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Abstract. Linear connections satisfying the Einstein metricity condition are important in the study of
generalized Riemannian manifolds (M,G = 1+F), where the symmetric part 1 of G is a non-degenerate (0, 2)-
tensor, and F is the skew-symmetric part. Such structures naturally arise in spacetime models in theoretical
physics, where F can be defined as an almost complex or almost contact metric (a.c.m.) structure. In the
paper, we first study more general models, where F has constant rank and is based on weak metric structures
(introduced by the second author and R. Wolak), which generalize almost complex and a.c.m. structures.
We consider linear connections with totally skew-symmetric torsion that satisfy both the Einstein metricity
condition and the A-torsion condition, where A is a skew-symmetric (1,1)-tensor adjoint to F. In the almost
Hermitian case, we prove that the manifold with such a connection is weak nearly Kähler, the torsion is
completely determined by the exterior derivative of the fundamental 2-form and the Nijenhuis tensor, and
the structure tensors are parallel, while in the weak a.c.m. case, the contact distribution is involutive, the
Reeb vector field is Levi-Civita parallel, and the structure tensors are also parallel with respect to both
connections. For rank(F) = dim M, we apply weak almost Hermitian structures to fundamental results (by
the first author and S. Ivanov) on generalized Riemannian manifolds and prove that the manifold equipped
with an Einstein’s connection is a weighted product of several nearly Kähler manifolds. For rank(F) < dim M
we apply weak almost Hermitian and weak a.c.m. structures and obtain splitting results for generalized
Riemannian manifolds equipped with Einstein’s connections.

1. Introduction

1.1. Motivation From General Relativity
General relativity (GR) was developed by A. Einstein in 1916 [3], with contributions by many others after

1916. In GR the equation ds2 = 1i jdxidx j is valid, where 1i j = 1 ji are functions of the point in the space. In GR
which is the four dimensional space-time continuum metric properties depend on the mass distribution.
The magnitudes 1i j are known as gravitational potential. The Christoffel symbols, usually denoted by Γk

i j,
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play the role of magnitudes defining the gravitational force field. General relativity explains gravity as a
curvature of spacetime. In the GR a metric tensor is related by the Einstein equations

Ri j −
1
2

R 1i j = Ti j, (1.1)

where Ri j is Ricci tensor of metric of space time, R is scalar curvature of metric, andTi j is energy-momentum
tensor of matter. However, in 1922, A. Einstein believed that the universe is apparently static, and since a
static cosmology was not supported by the GR field equations, he added a cosmological constant Λ to the
field equations (1.1), which became

Ri j −
1
2

R 1i j + Λ 1i j = Ti j. (1.2)

Since 1923 until the end of his life, A. Einstein worked on various versions of the Unified Field Theory
(Non-symmetric Gravitational Theory – NGT) [5]. This theory was intended to unite the gravitation theory,
to which GR is related, and the theory of electromagnetism. Introducing various versions of his NGT, A.
Einstein used a complex basic tensor, with a symmetric real part and a skew-symmetric imaginary part.
Beginning in 1950, A. Einstein used a real non-symmetric basic tensor G, sometimes called a generalized
Riemannian metric/manifold). Note that in the NGT the symmetric part 1i j of the basic tensor Gi j (Gi j = 1i j+Fi j)
is associated with gravity, and the skew-symmetric part Fi j is associated with electromagnetism. The same
is true for the symmetric part of the connection and torsion tensor, respectively.

Later, ideas of non-symmetric metric tensor appeared in Moffat’s non-symmetric theory of gravity [10].
Moffat’s theory extends general relativity by introducing a non-symmetric metric and connection, allowing
for richer gravitational dynamics. In his theory the antisymmetric part is a Proca field (massive Maxwell’s
field), which is part of the gravitational interaction that contributes to the rotation of galaxies. The connection
in NGT exhibits regularity, allowing for smooth and physically meaningful solutions without singularities.

In NGT [15], two new classes of path equations are derived using Bazański’s variational approach.
These equations describe how test particles and charged particles move, and they also reflect certain
quantum characteristics of NGT. An explicit formula of such a connection, satisfying the Einstein metricity
condition (EMC), is obtained by localizing the global formula given recently by S. Ivanov and M. Zlatanović
[8]. These equations not only reveal quantum features intrinsic to the NGT, but also highlight possible
interactions between torsion and electromagnetic potential, even in the absence of electromagnetic force.
In [16], the authors establish new identities for a connection with totally skew-symmetric torsion on NGT.
These identities, derived via the Dolan-McCrea variational method, naturally split into symmetric and
skew-symmetric parts, generalizing the second Bianchi identity. Recent approaches to modified gravity
often rely on post-Riemannian geometry, incorporating torsion and non-metricity as natural extensions of
Einstein’s GR framework [7]. Such formulations resonate with the original ideas of Einstein’s NGT.

While in a Riemannian space the connection coefficients are expressed through the metric, 1i j, in Ein-
stein’s works on NGT the connection between these magnitudes is determined by the EMC, i.e. the
non-symmetric metric tensor G and the connection components Γk

i j are related by the equations

∂Gi j

∂xm − Γ
p
imGpj − Γ

p
mjGip = 0. (1.3)

A generalized Riemannian manifold satisfying the EMC (1.3) is also called an NGT-space [5, 10]. The choice
of a connection in NGT is not uniquely determined. In particular, in NGT there exist two types of covariant
derivatives, for example for the tensor ai

j:

a
i
+

j
+
|m =

∂ai
j

∂xm + Γ
i
pmap

j − Γ
p
jmai

p; a
i
−

j
−

|m =
∂ai

j

∂xm + Γ
i
mpap

j − Γ
p
mja

i
p,

where the lowering and the rising of indices is defined by equations

GpiGpj = GipG jp = δ j
i . (1.4)
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A. Einstein considered in NGT only one curvature tensor:

Ri
klm = Γ

i
kl,m − Γ

i
km,l − Γ

i
slΓ

s
km + Γ

i
smΓ

s
kl, (1.5)

and proved a Bianchi type identity for the covariant curvature tensor Riklm = GsiRs
klm (see [4]):

Riklm
−+−+
|n + Rikmn

−+++
| l + R iknl

−+−−
|m = 0.

1.2. Main Objectives and Structure of the Paper

The main goal of the paper is to study a generalized Riemannian manifold (M,G = 1 + F) equipped
with a linear connection satisfying EMC (1.3) and admitting a totally skew-symmetric torsion. Our key
results show that the assumption of the A-torsion condition, see (2.4), or equivalently, the preservation
of 1, leads to a simplified form of the Nijenhuis tensor and characterizes weak nearly Kähler or weak
nearly cosymplectic structures. In Section 2, we represent the geometric model with the EMC, define the A-
torsion condition and prove Proposition 2.6. In Section 3, we study application of weak metric structures on
generalized Riemannian manifolds, focusing on the interplay between a skew-symmetric endomorphism A
and a self-adjoint endomorphism Q > 0. Under the key assumption that A commutes with Q, [A,Q] = 0, we
establish conditions under which these tensors admit block-diagonalization, and analyze the existence of
linear connections with totally skew-symmetric torsion compatible with the given structures. In particular,
we prove that weak almost Hermitian manifolds admitting Einstein’s connections are weak nearly Kähler,
and describe their decomposition into weighted products of nearly Kähler manifolds. Theorems 3.5 and
3.9 show that if an Einstein’s connection ∇ satisfies the A-torsion condition on a weak almost Hermitian
manifold, then Q is parallel with respect to both connections, ∇ and the Levi-Civita connection, and the
manifold is weak nearly Kähler.

For a weak almost contact metric (a.c.m.) manifold equipped with an Einstein’s connection ∇ satisfying
the A-torsion condition, we have proved that the Reeb vector field ξ is parallel with respect to the Levi-Civita
connection, the Nijenhuis tensor Nwac

A is totally skew-symmetric, and the contact distribution D = ker η
is involutive, the tensor Q is parallel with respect to ∇ and the Levi-Civita and connection. Based on
Proposition 3.15 on almost-nearly cosymplectic manifolds, we present Theorem 3.16, which complements
[8, Theorem 3.8]. Theorems 3.18 and 3.19 show that if Q is conformal when restricted to D, then the
manifold locally splits as a weighted product ofR and a nearly Kähler manifold; otherwise,D decomposes
into mutually orthogonal eigen-distributions of Q with constant eigenvalues, locally giving a weighted
product structure of R and several nearly Kähler manifolds.

2. Geometric Model

The fundamental (0,2)-tensor G in a non-symmetric (generalized) Riemannian manifold (M,G) is, in
general, non-symmetric. It decomposes in two parts, G = 1 + F, the symmetric part 1 (called Riemannian
metric) and the skew-symmetric part F (called fundamental 2-form), where

1(X,Y) =
1
2

[
G(X,Y) + G(Y,X)

]
, F(X,Y) =

1
2

[
G(X,Y) − G(Y,X)

]
. (2.1)

We assume that the symmetric part, 1, is non-degenerate of arbitrary signature, and the skew-symmetric
part, F , 0, has a constant rank, e.g., is non-degenerate. Therefore, we obtain a well-defined (1,1)-tensor
A , 0 of constant rank determined by the following condition:

1(AX,Y) = F(X,Y) for all X,Y ∈ XM. (2.2)

According to the above, since F is skew-symmetric, the tensor A is also skew-symmetric:

1(AX,Y) = −1(X,AY) for all X,Y ∈ XM.
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Convention 2.1. In the whole paper we shall use the capital Latin letters X,Y, . . . to denote smooth vector
fields on a smooth manifold M, which commute, [X,Y] = 0.

Using the vector fields defined in Convention 2.1, the Levi-Civita connection ∇1 corresponding to the
symmetric non-degenerate (0,2)-tensor 1 reduces to the following:

1(∇1XY,Z) =
1
2

[
X1(Y,Z) + Y1(X,Z) − Z1(Y,X)

]
. (2.3)

2.1. Linear Connections on Generalized Riemannian Manifolds
We consider linear connections ∇ on a smooth manifold M with a torsion (1,2)-tensor

T(X,Y) = ∇XY − ∇YX − [X,Y].

We denote the torsion (0,3)-tensor with respect to 1 by the same letter,

T(X,Y,Z) := 1(T(X,Y),Z).

A linear connection on a generalized Riemannian manifold (M,G) is completely determined by the
torsion tensor and the covariant derivative ∇1 of the symmetric part 1 of G, see [8].

Definition 2.2 (see [14]). A linear connection ∇ on a generalized Riemannian manifold (M,G = 1 + F) is
said to have A-torsion condition, where A is given by (2.2), if its torsion tensor T satisfies

T(AX,Y) = T(X,AY) for all X,Y ∈ XM. (2.4)

A linear connection ∇ is said to have Q-torsion condition if its torsion tensor T satisfies

T(QX,Y) = T(X,QY) for all X,Y ∈ XM, (2.5)

where Q : TM→ TM is an endomorphism that is self-adjoint with respect to the symmetric part 1 of metric
G, i.e. 1(QX,Y) = 1(X,QY) for all X,Y ∈ XM.

Note that the Q-torsion condition is trivial when Q = Id (or, Q is conformal: Q = λ Id).
The Nijenhuis tensor NP of a (1,1)-tensor P on a smooth manifold M is defined by (e.g. [9]),

NP(X,Y) = [PX,PY] + P2[X,Y] − P[PX,Y] − P[X,PY]. (2.6)

The Nijenhuis tensor is skew-symmetric by definition. We denote the Nijenhuis (0,3)-tensor with respect
to a Riemannian metric 1with the same letter,

NP(X,Y,Z) := 1(NP(X,Y),Z).

The Nijenhuis tensor NA plays a fundamental role in almost complex (resp. almost para-complex)
geometry. If A2 = −Id (resp. A2 = Id) then the celebrated Nulander-Nirenberg theorem (see, e.g. [9]) shows
that an almost complex structure is integrable if and only if NA vanishes.

Using the definition of the torsion tensor T of a linear connection ∇ and the covariant derivative ∇A, we
can express the Nijenhuis tensor NA in terms of T and ∇A as follows:

NA(X,Y) = (∇AXA)Y − (∇AYA)X − A(∇XA)Y + A(∇YA)X

− T(AX,AY) − A2T(X,Y) + AT(AX,Y) + AT(X,AY). (2.7)

For a self-adjoint endomorphism Q : TM→ TM we have

NQ(X,Y,Z) = 1((∇QXQ)Y,Z) − 1((∇QYQ)X,Z) − 1((∇XQ)Y,QZ) + 1((∇YQ)X,QZ)

− T(QX,QY,Z) − T(X,Y,Q2Z) + T(QX,Y,QZ) + T(X,QY,QZ). (2.8)
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2.2. Einstein Metricity Condition
In his attempt to construct an unified field theory, briefly NGT, A. Einstein [5] considered a generalized

Riemannian manifold (M,G = 1 + F) with a linear connection ∇ satisfying the EMC (1.3), which has the
following coordinate-free form, see [8]:

XG(Y,Z) − G(∇YX,Z) − G(Y,∇XZ) = 0 for all X,Y,Z ∈ XM. (2.9)

In the paper we will call such linear connections Einstein’s connections. Using the definition of the torsion
(0,3)-tensor, (2.1) and (2.2), the EMC (2.9) can be presented in the following form, see [8]:

(∇XG)(Y,Z) = −G(T(X,Y),Z) ⇔ (∇X(1 + F))(Y,Z) = −T(X,Y,Z) + T(X,Y,AZ). (2.10)

Separating symmetric and skew-symmetric parts of (2.10) (w.r.t. Y and Z), we express the covariant
derivatives ∇1 and ∇F in terms of the exterior derivative dF and torsion:

(∇X 1)(Y,Z) = −
1
2

[
T(X,Y,Z) + T(X,Z,Y) − T(X,Y,AZ) − T(X,Z,AY)

]
, (2.11)

(∇Z F)(X,Y) =
1
2

[
T(X,Z,Y) − T(X,Y,Z) + T(X,Y,AZ) − T(X,Z,AY)

]
=

1
2

[
dF(X,Y,Z) + T(X,Y,Z) − T(Z,Y,AX) + T(Z,X,AY)

]
. (2.12)

Using the vector fields defined in Convention 2.1, the co-boundary formula for exterior derivative of a
2-form F reduces to the following formula (without the coefficient 3, unlike [1]):

dF(X,Y,Z) = X(F(Y,Z)) + Y(F(Z,X)) + Z(F(X,Y)). (2.13)

The connection ∇ of (2.9) is represented in [8] as

1(∇XY,Z) = 1(∇1XY,Z) +
1
2

[
T(X,Y,Z) − T(X,Z,AY) − T(Y,Z,AX)

]
= 1(∇1XY,Z) −

1
2

[
dF(X,Y,Z) + T(Z,X,Y) + T(Y,Z,X)

]
+

1
2

[
T(Z,X,AY) + T(Z,Y,AX)

]
. (2.14)

In local coordinates, the equations (2.11)-(2.14) have the following form, see [8]:

∇kFi j =
1
2

[
dFi jk + Ti jk − TkjsAs

i − TkisAs
j

]
,

∇i1 jk = −
1
2

[
Ti jk − Ti jsAs

k + Tik j − TiksAs
j

]
,

Γi jk = Γ
1

i jk +
1
2

[
Ti jk − TikpAp

j − T jkpAp
i

]
.

(2.15)

The contorsion (or, difference) (1,2)-tensor K of a linear connection ∇ is defined by

K(X,Y) = ∇XY − ∇1XY.

The contorsion (0, 3)-tensor K(X,Y,Z) is defined by K(X,Y,Z) := 1(K(X,Y),Z).

Lemma 2.3. Let an Einstein’s connection ∇ on a generalized Riemannian manifold (M,G = 1 + F) satisfy EMC
(2.9). Then the contorsion and torsion (0, 3)-tensors of ∇ are related as

2 K(X,Y,Z) = T(X,Y,Z) − T(X,Z,AY) − T(Y,Z,AX).

Proof. It follows directly from (2.14).
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2.3. NGT with Totally Skew-Symmetric Torsion
Here, we consider a linear connection ∇ with totally skew-symmetric torsion (0,3)-tensor, T(X,Y,Z) =

−T(X,Z,Y). In this case,

i) the A-torsion condition (2.4) implies

T(AX,Y,Z) = T(X,AY,Z) = T(X,Y,AZ). (2.16)

ii) the Q-torsion condition (2.5) implies

T(QX,Y,Z) = T(X,QY,Z) = T(X,Y,QZ). (2.17)

The following result, see [8, Theorem 3.1], presents conditions for the existence and uniqueness of the
Einstein’s connection on a generalized Riemannian manifold and gives its explicit expression.

Theorem 2.4. A generalized Riemannian manifold (M,G = 1 + F) admits an Einstein’s connection with totally
skew-symmetric torsion T if and only if the Nijenhuis tensor NA, the tensor A and the exterior derivative of F satisfy
the following relation:

NA(X,Y,Z) =
2
3

dF(X,Y,AZ) +
1
3

dF(AX,Y,Z) +
1
3

dF(X,AY,Z) +
1
3

dF(AX,AY,AZ)

−
1
6

[
dF(A2X,Y,AZ) + dF(A2X,AY,Z) + dF(X,A2Y,AZ) − dF(X,AY,A2Z)

]
−

1
6

[
dF(AX,A2Y,Z) − dF(AX,Y,A2Z)

]
; (2.18)

moreover, the covariant derivatives of the tensors F and A with respect to ∇1 are related by

(∇1XF)(Y,Z) = 1((∇1XA)Y,Z) (2.19)

=
1
3

dF(X,Y,Z) +
1
3

dF(X,AY,AZ) −
1
6

dF(AX,Y,AZ) −
1
6

dF(AX,AY,Z). (2.20)

In this case, the totally skew-symmetric torsion (0, 3)-tensor is completely determined by dF:

T(X,Y,Z) = −
1
3

dF(X,Y,Z), (2.21)

the EMC (2.9) is equivalent to the following two conditions, see (2.11)-(2.12):

(∇X1)(Y,Z) = −
1
6

[
dF(X,Y,AZ) − dF(X,AY,Z)

]
,

(∇XF)(Y,Z) =
1
6

[
2dF(X,Y,Z) − dF(X,Y,AZ) − dF(X,AY,Z)

]
,

(2.22)

and the linear connection ∇ is uniquely determined by the following formula, see (2.14):

1(∇XY,Z) = 1(∇1XY,Z) +
1
6

[
dF(AX,Y,Z) − dF(X,Y,Z) − dF(X,AY,Z)

]
. (2.23)

Remark 2.5. By (2.23), the contorsion (0,3)-tensor K(X,Y,Z) of a connection∇with a totally skew-symmetric
torsion (0, 3)-tensor is given by the following formula:

K(X,Y,Z) =
1
6

[
dF(AX,Y,Z) − dF(X,AY,Z) − dF(X,Y,Z)

]
. (2.24)

The formulas in Theorem 2.4 are especially meaningful under the assumption that the torsion tensor
satisfies the A-torsion condition (2.4) with totally skew-symmetric property.
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Proposition 2.6. Let (M,G = 1 + F) be a generalized Riemannian manifold with a fundamental 2-form F. Then
an Einstein’s connection ∇, having a totally skew-symmetric torsion (0, 3)-tensor T, satisfies the A-torsion condition
(2.4) if and only if it preserves the symmetric part of the metric G, i.e., ∇1 = 0. In this case,

(i) (∇1XA)Y = −T(X,Y) ⇔ ∇
1A = −T,

(ii) NA(X,Y,Z) =
4
3

dF(X,Y,AZ). (2.25)

Proof. Using the first equation in (2.22), the equivalence (with ∇1 = 0) follows.
(i) Using (2.16), from (2.19) and (2.21) we obtain

1
(
(∇1XA)Y,Z

)
=

1
3

dF(X,Y,Z) = −T(X,Y,Z), (2.26)

which completes the proof of (i).
(ii) Using (2.16) in (2.18), we get the required equation for the Nijenhuis (0,3)-tensor NA.

Remark 2.7. By (2.25) (i), we have (∇1XA)X = 0, which corresponds to weak nearly (para) Kähler or weak
nearly (para) cosymplectic structures considered in Section 3.

3. Applications of Weak Metric Structures

In this section, we supply a number of examples (given below using weak metric structures, see [12, 13])
with a (1,1)-tensor A of constant rank. First, we prove the following.

Lemma 3.1. Let a generalized Riemannian manifold (M,G = 1+F) be equipped with a self-adjoint (with respect to 1)
endomorphism Q > 0 such that [Q,A] = 0. Then at each point x ∈M there is a basis {e1,Ae1, . . . , em,Aem, ξ1, . . . , ξs}

(called an A-Q-basis), consisting of mutually orthogonal nonzero vectors of TxM such that A and Q have block-
diagonal structures: Q = [λ1Id n1 , . . . , λkId nk , ν1, . . . , νs] and A = [

√
λ1 J n1 , . . . ,

√
λk J nk , 0 s], where λi > 0, νi , 0

and J ni is a complex structure (J2
ni
= −Id ni ) on a ni-dimensional subspace of TxM.

Proof. Suppose that A is non-degenerate at x ∈ M. Let e1 ∈ TxM be a unit eigenvector of the self-adjoint
operator Q > 0 with the minimal eigenvalue λ1 , 0. Then, Ae1 ∈ TxM is orthogonal to e1 and Q(Ae1) =
A(Qe1) = λ1Ae1. Thus, the subspace of TxM orthogonal to the plane Span{e1,Ae1} is Q-invariant (and
A-invariant). Continuing in the same manner, we find a basis {e1,Ae1, . . . , em,Aem} of TxM consisting
of mutually orthogonal vectors. Hence, Q has k different nonzero eigenvalues λ1 < . . . < λk of even
multiplicities n1, . . . ,nk, and

∑k
i=1 ni = 2m = dim M. In this basis, A and Q have the required block-diagonal

structures. If A is degenerate at x ∈M and (ker A)x is s-dimensional, then the proof is similar.

Remark 3.2. The condition [A,Q] = 0, see Lemma 3.1, is satisfied by structural tensors of all weak metric
structures considered in Section 3.

3.1. Weak Almost Hermitian Structure

Let us consider a weak almost Hermitian manifold M(A,Q, 1), i.e. a Riemannian manifold (M, 1) of
dimension n (= 2m ≥ 4) endowed with non-singular endomorphisms: A (skew-symmetric) and Q (self-
adjoint), and the fundamental 2-form F such that the following conditions are valid, see [12]:

A2 = −Q, 1(AX,AY) = 1(QX,Y), F(X,Y) = 1(AX,Y). (3.1)

From A2 = −Q we conclude that A commutes with Q: [A,Q] = 0; hence F(X,QY) = F(QX,Y).
A. Gray defined in [6] a nearly Kähler structure (J, 1), where J is an almost complex structure, using

condition that the symmetric part of ∇1 J vanishes.
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Definition 3.3. A weak almost Hermitian manifold is said to be weak nearly Kähler if the covariant derivative
of A (or F) with respect to the Levi-Civita connection ∇1 is skew-symmetric:

(∇1XA)X = 0 ⇐⇒ (∇1XF)(X, · ) = 0.

If ∇1A = 0, then such M(A,Q, 1) is called a weak Kähler manifold; in this case, ∇1Q = 0.

At the same time, M(A,Q, 1) admits a generalized Riemannian structure G = 1 + F.

Example 3.4. Let M(A,Q, 1) be a weak nearly Kähler manifold with a fundamental 2-form F, considered as
a generalized Riemannian manifold (M,G = 1+F). Suppose that ∇ is an Einstein’s connection on M(A,Q, 1)
with totally skew-symmetric torsion. Let us show that ∇ satisfies the A-torsion condition (2.16). Since the
manifold is weak nearly Kähler, we have

1
(
(∇1XA)Y,Z

)
+ 1
(
(∇1YA)X,Z

)
= 0.

On the other hand, using equation (2.19), we obtain the following:

1
(
(∇1XA)Y,Z

)
+ 1
(
(∇1YA)X,Z

)
=

1
2

dF(X,AY,AZ) −
1
2

dF(AX,Y,AZ),

which leads to the equality dF(AX,Y,AZ) = dF(X,AY,AZ). This equation, using (2.21) and the non-
degeneracy of A, implies (2.4): T(AX,Y,Z) = T(X,AY,Z), and by the totally skew-symmetry of torsion,
we conclude the A-torsion condition (2.16) is true.

The following result complements Theorem 3.3 of [8].

Theorem 3.5. Let M(A,Q, 1) be a weak almost Hermitian manifold with a fundamental 2-form F, considered as a
generalized Riemannian manifold (M,G = 1 + F). Suppose that ∇ is an Einstein’s connection with totally skew-
symmetric torsion (0, 3)-tensor T. If the A-torsion condition (2.4) is true, then we get the following:

T(AX,Y,Z) = −
1
3

dF(AX,Y,Z) = −
1
4

NA(X,Y,Z), (3.2)

∇Q = ∇1Q = 0, (3.3)

and M(A,Q, 1) is a weak nearly Kähler manifold.

Proof. Since the A-torsion condition (2.4) is true, the first equality of (3.2) follows from (2.21) and the second
equality of (3.2) follows from Proposition 2.6 (ii). Using (3.1) and (2.19), we get

1
(
(∇1XQ)Y,Z

)
= −1

(
(∇1XA)AY,Z

)
+ 1
(
(∇1XA)Y,AZ

)
= −

1
3

dF(X,AY,Z) +
1
3

dF(X,QY,AZ) +
1
3

dF(X,Y,AZ)

−
1
3

dF(X,AY,QZ) −
1
6

dF(AX,QY,Z) +
1
6

dF(AX,Y,QZ). (3.4)

Using (2.21) and the A-torsion condition (which implies the Q-torsion condition) we obtain:

1
(
(∇1XQ)Y,Z

)
= T(X,AY,Z) − T(X,QY,AZ) − T(X,Y,AZ)

+ T(X,AY,QZ) +
1
2

T(AX,QY,Z) −
1
2

T(AX,Y,QZ) = 0.
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Further, using (2.23) and ∇1Q = 0, we get

1
(
(∇XQ)Y,Z

)
= 1
(
∇XQY,Z

)
− 1
(
∇XY,QZ

)
= 1
(
(∇1XQ)Y,Z

)
+

1
6

dF(AX,QY,Z) −
1
6

dF(X,QY,Z) −
1
6

dF(X,AQY,Z)

−
1
6

dF(AX,Y,QZ) +
1
6

dF(X,Y,QZ) +
1
6

dF(X,AY,QZ)

=
1
6

dF(AX,QY,Z) −
1
6

dF(X,Y,QZ) −
1
6

dF(AX,QY,Z) (3.5)

−
1
6

dF(AX,Y,QZ) +
1
6

dF(X,Y,QZ) +
1
6

dF(AX,Y,QZ) = 0

Similarly to the case of ∇1Q = 0, the A-torsion condition yields ∇Q = 0. By Proposition 2.6 (i), (∇1XA)X =
−T(X,X) = 0 holds; hence M(A,Q, 1) is a weak nearly Kähler manifold.

Remark 3.6. By [14, Equation (3.7)] we have dF(AX,Y,Z) = 3 T(QX,Y,Z). By (3.2), we have dF(AX,Y,Z) =
−3 T(AX,Y,Z). The different expressions for dF(AX,Y,Z) arise since we use different connections: we use a
metric connection preserving G in [14], whereas in this paper we work with Einstein’s connections. In both
cases, we assume that the torsion is totally skew-symmetric.

Definition 3.7. Take two (or more) almost Hermitian manifolds M j(A j, 1 j), thus A2
j = −Id j. The product∏k

j=1 M j(
√
λ j A j, 1 j) of k weak almost Hermitian manifolds, where λ j > 0 are different constants, is a weak

almost Hermitian manifold with Q =
⊕

j λ j Id j. We call
∏

j M j(
√
λ j A j, 1 j) a (λ1, . . . , λk)-weighed product of

almost Hermitian manifolds M j(A j, 1 j).

The following example represents a set of strictly weak nearly Kähler manifolds.

Example 3.8. Note that the (λ1, . . . , λk)-weighed product of nearly Kähler manifolds is a weak nearly Kähler
manifold. A nearly Kähler manifold of dimension ≤ 4 is a Kähler manifold, see [6]. The 6-dimensional
unit sphere in the set of purely imaginary Cayley numbers is an example of a strictly nearly Kähler
manifold. The classification of weak nearly Kähler manifolds in dimensions ≥ 4 is an open problem.
Some 4-dimensional weak nearly Kähler manifolds appear as (λ1, λ2)-weighed products of 2-dimensional
Kähler manifolds. Some 6-dimensional weak nearly Kähler manifolds are (λ1, λ2, λ3)-weighed products of
2-dimensional Kähler manifolds or (λ1, λ2)-weighed products of 2- and 4-dimensional Kähler manifolds.
Some 8-dimensional weak nearly Kähler manifolds are (λ1, λ2, λ3, λ4)-weighed products of 2-dimensional
Kähler manifolds or (λ1, λ2)-weighed products of 2-dimensional Kähler manifolds and 6-dimensional nearly
Kähler manifolds, or (λ1, λ2)-weighed products of 4-dimensional nearly Kähler manifolds, and similarly for
even dimensions > 8. The (λ1, . . . , λk)-weighed products of nearly Kähler manifolds serve as new models
for NGT.

Theorem 3.9. Let M(A,Q, 1) be a weak almost Hermitian manifold with a fundamental 2-form F, considered as
a generalized Riemannian manifold (M,G = 1 + F). Suppose that an Einstein’s connection ∇ on M with totally
skew-symmetric torsion satisfies the A-torsion condition (2.4).

(i) If Q = λ Id for λ ∈ C∞(M), then λ = const > 0 and (λ−1/2A, 1) is a nearly Kähler structure.
(ii) If Q , λ Id for λ ∈ C∞(M), then there exist k > 1 mutually orthogonal even-dimensional distributions

Di ⊂ TM (1 ≤ i ≤ k) such that
⊕

iDi = TM and Di are the eigen-distributions of Q with constant eigenvalues
λi : 0 < λ1 < . . . < λk; moreover, each Di defines a ∇1-totally geodesic foliation and M(A,Q, 1) is locally the
(λ1, . . . , λk)-weighed product of nearly Kähler manifolds.

Proof. (i) By (3.3), we get λ = const > 0, hence (λ−1/2A, 1) is an almost Hermitian structure. Since the
A-torsion condition (2.4) is true, by Theorem 3.5, (λ−1/2A, 1) is a nearly Kähler structure.

(ii) Since Q = −A2 is not conformal, it has k > 1 different eigenvalues 0 < λ1 < . . . < λk of even
multiplicities n1, . . . ,nk. By Lemma 3.1, there exists an A-Q-basis at a point x ∈ M, in which A and Q have
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block-diagonal structures: Q = [λ1Id n1 , . . . , λkId nk ] and A = [
√
λ1 J n1 , . . . ,

√
λk J nk ], where J ni is a complex

structure on a ni-dimensional subspace of TxM.
Since Q is ∇1-parallel, see (3.3), we get the same structure at every point of M, that is, k and all λi are

constant on M, and there exist mutually orthogonal ∇1-parallel (and A-invariant) eigen-distributionsDi of
Q with constant different eigenvalues λi. Since the Q-torsion condition is true, using (2.5) for any vector
fields X,Y ∈ Di, i.e., QX = λiX and QY = λiY, we have

Q[X,Y] = Q{∇1XY − ∇1YX} = ∇1X(QY) − ∇1Y(QX)

= λi{∇
1

XY − ∇1YX} = λi[X,Y].

Hence each Di is involutive and defines a foliation Fi. Similarly we can show that Q(∇1XY) = ∇1X(QY) =
λi∇

1

XY, hence Fi is a ∇1-totally geodesic foliation, and by de Rham Decomposition Theorem (see [9]), our
manifold splits and is the (λ1, . . . , λk)-weighed product of almost Hermitian manifolds. By Theorem 3.5,
the factors are nearly Kähler manifolds.

Example 3.10. Let a generalized Riemannian manifold (M,G = 1 + F) be represented as the (λ1, . . . , λk)-
weighed product of nearly Kähler manifolds M j(A, 1 j) (1 ≤ j ≤ k). We get a weak nearly Kähler structure
on M with Q =

⊕
j λ j Id j for some constants λ j > 0, hence ∇1Q = 0.

By [8, Theorem 3.3], for any j there exists a unique Einstein’s connection∇( j) on a nearly Kähler manifold
M j(A j, 1 j). Its torsion is determined by (3.2). It was shown in Example 3.4 that this ∇( j) is an Einstein’s
connection on the weak nearly Kähler manifold M j(

√
λ jA j, λ j Id j, 1 j) satisfying the A-torsion condition

(2.4). A unique linear connection ∇ on (M,G = 1 + F) with a totally skew-symmetric torsion satisfying
EMC (2.9) and the A-torsion condition (2.4) is the metric connection, i,e. ∇1 = 0, its torsion is T = −∇1A,
see Proposition 2.6 (i), and ∇Q = 0, see (3.3). By the above, this Einstein metric connection has the
following form: ∇ =

⊕
j ∇

( j).

3.2. Weak Almost Contact Metric Structure
Contact Riemannian geometry is of growing interest due to its important role in both theoretical physics

and pure mathematics. Weak a.c.m. structures, i.e., the complex structure on the contact distribution is
approximated by a non-singular skew-symmetric tensor, allowed us to take a new look at the theory of
contact manifolds and find new applications.

Definition 3.11. A weak a.c.m. manifold M(A,Q, ξ, η, 1) is a (2m + 1)-dimensional Riemannian manifold
equipped with a skew-symmetric (1,1)-tensor A of rank 2m, a unit vector field ξ, a 1-form η dual to ξ with
respect to the metric 1, η(ξ) = 1, η(X) = 1(X, ξ), and a self-adjoint (1,1)-tensor Q > 0, satisfying the following
compatibility conditions:

A2 = −Q + η ⊗ ξ, 1(AX,AY) = 1(QX,Y) − η(X)η(Y), Aξ = 0, Qξ = ξ. (3.6)

Put F(X,Y) := 1(AX,Y). A weak a.c.m. manifold M(A,Q, ξ, η, 1) is said to be weak almost-nearly cosymplectic
if it satisfies the following condition (see also [8] for Q = Id):

1((∇1XA)Y,Z) = −
1
3

dF(AX,AY,Z) +
1
6
η(Z)dη(Y,AX) −

1
2
η(Y)dη(AZ,X). (3.7)

From (3.6) we conclude that A commutes with Q: [A,Q] = 0; hence F(X,QY) = F(QX,Y).
If we assume dη = 0, then (3.7) reduces to

1((∇1XA)Y,Z) = −
1
3

dF(AX,AY,Z), (3.8)

and a weak almost-nearly cosymplectic manifold becomes weak nearly cosymplectic: (∇1XA)X = 0.
The following lemma generalizes [8, Corollary 3.9].
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Lemma 3.12. The Reeb field ξ of a weak almost-nearly cosymplectic manifold M(A,Q, ξ, η, 1) is a geodesic vector
field, i.e., ∇1ξ ξ = 0, and a Killing vector field, i.e., 1(∇1X ξ, Y) + 1(∇1Y ξ, X) = 0.

Proof. Replacing Y by ξ in (3.7), we obtain

1(∇1X ξ,AZ) =
1
6
η(Z) dη(ξ,AX) +

1
2

dη(X,AZ). (3.9)

Replacing X by ξ in the above equation and using 1(∇1X ξ, ξ) = 0, we obtain

1(∇1ξ ξ,Y) =
1
2

dη(ξ,Y). (3.10)

Using the identity

dη(X,Y) = 1(∇1X ξ,Y) − 1(∇1Y ξ,X) (3.11)

with X = ξ (without the coefficient 2, unlike [1]) in (3.10), we get dη(ξ,Y) = 1(∇1ξ ξ,Y). Comparing with
(3.10), we conclude that ξ is a geodesic vector field:

1(∇1ξ ξ,Y) = 0, dη(ξ,Y) = 0. (3.12)

Representing any vector Y as Y − η(Y) ξ = AZ and using (3.10) and (3.12), gives

1(∇1X ξ,Y) = 1(∇1X ξ,AZ) =
1
2

dη(X,AZ) =
1
2

dη(X,Y). (3.13)

Using (3.13), we have 1(∇1X ξ, Y) + 1(∇1Y ξ, X) = 0. Therefore, ξ is a Killing vector field.

Proposition 3.13. Let M(A,Q, ξ, η, 1) be a weak a.c.m. manifold considered as a generalized Riemannian manifold
(M,G = 1+F), and ∇ an Einstein’s connection with totally skew-symmetric torsion. Then dη(X, ξ) = 0 and ∇1ξ ξ = 0
hold, i.e., the Reeb vector field ξ is a geodesic vector field.

Proof. Using the fact that 1(ξ, ξ) = 1, 1(∇1X ξ, ξ) = 0, (3.6) and (2.19), we have

(∇1Xη)(QZ) = 1(∇1X ξ,QZ) = −1((∇1XA)ξ,AZ) =
1
3

dF(X,AZ, ξ) +
1
6

dF(AX,QZ, ξ). (3.14)

Taking X = ξ in (3.14), yields (∇1ξ η)(QZ) = 1(∇1ξ ξ,QZ) = 0 for all Z ∈ XM. By this, since Q is non-degenerate,
∇
1

ξ η = ∇
1

ξ ξ = 0 and dη(X, ξ) = 0 hold, hence, ξ is a ∇1-geodesic vector field.

Let us introduce the (0,3)-tensor, see [14],

Nwac
A = NA + dη ⊗ η, (3.15)

called the Nijenhuis tensor in the weak a.c.m. geometry.

Proposition 3.14 (see [12]). For a weak a.c.m. structure (A,Q, ξ, η, 1), we get

2 1
(
(∇1XA)Y,Z

)
= N(5)(X,Y,Z) + dF(X,Y,Z) − dF(X,AY,AZ) +Nwac

A (Y,Z,AX)

+
[

dη(AY,Z) − dη(AZ,Y)
]
η(X) − dη(X,AY)η(Z) + dη(X,AZ)η(Y)

(3.16)

where the skew-symmetric with respect to Y and Z tensor N (5)(X,Y,Z) is defined by

N (5)(X,Y,Z) = (AZ) (1(X, Q̃Y)) − (AY) (1(X, Q̃Z)) + 1([X,AZ], Q̃Y)

− 1([X,AY], Q̃Z) + 1([Y,AZ] − [Z,AY] − A[Y,Z], Q̃X), (3.17)
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using the tensor Q̃ = Q − Id. For particular values of the tensor N (5) we get

N (5)(X, ξ,Z) = 1([ξ,AZ] − A[ξ,Z], Q̃X) =
1
2
1((£ξA)Z, Q̃X),

N (5)(ξ,Y,Z) = 1([ξ,AZ], Q̃Y) − 1([ξ,AY], Q̃Z), N (5)(ξ, ξ,Z) = 0.

Proposition 3.15. Let M(A,Q, ξ, η, 1) be a weak almost-nearly cosymplectic manifold with a fundamental 2-form
F, considered as a generalized Riemannian manifold (M,G = 1+ F). Suppose that ∇ is an Einstein’s connection with
totally skew-symmetric torsion. Then the manifold is weak nearly cosymplectic, and locally is the metric product of a
real line and a weak nearly Kähler manifold.

Proof. From (3.13) and (2.19), we have

dη(X,AZ) = 2 1(∇1X ξ,AZ) = −2 1(A∇1X ξ,Z) = 2 1
(
(∇1XA)ξ,Z

)
= −

2
3

dF(X,Z, ξ) +
1
3

dF(AX,AZ, ξ).
(3.18)

So, for any vector fields X and Z, we have

dη(X,AZ) = dη(AX,Z). (3.19)

Comparing (2.19) and (3.7) with X or Y or Z equal to ξ, and using (3.12), we get, respsctively,

dF(ξ,AY,AZ) = −dF(ξ,Y,Z), (3.20)
2 dF(X, ξ,Z) = dF(AX, ξ,AZ) + 3 dη(X,AZ), (3.21)
2 dF(X,Y, ξ) = −dF(AX,AY, ξ) − dη(AX,Y). (3.22)

From (3.21) and (3.22) we find

dF(AX, ξ,AY) + 3 dη(X,AY) = 2 dF(X, ξ,Y) = dF(AX,AY, ξ) + dη(AX,Y),

hence, using (3.19), we get

dF(AX,AY, ξ) = dη(X,AY). (3.23)

Applying this in (3.22) and keeping in mind (3.19), yields

2 dF(X,Y, ξ) = −dη(X,AY) − dη(AX,Y) = −2 dη(AX,Y). (3.24)

Next, we calculate

dη(QY,AZ) = dF(AY,AZ, ξ) = dF(Y,Z, ξ) = −dη(AY,Z) = −dη(Y,AZ),

hence

dη(Y +QY,AZ) = 0. (3.25)

Since Q is self-adjoint and positive definite, from (3.25), using dη(ξ, ·) = 0 of (3.12), we get dη = 0. Hence the
distributionD is involutive, i.e., tangent to a codimension-one foliation F . In view of (2.21), T(X,Y, ξ) = 0
and (3.8) are true. Since ξ is a Killing vector field (see Lemma 3.12), using (3.11) we find 1(∇1X ξ,Y) = 0 for
all X,Y ∈ XM, hence ξ is a ∇1-parallel vector field: ∇1 ξ = 0. Thus, the foliation F is totally geodesic. By de
Rham Decomposition Theorem, the manifold is weak nearly cosymplectic and locally is the metric product
R × M̄2m of a real line and a weak nearly Kähler manifold.

Therefore we generalize [8, Theorem 3.8] as follows.
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Theorem 3.16. Let M(A, ξ, η, 1) be an almost-nearly cosymplectic manifold with a fundamental 2-form F, considered
as a generalized Riemannian manifold (M,G = 1+F). Then an Einstein’s connection ∇ has a totally skew-symmetric
torsion if and only if the manifold is nearly cosymplectic and locally is the metric product of a real line and a nearly
Kähler manifold. The torsion is determined by the condition

T(X,Y,Z) = −
1
3

dF(X,Y,Z) = −
1
4

NA(AX,AY,AZ),

the connection ∇ is uniquely determined by the formula

1(∇XY,Z) = 1(∇1XY,Z) −
1
6

dF(X,Y,Z),

the covariant derivative of 1 vanishes: ∇1 = 0, and the covariant derivative of F is

(∇XF)(Y,Z) =
1
3

{
dF(X,Y,Z) − dF(X,Y,AZ)

}
.

Proof. This follows from [8, Theorem 3.8] and our Proposition 3.15.

Example 3.17. Let M(A,Q, ξ, η, 1) be a weak nearly cosymplectic manifold with a fundamental 2-form F,
considered as a generalized Riemannian manifold (M,G = 1+F). Suppose that∇ is an Einstein’s connection
on M with totally skew-symmetric torsion. Let us show (similarly, to Example 3.4) that ∇ satisfies the
A-torsion condition (2.16).

Using equation (2.19), we obtain the following:

0 = 1
(
(∇1XA)Y,Z

)
+ 1
(
(∇1YA)X,Z

)
=

1
2

dF(X,AY,AZ) −
1
2

dF(AX,Y,AZ),

which leads to the equality

dF(AX,Y,AZ) = dF(X,AY,AZ).

This equation, using (2.21), dF(X,Y, ξ) = 0 (see the proof of Proposition 3.15) and the non-degeneracy of A
onD, implies (2.4):

T(AX,Y,Z) = T(X,AY,Z).

By the totally skew-symmetry of torsion, we conclude that the A-torsion condition (2.16) is true.

Theorem 3.18. Let M(A,Q, ξ, η, 1) be a weak a.c.m. manifold, considered as a generalized Riemannian manifold
(M,G = 1 + F), and ∇ is an Einstein’s connection with totally skew-symmetric torsion satisfying the A-torsion
condition (2.16). Then the following properties hold:

(i) The contact distribution D = ker η is involutive and the Reeb vector field ξ is parallel with respect to the
Levi-Civita connection.

(ii) The tensor Nwac
A , defined by (3.15), is totally skew-symmetric and Nwac

A (· , · , ξ) = 0.
(iii) The tensor N(5), defined by (3.17), is totally skew-symmetric and is given by

N(5)(X,Y,Z) = −
1
3

dF(X,Y,Z) −
1
3

dF(X,AY,AZ). (3.26)

(iv) The tensor Q satisfies the following equalities: ∇1Q = ∇Q = 0.
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Proof. From (3.14), assuming the A-torsion condition, we obtain

(∇1Xη)(QZ) =
1
3

dF(X,AZ, ξ) +
1
6

dF(AX,QZ, ξ)

=
1
3

dF(X,Z,Aξ) +
1
6

dF(X,QZ,Aξ) = 0 for all X,Z ∈ XM.
(3.27)

Restricting to Z ∈ D = ker η, we obtain A2Z = −QZ; hence, setting U = AZ + ξ yields

AU = A(AZ + ξ) = A2Z + Aξ = −QZ.

Therefore, QZ = −AU lies in D. By (3.27), (∇1Xη)(QZ) vanishes for every QZ with Z ∈ D, and since Q is
invertible onD, it follows that

(∇1Xη)(W) = 0 for all W ∈ D.

Finally, η(ξ) = 1 implies (∇1Xη)(ξ) = 0, so the above equation extends to all W ∈ XM. Thus,

1(∇1X ξ,W) = (∇1X η)(W) = 0 for all X,W ∈ XM, (3.28)

hence ∇1X ξ = 0 for every X, i.e. the Reeb vector field ξ is parallel with respect to the Levi-Civita connection.
From (3.28), we obtain

dη(X,Y) = 0 for all X,Y ∈ XM, (3.29)

which implies that the contact distributionD = ker η is involutive. This completes the proof of (i).
Taking into account (3.29), we observe that

N wac
A (X,Y,Z) = NA(X,Y,Z).

Substituting the expression (2.19) into (3.16), we then obtain

Nwac
A (Y,Z,AX) = −

1
3

dF(X,Y,Z) + dF(X,AY,AZ) −N(5)(X,Y,Z)

+
2
3

dF(X,AY,AZ) −
1
3

dF(AX,Y,AZ) −
1
3

dF(AX,AY,Z). (3.30)

In view of the A-torsion condition, the above equation becomes

Nwac
A (Y,Z,AX) = −

1
3

dF(X,Y,Z) + dF(X,AY,AZ) −N(5)(X,Y,Z). (3.31)

By setting X = ξ in the last equation, we obtain

N(5)(ξ,Y,Z) = −
1
3

dF(ξ,Y,Z) = T(ξ,Y,Z).

Applying (3.6) and (3.29), we simplify (2.18) to get

NA(X,Y,Z) =
2
3

dF(X,Y,AZ) +
1
3

dF(AX,Y,Z) +
1
3

dF(X,AY,Z) +
1
3

dF(AX,AY,AZ)

+
1
6

[
dF(QX,Y,AZ) + dF(QX,AY,Z) + dF(X,QY,AZ) − dF(X,AY,QZ)

]
+

1
6

[
dF(AX,QY,Z) − dF(AX,Y,QZ)

]
. (3.32)
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From equation (3.32), and using the A-torsion condition together with its consequence

dF(AX,AY,AZ) = −dF(AX,QY,Z) = −dF(AX,Y,QZ) = −dF(QX,AY,Z),

we obtain

Nwac
A (X,Y,Z) =

4
3

dF(AX,Y,Z), (3.33)

which shows that the Nijenhuis tensor Nwac
A is totally skew-symmetric and

Nwac
A (X,Y, ξ) = Nwac

A (ξ,X,Y) = 0,

that completes the proof of (ii).
Substituting (3.33) in (3.31), we obtain (3.26), that completes the proof of (iii).
Using the first equation of (3.6), A2 = −Q + η ⊗ ξ, we get

1
(
(∇1XQ)Y,Z

)
= −1

(
(∇1XA)AY,Z

)
+ 1
(
(∇1XA)Y,AZ

)
+ (∇1Xη)(Y) η(Z) + η(Y) 1

(
∇
1

X ξ,Z
)
.

From the property (i) (∇1ξ = ∇1η = 0) and (2.19), we obtain

1
(
(∇1XQ)Y,Z

)
= −

1
3

dF(X,AY,Z) +
1
3

dF(AX,QY,Z) −
1
3
η(Y) dF(X, ξ,AZ)

+
1
6

dF(AX,AY,AZ) −
1
6

dF(AX,QY,Z) +
1
6
η(Y)dF(AX, ξ,Z)

+
1
3

dF(X,Y,AZ) −
1
3

dF(X,AY,QZ) +
1
3
η(Z)dF(X,AY, ξ)

+
1
6

dF(AX,Y,QZ) −
1
6
η(Z)dF(AX,Y, ξ) −

1
6

dF(AX,AY,AZ)

= −
1
3

dF(X,AY,Z) +
1
3

dF(X,Y,AZ) +
1
6

dF(AX,QY,Z) −
1
3

dF(X,AY,QZ)

+
1
6

dF(AX,Y,QZ) +
1
3

[
η(Y) dF(X,AZ, ξ) + η(Z)dF(X,AY, ξ)

]
−

1
6

[
η(Z)dF(AX,Y, ξ) + η(Y)dF(AX,Z, ξ)

]
.

Under the assumption of the A-torsion condition (2.16), and after rearranging the terms in the preceding
equation, we obtain:

1
(
(∇1XQ)Y,Z

)
= −

1
3

dF(X,AY,Z) +
1
3

dF(X,AY,Z) +
1
6

dF(AX,QY,Z) −
1
3

dF(X,AY,QZ)

+
1
6

dF(X,AY,QZ) +
1
3

[
η(Y) dF(X,Z,Aξ) + η(Z)dF(X,Y,Aξ)

]
−

1
6
η(Z)
[
η(Z)dF(X,Y,Aξ) + η(Y)dF(X,Z,Aξ)

]
.

= 0. (3.34)

Similarly we obtain ∇Q = 0, that completes the proof of (iv).

The following theorem is similar to Theorem 3.9.

Theorem 3.19. Let conditions of Theorem 3.13 be satisfied. Then the following properties are true.
(i) If Q|D = λ IdD for some λ ∈ C∞(M), then λ = const > 0 and M(λ−1/2A, ξ, η, 1) is locally the product of R

and a nearly Kähler manifold.
(ii) If Q|D , λ IdD where λ ∈ C∞(M), then there exist k > 1 mutually orthogonal even-dimensional distributions

Di ⊂ D such that
⊕k

i=1Di = D andDi are eigen-distributions of Q with constant eigenvalues 0 < λ1 < . . . < λk;
moreover, the distributionsDi are involutive and define ∇1-totally geodesic foliations and M(A,Q, ξ, η, 1) is locally a
(1, λ1, . . . , λk)-weighed product of a real line and k nearly Kähler manifolds.
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Proof. (i) Since ∇1Q = 0, see Theorem 3.13 iii), we get λ = const > 0 (and λ , 1), hence (λ−1/2A, ξ, η, 1) is an
a.c.m. structure. Since ∇ satisfies the A-torsion condition, then using (2.4) for any vector fields X,Y ∈ D,
i.e., QX = λX and QY = λY with λ , 1, we have

Q[X,Y] = Q{∇1XY − ∇1YX} = ∇1X(QY) − ∇1Y(QX)

= λ{∇1XY − ∇1YX} = λ[X,Y].

Hence the contact distributionD is involutive and defines a foliation F . Similarly we show that Q(∇1XY) =
∇
1

X(QY) = λ∇1XY, that is, F is ∇1-totally geodesic. By Theorem 3.13, ξ is a ∇1-geodesic vector field. By
de Rham Decomposition Theorem (see [9]), M(λ−1/2A, ξ, η, 1) splits and is locally the product of R and
an almost Hermitian manifold. Since ∇ satisfies the A-torsion condition, the second factor is a nearly
Kähler manifold.

(ii) Sinse Q|D is not conformal, it has eigenvalues 0 < λ1 < . . . < λk of even multiplicities n1, . . . ,nk, and∑k
i=1 ni = 2m. By Lemma 3.1, there exists an A-Q-basis of TxM, in which A and Q restricted on Dx have

block-diagonal forms: A|D = [
√
λ1 Jn1 , . . . ,

√
λk Jnk ] and Q|D = [λ1Idn1 , . . . , λkIdnk ], where Jni is a complex

structure on a ni-dimensional subspace ofDx. Since Q is∇1-parallel, we get the same structure at each point
of M, i.e., k and all λi are constant on M, and there exist mutually orthogonal ∇1-parallel (and A-invariant)
eigen-distributions Di ⊂ D of Q with constant different eigenvalues λi. The rest of the proof is similar to
the proof of Theorem 3.9.

Example 3.20. Let a generalized Riemannian manifold (M,G = 1 + F) be represented as the (1, λ1, . . . , λk)-
weighed product of R and k nearly Kähler manifolds M j(A, 1 j) (1 ≤ j ≤ k). We get a weak nearly Kähler
structure onDwith Q|D =

⊕
j λ j Id j for some λ j ∈ R+, hence ∇1Q = 0.

By [8, Theorem 3.8], for any j there exists a unique Einstein’s connection∇( j) on a nearly Kähler manifold
M j(A, 1 j). Its torsion is determined by the condition (3.2), which is invariant under the change A → λA.
This∇( j) is also an Einstein’s connection on the weak nearly Kähler manifold M j(

√
λ j A, λ j Id j, 1 j) satisfying

the A-torsion condition (2.4) with A =
√
λ j A.

A unique linear connection ∇ on (M,G = 1 + F) with a totally skew-symmetric torsion satisfying EMC
(2.9) and the A-torsion condition (2.4) is the metric connection, i,e. ∇1 = 0, its torsion is T = −∇1A, see
Proposition 2.6 (i), and ∇Q = 0, see (3.3). By the above, this Einstein metric connection on M has the
following form: ∇ =

⊕
j ∇

( j).

Remark 3.21 (Weak para-Hermitian and weak almost para-contact structures). A weak almost para-Hermi-
tian manifold M(A,Q, 1), is a (pseudo-) Riemannian manifold (M, 1) of dimension n (= 2m ≥ 4) endowed with
non-singular endomorphisms: A (skew-symmetric) and Q > 0 (self-adjoint) and the fundamental 2-form F,
such that the following conditions hold:

A2 = Q, 1(AX,AY) = −1(QX,Y), F(X,Y) = 1(AX,Y). (3.35)

In this case, the skew-symmetric part F of G = 1 + F is non-degenerate and rankF = 2m.
A weak almost para-contact metric manifold M(A,Q, ξ, η, 1) is a (2m + 1)-dimensional pseudo-Riemannian

manifold of signature (m + 1,m) equipped with a skew-symmetric (1,1)-tensor A of rank 2m, a vector field
ξ, a 1-form η dual to ξ with respect to the metric 1, and a self-adjoint (1,1)-tensor Q > 0, satisfying the
following conditions:

A2 = Q − η ⊗ ξ, 1(AX,AY) = −1(QX,Y) + η(X)η(Y), Aξ = 0, Qξ = ξ. (3.36)

In this case, the skew-symmetric part F(X,Y) := 1(AX,Y) of G = 1 + F is degenerate, F(ξ,X) = 0, and
rankF = 2m. By applying analogous technique, one obtains results similar to Theorems 3.5, 3.16, and 3.18,
in the cases of weak almost para-Hermitian and weak almost para-contact manifolds. Para cases indicate
the sign changes type behaviour of the structure endomorphism Q. These sign changes do not significantly
affect the essence of the above mentioned results. For conciseness, their statements and proofs are omitted.
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Results analogous to Theorems 3.9 and 3.19 generally fail in the pseudo-Riemannian setting because the
spectral theorem does not hold unless 1 is positive definite. In pseudo-Riemannian geometry, a self-adjoint
operator may admit light-like eigenvectors, and this prevents diagonalizability; see, e.g., B. O’Neill [11,
pp. 260–262]. Namely, in a pseudo-Euclidean space (V, 1) of dimension ≥ 3, a self-adjoint operator Q is
diagonalizable with respect to a 1-orthonormal basis only if 1(QX,X) , 0 for all light-like vectors X ∈ V,
cf. [2]. Thus, principal directions and curvatures are not well defined unless one restricts to spacelike or
timelike hypersurfaces.

4. Conclusion

The paper presents new applications of weak contact metric structures to NGT manifolds with totally
skew-symmetric torsion. Our future research aims to extend these results by incorporating the Q-torsion
condition instead of the A-torsion condition, which offers the potential for a richer geometric framework. We
expect that analyzing the interaction involving the Q-torsion condition will lead to more general (specific)
results and a deeper understanding of the Einstein’s non-symmetric geometry with totally skew-symmetric
torsion, including new classifications and possible applications in theoretical physics. In our future analysis
of the Q-torsion condition, we examine the interaction between the metric 1, the fundamental form F, and
the self-adjoint tensor Q, paying special attention to the special cases, where the equalities ∇1Q = 0, ∇Q = 0
and [A,Q] = 0 are satisfied.
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