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Abstract. Linear connections satisfying the Einstein metricity condition are important in the study of
generalized Riemannian manifolds (M, G = g+F), where the symmetric part g of G is a non-degenerate (0, 2)-
tensor, and F is the skew-symmetric part. Such structures naturally arise in spacetime models in theoretical
physics, where F can be defined as an almost complex or almost contact metric (a.c.m.) structure. In the
paper, we first study more general models, where F has constant rank and is based on weak metric structures
(introduced by the second author and R. Wolak), which generalize almost complex and a.c.m. structures.
We consider linear connections with totally skew-symmetric torsion that satisfy both the Einstein metricity
condition and the A-torsion condition, where A is a skew-symmetric (1,1)-tensor adjoint to F. In the almost
Hermitian case, we prove that the manifold with such a connection is weak nearly Kéhler, the torsion is
completely determined by the exterior derivative of the fundamental 2-form and the Nijenhuis tensor, and

the structure tensors are parallel, while in the weak a.c.m. case, the contact distribution is involutive, the

Reeb vector field is Levi-Civita parallel, and the structure tensors are also parallel with respect to both

connections. For rank(F) = dim M, we apply weak almost Hermitian structures to fundamental results (by

the first author and S. Ivanov) on generalized Riemannian manifolds and prove that the manifold equipped

with an Einstein’s connection is a weighted product of several nearly Kdhler manifolds. For rank(F) < dim M
we apply weak almost Hermitian and weak a.c.m. structures and obtain splitting results for generalized

Riemannian manifolds equipped with Einstein’s connections.

1. Introduction

1.1. Motivation From General Relativity

General relativity (GR) was developed by A. Einstein in 1916 [3], with contributions by many others after
1916. In GR the equation ds* = g;jdx'dx/ is valid, where g;; = g;; are functions of the point in the space. In GR
which is the four dimensional space-time continuum metric properties depend on the mass distribution.
The magnitudes g;; are known as gravitational potential. The Christoffel symbols, usually denoted by Ffj,
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play the role of magnitudes defining the gravitational force field. General relativity explains gravity as a
curvature of spacetime. In the GR a metric tensor is related by the Einstein equations

1
Rij = 5 Rgij =Tij, (11)

where R;; is Ricci tensor of metric of space time, R is scalar curvature of metric, and 77; is energy-momentum
tensor of matter. However, in 1922, A. Einstein believed that the universe is apparently static, and since a
static cosmology was not supported by the GR field equations, he added a cosmological constant A to the
field equations (1.1), which became

1
Rij - 5 Rgi]’ + A{]ij = 77] (1.2)

Since 1923 until the end of his life, A. Einstein worked on various versions of the Unified Field Theory
(Non-symmetric Gravitational Theory — NGT) [5]. This theory was intended to unite the gravitation theory,
to which GR is related, and the theory of electromagnetism. Introducing various versions of his NGT, A.
Einstein used a complex basic tensor, with a symmetric real part and a skew-symmetric imaginary part.
Beginning in 1950, A. Einstein used a real non-symmetric basic tensor G, sometimes called a generalized
Riemannian metric/manifold). Note that in the NGT the symmetric part g;; of the basic tensor G;; (Gij = gj+Fj))
is associated with gravity, and the skew-symmetric part F;; is associated with electromagnetism. The same
is true for the symmetric part of the connection and torsion tensor, respectively.

Later, ideas of non-symmetric metric tensor appeared in Moffat’s non-symmetric theory of gravity [10].
Moffat’s theory extends general relativity by introducing a non-symmetric metric and connection, allowing
for richer gravitational dynamics. In his theory the antisymmetric part is a Proca field (massive Maxwell’s
field), whichis part of the gravitational interaction that contributes to the rotation of galaxies. The connection
in NGT exhibits regularity, allowing for smooth and physically meaningful solutions without singularities.

In NGT [15], two new classes of path equations are derived using Bazarski’s variational approach.
These equations describe how test particles and charged particles move, and they also reflect certain
quantum characteristics of NGT. An explicit formula of such a connection, satisfying the Einstein metricity
condition (EMC), is obtained by localizing the global formula given recently by S. Ivanov and M. Zlatanovi¢
[8]. These equations not only reveal quantum features intrinsic to the NGT, but also highlight possible
interactions between torsion and electromagnetic potential, even in the absence of electromagnetic force.
In [16], the authors establish new identities for a connection with totally skew-symmetric torsion on NGT.
These identities, derived via the Dolan-McCrea variational method, naturally split into symmetric and
skew-symmetric parts, generalizing the second Bianchi identity. Recent approaches to modified gravity
often rely on post-Riemannian geometry, incorporating torsion and non-metricity as natural extensions of
Einstein’s GR framework [7]. Such formulations resonate with the original ideas of Einstein’s NGT.

While in a Riemannian space the connection coefficients are expressed through the metric, g;;, in Ein-
stein’s works on NGT the connection between these magnitudes is determined by the EMC, ie. the
non-symmetric metric tensor G and the connection components l"f.‘]. are related by the equations

8G,-]-
axm

A generalized Riemannian manifold satisfying the EMC (1.3) is also called an NGT-space [5, 10]. The choice
of a connection in NGT is not uniquely determined. In particular, in NGT there exist two types of covariant
derivatives, for example for the tensor a}:

-T},Gp; = T,,Gip = 0. (1.3)

i ga pop oai by
+ i _ i. - — i _ i
Gy = o + Doy = Uy @, = 5on + Lypty = 1y,
! !
where the lowering and the rising of indices is defined by equations

GG = G;,GF = ¢, (14)
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A. Einstein considered in NGT only one curvature tensor:

_T

_ T
=T km,l

i
R kl,m

i Sl 0 R R

km sm= kl’

(1.5)
and proved a Bianchi type identity for the covariant curvature tensor Ry, = GsiR%ppm (see [4]):

Rikimin + Rigmnj1 + Rignt)m = 0.
—+—+ —t++ —+—=

1.2. Main Objectives and Structure of the Paper

The main goal of the paper is to study a generalized Riemannian manifold (M, G = g + F) equipped
with a linear connection satisfying EMC (1.3) and admitting a totally skew-symmetric torsion. Our key
results show that the assumption of the A-torsion condition, see (2.4), or equivalently, the preservation
of g, leads to a simplified form of the Nijenhuis tensor and characterizes weak nearly Kéhler or weak
nearly cosymplectic structures. In Section 2, we represent the geometric model with the EMC, define the A-
torsion condition and prove Proposition 2.6. In Section 3, we study application of weak metric structures on
generalized Riemannian manifolds, focusing on the interplay between a skew-symmetric endomorphism A
and a self-adjoint endomorphism Q > 0. Under the key assumption that A commutes with Q, [A, Q] = 0, we
establish conditions under which these tensors admit block-diagonalization, and analyze the existence of
linear connections with totally skew-symmetric torsion compatible with the given structures. In particular,
we prove that weak almost Hermitian manifolds admitting Einstein’s connections are weak nearly Kéahler,
and describe their decomposition into weighted products of nearly Kdhler manifolds. Theorems 3.5 and
3.9 show that if an Einstein’s connection V satisfies the A-torsion condition on a weak almost Hermitian
manifold, then Q is parallel with respect to both connections, V and the Levi-Civita connection, and the
manifold is weak nearly Kéhler.

For a weak almost contact metric (a.c.m.) manifold equipped with an Einstein’s connection V satisfying
the A-torsion condition, we have proved that the Reeb vector field £ is parallel with respect to the Levi-Civita
connection, the Nijenhuis tensor N3 is totally skew-symmetric, and the contact distribution D = kern
is involutive, the tensor Q is parallel with respect to V and the Levi-Civita and connection. Based on
Proposition 3.15 on almost-nearly cosymplectic manifolds, we present Theorem 3.16, which complements
[8, Theorem 3.8]. Theorems 3.18 and 3.19 show that if Q is conformal when restricted to D, then the
manifold locally splits as a weighted product of R and a nearly Kéhler manifold; otherwise, ) decomposes
into mutually orthogonal eigen-distributions of Q with constant eigenvalues, locally giving a weighted
product structure of R and several nearly Kéhler manifolds.

2. Geometric Model
The fundamental (0,2)-tensor G in a non-symmetric (generalized) Riemannian manifold (M, G) is, in

general, non-symmetric. It decomposes in two parts, G = g + F, the symmetric part g (called Riemannian
metric) and the skew-symmetric part F (called fundamental 2-form), where

1 1
gXY) = 3[6EXN+CYX)],  FXY)=35[GX V) - G(Y,X)] 2.1)
We assume that the symmetric part, g, is non-degenerate of arbitrary signature, and the skew-symmetric
part, F # 0, has a constant rank, e.g., is non-degenerate. Therefore, we obtain a well-defined (1,1)-tensor
A # 0 of constant rank determined by the following condition:
gAX,Y)=F(X,Y) forall X,Y € Xp. (2.2)
According to the above, since F is skew-symmetric, the tensor A is also skew-symmetric:

gAX,Y) = —g(X,AY) forall XY € Xj.
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Convention 2.1. In the whole paper we shall use the capital Latin letters X, Y, ... to denote smooth vector
fields on a smooth manifold M, which commute, [X, Y] = 0.

Using the vector fields defined in Convention 2.1, the Levi-Civita connection V7 corresponding to the
symmetric non-degenerate (0,2)-tensor g reduces to the following;:

9(V3%,2) = 2[Xg(%,2) + Yg(X,2) - Zg(x, )] 3)

2.1. Linear Connections on Generalized Riemannian Manifolds
We consider linear connections V on a smooth manifold M with a torsion (1,2)-tensor

TX,Y)=VxY -VyX-[X Y]
We denote the torsion (0,3)-tensor with respect to g by the same letter,
T(X,Y,Z) = g(T(X, Y), 2).

A linear connection on a generalized Riemannian manifold (M, G) is completely determined by the
torsion tensor and the covariant derivative Vg of the symmetric part g of G, see [8].

Definition 2.2 (see [14]). A linear connection V on a generalized Riemannian manifold (M,G = g + F) is
said to have A-torsion condition, where A is given by (2.2), if its torsion tensor T satisfies

T(AX,Y) =T(X,AY) forall X,Y € X),. (2.4)
A linear connection V is said to have Q-torsion condition if its torsion tensor T satisfies
TRX,Y)=T(X,QY) forall X,Y € Xy, (2.5)

where Q : TM — TM is an endomorphism that is self-adjoint with respect to the symmetric part g of metric
G,ie g(QXY) =g(X,QY) forall X, Y € X.

Note that the Q-torsion condition is trivial when Q = Id (or, Q is conformal: Q = A1d).
The Nijenhuis tensor Np of a (1,1)-tensor P on a smooth manifold M is defined by (e.g. [9]),

Np(X,Y) = [PX, PY] + P2[X, Y] - P[PX, Y] — P[X, PY]. (2.6)

The Nijenhuis tensor is skew-symmetric by definition. We denote the Nijenhuis (0,3)-tensor with respect
to a Riemannian metric g with the same letter,

No(X, Y, Z) := g(Np(X, Y), Z).

The Nijenhuis tensor Na plays a fundamental role in almost complex (resp. almost para-complex)
geometry. If A> = —Id (resp. A% = Id) then the celebrated Nulander-Nirenberg theorem (see, e.g. [9]) shows
that an almost complex structure is integrable if and only if N4 vanishes.

Using the definition of the torsion tensor T of a linear connection V and the covariant derivative VA, we
can express the Nijenhuis tensor N4 in terms of T and VA as follows:

Na(X,Y) = (VaxA)Y = (VayA)X — A(VxA)Y + A(VyA)X
- T(AX,AY) - A’T(X,Y) + AT(AX,Y) + AT(X, AY). (2.7)

For a self-adjoint endomorphism Q : TM — TM we have

No(X,Y,Z) = g(VoxQ)Y, Z) = 9(VarQ)X, Z) — g(VxQ)Y, QZ) + g((VyQ)X, QZ)
- T(QX,QY, 2) - T(X, Y, Q*Z) + T(QX, Y, QZ) + T(X, QY, QZ). (2.8)



M. Zlatanovié, V. Rovenski / Filomat 40:4 (2026), 1253-1269 1257

2.2. Einstein Metricity Condition

In his attempt to construct an unified field theory, briefly NGT, A. Einstein [5] considered a generalized
Riemannian manifold (M, G = g + F) with a linear connection V satisfying the EMC (1.3), which has the
following coordinate-free form, see [8]:

XG(Y,Z) - G(VyX,Z) - G(Y,VxZ) =0 forall X,Y,Z € Xy. (2.9)

In the paper we will call such linear connections Einstein’s connections. Using the definition of the torsion
(0,3)-tensor, (2.1) and (2.2), the EMC (2.9) can be presented in the following form, see [8]:

(VxG)(Y, 2) = -G(T(X,Y),Z) < (Vx(¢9+F)(,2) =-T(X,Y,Z2) + T(X,Y,AZ). (2.10)

Separating symmetric and skew-symmetric parts of (2.10) (w.r.t. Y and Z), we express the covariant
derivatives Vg and VF in terms of the exterior derivative dF and torsion:

(Vx9)(Y, 2) = —%[T(X, Y,2)+T(X,Z,Y) - T(X, Y, AZ) - T(X, Z,AY)|, (2.11)
(VzF)(X,Y) = %[T(X, Z,Y) - T(X,Y,Z) + T(X, Y, AZ) - T(X, Z, AY)]
= %[dF(X, Y,2)+ T(X,Y,2) - T(Z,Y,AX) + T(Z, X, AY)| (2.12)

Using the vector fields defined in Convention 2.1, the co-boundary formula for exterior derivative of a
2-form F reduces to the following formula (without the coefficient 3, unlike [1]):

dF(X,Y,Z) = X(F(Y, 2)) + Y(F(Z, X)) + Z(E(X, Y)). (2.13)
The connection V of (2.9) is represented in [8] as
9(VxY,2) = g(V3 %, 2) + 5[T(X, Y, 2) = T(X, Z, AY) ~ T(,Z, AX)]
= g(V}Y, Z) — %[dF(X, Y,2)+ T(Z,X,Y) + T(Y,Z,X)| + %[T(Z, X, AY) + T(Z,Y,AX)]. (2.14)
In local coordinates, the equations (2.11)-(2.14) have the following form, see [8]:
ViFij = %[dl:ijk + T — Tyjs A3 — TkisA;]r
Vigix = _%[Tijk = Tijs Ay + Tij — TiksA;']/ (2.15)
T =T, + %[Tﬁk — TipAl — Ty, AY].
The contorsion (or, difference) (1,2)-tensor K of a linear connection V is defined by
K(X,Y) = VxY - V§ Y.

The contorsion (0, 3)-tensor K(X, Y, Z) is defined by K(X, Y, Z) := g(K(X, Y), Z).

Lemma 2.3. Let an Einstein’s connection V on a generalized Riemannian manifold (M,G = g + F) satisfy EMC
(2.9). Then the contorsion and torsion (0, 3)-tensors of V are related as

2K(X,Y,Z) = T(X, Y, Z) - T(X, Z, AY) — T(Y, Z, AX).

Proof. It follows directly from (2.14). O
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2.3. NGT with Totally Skew-Symmetric Torsion

Here, we consider a linear connection V with totally skew-symmetric torsion (0,3)-tensor, T(X, Y, Z) =
-T(X,Z,Y). In this case,

i) the A-torsion condition (2.4) implies

T(AX,Y,Z) = T(X,AY,Z) = T(X, Y, AZ). (2.16)

ii) the Q-torsion condition (2.5) implies

T(QX,Y,Z) = T(X,QY,Z) = T(X, Y, QZ). (2.17)

The following result, see [8, Theorem 3.1], presents conditions for the existence and uniqueness of the
Einstein’s connection on a generalized Riemannian manifold and gives its explicit expression.

Theorem 2.4. A generalized Riemannian manifold (M, G = g + F) admits an Einstein’s connection with totally
skew-symmetric torsion T if and only if the Nijenhuis tensor N, the tensor A and the exterior derivative of F satisfy
the following relation:

Na(X,Y,2) = %dF(X, Y,AZ) + %dF(AX, Y,Z) + %dF(X,AY, Z)+ %dF(AX,AY, AZ)
- %[dmﬁx, Y, AZ) + dF(A’X, AY, Z) + dF(X, A%Y, AZ) — dF(X, AY, A’Z)|
- %[dF(AX,AZY, Z) - dF(AX, Y, A*Z)|; (2.18)
moreover, the covariant derivatives of the tensors F and A with respect to VY are related by
(VIB(Y, 2) = g(VZA)Y, Z) (2.19)
= %dF(X, Y, Z) + %dF(X,AY,AZ) - %dF(AX, Y, AZ) - %dF(AX,AY, Z). (2.20)
In this case, the totally skew-symmetric torsion (0, 3)-tensor is completely determined by dF:
TX,Y,Z) = —%dF(X, Y, Z), (2.21)
the EMC (2.9) is equivalent to the following two conditions, see (2.11)-(2.12):

(Vxg)(¥,2) = ~5[4E(X, Y, AZ) ~ dF(X, AY,2)],

(2.22)
(VxF)(Y,2) = £ [24F(X,Y,2) - dF(X,Y, AZ) - dF(X, AY, )],
and the linear connection V is uniquely determined by the following formula, see (2.14):
g(VxY, Z) = g(VY, Z) + %[dF(AX, Y,Z) - dF(X,Y,Z) — dF(X, AY, Z)]. (2.23)

Remark 2.5. By (2.23), the contorsion (0,3)-tensor K(X, Y, Z) of a connection V with a totally skew-symmetric
torsion (0, 3)-tensor is given by the following formula:

K(X,Y,Z) = %[dF(AX, Y,Z) - dF(X, AY, Z) - dF(X, Y, Z)]. (2.24)

The formulas in Theorem 2.4 are especially meaningful under the assumption that the torsion tensor
satisfies the A-torsion condition (2.4) with totally skew-symmetric property.
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Proposition 2.6. Let (M,G = g + F) be a generalized Riemannian manifold with a fundamental 2-form F. Then
an Einstein’s connection V, having a totally skew-symmetric torsion (0, 3)-tensor T, satisfies the A-torsion condition
(2.4) if and only if it preserves the symmetric part of the metric G, i.e., Vg = 0. In this case,

(i) (VIA)Y = -T(X,Y) & VIA =T,

(i) Na(X, Y, Z) = g dF(X, Y, AZ). (2.25)

Proof. Using the first equation in (2.22), the equivalence (with Vg = 0) follows.
(i) Using (2.16), from (2.19) and (2.21) we obtain

o((VA),2) = 3dF(X Y, 2) = ~T(X,Y,2), (2.26)

which completes the proof of (i).
(i) Using (2.16) in (2.18), we get the required equation for the Nijenhuis (0,3)-tensor Na. O

Remark 2.7. By (2.25) (i), we have (V?(A)X = 0, which corresponds to weak nearly (para) Kdhler or weak
nearly (para) cosymplectic structures considered in Section 3.

3. Applications of Weak Metric Structures

In this section, we supply a number of examples (given below using weak metric structures, see [12, 13])
with a (1,1)-tensor A of constant rank. First, we prove the following.

Lemma 3.1. Let a generalized Riemannian manifold (M, G = g+F) be equipped with a self-adjoint (with respect to g)
endomorphism Q > 0 such that [Q, A] = 0. Then at each point x € M there is a basis {e1, Aey, . .., em, Ay, &1, ..., &)
(called an A-Q-basis), consisting of mutually orthogonal nonzero vectors of TxM such that A and Q have block-
diagonal structures: Q = [M1d,,, ..., Alddy, vi, ..., vsland A = [NA1]n,, .., NAxJn, 05, where A; > 0, v; # 0
and |, is a complex structure ( ]%11 = —Id,,) on a n;-dimensional subspace of T M.

Proof. Suppose that A is non-degenerate at x € M. Let e; € T.M be a unit eigenvector of the self-adjoint
operator Q > 0 with the minimal eigenvalue A; # 0. Then, Ae; € TM is orthogonal to e; and Q(Ae;) =
A(Qe1) = AAe;. Thus, the subspace of T,M orthogonal to the plane Spani{e;, Ae;} is Q-invariant (and
A-invariant). Continuing in the same manner, we find a basis {ej, Aey, ..., e, Aey,} of TeM consisting
of mutually orthogonal vectors. Hence, Q has k different nonzero eigenvalues A; < ... < A; of even
multiplicities ny, ..., 1, and Z’;Zl n; = 2m = dim M. In this basis, A and Q have the required block-diagonal
structures. If A is degenerate at x € M and (ker A), is s-dimensional, then the proof is similar. [J

Remark 3.2. The condition [A, Q] = 0, see Lemma 3.1, is satisfied by structural tensors of all weak metric
structures considered in Section 3.

3.1. Weak Almost Hermitian Structure

Let us consider a weak almost Hermitian manifold M(A, Q, g), i.e. a Riemannian manifold (M, g) of
dimension n (= 2m > 4) endowed with non-singular endomorphisms: A (skew-symmetric) and Q (self-
adjoint), and the fundamental 2-form F such that the following conditions are valid, see [12]:

A2=-Q, g(AX,AY)=g(QX,Y), FXY)=gAXY). (3.1)

From A% = —Q we conclude that A commutes with Q: [A, Q] = 0; hence F(X, QY) = F(QX, Y).
A. Gray defined in [6] a nearly K&hler structure (], g), where | is an almost complex structure, using
condition that the symmetric part of V7] vanishes.
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Definition 3.3. A weak almost Hermitian manifold is said to be weak nearly Kihler if the covariant derivative
of A (or F) with respect to the Levi-Civita connection VY is skew-symmetric:

(VIAX =0 & (Vi -)=0.
If VIA = 0, then such M(A, Q, g) is called a weak Kihler manifold; in this case, VIQ = 0.
At the same time, M(A, Q, g) admits a generalized Riemannian structure G = g + F.
Example 3.4. Let M(A, Q, g) be a weak nearly Kidhler manifold with a fundamental 2-form F, considered as
a generalized Riemannian manifold (M, G = g +F). Suppose that V is an Einstein’s connection on M(A4, Q, g)

with totally skew-symmetric torsion. Let us show that V satisfies the A-torsion condition (2.16). Since the
manifold is weak nearly Kéhler, we have

oV, 2) + 9((V )X, Z) = 0.

On the other hand, using equation (2.19), we obtain the following:

9((V3A)Y, Z) + g((V5A)X, Z) = 1auf(x AY,AZ) - ldF(AX Y, AZ)

X 4 Y 4 2 4 4 2 4 4 7
which leads to the equality dF(AX,Y,AZ) = dF(X,AY,AZ). This equation, using (2.21) and the non-
degeneracy of A, implies (2.4): T(AX,Y,Z) = T(X,AY,Z), and by the totally skew-symmetry of torsion,
we conclude the A-torsion condition (2.16) is true.
The following result complements Theorem 3.3 of [8].

Theorem 3.5. Let M(A, Q, g) be a weak almost Hermitian manifold with a fundamental 2-form F, considered as a

generalized Riemannian manifold (M, G = g + F). Suppose that V is an Einstein’s connection with totally skew-
symmetric torsion (0, 3)-tensor T. If the A-torsion condition (2.4) is true, then we get the following:

T(AX,Y,Z) = _% dF(AX, Y, Z) = _411 Nu(X, Y, Z), (3.2)

VQ=VvIQ=0, (3.3)
and M(A, Q, g) is a weak nearly Kihler manifold.

Proof. Since the A-torsion condition (2.4) is true, the first equality of (3.2) follows from (2.21) and the second
equality of (3.2) follows from Proposition 2.6 (ii). Using (3.1) and (2.19), we get

9((VEQY, Z) = —g((VRA)AY, Z) + 9((V3A)Y, AZ)
= —%dF(X,AY, 7)+ %dF(X, QY,AZ) + %dF(X, Y, AZ)
- %dF(X,AY, Q7) - %dF(AX, QY,7) + %dF(AX, Y, Q2). (3.4)
Using (2.21) and the A-torsion condition (which implies the Q-torsion condition) we obtain:
9((VRQY.Z) = T(X, AY, 2) - T(X,QY, AZ) - T(X, Y, AZ)

+ T(X,AY,QZ) + %T(AX, QY,Z) - %T(AX, Y,QZ) = 0.



M. Zlatanovié, V. Rovenski / Filomat 40:4 (2026), 1253-1269 1261
Further, using (2.23) and V/Q = 0, we get
9((VxQY,Z) = ¢(VxQY, 2) - 9(VxY, Q2)
= 9((VQ)Y,Z) + LdF(AX, QY. 2) - £dF(X,QY,2) - £dF(X, AQY,7)

- %dF(AX, Y,Q7Z) + %dF(X, Y,Q7) + %dF(X,AY, 07)
= ZdF(AX,QV,2) - £dF(X,Y,Q7) - £dF(AX,QY,7) (3.5)
- %dF(AX, Y,QZ) + %dF(X, Y,Q7) + %dF(AX, Y,07) =0

Similarly to the case of V/Q = 0, the A-torsion condition yields VQ = 0. By Proposition 2.6 (i), (V%A)X =
=T(X, X) = 0 holds; hence M(A, Q, g) is a weak nearly Kihler manifold. [

Remark 3.6. By [14, Equation (3.7)] we have dF(AX, Y, Z) = 3T(QX, Y, Z). By (3.2), we have dF(AX, Y, Z) =
—-3T(AX,Y, Z). The different expressions for dF(AX, Y, Z) arise since we use different connections: we use a
metric connection preserving G in [14], whereas in this paper we work with Einstein’s connections. In both
cases, we assume that the torsion is totally skew-symmetric.

Definition 3.7. Take two (or more) almost Hermitian manifolds M;(4}, g;), thus Ajz. = —Id;. The product

H];»Zl M;( \//\_] Aj, g)) of k weak almost Hermitian manifolds, where A; > 0 are different constants, is a weak
almost Hermitian manifold with Q = €9 A Id ;. We call JT ; M( \/A_]-A]-, gj) a(Ay, ..., Ay)-weighed product of
almost Hermitian manifolds M;(Aj, g;).

The following example represents a set of strictly weak nearly Kahler manifolds.

Example 3.8. Note that the (11, ..., Ax)-weighed product of nearly Kdhler manifolds is a weak nearly Kihler
manifold. A nearly Kdhler manifold of dimension < 4 is a Kdhler manifold, see [6]. The 6-dimensional
unit sphere in the set of purely imaginary Cayley numbers is an example of a strictly nearly Kahler
manifold. The classification of weak nearly Kadhler manifolds in dimensions > 4 is an open problem.
Some 4-dimensional weak nearly Kdhler manifolds appear as (A1, A;)-weighed products of 2-dimensional
Kéhler manifolds. Some 6-dimensional weak nearly Kidhler manifolds are (A1, A;, A3)-weighed products of
2-dimensional Kdhler manifolds or (A1, A;)-weighed products of 2- and 4-dimensional Kédhler manifolds.
Some 8-dimensional weak nearly Kahler manifolds are (11, A2, A3, A4)-weighed products of 2-dimensional
Kéhler manifolds or (11, A,)-weighed products of 2-dimensional Kdhler manifolds and 6-dimensional nearly
Kéhler manifolds, or (11, A2)-weighed products of 4-dimensional nearly Kéhler manifolds, and similarly for
even dimensions > 8. The (44, ..., Ax)-weighed products of nearly Kdhler manifolds serve as new models
for NGT.

Theorem 3.9. Let M(A,Q, g) be a weak almost Hermitian manifold with a fundamental 2-form F, considered as
a generalized Riemannian manifold (M,G = g + F). Suppose that an Einstein’s connection V on M with totally
skew-symmetric torsion satisfies the A-torsion condition (2.4).

(i) If Q = A1d for A € C®(M), then A = const > 0 and (A"Y2A, g) is a nearly Kiihler structure.

(ii) If Q # Ald for A € C®(M), then there exist k > 1 mutually orthogonal even-dimensional distributions
D; ¢ TM (1 < i < k) such that @, D; = TM and D; are the eigen-distributions of Q with constant eigenvalues
Ai 10 < Ay < ... < Ay moreover, each D; defines a VI-totally geodesic foliation and M(A, Q, g) is locally the
(A1, ..., A)-weighed product of nearly Kihler manifolds.

Proof. (i) By (3.3), we get A = const > 0, hence (A"1/24, g) is an almost Hermitian structure. Since the
A-torsion condition (2.4) is true, by Theorem 3.5, (1124, g) is a nearly Kahler structure.

(ii) Since Q = —A? is not conformal, it has k > 1 different eigenvalues 0 < A; < ... < Ay of even
multiplicities ny, ..., 1. By Lemma 3.1, there exists an A-Q-basis at a point x € M, in which A and Q have
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block-diagonal structures: Q = [A1ld,,, ..., Addy]and A = [\//\_1]”1,..., \/)\_k]nk], where ], is a complex
structure on a n;-dimensional subspace of T, M.

Since Q is V/-parallel, see (3.3), we get the same structure at every point of M, that is, k and all A; are
constant on M, and there exist mutually orthogonal VY-parallel (and A-invariant) eigen-distributions O; of
Q with constant different eigenvalues A;. Since the Q-torsion condition is true, using (2.5) for any vector
fields X, Y € D;, i.e.,, QX = A; X and QY = A;Y, we have

QIX, YT = Q{VY — VI X} = V3(QY) - V(QX)
= A{VEY = VI X} = Ai[X, Y.

Hence each D; is involutive and defines a foliation ;. Similarly we can show that Q(ViY) = V‘Z{(QY) =
AiV4Y, hence F; is a V/-totally geodesic foliation, and by de Rham Decomposition Theorem (see [9]), our
manifold splits and is the (A4, ..., Ax)-weighed product of almost Hermitian manifolds. By Theorem 3.5,
the factors are nearly Kédhler manifolds. O

Example 3.10. Let a generalized Riemannian manifold (M,G = g + F) be represented as the (A4,..., Af)-
weighed product of nearly Kéhler manifolds M;(A, g;) (1 < j < k). We get a weak nearly Kahler structure
on M with Q = @j A;1d ; for some constants A; > 0, hence V/Q = 0.

By [8, Theorem 3.3], for any j there exists a unique Einstein’s connection V) on a nearly Kihler manifold
Mj(Aj, g)). Its torsion is determined by (3.2). It was shown in Example 3.4 that this VU is an Einstein’s
connection on the weak nearly Kahler manifold M;( \//\_jA j» Aj1d}, g;) satistying the A-torsion condition
(2.4). A unique linear connection V on (M, G = g + F) with a totally skew-symmetric torsion satisfying
EMC (2.9) and the A-torsion condition (2.4) is the metric connection, i,e. Vg = 0, its torsion is T = —VYA4,
see Proposition 2.6 (i), and VQ = 0, see (3.3). By the above, this Einstein metric connection has the
following form: V = B, V0.

3.2. Weak Almost Contact Metric Structure

Contact Riemannian geometry is of growing interest due to its important role in both theoretical physics
and pure mathematics. Weak a.c.m. structures, i.e., the complex structure on the contact distribution is
approximated by a non-singular skew-symmetric tensor, allowed us to take a new look at the theory of
contact manifolds and find new applications.

Definition 3.11. A weak a.c.m. manifold M(A,Q,&,n,9) is a (2m + 1)-dimensional Riemannian manifold
equipped with a skew-symmetric (1,1)-tensor A of rank 2m, a unit vector field &, a 1-form n dual to & with
respect to the metric g, (&) = 1, n(X) = g(X, &), and a self-adjoint (1,1)-tensor Q > 0, satisfying the following
compatibility conditions:

A*=-Q+n®¢,  gAX AY) = g(QX,Y) - n(X)n(Y), AE=0, Q&=¢. (3.6)

Put F(X,Y) := g(AX,Y). Aweaka.cm. manifold M(A4, Q, &, 1, g) is said to be weak almost-nearly cosymplectic
if it satisfies the following condition (see also [8] for Q = Id):

g(VLA)Y, Z) = —%dF(AX,AY, Z)+ %n(Z)dn(Y,AX) - %n(Y)dr](AZ, X). (3.7)

From (3.6) we conclude that A commutes with Q: [A, Q] = 0; hence F(X, QY) = F(QX, Y).
If we assume dn = 0, then (3.7) reduces to

g((V?(A)Y, Z) = —%dF(AX,AY, Z), (3.8

and a weak almost-nearly cosymplectic manifold becomes weak nearly cosymplectic: (V}A)X = 0.
The following lemma generalizes [8, Corollary 3.9].
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Lemma 3.12. The Reeb field & of a weak almost-nearly cosymplectic manifold M(A, Q, &, 1, g) is a geodesic vector
field, i.e., V{ & = 0, and a Killing vector field, i.e., g(V{ &, Y) + g(V, &, X) = 0.

Proof. Replacing Y by & in (3.7), we obtain
1 1
g(V9 &, AZ) = c n(Z)dn(&, AX) + 5 dn(X, AZ). (3.9)

Replacing X by & in the above equation and using g(V?( &, &) =0, we obtain

1
g(VEEY) = 5 dn(E, Y). (3.10)
Using the identity
anX,Y) = g(V% &, Y) - gV} &, X) (3.11)

with X = & (without the coefficient 2, unlike [1]) in (3.10), we get dn(&,Y) = g(Vg &, Y). Comparing with
(3.10), we conclude that £ is a geodesic vector field:

g(ViEY) =0, dn(EY)=0. (3.12)

Representing any vector Y as Y — n(Y) £ = AZ and using (3.10) and (3.12), gives
1 1
9V & Y) = 9(VY £, AZ) = 5 dn(X,AZ) = 5 dn(X, Y). (3.13)

Using (3.13), we have g(V)y( & Y)+ g(V@ &, X) = 0. Therefore, ¢ is a Killing vector field. [

Proposition 3.13. Let M(A, Q, &, 1, 9) be a weak a.c.m. manifold considered as a generalized Riemannian manifold
(M, G = g+F),and V an Einstein’s connection with totally skew-symmetric torsion. Then dn(X, &) = 0and Vg &E=0
hold, i.e., the Reeb vector field & is a geodesic vector field.

Proof. Using the fact that g(&,&) =1, g(Vi £,€) =0, (3.6) and (2.19), we have

(Vi(Q2) = gV} &, Q7) = ~g(V4A)E, AZ) = SAF(X,AZ, &) + ZdF(AX, QZ, £). .19
Taking X = £in (3.14), yields (V‘g m(QZ) = g(Vg &,QZ) = 0forall Z € Xp. By this, since Q is non-degenerate,
Vg n= Vg & =0and dn(X, &) = 0 hold, hence, & is a V/-geodesic vector field. [

Let us introduce the (0,3)-tensor, see [14],

N}* =Ny +dnen, (3.15)
called the Nijenhuis tensor in the weak a.c.m. geometry.
Proposition 3.14 (see [12]). For a weak a.c.m. structure (A, Q, &, 1, g), we get

29((V3A)Y, Z) = NO(X, Y, Z) + dF(X, Y, Z) - dF(X, AY, AZ) + N}*(Y, Z, AX)

+ [dn(AY, Z) - dn(AZ,Y) [n(X) - dn(X, AY)(Z) + dn(X, AZ)n(Y) (316

where the skew-symmetric with respect to Y and Z tensor N® (X, Y, Z) is defined by

NOX, Y,2) = (AZ)(g(X,QY)) - (AY) (9(X, Q2)) + g([X, AZ],QY)
—9(IX, AY],QZ) + g(IY, AZ] - [Z,AY] - A[Y, Z], QX), (3.17)
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using the tensor Q=0Q-Id. For particular values of the tensor N© we get
—~ 1 —~
NO(X, &, 7) = g(1¢, AZ] - AlE, Z], QX) = 5 9((£:A)Z, QX),

NO(&,Y,2) = g(1&, AZ],QY) - 9([E, AY],QZ), NO(, & 2) = 0.

Proposition 3.15. Let M(A,Q, &, 1, 9) be a weak almost-nearly cosymplectic manifold with a fundamental 2-form
F, considered as a generalized Riemannian manifold (M, G = g + F). Suppose that V is an Einstein’s connection with
totally skew-symmetric torsion. Then the manifold is weak nearly cosymplectic, and locally is the metric product of a
real line and a weak nearly Kihler manifold.

Proof. From (3.13) and (2.19), we have

dn(X,AZ) = 29(V} &, AZ) = -2 g(AV &, Z) = 29((VA)E, Z)

= —%dF(X, Z,8) + %dF(AX,Az, o). (318
So, for any vector fields X and Z, we have
an(X,AZ) = dn(AX, Z). (3.19)
Comparing (2.19) and (3.7) with X or Y or Z equal to &, and using (3.12), we get, respsctively,
dF(E,AY,AZ) = —dF(¢, Y, Z), (3.20)
2dF(X,&,2) = dF(AX, &, AZ) + 3dn(X, AZ), (3.21)
2dF(X,Y, &) = —dF(AX, AY, &) — dn(AX, Y). (3.22)
From (3.21) and (3.22) we find
dF(AX, &, AY) +3dn(X, AY) = 2dF(X,&,Y) = dE(AX, AY, &) + dn(AX, Y),
hence, using (3.19), we get
dF(AX, AY, &) = dn(X, AY). (3.23)
Applying this in (3.22) and keeping in mind (3.19), yields
2dF(X, Y, &) = =dn(X, AY) —dn(AX, Y) = —2dn(AX, Y). (3.24)
Next, we calculate
dn(QY,AZ) = dF(AY,AZ, &) = dF(Y, Z, &) = —dn(AY, Z) = —dn(Y, AZ),
hence
dn(Y + QY,AZ) = 0. (3.25)

Since Q is self-adjoint and positive definite, from (3.25), using dn(¢&, -) = 0 of (3.12), we get dn = 0. Hence the
distribution O is involutive, i.e., tangent to a codimension-one foliation . In view of (2.21), T(X, Y, &) = 0
and (3.8) are true. Since ¢ is a Killing vector field (see Lemma 3.12), using (3.11) we find g(Vi &, Y) =0 for
all X, Y € Xj, hence £ is a V/-parallel vector field: V9 & = 0. Thus, the foliation ¥ is totally geodesic. By de
Rham Decomposition Theorem, the manifold is weak nearly cosymplectic and locally is the metric product
R x M?" of a real line and a weak nearly Kihler manifold. [J

Therefore we generalize [8, Theorem 3.8] as follows.
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Theorem 3.16. Let M(A, &, 1, g) be an almost-nearly cosymplectic manifold with a fundamental 2-form F, considered
as a generalized Riemannian manifold (M, G = g+ F). Then an Einstein’s connection V has a totally skew-symmetric

torsion if and only if the manifold is nearly cosymplectic and locally is the metric product of a real line and a nearly
Kiihler manifold. The torsion is determined by the condition

TX,Y,Z)= —% dF(X, Y, Z) = _éll NA(AX, AY,AZ),

the connection V is uniquely determined by the formula
9V, 2) = 4(V4Y,2) ~ 2 dF(X,Y,2),

the covariant derivative of g vanishes: Vg = 0, and the covariant derivative of F is
(VxF)(Y,Z) = %{dF(X, Y,Z) - dF(X, Y, AZ)}.

Proof. This follows from [8, Theorem 3.8] and our Proposition 3.15. [

Example 3.17. Let M(A, Q, &, 1, 9) be a weak nearly cosymplectic manifold with a fundamental 2-form F,
considered as a generalized Riemannian manifold (M, G = g+F). Suppose that V is an Einstein’s connection
on M with totally skew-symmetric torsion. Let us show (similarly, to Example 3.4) that V satisfies the
A-torsion condition (2.16).

Using equation (2.19), we obtain the following:

1 1
_ g g _
0 = g((V3AY, Z) + g((V5A)X, Z) = SAF(X, AY, AZ) - SdF(AX, Y, AZ),
which leads to the equality

dF(AX,Y,AZ) = dF(X, AY, AZ).

This equation, using (2.21), dF(X, Y, &) = 0 (see the proof of Proposition 3.15) and the non-degeneracy of A
on D, implies (2.4):

T(AX,Y,Z) = T(X,AY, Z).
By the totally skew-symmetry of torsion, we conclude that the A-torsion condition (2.16) is true.

Theorem 3.18. Let M(A,Q, ¢, 1, g) be a weak a.c.m. manifold, considered as a generalized Riemannian manifold
(M,G = g+ F), and V is an Einstein’s connection with totally skew-symmetric torsion satisfying the A-torsion
condition (2.16). Then the following properties hold:

(i) The contact distribution D = kern is involutive and the Reeb vector field & is parallel with respect to the
Levi-Civita connection.

(ii) The tensor N7, defined by (3.15), is totally skew-symmetric and NX“C(- ,-,&)=0.
(iii) The tensor N©®, defined by (3.17), is totally skew-symmetric and is given by

NO(X,Y,Z) = —%dF(X, Y,Z) - %dF(X, AY, AZ). (3.26)

(iv) The tensor Q satisfies the following equalities: VIQ = VQ = 0.
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Proof. From (3.14), assuming the A-torsion condition, we obtain

(V4QZ) = SAF(X,AZ, ) + dF(AX,QZ &) -

= %dF(X, 7, AE) + %dF(X, QZ,A) =0 forall X,Z € Xy. 2

Restricting to Z € D = ker ), we obtain A?Z = —QZ; hence, setting U = AZ + ¢ yields
AU = A(AZ + &) = A*’Z + AE = -QZ.

Therefore, QZ = —AU lies in D. By (3.27), (Vin)(QZ) vanishes for every QZ with Z € D, and since Q is
invertible on 9D, it follows that

(VimW)=0  forall We D.
Finally, n(&) = 1 implies (Vin)(é) = 0, so the above equation extends to all W € X,,. Thus,
gV EW) = (Vi(W) =0 forall X, W € Xy, (3.28)

hence Vi & = 0for every X, i.e. the Reeb vector field £ is parallel with respect to the Levi-Civita connection.
From (3.28), we obtain

dn(X,Y)=0 forall X,Y € Xy, (3.29)

which implies that the contact distribution O = ker 7 is involutive. This completes the proof of (i).
Taking into account (3.29), we observe that

N (X,Y,Z) = Na(X, Y, Z).
Substituting the expression (2.19) into (3.16), we then obtain
NY(Y,Z,AX) = - %dF(X, Y,Z) + dF(X,AY,AZ) - N®(X, Y, Z)
+ %dP(X,AY, AZ) - %dF(AX, Y, AZ) - %dF(AX,AY, 2). (3.30)
In view of the A-torsion condition, the above equation becomes
NY(Y,Z,AX) = - %dF(X, Y,Z) + dF(X,AY,AZ) - N®(X, Y, Z). (3.31)
By setting X = £ in the last equation, we obtain
NO&, Y, 2) = —%dF(é, Y,2) = T(, Y, 2).
Applying (3.6) and (3.29), we simplify (2.18) to get
2 1 1 1
Na(X, Y, Z2) = ng(X, Y, AZ) + ng(AX, Y, Z) + ng(X,AY, Z)+ ng(AX,AY, AZ)
+ %[dF(QX, Y, AZ) +dF(QX, AY, Z) + dF(X, QY, AZ) — dF(X, AY, QZ)]

+ %[dF(AX, QY,Z) - dF(AX,Y,QZ)|. (3.32)
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From equation (3.32), and using the A-torsion condition together with its consequence
dF(AX,AY,AZ) = —dF(AX,QY, Z) = -dF(AX,Y,QZ) = —dF(QX, AY, Z),
we obtain
NY“(X, Y, Z) = %dF(AX, Y, Z), (3.33)
which shows that the Nijenhuis tensor N%* is totally skew-symmetric and
NZ"“(X, Y, &) = N3™(&,X,Y) =0,

that completes the proof of (ii).
Substituting (3.33) in (3.31), we obtain (3.26), that completes the proof of (iii).
Using the first equation of (3.6), A2 = -Q + 1® &, we get

9((V3Q)Y, Z) = —g((VRA)AY, Z) + g((VY A, AZ) + (Vi) (¥V) n(Z) + n(Y) 9(V% £, Z)
From the property (i) (V/€ = V91 = 0) and (2.19), we obtain

9((V3QY,Z) = —%dF(X,AY, 7)+ %dF(AX, QY,7) - %n(Y) dF(X, &, AZ)

+ %dF(AX,AY,AZ) - %dF(AX, QY,Z) + %n(Y)dF(AX, &, 7)

+ SAF(X,Y,AZ) - SAF(X, AY, QZ) + 3n(Z)F(X, AY, &)

+ %dF(AX, Y,Q7) - %n(Z)dF(AX, Y, &) - %dF(AX,AY, AZ)

= —%dP(X,AY, 7)+ %dP(X, Y, AZ) + %dP(AX, QY,Z) - %dF(X,AY, Q7)

+ %dF(AX, Y,Q7) + %[W(Y) dF(X, AZ, &) + n(Z)dF(X, AY, )|

- %[n(Z)dF(AX, Y, &) + n(V)dF(AX, Z,)].

Under the assumption of the A-torsion condition (2.16), and after rearranging the terms in the preceding
equation, we obtain:

9((V4QY,2) = —%dP(X, AY,Z) + %dP(X, AY,Z) + %dP(AX, QY,7) - %dF(X, AY,Q7)
+ £AF(X, AY,Q2) + 3 [1(V) dF(X, 2, AS) + n(Z)F(X, ¥, A9
— N WDHEX, Y, AZ) + (VK Z,A8)|

=0. (3.34)
Similarly we obtain VQ = 0, that completes the proof of (iv). O
The following theorem is similar to Theorem 3.9.

Theorem 3.19. Let conditions of Theorem 3.13 be satisfied. Then the following properties are true.

(i) If Qlp = Aldyp for some A € C*(M), then A = const > 0 and M(A~'2A, &, 1, g) is locally the product of R
and a nearly Kihler manifold.

(i) If Ql p # Aldp where A € C®(M), then there exist k > 1 mutually orthogonal even-dimensional distributions

D; C D such that @l;ﬂ D; = D and D; are eigen-distributions of Q with constant eigenvalues 0 < A1 < ... < Ay,
moreover, the distributions D; are involutive and define VI-totally geodesic foliations and M(A, Q, &, 1, g) is locally a
(1, A1, ..., Ap)-weighed product of a real line and k nearly Kihler manifolds.



M. Zlatanovié¢, V. Rovenski / Filomat 40:4 (2026), 1253-1269 1268

Proof. (i) Since V/Q = 0, see Theorem 3.13ii), we get A = const > 0 (and A # 1), hence (A"1/24, &, 7, g) is an
a.c.m. structure. Since V satisfies the A-torsion condition, then using (2.4) for any vector fields X, Y € D,
ie, QX =AXand QY = AY with A # 1, we have

QIX, YT = Q{VY — Vi X} = VI(QY) - Vi(QX)
= MVY - VIX} = A[X, Y].

Hence the contact distribution 9 is involutive and defines a foliation . Similarly we show that Q(V?(Y) =
VI(QY) = AV]Y, that is, F is V/-totally geodesic. By Theorem 3.13, & is a V/-geodesic vector field. By
de Rham Decomposition Theorem (see [9]), M(A™12A,E, 1, 9) splits and is locally the product of R and
an almost Hermitian manifold. Since V satisfies the A-torsion condition, the second factor is a nearly
Kéahler manifold.

(ii) Sinse Q| p is not conformal, it has eigenvalues 0 < A; < ... < Ay of even multiplicities ny, ..., 1, and
Z]§:1 n; = 2m. By Lemma 3.1, there exists an A-Q-basis of T,M, in which A and Q restricted on D, have
block-diagonal forms: Alp = [\//\_1]7”,..., \//\_k]nk] and Qlp = [AIdy,, ..., Add, ], where ], is a complex
structure on a n;-dimensional subspace of D,. Since Q is V/-parallel, we get the same structure at each point
of M, i.e., k and all A; are constant on M, and there exist mutually orthogonal V/-parallel (and A-invariant)
eigen-distributions D; C D of Q with constant different eigenvalues A;. The rest of the proof is similar to
the proof of Theorem 3.9. [

Example 3.20. Let a generalized Riemannian manifold (M, G = g + F) be represented as the (1, A4, ..., Ay)-
weighed product of R and k nearly Kéhler manifolds M;(4, g;) (1 < j < k). We get a weak nearly Kahler
structure on D with Qlp = P j A;Id; for some A; € Ry, hence VIQ = 0.

By [8, Theorem 3.8], for any j there exists a unique Einstein’s connection V%) on a nearly Kahler manifold
M;(A, g;). Its torsion is determined by the condition (3.2), which is invariant under the change A — AA.
This V1 is also an Einstein’s connection on the weak nearly Kéhler manifold M;(+/A; A, A;1d j, g;) satisfying
the A-torsion condition (2.4) with A = \/A; A.

A unique linear connection V on (M, G = g + F) with a totally skew-symmetric torsion satisfying EMC
(2.9) and the A-torsion condition (2.4) is the metric connection, i,e. Vg = 0, its torsion is T = —VYA, see
Proposition 2.6 (i), and VQ = 0, see (3.3). By the above, this Einstein metric connection on M has the
following form: V = B, V.

Remark 3.21 (Weak para-Hermitian and weak almost para-contact structures). A weak almost para-Hermi-
tian manifold M(A, Q, g), is a (pseudo-) Riemannian manifold (, g) of dimension # (= 2m > 4) endowed with
non-singular endomorphisms: A (skew-symmetric) and Q > 0 (self-adjoint) and the fundamental 2-form F,
such that the following conditions hold:

A2=Q, gAX,AY)=-g(QX,Y), F(XY)=gAX,Y). (3.35)

In this case, the skew-symmetric part F of G = g + F is non-degenerate and rankF = 2m.

A weak almost para-contact metric manifold M(A, Q,&,1,9) is a (2m + 1)-dimensional pseudo-Riemannian
manifold of signature (m + 1, m) equipped with a skew-symmetric (1,1)-tensor A of rank 2m, a vector field
&, a 1-form 7 dual to & with respect to the metric g, and a self-adjoint (1,1)-tensor Q > 0, satisfying the
following conditions:

A2=Q-1n®¢&, g(AX,AY) = —g(QX,Y) + n(X)n(Y), AE=0, Q&=¢. (3.36)

In this case, the skew-symmetric part F(X,Y) := g(AX,Y) of G = g + F is degenerate, F(§,X) = 0, and
rankF = 2m. By applying analogous technique, one obtains results similar to Theorems 3.5, 3.16, and 3.18,
in the cases of weak almost para-Hermitian and weak almost para-contact manifolds. Para cases indicate
the sign changes type behaviour of the structure endomorphism Q. These sign changes do not significantly
affect the essence of the above mentioned results. For conciseness, their statements and proofs are omitted.
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Results analogous to Theorems 3.9 and 3.19 generally fail in the pseudo-Riemannian setting because the
spectral theorem does not hold unless g is positive definite. In pseudo-Riemannian geometry, a self-adjoint
operator may admit light-like eigenvectors, and this prevents diagonalizability; see, e.g., B. O'Neill [11,
pp- 260-262]. Namely, in a pseudo-Euclidean space (V, g) of dimension > 3, a self-adjoint operator Q is
diagonalizable with respect to a g-orthonormal basis only if g(QX, X) # 0 for all light-like vectors X € V,
cf. [2]. Thus, principal directions and curvatures are not well defined unless one restricts to spacelike or
timelike hypersurfaces.

4. Conclusion

The paper presents new applications of weak contact metric structures to NGT manifolds with totally
skew-symmetric torsion. Our future research aims to extend these results by incorporating the Q-torsion
condition instead of the A-torsion condition, which offers the potential for a richer geometric framework. We
expect that analyzing the interaction involving the Q-torsion condition will lead to more general (specific)
results and a deeper understanding of the Einstein’s non-symmetric geometry with totally skew-symmetric
torsion, including new classifications and possible applications in theoretical physics. In our future analysis
of the Q-torsion condition, we examine the interaction between the metric g, the fundamental form F, and
the self-adjoint tensor Q, paying special attention to the special cases, where the equalities VIQ = 0, VQ =0
and [A, Q] = 0 are satisfied.
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