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An existence result for three-component two-phase incompressible
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Abstract. The aim of this work is to prove the existence of weak solutions of a two-phase (aqueous and
oil) immiscible and incompressible flow model with dynamic capillary pressure in porous media and three
components (water, polymer and oil). The mathematical model is obtained by writing down the mass
conservation for wetting and non-wetting phase and the mass conservation for polymer component in the
wetting phase. We obtain a nonlinear parabolic degenerate problem of equations in term of oil and water
saturations, and polymer concentration in wetting phase.

1. Introduction

The primary and secondary enhanced oil recovery methods leave more than helf of hydrocarbon reserves

in place, so tankers rely on tertiary assisted recovery methods. This mathematical model under study has
applications in the tertiary oil recovery.

In [23], we prove the existence of weak solutions of a two-incompressible immiscible phase flow model
in porous medium with dynamic capillary pressure, the authors to prove the existence of a solution of the
problem after using the Galerkin approximation method.

In [25]], we prove the existence of weak solutions of a two-incompressible immiscible phase flow model with
dynamic capillary pressure in porous media with three components, the authors used the Leray-Schauder
pixed point theorem, see [30], for to analyze mathematically a two-phase flow with three components
modeling the enhanced oil recovery by polymer flooding. We prove existence of weak solutions of a
two-incompressible immiscible “aqueous and oil” phase flow model with dynamic capillary pressure in
porous media with three components (polymer, water and oil). This model is obtained by writing down

the mass conservation for each phase and the mass conservation for polymer component in the wetting
phase (water).

The aim of this paper is to analyze a two-phase flow with three-components modeling the Enhanced Oil
Recovery (EOR) by polymer flooding with dynamic capillary pressure. The study of degenerate parabolic
problems modeling the displacement of incompressible immiscible two-phase flows, for more details see
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[17, [18] 23] and [19] in case assumption that densities are increasing under a global pressure, also, we
consider the dynamic capillary pressure in [23]. In [25], the authors demonstrated the existence of solutions
of a two-phase with three components immiscible incompressible flow model in porous media, Also in
[21], an existence result has been shown in the case where the density of wetting and non-wetting phase
is fixed. There is only few mathematical study of two-phase three-components flow models. A partial
existence according to [7,24], in porous media the mixture of two phases water and oil are immiscible, the
authors establish the existence of a weak solution; the authors derive a compositional model of multiphase
incompressible flow in porous media.

The author, in [28], uses this model to prove another existence result, assuming that non degeneracy and
of strictly liquid saturation. In [29], a nonlinear elliptic/parabolic problem describing the compositional of
water oil incompressible flow modeling the process of infiltration of hydrocarbons in an aquifer is studied.
The aurhors, in [8], present a technique consisting in the use of yield stress fluids as blocking agents in
porous media presenting pore-scale heterogeneities concentrated polymer solutions developing a yield
stress were used as microscopic blocking agents. The aurthors, in [2, 3], analyse and study of numerical
simulation for nonisothermal multiphase immiscible compressible flow model in porous medium. The
authors, in [1]], introduce a model of the time evolution of a flow of compressible fluids and immiscible in
porous medium, taking into account the thermal effects, the existence result of weak solutions of the more
general model is obtained based on assumptions that are physically relevant to the problem data. This result
is obtained in several steps involving an appropriate regularization and a time discretization. In [4} 5], the
authors study the existence of weak solution of non-isothermal multiphase flows models in porous media.
The model used in [29] combines two-phase incompressible which are dissolution of hydrocarbons in the
wetting phase, also, the model is assumed that the transfer velocity of a dissolved chemical is finite.

In [13], the authors present a convergence analysis of the finite difference method for multicomponent
transport in porous media. For the analysis, the authors consider a reduced system of equations in
one spatial dimension involving only one component (polymer). This reduced system models Chemical
Enhanced Oil Recovery (CEOR) by polymer flooding , see [14,[16], in one spatial dimension.

Now, we propose and analyze a mathematical model for incompressible, immiscible, three-component
(water, polymer and oil) two-phase flow (wetting and non-wetting) with dynamic capillary pressure model-
ing the enhanced oil recovery by polymer flooding in porous media, it is using a global pressure introduced
by [10, 12, 14, [16] and [11]. The mathematical model couples three non-linear degenerate parabolic equa-
tions arising from mass conservation of each component in wetting and non-wetting phases, we prove the
existence of weak solutions of the problem with the assumption that the viscosity of water is increasing
with respect to its own polymer concentration. Let us state the model used in this paper, we consider herein
a porous medium saturated with a fluid composed of two phases (aqueous and oil). The water is supposed
only in the liquid phase (no vapor of water due to evaporation).

In order to define the model, we write the governing equations for incompressible, immiscible, three-
component two-phase flow , with dynamic capillary pressure, of fluids through porous media:

qba;—;” +div(uy) = 0, (1)
(p% + div(u,) =0, (2)
qb@ + div(cuy) — div(D(s,)Ve) = 0, 3)

here div = V- denotes the divergence operator, where the subscripts w and o represent respectively the
wetting phase and the nonwetting phase. Quantities s,, u,, c, D and ¢ represent respectively the saturation
of the a phase (o = w, 0), the velocity of the a phase, and the polymer concentration in wetting phase and
the diffusion-dispersion tensor of the polymer in the aqueous phase and the porosity of the medium. We
work under the hypotheses that

Sw+So =1, 4)
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and the velocity of each phase u, is given by the Darcy’s law
Uy = —Aw(Sw, C)K(X)pr, U, = _/\O(SO)K(X)VPO/ (5)

with K is the intrinsic permeability tensor of the porous media and p, is the pressure of a-phase. Where
Aw(Sw,€) is the mobility of the wetting phase and A,(s,) is the mobility of the nonwetting one, they are
defined by

kTZlJ w kT’O o

Euls)  ong Ao(So) = © ),

Hw(c) Uo

where k;, the relative permeability of the o phase, u, the a-phase’s viscosity, p, is supposed constant,
also, the wetting phase (aqueous phase) viscosity “1,” is modeled by a linear function of the polymer

"1

concentration “c

A’ZU(SZU/ C) =

pw(c) = (1 + xc) pp, (6)

here y, is the viscosity of pure water and the coefficient « characterizes the particular polymer, for more
details, see [14] [16]. It is known that when two fluids immiscible are in contact with each other in porous
space, a clear interface exists between them, also, the interface is a curved surface and the pressure on
the concave side exceeds that in the convex side. In this work, the pressure difference is known as with
dynamic capillary pressure:

Po—Pw = pc(sw) + (9450 (7)

the function s, = p.(sy) is increasing and stands for classical static capillary pressure ( dp = < 0) for all
5w € [0,1] and pc(1) = 0, and C = ((sy) is the damping coefficient. Note that our problem . @) is closed.
The unknowns are saturations s,, Sy, pressures p,, puw, and concentration c.

It is known that equations originating from multiphase flow in porous medium are degenerated. The
first type of degeneracy arises from the behavior of relative permeability of the phases which disappears
when his saturation goes to 0. Also, the second type of degeneracy is due to the temporal term when the
flow goes to a saturated state. In this paper, the strategy we base those difficulties is to introduce some
regularizations as follows. Firstly, we regularize the problem (S) by adding diffusive terms on dynamic
capillary pressure to obtain a non degenerate problem (S,) as described in the beginning of Section
Secondly, we make a time discretization of problem (S,) to treat the time degeneracy. This gives an elliptic
problem (S,,5:) which is helpful to prove the existence of a solution of (S,). This is the goal of Sections
and [3.2] Finally, Section [ is devoted to establish uniform energy estimates independently of v to pass to
the limit (v goes to zero) and demonstrate the existence of a weak solution of problem (S) in the sense of

Theorem 2.3
2. Main result and hypotheses
Let us begining by introducing the global pressure p, it is the function given by
pP=po+ ﬁ(swr C) =Pw — ﬁ(sw/ C) - C(Sw)atsw, (8)
such that f(s,, ¢) and p(s,, ) are two functions where

B Aw B )
dsy  A(Sw,c) dsy dsy A(sw,€) dsy

One can demonstrate that, see for instance the above references,

A(Sw, €)VP = Ay(Sw, )Vpw + Ao(S0)VPo, (10)
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with the total mobility A(sy, c) is defined by

A(Sw, €) = Aw(Sw, ) + Ao(So)- (11)
We have the equality
f AVpPdxdt  + f AwAOleclzdxdt
QT QT /\
= f Al VpolPdxdt + f Aol VpolPdxdt < C, (12)
QT QT

where the constant C is positive.
We introduce, see [7], the contribution of capillary terms by

Aw(Sw, €)Ao(So) dpc
A(Sw, €) dsy

Sw
V(Sw,€) = — (sw) =20 and B(sy,c) = f y(y,c)dy. (13)
0
We define the function B, by B(sw) = B(su, ¢) for s, € [0, 1] and c fixed in [0, cequ]-
Now, we complete the description of the our model (I)-(7) by introducing boundary and initial condi-
tions. Let T > 0 be the final time fixed, and let be Q a bounded open subset of R? (d > 1), whose boundary
is denoted by I' or 0Q).

Now, we denote by Iy, the part of the boundary of ) where the wetting saturation is imposed to one;
the imprevious part of the boundary is thus denoted I'inp = I' \ I';, and we impose the following boundary
conditions on pressures, concentration and no fluxes through T'iyp:

c=cr,(tx) on (0,T)xTy,
Po(t,x) = pu(t,x) =0 on (0,T)x Ty,

u, n=u,-n=0 on (0,T) X Timp, (14)
(cuy =DVe)'n=0 on (0,T)X Iimp,
with n is the outward unit normal to I'.
The initial conditions are defined on saturations of each phase and polymer concentration
s4(t=0,) =8 for a=w,0 and c(t=0,")=c" in Q. (15)

In the sequel we note by (S) the problem consisting of partial differential equations (I)-(3), Darcy-
Muskat’s laws (5), the capillary relation (7), and boundary and intial conditions and (15).

We note
Qr=0,T)xQ and Zr=(0,T)xJQ.
Now, we introduce some relevant hypotheses on the coefficients of this problem. We assume the following;:

(A1) The function ¢p € L*(Q)) and there exist two constants ¢, > 0, ¢* > 0 such that ¢, < P(x) < ¢* a.e.
x € Q.

(A2) The permeability tensor K € (L°(Q))™ and there exist two constants kg > 0 and ke, > 0 such that
||K||(L°°(Q))d><d < ke and

(K(X)E &) > kolé? ae. xeQ, VEeR:
(A3) The function A, € C°([0,1],R,) such that A,(s, = 0) = 0 and the function A, € C([0,1] X [0, cequ], R+)
such that Ay(sy = 0,-) = 0. And there is a positive constant my > 0 with for all s, € [0,1] and
ce[o, Cequ]/

A(Sw, €) = Aw(Sw, €) + Ao(So) = M.
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(A4) The capillary pressure function p.(s,, disw) € C([0,1]x]0, +oo[; R,) and there exists pe > 0 such that

dp.
0< pe < ‘di and the damping coefficient ((s,,) € C'([0,1]; R).

(A5) The equilibrium concentration ¢, > 0 is a constant.

(A6) The function y € C%([0,1] X [0, Cequ]; R+) and satisfies y(sy, c) > 0 for s, €]0,1[ and ¢ €]0, o[ Where
y(0,7) = y(1,-) = 0. The function 8-, inverse of the function s;, — B_(sy) = B(sw, ) = fosw y(y,c)dy, ¢
fixed, is Holderian of order 6, where 0 < 6 < 1, on the interval [0, B(1, cgqu)].

(A7) There exists a function cr, € L*(0, T; H(Q)) where ¢cr, = cr, on (0, T) x I, cr, being the prescribed
concentration on (0, T) X [y,

(A8) The diffusion-dispersion symmetric tensor D is a non-linear continuous function of the saturation s,
and is bounded for s, € [0, 1]. There exists a positive constant o where

VoeR?, Vs, €[0,1], (D(sy)v,0) > ol

Now, we put

F(sy) = f pe(z)dz  sothat JiF(sy) = F' (Sw)diSw = Pe(Sw)0iSw. (16)
0
Remark 2.1. Our problem is degenerate because, as stated in assumption (A3), Ay(s, = 0) = 0 and Ay (s = 0,¢ =
0)=0.

Remark 2.2. In assumption (A6), the function B is supposed Holderian, it means there exists a constant b > 0
such that

1B (01) = B; ' (02)] < blor — 02l°,  Va1,02 € [0, B(1, coqu)]-
Also, for 01 and o, fixed in [0, B(1, Cequ)], there exists two numbers s, s2, € [0, 1] with B(s},) = o1 and B(s2) = 05.
We have

lor =02l = 1Be(sy,) — Be(s2)

S'llb'
| [ v <amst -2l M= sup 0,2

yelo1]
Z€ [Oeryu]

we get
1B} (01) = B (02)] < b"MPlsy, = s, |7 with Be(s,) = 01, Be(sy) = 02. (17)
Now, we denote B! simply by B!
In all what follows, we define the following Sobolev space
V=H (Q={ueH Q) |u=0 on I,
which is a Hilbert space such that the norm [|uly = [[Vull2q)q-
Now, let us state the main result of this work

Theorem 2.3. Let (A1) — (A8) hold and let the initial conditions sJ, s, and ¢ € L?(Q), with 0 < *(x) < coqu,
and 0 < sY < 1. Then, there exists a solution (s,, s, Po, Pw, €) Satisfying

pO/ Pw/ V/\w(SW/ C) VPZU/ V/\O(SO) VPO € LZ(QT)/ (Patszx € LZ(OI T/ V’)/ a=w,o, (18)
0<sy,<l,a=wo0, 0<c<cy aein Qr and B(syc)<L*0,T;V), (19)

c —’C\ru, € L2(0/ T/ V)/ (Pat(swc) € LZ(O/ T/ V,)/ (20)
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and satisfying for all ¢, ¢, x € V, and a.e. t € (0, T) the following integral identities

<¢atsan (P> + f /\ZU(SZU/ C)Kva . V(P dx = 0, (21)
Q
(PDss0, ) + f Ao(50)KVp, - Vipdx = 0, (22)
Q
(pi(csw), X) + f cAw(Sw, )KVpy, - Vx dx + f D(sy,)Ve - Vydx = 0. (23)
Q Q

and the initial conditions, in the sense that for all £ € V, the functions
t— f P(x)sa(t, x)E(x)dx for a=o,w and t+— f P(x)(csw)(t, x)E(x)dx
Q Q

are in C°([0, T]), and we have

([ oscax)o
( L ¢)cswc€dx)(0)

Let us explain the origin of the requirements (I8)-(20). The main point is to handle a priori estimates on
pressure, saturation and concentration. The studied problem represents two kinds of degeneracy: the
degeneracy for evolution terms (d;(s,) and d;(c s,)), and the degeneracy for dissipative terms (div(1,Vpy)).
We will see that even if we control the quantities A,Vp, in the L2—norm, this does not permit the control
of the gradient of pressure of wetting and non-wetting phase since the mobility of two phase vanishes in
the region where the phase is absent. We will get estimation on the gradient of the global pressure and the
gradient of the capillary term B to treat the degeneracy of our problem. Also, we can give the estimates on
the gradient of the global pressure p and on the gradient of the capillary term B, after using the assumptions
(A1) — (A8), we indicate that p € L2(0, T; V) and B(sy, ) € L*(0, T; HY(Q)), see [25].

f gbsgédx, a=o0,w, (24)
Q

f gbcosg,édx. (25)
Q

3. Construction of a regularized problem

We treat the degeneracy of pressures due to disappearance of mobilities, for (s,,c) = (0,0) and s, = 0,
we regularize the problem (S) by adding a dissipative capillary term.

We consider the non degenerate problem:

%L~ div (sl WKV + v0(p) ) = O, 20
qb%s; = div (Ao(sp)KVp}) +vo(py, = p3) = 0, )
qba(cafw) — div (" Au(st, €VKVpL) +vdiv (' V(p) — pp,)) — div(DVe") = 0, @8

where v > ( is a positive parameter intended to tend towards zero, here 6 denotes the Laplacian operator,
with the boundary conditions

c’(t,x) =cr,(t, x), on (0,T)xTIy,

pu(t,x) = pi(t,x) =0, on (0,T)xTy,

(uy, + VV(PZ - PZ;)) ‘n =0, on (0,T)x Iwimp/ (29)
(ug - VV(P:; - Pl/u)) ‘n=0, on (Or T) X Iﬂimp/

(e’ +vV(py = p,) =DVc") n=0, on (0,T) X Limp,
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and initial conditions
s'(t=0,)=s for a=w,0 and c'(t=0,")=c in Q, (30)
where, n is the outward unit normal to I'ip, the impervious part of the boundary, and
) = —Au(sh, KR, ) = ~Ao(sHKVpL.

We use (S,) to denote the problem (26)-(28) with initial and boundary conditions (29)-(30). Let us state
the following result about existence of solutions to the above non degenerated the problem (S,).

Theorem 3.1. Let (A1)-(A8) hold. Assume that p), p3, c® € L*(Q) with 0 < °(x) < coqy and 0 < s5,(x) < 1a.e. in Q.
For all v > 0 fixed, there exists (p, pY,, c") satisfying p, € L*(0,T; V), ¢pay(s%) € L*(0,T; V"), s¥, € C°([0, T]; L*(Q2)),
st e 20, T;H'(Q)), s € [2(0,T; V), c —<r, € LX0,T;V), V&' € L2(0, T;LX(Q)), ¢ay(si,c’) € L0, T; V'),
stV € CY0, T; L*(QQ)), and for all ¢, , x € V the following hold true a.e. in 10, T[:

(@39 + [ At T Vs =y [ V- pl)- Vo =0, G1)
Q Q

03,0+ [ ARV Vv [ Vit =) Vdx =0, @2)
Q Q

(pa(c¥sy,), x) + f ¢ Aw(sy, ¢ )KVpy, - Vxdx + f DVc" - Vydx
Q Q

—vf c"V(py —py,) - Vxdx =0, (33)
Q

here the bracket -, -) is the duality product between V' and V. The water saturation s}, and the concentration ¢V of
dissolved polymer verify the maximum principle in the sense that 0 < s;, < 1and 0 < ¢ < cegy a.e. in Qr.

The proof of the above Theorem [3.1| needs several steps. We begin by approximating the nondegenerate
parabolic problem (S,) by a family of elliptic problems parametrized by a time step for which we prove the
existence of solution and making this time step goes to zero, we obtain a solution for (S,). The maximum
principles hold for saturations solution of these elliptic problems. In substance, let M € >* be an integer.
We subdivide the time interval [0, T] in M subintervals. We get the time step 6t = T/M. Starting from the
initial conditions s, s, and ¢, we construct recursively sequences of functions solutions of approximating
elliptic problems as follows. If at the time level t, = ndt, the quintuplet of approximating solutions
(s, 8", pt, o, ¢y € (L2(QQ))° with sy > 0 and ¢s;;" > 0 is known, using s;", sy, and ¢"" as initial

v+l vn+l _vn+l _vn+l

conditions, we define the quintuplet (s;;""", s, , piy"**, p" ™, ¢""*1) as a solution of the problem

Sv,n+1 _ sv,n ) )
¢ w = w _ diV(Aw(SZ;M— ,Cv,n+l)KVp1z/én+ )
+ vdiv(V(py"™t - pihy) =0, (34)
Sv,n+1 _ Sv,n
(Su) P=—s—— = div(A (" KVp")
+ vdiv(V(py™t - piy) =0, (35)
CV'HHSZSHH - CV'HS;;n _ s v+l v+l vn+l v+l
¢ 5 div(c"" Aw(sy ', K Vpy )
—div(DVc"™ Yy +  vdiv(c Vst - plthy) =0, (36)

satisfying the boundary conditions (29), such that the upper index v is replaced by v, n. In this problem the
main unknowns are p,, P, and c. The remaining unknowns, the saturations s, are obtained from inverting
the function of capillarity p.. So, to keep the property of inversion, we extend the capillary pressure
function p, by continuity and strict monotony outside [0, 1] to get p.. This is possible in the case when the
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capillary function p. is bounded, in another sense when |p.(0)| < . Therefore, we put s, = p; (P, — pw) and
So=1- ﬁ{l(Po - Pw)

In the next section, we are looking for the existence of solutions of the elliptic problem (S,s) at fixed v
and 0t.

3.1. Study of a nonlinear elliptic problem

To simplify notations, we will omit the upper indexes v and 7 (or n + 1) in the Equations of problem
(Sv,6t). We add two regularizations, we replace the mobilities A,, by two strictly positive functions,

A=Agt+eze, >0,

chosen to reinforce the passage to the limit in the regularization using v. We denote that the above
regularization of the mobilities can lead to the loss of maximum principle property of the saturations and
concentration. For this reason, the functions A, are extended on R by continuity outside [0, 1] and, for the
same reason, we introduce

0 if s,<0, 0 if ¢<0,
Z(sq) =4 so if s, €]0,1], and Y(c)=< ¢ if c€[0,cequl,
1 if s,2>1, Coqu if €2 Coqu-

The aim of the following is to prove the existence of solution to (34)—(36). This needs three steps.
Firstly, we introduce the orthogonal projection P, of L%(QQ) on its subspace spanned by the first m
eigenfunctions {p, ..., pu} of the eigenvalue problem

Api = /\,‘pi in Q,
pi=0 on I, (37)
Vpi-n=0 on Tiyp.

The operator P,, is defined by
LZ(Q) Bl ﬁ — Pmﬁ = Z(ﬁrpl) pi € Hm = Vec{pll --~/pm} c LZ(Q)/
i=1

here IT,, is the subspace spanned by the eigenvectors py, ..., pu; (-, ) stands for the scalar product of L*(Q).
The first step consists therefore to study the following weak formulation of the non-degenerate problem
(Sy6t), for fixed parameters € > 0 and m > 0:

f@bZ(SLm)_SW dx

v f VPups™ — Pupy™) - Vodx
Q

+

f AL (85", c™MKVpy™ - Vpdx = 0, (38)
o)

Z(sEM) — g*
fd)Mgbdx VfV(Psz’ Pupy") - Vipdx
Q ot Q
f AS(ss™KVpy™ - Vipdx = 0, (39)
0

Z S:fl;m)Y ™M) — C'sy &,m &m &,m
f o ( (5t xdx — v f Y(cEM\V(Pups™ = Pupy™) - Vxdx
Q Q

+

+

+ f DVc“™ - Vydx + f Y(c™AL (s, c™MKVp™ - Vxdx = 0, (40)
o) 0

Y(p, ¢, x) € V°.
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We note the above problem by (S:g;). This is an elliptical problem to be solved at each stepn =1,..., M.
The work to be done at each time level is the same. Assuming known s”, an approximation of the solution
at the level t, = ndt, we determine s"*!, an approximation of the solution at the level ¢,,1 by solving the
above problem where, to simplify, we set s"*! = s and s" = s*. We use recurrence, covering the whole time
interval.

Step 1.
The first one consists in studying the problem (S'/) for fixed parameters &> 0and m > 0. We will show
for fixed m > 0 and ¢ > 0 the existence of solutions (p3;", p;™, c=™) of (38)—(40).

Propos1t10n 3 2. For fixed m > 0 and € > 0, assume s, and s;,c* belongm to LZ(Q) sy, = 0and s;,c* > 0. Then
there exists pi" € V, py™ € V and c™ € HY(Q), solutlon of the problem

Proof. We omit for the time being the dependence of solutions on parameters m > 0 and ¢ > 0. We shall use
the Leray-Schauder Fixed Point Theorem [30]. Let 7~ be the map from (L?(Q))? to (L*(Q2))® defined by

T(ﬁun ﬁO/ E) = (pwz pm C)/

where (py, po, c) is the unique solution of the following problem

Z (5w i
f ¢ ——— (S) (pdx + f Ay, (5, ©)KVpy - Vo dx
Q

- vf V(Pupo — Pmpw) - Ve dx =0, 41)
Q
Z(5, ¢
f pZG) =% ) + f AEGo)KVp, - Vipdx
o)
+ vf V(Pupo — Pupw) - Vipdx =0, 42)
Q
Z(55)Y(C) — s, e
f@%){dx = _f Y(©)Ay (5w, )KVpy, - Vy dx
0 Q
- DVc-Vydx+v fY(E)V(pD —pw) - Vxdx, (43)
Q Q
Vo, ¢, xeV.

The mapping 7 is well defined on (L*(Q))®. To see this, we use the Lax-Milgram Theorem (see for instance
[26]). Let us begin by Equation (#I). To prove the existence of an unique function p,, € V solution of this
equation, we consider the bilinear form

a(pzw (P) = f /\;;(S_ZU/ E)Kva : V(de/
Q

and the linear functional
_ _ Z(S_W) - S:v
o) =v f VP — Pup) - Vep dx - f o p .
Q Q

It is easy to see that a(-, -) is bilinear symmetric and ¢ is linear on V.
To see the continuity of a(-, -), we use the fact that A%, € L°(Q) and K € (L*(Q))™ to write

|11(Pw, (P)| = | f A;;(S_w/ E)Kva Vo dx‘
Q

(Cauchy-Schwarz Ineq.) sup |AL|IIKll =@y Vw2 IVllrz )

Clipwllvliglly.

INIA
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The bilinear form a(-, -) is coercive, since A* > ¢, using the hypothesis (H2), we can write:

|ﬂ(Pw, pw)l ' L /\fu(gwr E)Kva . pr dx

v

€ f KVpy - Vpwdx > ekollpwll.
Q

The functional £(-) is continuous on V:

o = | [ VPup~Pup) Vi [ 7%

Sw
< flV(PmPo_ me) V(Pldx+f|¢ Z ) (P|dx
< VIVPuPo = Pubo)lliz) IVelliza wgt LZ(Q)”(PHLZ(Q)
< Cllplly  (by the Poincaré Inequality).

Thus, we can use Lax-Milgram Theorem to see that the equation has an unique solution p,, in V. The
same argument shows the existence of an unique solution p, € V' to the equation (42). Now plugging these
found functions p, and p,, into the equation [@3).

We get a linear equation to determine the unknown function c. To do this we will use the following
result, given for instance in [6]], which asserts that if B is a reflexive Banach space and € C B is a nonempty,
closed, convex subset of B, each convex lower semi-continuous functional F : € — (—o0, +00] such that

F # +o00 and (,lﬁl F(v) = +c0 (no assumption if € is bounded), achieves its minimum on €. Let us
UE O||—00

therefore consider €, the convex closed subset of H(Q) given by € = V +¢r,, and define the functional F
on € by

Covr> F@) = %o(v,v) -17(v) € R,
with
o(v,v) = f DVo - Vodx,
Q

e = Vf Y@V(po - pa) - Vodx - f HLEYO =5
o Q ot

- f Y(@)AE (5w, ©)KVpy, - Vo dx.
Q

As above, we can prove that o(-,-) is a continuous bilinear form and () is a linear continuous form on
H(Q); this implies the continuity of the functional F. This functional is convex on H'(Q). In fact, for v, w
two functions of H'(Q) and t € [0, 1] a real number, we can write

o((1-Hv+tw,(1-tHo+tw) = (1-1%(v,0)+H1 - {o(v,w) + o(w,v)} + to(w, w).
Then

o((1-tv+tw,(1 -t +tw)— (1 —Ho(v,v) — to(w, w)

t(1 - t){-o(v,v) + o(v,w)
+o(w,v) - o(w, w)}
= —tl-to(w-v,w—-0v)<0.

Since 7 is linear, the functional F is convex.
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- Now, using the continuity of the linear form 7 and the Hypothesis (H8), we see that F(v + ¢r,) >
%IIZJII2 C’|lvl| - C”, Yv € HY(Q), with C’,C” > 0 the constants. This shows that lim F(v) = +co. We are now

ol —>c0
ready to use the above mentioned result to see the existence of a function ¢ such that

ce€ F()= —o(c c)—1(c) = min{%a(v, v)—1(v)|ve€ (i}.

Note that (1 —t)v + tw € € for all v,w € € and all ¢+ € IR. This means that the function R 3 t — &(t) =
F((1 - t)c + tw) € R reaches its minimum at f = 0. Since (we use the symmetry of D)

olc+Hw—c),c+tw—-c)) = o(c,c)+2to(c,w—c) + tPo(w —c,w —c)
weget &'(t) = o(c,w —c) +to(w — c,w —¢) — ©(w — ¢), for all t € R. This gives
olc,w—c)=t(w—-c), YwedC.

Put x = w — ¢, which is in V, we that the function c is a solution of Equation : olc,x) =t(x), Vx e V.
This solution is unique, by virtue of the coerciveness of the diffusion-dispersion tensor D.

Lemma 3.3. The map T is a continuous operator which maps every bounded subset of L*(Q) into a relatively compact
set.

Proof. Let us consider a sequence {(Pux, Pok, C)} bounded in (L?(Q))® and converging to (fw, Po, ) € (L*(Q))°.
We have prove that the image sequence {(puk, Pok, )} = {7 (Puwk, Pok, )} is bounded in V2 and converges to
(Pws Por €) = T (Pw, Po, €). In fact, the sequences {pur}, {porl, {ck} verify respectively, for all (p, ¢, x) € V3.

Z(5uwk) — 55, e -
f qb%(pdx + f A%, Bk Cr)KVpuk - Vo dx
o) o)
- Vf v(Pmpok - Pmﬁwk) : qu dx =0, (44)
Q

Z(54) — &
f (f’%lP dx + f Ao Gor)KVpor - Vip dx
a Q

+ Vf v(Pmpok - Pmﬁwk) : V¢ dx =0, (45)
Q

and

f o Z5u)Y(@) = sic
Q

5t xdx + f DV - Vydx = - f Y(Cx)AL, (Suk, Ct)KVpyr - Vxdx
Q Q

v [ Y@V - puo) - V. (46)
Q
Let us take ¢ = pyy in (@4 , we get
Z(5w
f p— (S 2 Pukdx  + f Aty (Sawks C)KV Pk = VP dx
Q

_Vf ( mpok Pmek) vak dx =0.
Q

Leading to

Z(S_wk) B S:u

f /\;;(gwk/ Ek)Kprk : prk dx < f |¢pr}€
Q Q
v [ N Pup = Pup) ol
Q

dx
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Now, using the Cauchy-Schwarz Inequality, one gets

(3w %
f (AwGuwk, Cr) + ) KVpyr - Vprdx < f |q5 k) f pukl* dx

tv f IV(Pmﬁok - Pmﬁwk)lz dx)z ”pwk”V-
Q

Now, according to hypothesis (H2) and Poincaré Inequality, we obtain
ekollparl?y < C(1+ ) IV®Pupai)liz ) Ipallv, (47)
a=o,w

where C is a positive constant depending on Q, v, 0t, ¢*, ke, and [Is;,|112(q)-

m
Since VPfax = Y. (Pak, Pi)Vpi, there exists a constant C,,,, depending on the norms of eigenfunctions such
i=1
that
IVPuPaklliz) < Cullparlliz ) @ =o,w.

As the sequence {(Puk, Pok, Cr)} is taken bounded in (L*(QQ))3, the estimate ensures that the sequence {p.}«
is uniformly bounded in V.

Using the same argument, we can prove that the sequence {p,}x is uniformly bounded in V.
To estimate the sequence {cx}, we take x = ¢, —cr, = z as a test function in . We have

— Z Y —
f DVcy - V(ck —cr,)dx = f ¢ (Sui) (Ck w” (ck —cr,)dx
o)

- f Y@ (o 5KVt - Ve — 1, ) dx
Q

y f Y@V Pk - Prpe) - V(e — ) dx.
Q

Using hypothesis (H1), (H2), (H3), (H8) and using Cauchy-Schwartz inequality and Poincaré Inequality, we

obtain
ZGw)Y —
Vel dx < f¢| ) (Ck) (Ck—Crw)dx

, f YA Gty 60K VP - Ve — G,
Q

Q

v f Y@V Pk — Prup) - Ve — T, ldx
Q

1
+5 1Dl [ f IVer2dx + f |VFru,l2dx],
Q Q
we deduce similarly that
f IVzildx < C(1 + IVparlliz) + IVPaklliz) (43)
Q
where C depends on Q, 6t, ¢*, ke, 6 and [|s;,c"[l12(qy)-

This establishes the relative compactness property of the map 7~ in (L*(Q2))°.
Furthermore, up to a subsequence, we have the convergences

Pak — Po  weakly in LZ(O, T;V),a=0,w (49)
zx — z  weakly in L*(0,T; V), (50)
Pak — P strongly in [*(Q)and a.e. in Q (51)

zx — z stronglyin  L[*(Q)and a.e. in Q. 52)
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We have € = V +7r,, the convex closed subset of H(Q2), then

cx — ¢ weakly in L0, T; H(Q)), (53)
cr — ¢ strongly in L[*(Q)and a.e. in Q. (54)

Using the above convergence and the theorem of Lebesgue concerning dominated convergence, we show
classically that 7 is continuous operator. [

Lemma 3.4. (A priori estimate)
There exists r > 0 such that, if (pw, Po, €) = BT (Pw, Po, ¢) with B € (0, 1), then

(P, Po, Ol a2yyp < 7

Proof. Assume that (py, po, c) = BT (Pw, Po, ) exists, then (py, po, ¢) satisfies

fK/\;,(sw,c)pr.V(pdx: _ 5f¢Z(SW)
o)

+ Ppv f V(Pupo — Pmpw) - Vopdx, (55)
Q

fK/\g(SO)VPo'VIde= - 'Bf¢Z(SD)
Q

- ,vi V(Pmpo - Pme) . V¢dx, (56)
Q
and
Z w Y ot At ]
f DVc-Vydx= - B qwadx - ﬁf Y(c)KAL (Sw, €)Vpw - Vxdx
o} Q

+ pBv fg Y(c)V(po — pw) - Vxdx, (57)

for all (¢, 1, x) € (V)*.
Taking ¢ = p, € Vin (B5), ¢ = p, € V in (56), adding them and using again the Cauchy-Schwarz and
Poincaré inequalities, we deduce

e f Vpoldx + ¢ f VpolPdx + pv f |V(7>mpo—¢>mpw>|2dxsC(ns;np(gw||s;||Lz<Q>), (58)
Q Q Q

where C depends on ¢ and not on f.
In the same manner, we obtain by taking x = ¢ —cr, in , that

1
§5f|VC|2dx < CIVpolliz) + IVPwllrz )
Q

+IVellizqy + lIsi,c M2y + IIVer (59)

w”iZ(Q))/

where C depends on e and noton . O

Lemma [3.3|]and Lemma [3.4] allow to apply the Leray-Schauder fixed point theorem [30], thus the proof of
Proposition3.2]is completed. [J
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Step 2.

This step consists to pass to the limit when m goes to infinity, and the last step concerns to pass to the
limit when ¢ goes to 0. This step is devoted go by the limit when m goes to co.
The estimates and are uniform with respect to m and g, then taking these estimates with g = 1, we

get

e L VP Pdx + ¢ fQ IVp5™ 2dx + vf I(V(Pups™ = Pupy™)Pdx < C, (60)
and

5 fQ Ve 2dx < C, (61)

where C depends on ¢ and not on m.
Then up to a subsequence, when m goes to infinity, we have the convergences

py" — p. weaklyin V, strongly in L*(Q) and a.e. in Q with a = w,0

™ — ¢ weakly in H'(Q), strongly in L*(Q).
We pass to the limit when m goes to infinity in — to obtain, for all ¢ > 0, the existence of (p5,, pt) € (V)?
and c¢¢ € H'(Q), satisfying

Z(sE) —
f(p (SW) S dx+fK/\fu(sfu,cf)Vp;-V(pdx—va(pg—pr)V(pdx:O, (62)
Q Q
Z(SE)— .
f o Z R gars [ 160V ues v [ Vg - pi) Ve =0, (©)
Q Q

Z S;)Y CS) _ S*wc* & S
f & ( (6t xdx + f Y (c)KA (55, c)Vpy, - Vxdx
Q Q

- vf Y(c)V(p; — ps,)Vxdx + f DVc¢t - Vydx =0, (64)
Q Q
for all (¢, , x) € (V).

Step 3.

The third step is devoted go by the limit when ¢ goes to 0. We resort to make use of use the feature of
global pressure to get uniform estimates on the solutions independent of the regularization €. A maximum
principle on saturation is possible after going to the limit in ¢.

We state the following two lemmas in order to pass to the limit in «.

Lemma 3.5. (Uniform estimates with respect to ¢)
The sequences (s5,)., (c%)e, and (p° = ps, + p(ss,, c*)). defined by (62)-(64) satisfy

(p%)e is uniformly bounded in  V (65)

(B(sE, c))e  is uniformly bounded in ~ H'(Q) (66)
(Vpe(ss,)e  is uniformly bounded in  L*(Q) (67)
(pL)e  is uniformly bounded in 'V, a = o,w (68)

(c)e  is uniformly bounded in  H'(Q) (69)
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Proof. Consider the test function ¢ = pi, € V in and ¥ = p§ € Vin and add them. We deduce
with the help of Cauchy-Schwarz inequality and the relationship (8) between the global pressure and the
pressure of each phase that

f KAL (s, ¢ )Vpe, Vps,dx  + f KA (s§)VpiVpidx +v f Vpe(ss,) - Vpe(ss,)dx
Q

< CA+ P WPy + IPEPoiy) + 6D ),

here C = C(6t, An, @, koo, S5, 55) independent of e.
Using the identity which links the gradient of the pressure of each phase to the global pressure, we
obtain

- ) Aw(85,, €)Ao (S5 X : .
kof/\(SfU,C*)IVpélzdx+kof MIVpC(s;)Izdx+vfVpc(s;,)-Vpc(s;,)dx
Q Q /\(Sw/ CE) Q

+¢eko f Vps, - Vpi,dx + eko f Vp, - Vpydx < Cy, (70)
Q Q

here kg is the constant of coercivity of the tensor K and C; is a constant independent of ¢.
Then, the assumption (A3) ensures the estimate (65).
For the estimate (66), we have

w 7 A
f Bss,c)dx < sup  IAGs,0) f G € )é 60 5 (st )Pl < o,
0 sel0,1Tce[0,cp] Alsiy €)

such that C; is independent of ¢.
The estimate (67) is a consequence of (70). The estimate is a direct consequence of (8) and the estimates

@) and @).

The last estimate is obtained by taking x = c¢¢ —cr, in the formulation (64), and from the Cauchy-Schwarz
inequality, we deduce

Vet lla) < Clllc iz + lfer, Nz + ||V\n||Lz(Q) + ||VP§;||52(Q)) + ||VP§||iz(Q))-
We use the Poincaré inequality and the estimate (68) to obtain (69). O

From Lemma 3.5|(up to a subsequence), the sequences (s%)., (¢)e, (p5)e, verify the following convergences

p® — pweaklyin V and a.e. in Q (71)

B(st,, ) — B(sy, ¢) weakly in HY(Q)and a. e. inQ (72)

Z(s,) — Z(s») weakly in L*(Q) and almost evreywhere in Q (73)
ps, — po weakly in L*(Q) and almost evreywhere in QQ (74)

c¢® — cweaklyin H 1(Q) and almost evreywhere in Q). (75)

Then we pass to the limit as ¢ goes to 0 in formulations (62)-(64) to get (pw, po) € (V)? and ¢ € H'(Q) solution
Z(Sw) S
qb @dx + | KAy(50,0)Vpw - Vodx —v | V(p, = pw) - Vedx =0, (76)
Q 0

f ¢Z(S") % pdx + f KAo(50)Vpo - Vipdx +v f V(po — pw) - Vipdx = 0, 77)
Q Q

f pZEYO 8l f Y(OK A (50, )V - Vxdx
Q ot Q

—vf Y(c)V(po — pw) - Vxdx + f DVc-Vydx =0, (78)
Q o)
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forallg, i, x € V.
Let us show the following the maximum principle.

Proposition 3.6. Assumes;, > 0, c* > 0, s}, and s;,c* belong to L*(Q). Then, for all 6t > 0, the solutions (pw, po,c)
of 57 satisfy

0<s5,<1 and 0<c<cey ae in Q.

Proof. Let us show S¢ > 0and ¢ > 0 a.e. in Q. For that consider ¢ = —s3, = —s;, and x = —(c —cr,)”
respectively in (76)-(78) with the notation u = u* — u~, u* = max(0,u) and u~ = —min(0, u). Note that,

according to the extension of the mobility of two phase we have Ay(sw,c)sy, = Ay(S,)s, = 0 and from the
definition of the function Z we have also Z(s,)s; = Y(c)(c —cr,)” = 0. We obtain

f P—spdx —v f Pe(Sw)Vsy - Vspdx =0,
ot " 0
fqbé—‘;sodx vfpc(sw)Vs -Vsydx =0,
Q
(€ —r.) dx+ | DV(-a,) - V(e—-a,) dx=0
QT( —cr,)dx + ; (c=cr,)” -V(c—cr,) dx=0.

Since it is possible to choose an extension p. of p, outside [0, 1] in a way that ensures f.(s,,) different from
zero outside [0, 1], we obtain

f Vs [*dx < 0 and & f Ve Pdx <0,
Q Q

which indicate that s; = 0 and ¢c™ = 0 a. e. in Q since s, and ¢~ vanish on I';,.
To prove ¢ < o, we multiply by —Cequ, and consider ¢ = x = (¢ — ceu)* respectively in and ,
and adding them, we get

—s;(c"—¢
f ¢M(c — Coqu)Tdx  + (Sf IV(c = Cegu)IPdx < 0,
Q Q
which indicates that (¢ — c)* = 0 a. e. in Q since (¢ — ¢op)* vanisheson Ty, . O

3.2. Study of the regularized problem (S,)

We have shown the existence of a solution (s%"*!, V”H,pvw"“, E”H, cmh) of in Section 3 So
that, the sequence (si;"*", V"“,p,‘j,”“,pg i+l vntly defined in is well defmed Moreover for given
s/ >0, sy"c" > 0and sl € L2(Q), si'c"" € LA(Q), (@ = w, o), we construct (sy*t, syt prtl puntl vty
505”1 €[0,1] and ¢ € [0, Coqu]-

We now omit the index v (for the sake of clarity).

This section is devoted go by the limit as 6t goes to 0 to prove a existing solution of the problem (S,).
We will show some uniform estimates with respect to 6t to obtain uniformly bounded on some quantities.
Next, these estimations allow us go by the limit as 6 goes to zero in the problem (34)-(36).

The next lemma gives some uniform estimates with respect to 6t.

Lemma 3.7. (Uniform estimates with respect to 6t)

The solution of (34)-(36) satisfies
f @) P = supl)dx + = f PSPy — sppl)dx +v f V(o™ = ply)Pdx
f PE)(F (si) = F(sip)dx + ko f wlsy ™ VT Vi dx

+ko f AoVt Vpitdx < C, (79)
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and

f DSy (e =T, )™ = s = er,)")dx + 6 f V(e =Tr, )" ) dx
Q

< Cllly Al )Vl + VIV G = )i, (80)

such that C does not depend on 6t. The function F is defined by

F(s.) = fo po(2)idz. (81)

Proof. Let forget the exponent n + 1 in the proof and let note with the exponent (*) the physical quantities
at time £,,.

(Sw = 53)Pw + (S0 = 55)Po SwPw = SwPw + SoPo = SoPo (82)
SwPw = SpPw + SoPo = SoPo — (Sw = 53)Pe(Sw)-

vV 1l

Using the concavity of ¥ we have the inequality: (s, — s,)pc(Sw) < F (Sw) — F (s},), and the above inequality
, we obtain that for all s, > 0 and s}, > 0 where s, + 5, = 57, + 5, = 1 the following inequality

(Sw = $)Pw + (So = $)Po = SwPw — SyPw + SoPo — SePo — F (Sw) + F (Sy,)- (83)

To obtain the inequality (79), we just have to multiply by p and by p,, sum this two equations and
use the inequality (83).

In the same way, to obtain the inequality ( ., we just have to multiply (36) by ¢ —cr, and use Cauchy-
Schwarz inequality.

To multiply by p» and by p,, after integration and sum this two equations and use the inequality
(83), we obtain

f POy Pl = supiodx + = f G(x)(sy"'po" = spo)dx +v f V(py™ = po)ldx
_(Sltf(P(x)(?:(szlﬂ)_f(sgu))dx_'_kof w(sn+1 n+1)vpn+1 pn+1dx
Q

+ko f Ao HVpi+t - vpitldx < C.
Q

For (80 , we replace ¢ by cr, in , we get

?1+1 n+1 ’C?z s

¢ Iy Sw 5 I, w _ diV(C'w+l/\w(Sn+l,Cn+1)Kvpn+1)
—div(DVSE)  +  vdiv(e ' Vst - pith) =0, (84)

we just have to multiply by c—¢r, and by —(c —r,), and summation and integration the equations,
we get

1 — —

5 [ G (e Ty - s -
+L((Cn+1/\w(521+11 n+1) +1/\zu(SZ,+1/’C?~+1))KVPZU+1V(C_E\F )n+1dx
. f (D(Vie ~r,)"1)Pdx

——1/ f(v n+l _ n+1 )V(( ’C‘rw)n+1)2dx — 0,
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hence

L f SEE (€ T, )" = si((e . ))Pdx + f (V(c ~r, )" Yx
ot Jo 0
1

ke f (RS, )V (Ve — T, )" elx
Q

+5v | (VlpT =)V —er, )" dx,
Q

after using Cauchy-Schwarz inequality,

5 | W =T = e =T e+ o [ Vi) P

< O\ Al VP Dllzy + VIV = PPy,

such that C does not depend on 6t. [

The next goal is to get uniform estimates on the solutions reconstructed in time, namely the time piecewise
constant function and the corresponding continuous linear function in time. To do that, by introducing
some of notations. For a given sequence (u,),=0,m, We define the time piecewise constant function as

M-1
u0)=u’ and  w¥(t) = Z W M uor s 1yo (£), ¥ €]0,T], (85)
n=0

here 15t (ns1)51(f) = 1 for t €]nédt, (n + 1)6t] and zero otherwise. We also define % by

M-1

- E\ n t n
u&(t) = Z [(1 +n - E)u + (E - 1’1)1/[ +1]1]n6t,(n+1)6t](t)/ tel0,T]. (86)
n=0

so that, we can compute
1 M-1
2 (0) = 5 Y (" = (@), VEE 0TI\ { UM, mst}.
n=0

For a = w,o0, we note by s the function defined by , we note by v the function defined by
corresponding to v" = s’ ¢". Finally, consider &, 3 the functions defined by corresponding to s and

ot

Proposition 3.8. The sequence

(%) is uniformly bounded in  L*(0,T; V), (87)
(p‘gf) is uniformly bounded in  L*(0,T; V), (88)
(s uniformly bounded in L0, T; H(Q)), (89)
(@) is uniformly bounded in  L*(0, T; H(Q)), (90)
(@) is uniformly bounded in  L*(0, T; H(Q)), 91)
(¢8t§‘3f) is uniformly bounded in  L*(0,T; V'), (92)
(¢p2:0°)  is uniformly bounded in  L*(0, T; V). (93)



M.L. Mostefai / Filomat 40:4 (2026), 1225-1251 1243

Proof. We remark that

M-1
f Alstt, ) VpliPdxdt = ot ) f Aw(sl, VP P,
Qr ~ Ja

M-1
oty f Ao(sE VP Palx,
n=0 v

f Ao(S2HIVpSt Pdxdt
Qr

and

M-1
[ st = oty [ pistpa
Qr ~Jo

We multiply (79) by 6t and summing it from n = 0 to M — 1 to get the following estimation
1
—fwmﬁm—%mm-+lfﬁm@Wr§@m
ot Ja ot Ja

- % f HE)FEHT)) = FEHO)dx +v | [Vpe(sthPx
Q

Qr

+ ko f Aw(sS, PNV Pdxdt + ko f Ao(S2HIVpSt Pdxdt < Cy.
Q Q
If we use the fact that p(0) € L>(QQ), 0 <s% <1 for @ = w,0, we deduce that

ko( f Au(s, YV Pdxdt + f Ao(s;,"f)wpngdxdt)w( f |Vpc(sf,f)|2dxdt)scz,
Or Or Or

then, one gets by the help of (12), the relationship between global pressure, capillary pressure and pressures,
that

f A, YV Pdxdt +v | [Vpe(s2hPdxdt < Cs, (94)
Qr Qr

here C;, C;, C3 are constant independent of 6t.

The assumption (A4) on the capillary function p. with the second term of achieves the estimate (87).
Since we have the relationship (8) between the pressure of two phase, the capillary pressure and the global
pressure, then the estimate becomes a consequence of (94). The estimate is a consequence of
and (87)-(88).

To get the uniform estimate (87), we compute the gradient of 6t.

M-1
Vsy = Z(VSZH)l]nét,(nH)at](f)-
n=0

In the same method, we get the uniform estimate for and (9I). From equations (34), we have for all
@ € [2(0,T; V),

<W%@h—f

Qr

KAy (5%, YVpll - Vodxdt — v f V(S - pll) - Vodxdt.
Qr

The above estimates - with 1) ensure that ((d;3%");, is uniformly bounded in L?(0, T; V). In the same
way, we get fora =o,wand (93). O

The next step is devoted to pass to the limit as 6t goes to 0 in order to study the problem (S,). This is the
subject of the next proposition.
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Proposition 3.9. (Convergence as 6t goes to 0)
We have the following convergences as 6t goes to 0,

1" = 8%1lr2apy — O, with a=o,w (95)
0% = 8|22y — O, (96)
s — s, weaklyin L*0,T;V), 97)
P — p,  weaklyin  L*0,T;V), (98)
A —c  weaklyin  L*0,T; H(Q)), (99)
o — v stronglyin  L*(Qr). (100)

Furthermore
& —s, aein Qr (101)
0<s,<1 aein Qr (102)
Pt —p, aein Qr (103)
M—c aein Qr (104)
O0<c<cyu aein Qr (105)

and

v=5,c a.e in Q. (106)

Finally, we have

P13y — Pdis,  weaklyin  L*0,T; V'), (107)
Gy — PIi(spc)  weaklyin  L2(0,T; V). (108)

Proof. Note that

) M- (n+1)6t ¢
”Sgt Nét”LZ(QT) = Z f ”(1 +n— a)(sgﬂ a)”LZ(Q)

M-1
— g Z ”Sn+1 _ SnHZ
) a alli2)
n=1

Now, we multiply by s — " and sum it from n = 0 to M — 1 to obtain the following estimation

M,
Z]w“—sm@ (VIR g + VSR, ) + IVPEIR, o |

n=0

—_

This yields

me—wmﬂ_0+wﬂmm+wmmm+wmbm)

And from (87) and (88), we conclude that

lIsty = 8o ll72qp,) — O-
We multlp calary (35) with s+ — s and this gives us (95). For (96), we multiply (36) with (v"*! —v"), and
from (88] i 89) and (90), we deduce l%) Next, from . 87), (88) and (89 i the sequences (s0'), (%) and (c*) are

umformly bounded in L2(0, T; V), then, we have up to a subsequence the convergence result @) and



M.L. Mostefai / Filomat 40:4 (2026), 1225-1251 1245

The sequence (%) and (3°') are uniformly bounded in L2(0, T; H'(Q2)). Due to and we have the
strong convergence

2 — s, strongly in L2(Qr), (109)
' — v stronglyin L*(Qr). (110)

This compactness result is classical and can be found in [10] when the porosity is constant, and under the
assumption (A1) (the porosity belongs to W' (Q2)) but the proof can be adapted with minor modifications.
The convergences (109) and (110) with (95) and (96) ensure the following strong convergences

sgf —> 8, strongly in [2(Qr) and a.e. in Qr (111)
sgt — 5, strongly in L?(Qr) and a.e. in Qr (112)
s — v strongly in L(Qr) and a.e. in Qr (113)

and this achieves (100). We are looking for the almost everywhere convergence on pressures p%, saturations
s% and concentration ¢*. For this, let defineamap G : R* X Rt — R X [0,1], G(&, ) = (p2, s5) where & and
C are solutions of the problem

St GOF) — 0t Ot
& s
Note that G is well defined by computing the Jacobian of G
2 o
B Do | = sl - sips) it <0

vy oy

As we have the almost everywhere convergences (111)-(112) and the map G defined in (114) is continuous,
we deduce that

ot .
Po —Pw a e in Qr,

ot :
Sp —S» a.e.in Q.

The identification of the limit is due to (87), (88). The continuity of the capillary pressure function ensures
that

P —p, aein Qr
and the saturation equation ensures also
s —s, aein Qr,
and this achieves (10I)-(103), also, we have
Pt —p, aein Qr,
we deduce
pi — pu  stronglyin  LY(Qp),
and then we have the following convergence
s

™ — ¢ stronglyin LYQr).

This achieves (104). Finally the weak convergence (107)-(108) are a consequence of and and the
identification of the limit is a due to (106). O
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Let us consider the weak formulations obtained from the problem (34)-(36) written after summation from
n =0to M — 1 on which we have to go by the limit as 6t goes to 0,

($i5%, p) + fg Ko (sq, ¢*)Vply - Vedxdt —v fQ V(b = ply) - Vopdxdt = 0, (115)
(a5, ) + f KAo(s;)Vpy' - Vipdxdt — v f V(ply - ') - Vipddt = 0, (116)
QT QT

and

(P (@), x) + f K% Ay (5%, VP2 - V xdxdt

Qr
+ f DV - Vdxdt — vf V(S — 8y - Vydxdt = 0, (117)
()T (IT

where ¢, 1, x € L?(0, T; V).

Then, the convergences obtained in Proposition [3.9]let us to access to the limit on each term of (115), (117).
Then, we have established the weak formulation (31)-(33) of Theorem 3.1}

Furthermore, we have obtained by Proposition 3.9 the following properties

0 < s4(t,x) <1ae. in Qr, s« €L2(0,T;V),
pa € LX0,T; V), Gds, € L2(0,T; V'), a=0,w
0 < ¢ < cequ, ce L*0,T; V), $oi(csw) € L0, T; V).

The compactness property on so implies that s, € C°(0, T; L*(Q)).
In the same way also the compactness property on c*s implies that cs,, € C°([0, T]; L%(Q)) and Theorem3.1]
is proved.

4. Existence of solutions of the degenerate problem

In the Section[3.2) we have shown a existing solution (s},, s}, p%,, p;, ¢") of the problem (S,) given in Section
The goal of the section is to pass to the limit as v goes to the 0 to demonstrate the main result of this
work: the existence of solution for the problem (I)-(8) with some estimations in the sense of Theorem 2.3}

The first point to do this is to obtain regular estimates respect to v to deduce strong convergences as v
goes to 0. Next we will be able to pass to the limit as v goes to 0.
4.1. Uniform estimates with respect to v

We state the following two lemmas in order to establish uniform estimates with respect to v.

Lemma 4.1. The sequence (s},)y, ("), and (p" = pk, + p(st, c")), and defined by Theorem [3.1|satisfy

0<s) <1 a. e in Qr, (118)

0<c" < Cou a.e.in Qr, (119)
("), is uniformly bounded in  L*(0,T; V), (120)
(VVVpe(st)),  is uniformly bounded in  L*(Qr), (121)
(WVPZ)V is uniformly bounded in  L*(Qr), (122)
(c")y  is uniformly bounded in L0, T; H(Q)), (123)

(B(s,c")), is uniformly bounded in  L*(0,T; V), (124)
(Ppi(sh))y  is uniformly bounded in  L*(0,T; V"), (125)

(0ds(c"st)), s uniformly bounded in ~ L*(0,T; V'). (126)
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Proof. 1t is easy to verify that the maximum principle (118)-(119) is conserved through the limit process.
For the next estimates, we have to multiply by pL, and by py and add these two equations. Using
the assumptions (A1)-(A8), the Cauchy-Schwarz inequality and (I2), we deduce the following estimation.

d Vo,V VoV V|2 V|2
o fQ d)za:(sapa)dx + fQ Kza:/\a(sa,c)IVpal dx +v fQ IVpe(sl,)Pdx

< CIVP I + IpGsellrz) + IP(spllr2))-

We use again and the assumptions (A1)-(A8), Cauchy-Schwarz and Young inequalities, the fact that
the function p, is nonnegative to obtain after integration over (0, T) the following estimation

/\w ZU/ v Ao g
f A, ")V Pdxdt + f Al DAolS) 5, (oo paxat
Qr Qr /\(Swt Cv)

+vf |Vpc(s{,j)|2dxdt+1k02[f /\a(sz,c")IVpZ(lzdxdt] <C. (127)
Qr 2 P Qr

The previous estimation (127) and the assumption (A3) ensure the estimate (120). The estimations (121))-
(122) come directli from (127).

1
For the estimate li , we multiply by ¢” and by - 3 (¢")?, we add them and this gives us the equality

%% fQ Blsi(c*)dx + fQ DVc" - Vc'dx = 0. (128)

After integration in time of this equation, assumption (A5) and the fact that ¢” is bounded, we get estimation
(123).
The estimation (124) is a consequence of the assumption (A3) and the following estimation

f A% (S €)AG(SY)
Q

Vv vV 2
[VB(sy, ") dxdt A2(s ¢

Vpe(siy)Pdxdt

Qr
< C

here C is a constant independent of v. For all p, ¢, x € L%(0,T; V), we have

(@i + [ KA IVl Ve~ [V - pt) Vst =0, (129)
)T QT

@I )+ [ KAVR Vo= [ V(- pl) - Va0, (130)
QT QT

and

(Pa(c¥sy), x)  + f c"KAy(sy, ¢)Vpy, - Vxdxdt

Qr
- f DVCV-V)(dxdt—f c"V(py —py,) - Vxdxdt =0, (131)
()T (21"

here the bracket (-, -) represents the duality product between L2(0,T; V") and L(0, T; V). After using , one
gets

Kpdis, )l < v

f Vpc(sy,) - Vodxdt
Qr

+

f K(Au(sh, c")VpY + VB(sy, c")) - Vodxdt|, (132)
Qr
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and
Kpai(c"sy), X)| < fQ DVc¢" - Vydxdt
o | [ et g - Vi
+ vfﬂ c"'Vpe(sy,) - Vxdxdt|.

From estimations (119)-({124), we deduce
Kpassy, ) < Clllli2o,r,v), for a = w,o0
and
[{pdi(c¥sy,), ) < Clixllr20,7v)-

This establishes (125)-(126) and demonstrates the lemma. O

Lemma 4.2. (Compactness result for degenerate case)
For every M > 0, the following implicit set

S = {(Sw, S0 C) € L2(Qr) X L2(Q7) X L*(Q7),  such that

1B(Sw, 20,1 @) <M, 1 VADSw, OVPwllizar + 1 VA(S) Vol oy < M,

lpdsullizo, vy < M, lPadssolliz vy < M,
llpe(csu)llizo,ivry < M}

1248

(133)

is relatively compact in L*(Qr) x L>(Qr) X L2(Qr) and y(Sw) is relatively compact in L*(L1) X L2(Z71) X L>(X7), (¥

denotes the trace on Lt operator).

Proof. The demonstration is inspired by the compactness lemma in the reference [18] which is introduced

for compressible degenerate model, we use the compactness result of Jacques Simon, see [27].

We deduce the following convergences.

Lemma 4.3. (Weak and strong convergences) Up to a subsequence the sequence (s},),, (p")v, and (p},)» verify the

following convergence

p' —p weaklyin L*0,T;V)
B(s,c") — B(sy,c) weaklyin  L*0,T; V)

¢’ —c weakly in L*0,T; V)

p'—p aein Qr

sk — s, a.ein  Qr witha=w,o0
0<su(t,x)<1 a. e in Qr
0 <c(t,x) < cequ a. e in Qr

ph—pa a.ein  Qr witha=w,0

¢ —c a.ein Qr
GI(sh) — Pdi(s,)  weaklyin L0, T; V') witha = w,o0
GI(c'sl) — Ppai(csy)  weaklyin  L*(0,T; V')

(134)
(135)
(136)
(137)
(138)
(139)
(140)
(141)
(142)
(143)
(144)
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Proof. Firstly, the weak convergences (134)-(136) follows from the uniform estimates (120), (123) and (124)
of Lemma

Secondly, the Lemma [4.2] ensures the following strong convergences
si — s, inL*Qr) andae. in Qr,
st — s, inL?(Zr) anda.e. inZr.
As the map G defined in is continuous, we can deduce
Pw— Pw IinQr anda.e. inXr,
and consequently the following convergences hold
p,ps — p,po inQr anda.e. inXr.

From (118), the estimate (139) is holds.
By the help of (I36), we get
" — ¢ stronglyin LY0, T; LY(Q),
this achieve the convergence (142), the limits have been identified by (136)), and then the maximum principle
(140) has been establish. The following convergences hold

B(sr,c’) — B(sy,c) inQr anda.e. in Zy.

w’

At last, the weak convergence (143) and (144) is a consequence of the estimate (I25) and (126), and the
identification of the limit follows from the previous convergence. [

4.2. Proof of the main result

In order to achieve the demonstration of Theorem[2.3} it remains to pass to the limit as v goes to 0 in the
formulations —, for all smooth test functions ¢, i and x belongs in C'([0, T1; V) N L*(0, T; H*(Q)) such
that o(T,-) = Y(T,") = x(T,") =0

- f sy, drpdxdt  + f KAy (s, ¢)Vpy, - Vodxdt
QT QT

v f V(py — ps) - Vdxdt = f qbs?u(p(o, x)dx, (145)
Qr Q

+

- f sy dppdxdt f KA, (s,)Vps, - Vipdxdt
Qr Qr

- vf V(p;,—pg)-Vl/)dxdt:fcpsg,l/)(O,x)dx, (146)
Qr Q
and

- f Oc'sy,dpxdxdt  + f c"KAy(sy, ¢")Vpy, - Vxdxdt + DVc¢" - Vydxdt
QT QT QT

- v f c"'Vip; — py) - Vxdxdt = f %% x(0, x)dx. (147)
Qr Q
The first terms converges due to the strong convergence of s, to s, in L>(Qr) and the strong convergence of

sic” to spc in L2(Qr).
Now, the two seconds terms of (I45) and can be written as,

f KA (sy)Vpy - Vipdxdt = f KA, (s;)Vp" - Vipdxdt — f KV3(sy,, c") - Vipdxdt, (148)
Or Qr Qr
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and

KAy (sy, ¢")Vp" - Vodxdt + f KV3(s,,, c") - Vodxdt. (149)
Qr

f KAy (sy, ¢)Vpy, - Vodxdt = f
QT QT
The two terms on the right hand side of (147) converge arguing in 2 steps. Firstly, the convergences
(138),(141) and (142) and the Lebesgue dominated convergence theorem, establish

Ao(SDVY — A(s0) V) strongly in  (L%(Qr))?,
Aw(Sly, €)WV — Ay(50,c)Ve  strongly in (LZ(QT))d.

Secondly, the convergence combined to the above strong convergence validate the convergence for
the second term of the right hand side of and (149), and the weak convergence on global pressure
combined to the above strong convergence validate the convergence for the first term of the right hand side
of and (149), and this achieves the passage to the limit on the second terms of and (146).

For the third term of (147), we can deduce by the Lebesgue dominated convergence theorem and the
convergences (I38) that

D(s%,)Vx — D(s,)Vx strongly in  (L*(Qr))?,

the convergence on concentration (136) combined to the above strong convergence validate the convergence
for the second term of (147).
After that, the fourth terms of (145) and (146) can be written as,

% f V(p —ph) - Vodxdt = Vv | (VvVp(sh)) Vo dxdt, (150)
QT QT

the uniform estimate (121) and the inequality of Cauchy-Schwarz ensures the convergence of this term to 0.

The other terms converge classically by to use the theorem of Lebesgue concerning dominated conver-

gence and the convergences (138), (T141) and (142).
The formulations (21)-(23) are then established, and the Theorem [2.3]is then established.

5. Conclusion

The nonlinear mathematical model under study has applications in the enhanced oil recovery EOR by
polymer flooding.

The goal of this manuscript is to proof the existence of weak solutions for a model of incompressible
and two-phase (aqueous and oil) immiscible flow with dynamic capillary pressure for three components
(polymer, water, and oil) in porous medium. We obtained the mathematical model by using the mass
conservation equation for the two phases, and the mass conservation equation for the polymer component
in the wetting phase (water).

In the future vision, we will generalized our results in case non-isothermal, also, we can study the same
problem in the presence of other components and providing numerical simulations.
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