
Ω

ϕc0s0
wχ(0, x)dx. (147)

The first terms converges due to the strong convergence of sνα to sα in L2(ΩT) and the strong convergence of
sνwcν to swc in L2(ΩT).
Now, the two seconds terms of (145) and (146) can be written as,∫

ΩT

Kλo(sνo)∇pνo · ∇ψdxdt =
∫
ΩT

Kλo(sνo)∇pν · ∇ψdxdt −
∫
ΩT

K∇B(sνw, c
ν) · ∇ψdxdt, (148)
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and ∫
ΩT

Kλw(sνw, c
ν)∇pνw · ∇φdxdt =

∫
ΩT

Kλw(sνw, c
ν)∇pν · ∇φdxdt +

∫
ΩT

K∇B(sνw, c
ν) · ∇φdxdt. (149)

The two terms on the right hand side of (147) converge arguing in 2 steps. Firstly, the convergences
(138),(141) and (142) and the Lebesgue dominated convergence theorem, establish

λo(sνo)∇ψ −→ λo(so)∇ψ strongly in (L2(ΩT))d,
λw(sνw, cν)∇φ −→ λw(sw, c)∇φ strongly in (L2(ΩT))d.

Secondly, the convergence (135) combined to the above strong convergence validate the convergence for
the second term of the right hand side of (148) and (149), and the weak convergence on global pressure (134)
combined to the above strong convergence validate the convergence for the first term of the right hand side
of (148) and (149), and this achieves the passage to the limit on the second terms of (145) and (146).

For the third term of (147), we can deduce by the Lebesgue dominated convergence theorem and the
convergences (138) that

D(sνw)∇χ −→ D(sw)∇χ strongly in (L2(ΩT))d,

the convergence on concentration (136) combined to the above strong convergence validate the convergence
for the second term of (147).
After that, the fourth terms of (145) and (146) can be written as,

ν

∫
ΩT

∇(pνo − pνw) · ∇φ dxdt =
√
ν

∫
ΩT

(
√
ν∇pc(sνw))∇φ dxdt, (150)

the uniform estimate (121) and the inequality of Cauchy-Schwarz ensures the convergence of this term to 0.

The other terms converge classically by to use the theorem of Lebesgue concerning dominated conver-
gence and the convergences (138), (141) and (142).
The formulations (21)-(23) are then established, and the Theorem 2.3 is then established.

5. Conclusion

The nonlinear mathematical model under study has applications in the enhanced oil recovery EOR by
polymer flooding.

The goal of this manuscript is to proof the existence of weak solutions for a model of incompressible
and two-phase (aqueous and oil) immiscible flow with dynamic capillary pressure for three components
(polymer, water, and oil) in porous medium. We obtained the mathematical model by using the mass
conservation equation for the two phases, and the mass conservation equation for the polymer component
in the wetting phase (water).

In the future vision, we will generalized our results in case non-isothermal, also, we can study the same
problem in the presence of other components and providing numerical simulations.
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