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Higher-order commutators of the parameterized Marcinkiewicz
integrals on central Morrey spaces with variable exponent

Yanqi Yang®", Lulu Yang?, Shuangping Tao®

?College of Mathematics and Statistics, Northwest Normal University, Gansu Lanzhou 730070, P. R. China

Abstract. By using the method of function decomposition on central Morrey spaces with variable exponent
and with the help of the boundedness of parameterized Marcinkiewicz integrals with rough kernels on
LPO(R"), the boundedness of higher-order Lipschitz commutator and higher-order BMO commutator of
parameterized Marcinkiewicz integrals is estimated and obtained on central Morrey spaces with variable

exponent.
1. Introduction

Suppose that S"! denotes the unit sphere in R"(n > 2) equipped with normalized Lebesgue measure.
LetQ e Lipﬁ(]R“’l) for 0 < <1 be a homogeneous function of degree zero and

f Q(x")do(x’) =0, (1.1)
Srl—l
where, x’ = ﬁ, x # 0.

Parameterized Marcinkiewicz integral operator pg is defined by

1

o =( [ g0t

where

Q —
F(3) = f| DY) .

x—y|<t |x - y|n_P
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When p = 1, It is Stein [13] introduced and studied the following Marcinkiewicz integral operator
related to the Littlewood-Paley g function on R"

po(f)(x) = f f B 1f( \dy ‘zdt]l/z'

lx—yl<t

It was shown that in [13] u is of weak type (1,1) and when 1 < p < 2, uis type (p, p), where the Lipschitz
continuous function Q is homogeneous of degree zero and vanishes on the unit sphere.

The boundedness of Marcinkiewicz integral operator on function spaces has aroused great interest
among mathematicians. Currently, there have been numerous research results regarding the Marcinkiewicz
integrals, we refer the readers to references [1,2,8,14-18,25].

In 2019, Fu et al. [4] introduced the central Morrey spaces with variable exponent and proved the
boundedness of the fractional singular integrals and its commutator on above space. Since then, the central
Morrey spaces with variable exponent have been widely studied by a significant number of authors, see
[9,10,19,20] and the references therein.

Motivated by [1,2,4,8-10,13-20,25], the aim of this paper is to prove the boundedness of higher-order
Lipschitz commutator and higher-order BMO commutator of the parameterized Marcinkiewicz integrals
on central Morrey spaces with variable exponent.

We end this section by introducing some conventional notations which will be used later. Throughout
this paper, the letter C represents a constant independent of parameters, and its value may vary in different
contexts. We will denote the Lebesgue measure and the characteristic function of a measure set A ¢ R"
by |A| and x4, respectively. The notation f = g means that there exist constants C;, C; > 0, such that
Cig < f £ Cog. If f < Cg, we then write f < g.

2. Preliminaries
The variable Lebesgue spaces LPV(R") become one of the important class function spaces due to the
seminal paper [7] by Kovacik and Rakosnik. Now, we give some notations and basic definitions on

LPO(R™). Given a measure function p(-) : R" — [1, c0). Let p’(-) be the conjugate exponent of p(-), that means
1/p() +1/p’() = 1. The LV (R") is defined by

M p(x)

PO (R") := { f is measurable on R" : f ( F ) dx < oo for some constant A > 0},

then LP0) (R") is a Banach function space equipped with the Luxemburg-Nakano norm

px)
“f”LP(-)(]Rn) = inf{/\ >0: f (lf(A—x)I) dx < 1}.

The space Lf(g'c) (R") is defined by Lféz (R") := { f: fxx € LPO(R") for all compact subsets K ¢ R"}.
The set Z(IR) consists of all p(-) : R" — [1, o) satisfying

p~:=essinf p(x) >1, p*:=esssupp(x) < oo
x€R"

xeR"
The set 2°(R) consists of all p(-) : R" — (0, ) satisfying

p~:=ess inf p(x) >0, p*:=esssupp(x) < co.
xeR" xelR"
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Let f € L} (R"), the Hardy-Littlewood maximal operator is defined by

1
Mf)s=sup - [ Iy, e
x€B |B | B

here, Bis a circle with zero as the center and r as the radius. The set Z(IR") consists of p(-) € Z(R") satisfying
the condition that the Hardy-Littlewood maximal operator M is bounded on LO)(R").

Definition 2.1 Let g(-) € 2(R") and A € R. The central Morrey space with variable exponent is defined
by

93’1(')'/\(][{”) — {f c L‘i(')(]Rn) . “f“ggq(_),,\(R,,) < oo},

loc

where
£ sup lIf xR Lo
2000 (R1Y — .
BIOARY) o0 1BO, R)Mxs0.m) o

Definition 2.2 For 0 < B < 1, the norm definition of Lipschitz space Lips(IR") is as follows

If (x+h) = f(x)
I fllLip, ey = sup % < oo
X heRM 0 I

Definition 2.3 Let a(-) be a real-valued function on R".
(i) Forany x,y e R", |x — y| < 1/2, if

1
alx)-ay)| $ ———, 2.2
) - el < =i @2)
then af(-) is said local log-Holder continuous on R”.
(ii) For all x € R", if
1
|er(x) — a(0)] < (2.3)

log(e + 1/Ix])’

then a(-) is said log-Holder continuous functions at origin, denote by L@éog(]R”) the set of all log-Holder
continuous at origin.
(iii) If there exist aw € R, for x € R”, if

1

la(x) — ato| < log(e—+|x|)'

(2.4)

then «af(-) is said log-Holder continuous at infinity.
(iv) The set LH(IR") consists of all exponents p(-) defined on IR" which are locally log-Hélder con-

tinuous and log-Holder continuous at infinity. The set ﬁéog(R”) consists of all measurable functions

p(-) € Z(R") being log-Holder continuous at the origin and the set @iﬁ,’g(w) consists of all measurable
functions p(-) € Z(IR") which are log-Holder continuous at infinity.

Lemma 2.4 (Generalized Holder’s inequality) Let p(-) € 2(R"). If f € LFO(R) and g € LV O(R), then fg
is integrable on R" and

R If(0)g(oldx < rpll fll o w1910 @y,

where
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Lemma 2.5 Suppose p(-) € Z(R"). Then there exists a positive constant C such that for all balls B in R,

1
E”XB”LP(-)(]R")”XB”LP'(-)(]Rn) <C

Lemma 2.6 Let p(-) € Z(IR"). Then there exists a positive constant C such that for all balls B in R" and all
measurable subsets S C B,
B0 e ;]

Ixsllposy ~— 1S
(X lipo ey ( S| )51 x5l ome ( 15| )52
— < —] ,——— <(Cl|l=] ,
”XB”U’(‘)(]R") B ||XB||LP’(-)(]Rn) B

where 01,0, € (0,1) are constants.
Lemma 2.7 Let p(-) € 2(R") N LH. Then

_f1Qvr®, Q< 2n,x e Q;
||XQ||Ln<~>(JR") ~ |Q|1/P(°°), Ql >1,

for every cube (or ball) Q c R", where p(c0) = lim p(x).

3. Boundedness of higher-order Lipschitz commutator of Parameterized Marcinkiewicz integrals

In this section, we will give the boundedness of higher-order Lipschitz commutator of the Parameterized
Marcinkiewicz integrals. Now, we recall two Lemmas.

Lemma 3.18! Let p(-), (), s(-) € (R") be such that
1 1 1

SO p @)

for almost every x € R". Then
I/ gllsoarny < 211l 191l e,

for all f € LPO(R") and g € L1O(R").

Lemma 3.2 Let b € Lipg(R"), m is a positive integer, and there exist constants C > 0, such that for any
k,j € Z with k > j, B; € By, we have

(1) CUBIRL, ey < SUP BT E oI = b5)" ooy < CBITL, ey
s B s
@ b = by, s < CIBA" B, oy,

where ) .
By =B(0,2) ={xeR:|x|<2"), Bj=B(0,2))={xeR: x| < 2/}.

Theorem 3.3 Let b € Lipg(IR"), 0 < g < 1, m is a positive integer, Q) € L5(S"™1)(1 < s < o) is a homogeneous
function of degree zero and satisfies (1.1) . Suppose that

Up2() +1/s =1/pi(), pi(), p2(),4() € Z(R") N LH,

1 1 n
—_— =+t —, M<-mB/n—-1, 0<p<—, A=A +mB/n,
0" 50 Tmo s P<3 1+ mp/
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then [b™, uf ] is bounded from #7011 (IR") into %70(R") and the following inequality holds:

", ub1f f

534(.),,\(]1{7:) < C”bnﬁpﬁ(mn) B OM R *
Proof of Theorem 3.3

Let f € PO (R"), We have decomposition f(x) = fi + f», fi = fxas, f» = fxeBy- Let R = 2\,i € Z, for
fixed R > 0, denote B(0, R) by B. Let bp be the mean value of b on the ball B. Write

IA

b — bB)m(#g(szB))XB||La<->(]Rn)
+I(b = bp)" (g, (f X @By DA BIlLa0 Ry
+||.U§)((b - bB)m(fXZB))XB“Lﬂ(»)(]Rn)

+||.U(p)((b - bB)m(fX(ZB)C))XB“Lq(-)(]Rn)
= U+ U, + Uz + Uy.

6™, w1 £ xllao ey

Firstly, we estimate U;. In 2018, Wang H. B. et al published an article. In this article, they proved yg is
bounded from LFO(IR") to LPO(IR"). For detailed process, we refer the readers to reference [23]. At the same
time, by Definition 2.1, Lemma 3.1 and Lemma 3.2, we have

U < Clludy(Fxe)llpoge 10 = )" Xsllro g
< Cl|Fx2s oo g BB, e Bz
< CIBPPIBIE, oy (1] s gy 2B I8l e gl
< CIBPIBIE e [ s gy I2BI I e 1B 0
A
< CBM bl o [l o gy Wl -
Where
1 1 1
||XB||U1('>(RH)“XB”an(-)(]Rn) ~ |B|"1(.)+,;2(-) ~ |B|T ~ “XB”U(')(]R”)‘ (3.1)

Next we estimate Uz, by Definition 2.1, Lemma 3.1, Lemma 3.2 and the boundedness of Parameterized
Marcinkiewicz integral operator on Lebesgue spaces with variable exponents.

Uy < Clib - bg)" fxaslliso ey
< ClG = bs)" x2Bll 20 ey L f X281 10 ey
< CRBI B, oyl [L£X28 e
A
< C|2B|mﬁ/n||b”£nipﬁ(]Rn) f BrOAL (RN |2B| 1||XZB||Llf’1<')(]R")”)(2B||U72(~>(]Rn)
/ A
< CRBI MBI, oy Ll ey 2B 1l o e
< CIRBI"BIS, ey 11| o gy 2B el e
A /
S ClBl 1+mﬁ ”Hb“inipﬁ(]R“) f”@l"l(')f}‘l(IR") ”XB”Lq(-)(]Rn).
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To estimate U,, we first need to estimate | y‘é ( f X(zB)f) (x)|, we have

I, (frxesy) @)

2 3
* Qx - y) dt
- Y d
(fo‘ jl;—yls)f lx — yl*=r fxenydy t2p+1]
[x|+y] Qx — ]/)
< _ d
(j(: j;—ylst Ix — yI"™ pr By ey tz’”l
1

(L.

dt
t2p+1
=h+].

Firstly, we estimate J;. According to Minkowski’s inequality, we can obtain

Q- )l ( 1\
h < " |fx 4\[ ——dt| d
1 T fX@By weyictepisty PP y

1Q(x — y)| 2
Re X —yI"P

Q —
fl Mf Xepyed

x—yl<t |x - yln P

1 3 1
b=y (xf + |y)*

. -yl 1 1
Lf ()l -
kzl‘ fzkﬂB\sz lx —yl"=° /) o=yl (x) + |y|)2p

When x € B, y € 28*1B\ 2B, k > 1, k € N*, we have

] ] i)
b=y )\ + Iy be = Y (x| + IyD)**

1\ R 1
—yPr) w) = -y 2’
yPe ) (il + Iy 9P (1 + ly)

|fx Byl

IA

dy.

2
1 5 1 1
| () ——— 2 ——,
(Ix - yIZP) ( 2 (Il + [yl)** e =y
2
1 5 1 1
Ixl + [y > - ,
(Ix - yIZP) ( A =y + )™
SO
1 1 1V
2p
- < x| + . 3.2

According to the above formula, we can get that

. =l (= Ty
(Y [, s el oy
(i + Iyl)”
< Z S 020 Oy
< ) (R+2*R) 2“mf”{f QG = YIIf(y)Idy.

=1 2k+1B\2kB
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Noticing that 1/p;(-) = 1/s + 1/pa(-), we have

f Q0 — PIF )iy
2k+1B\2kB

< CllQ = a0 g 1 12 Bl grey
< CllQ = P2 oy 121 BWlrat oy 1 X2 Bll o ey (33)

For x € Band y € 2¢!B, x — y € 2¥*2B. Noticing that Q is homogeneous of degree zero and Q € L*(S"™"), we
obtain

1/s
126 = a2 bW - e ( Q(x ~ y)de)

1/s
( 1€(2) |de)
2k+2B

2k+2R
( f f 1QE)do ()"~ 1dr}
Sn— 1

= QI sy 2*BIS. (3.4)

Thus, we have

IA

1

P _ —h=p
T C (R + 2k+1R) (Zk 1R) ”QllLS(S"*l)lszll/s”XZ"“B”LPz(-)(IRn)||fX2k+1B”U’1(')(]RV!)

=~
I
—_

P (mk=1p\ P
(2k+2R) (Zk 1R> 12°BI"* |2t gl oy

IA
(@)
\Mg

k+1piA
||f||%( ey 2 B I o

P - —n=p
< CZ 2k+2R) (2k 1R> |2kB|1/s”fH(@m(-»«n(Rn) |2k+1BlA1”XZ"”B”U’l(')(IR")
k=1
1
'||X2k+13||Lpi(-)(]Rn)|2k+lB| :
. P (k1) P A -1
< €Y (RY (@R) T 2B o, oy 2B 2 B2 B
k=1
- — _n nk
< C”f - |B|/\1 Zz (n+p)(k=1)+n(A1 +1)(k+1)— L (k+1)+ 2% +(k+2)p
<

) | B|/\1 Z p=n(k=1)+n(A1+1)(k+1)~2+3
k=1

A
< CBM ||l pon ®)"
When [2°1B| < 2" and x € 2¥*1B, by Lemma 2.7 and 1/pa(-) + 1/s = 1/p}(-), we have
1 _1
||X2k*lB||U'2(')(]R") ~ |2k+1B|p2(x) ~ ||X2k+1B||LP§(‘)(Rn)|2k+1B| s,
When [2¢*1B| > 1, we have

+lpims k+lp -1
X261 Bllppa0rey & 127 Bl ~ X2l 0 g 12 B
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k+1p|—<
IDzetgllion ~ Izl o g 254 BI7E.

1278

For J,, using the Minkowski’s inequality, by the formula (3.3), (3.4), Definition 2.1 and Lemma 2.5, we
can obtain

J2

IA IA IA IA

8EM8

IA IA

IA

IA

<

<

1Q(x - )| f‘” 1.\
- 7 . dt] d
jl;" |X - y|”7’3 |fX(2B) | x+|y| t2P+1 y

IQ(x—y)||f s ——
Re X = y["P = yIP

1Q(x — y) 1
d
ZL”B\%B - yl"p |f(]/)||x_y|p Y

y [ o=y
1= J21B\2kB y|

Yw) [ ey

=) 2k+1B\2kB

C

-n
C Y (2°'R) " 12BI" g llismo e
k_

AL gy 2 B gl e
a\N
CZ zk 1R) |2kB|1/s“ng;m-m(Rn) 2B Ixespllo ey
_1
'||X2k+13||L1)1(-)(Rn)|2k+1B| E

C Y (2 R) " B | fll o oy 12 B2 BB
k=1

|B|"1 Z 2—n(k—1)+n()\1+1)(k+1)—§(k+1)+%

A —n(k-1 A +1)(k+1)-2
C”f o @) |B| 122 n(k=1)+n(A1+1)(k+1)-%
k=1

CIBIM “f“g;ww R *

Summarizing the estimates of J; and J», we conclude that

So, we have

9P

IANIN

IA

ny) (fX(ZB)f(x)) = )

I — bs)" (ugy (f X By DBl @)
CIBIM ||

ClBI™

0wy 10 = 0B)" XBllao ey

/
T P T

CB/\1+mﬁ/n bl .
B E MBI,

f”g;m(-),/\l (R") X Bllza0 (R -

_ -n
(21R) 1951y 2*BIM Izl ol F 2ol o ey
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Estimate Uy. We divide |yf) ((b — bp)™ fX(ZB)c) (x)‘ into the following two parts

[, (6 = b)) )

| re (b(y) — bp)"Q(x — y)
B (fo L yist be = yl=r

x+lyl
SLE

°° (b(y) — b)"Qx — y)
+(»£+Iyl L yit

lx — yl*=r
=H; + H,.

fxesydy

1
5 1
dt )’

t2p+1

1

5 1

dt )’
£2p+1

1

2 1

dt \’
t2p+1

Firstly, we estimate H;. According to Minkowski’s inequality and the formula (3.2), we have

1
Ib(y) — ba|™|Q(x — y)| (f 1 )2
H < |fx eyl Sordt| d
! fn lx — yl”‘P f 5 [x—yl<t<x|+lyl 12+l y

lb(y) — bs|"IQ(x — y)I :

= g7 fxesyrdy

f (b(y) = bp)"Qx — y)
[x—yl<t

fxesydy

2

1

— e |x — yl"=r | Xasy P (Ix] + [y)* v

< Z fsz\sz Ib(y) —|xbi|”;/||?_(px—y)l| ) - _1y|2p - +1|y|)2p 2 dy
< };LHB\M 1b(y) |be|";||?([79€—]/)||]:( )|(|X| + |T2|F))de

< Z Sy 0 = ol g,

< i (R+21R)" (21R) ™" f Ib(y) — bel"IQ(x — YIIF()Idy.

=1 k+1 B\ZkB

1279

In order to continue the calculation, we need to estimate the value of fzm B\2B |b(y) — bel™|Q(x — y)II f(y)Idy.

By Lemma 3.1, Lemma 3.2 and 1/p}(-) = 1/s + 1/p2(:), we have

f Ib(y) - bsl"IQCx — YIIF)ldy
2k+1B\2kB

< C (o) = b5)" Qx = Y218 160 ey 1 X218l e
<C ||Q(x - y)sz“B(y)”Ls(Rn) lI(e(y) — bB)mX2k+1B(y)||Lpz<-)(]Rn)||fX2k+1B||Lm(->(1Rn)
< CllQ = Yo oy 1 X208l Ry

k+1pmp/n m
<21 BmP ”b“Lipﬁ(Rn)HXZ"“B“LPz(‘)(]R”)'

(3.5)
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Summing up the above estimates, by Definition 2.1 and Lemma 2.5, we can obtain

Hy

For H,, using the Minkowski’s inequality, by the formula (3.4), (3.5) and Definition 2.1, we can obtain

H,

IA

IA

IA

IA

IA

IA

IN

IN

IN

IN

IA

0 - _n—p
CY " (R+2%1R)" (21R) ™ Qs sy 2B f sl o
k=1

k+1
2 " B|mﬁ/n“b”hp Swn) ||X2k+1B”an(->(Rn)
(]

P _ —n-=p
C Y (22R) (2'R) " 2B llcapllo e 2 BI™IBI,
k=1

Al e B e

CY (22RY (21R) ™ B [l gy 2B sl
k=1

. , k+1p (=L 1ok+1ymp/n) 3, m
Il o g 254 B TR

C i (2k+2R)p (zk—lR)_n_p |2kB|1/s
k=1

: |2k+1B|A1

Jnk+1 k+1 11— L (ok+1gymp/n| 3, m
5B B R BB,

|B|A1+mﬁ/n Z 2—(n+p)(k—1)+n()\1+mﬁ/n+1)(k+1)—’;’(k+1)+”?k+(k+2)p
k=1

m
B o

)| B|A1+mﬁ/n Z p=n(k=1)+n(As+mp/n+1)(k+1)~ 4 +3p
k=1

C Al e M0l

CIBI P,

f”@}’l(')r/‘l (]Rn) *

Ib(y) — be"|Q(x — v)| ([w 1 f
. dt] d
fﬂ =yl r |f Xcay] oty 2070 y
Ib(y) — bs"|Q(x — )|

R lx — y|"=p

) a0
d

}:j' 1) b2 = Ay
= 2k+1B\2kB

1
|fx eyl =y dy

YR [ ) - a0 iy
=1 2k+1B\2kB

Y (2R) " 10 BN sl
k=1

. k+1pymp/ny g, m
||X2k+lB||Lp2(')(IR")|2 B| Hb”Lipﬁ(]Rn,

1280
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k- k k
< C (2 R) B I o oy 2B Izl
k=1
el 0 gy 2 BIF 125 BB,
=15\ """ 1~k il k+1piA
< cZ(z R) " 2BI ||l o oy 125 BIY
k=1
_1
2FHIB|RM | 5|2k+1B|mﬁ/n||bllﬂpﬁ(Rn)
m Ay+mp/n —n(k=1)+n(A1+mp/n+1)(k+1)—L (k+1)+ 2%
< Clfll s ey IS, o 1B kZz ' : :
1
< |y bl |B|Al+’”ﬁ/"22 k=D enhvemp /s (s )=
> B O (Rr) Llplf RN)
k=1
Ar+mpB/n m
< (C|B" ”bHLipﬁ(]R“) )"
So
'#Q (0 - bs)" fxcasy) (x)‘<C|B|A1+m’5/"||b”Llp e [l o ey
We have
Uy = |lub (= be)"(fxesr)xsllom)

IA

CIB* P BIES, oy [ o, gy B s

Summarizing all the estimates of U, Uy, Uz and Uy, we conclude that

b, ey 1 f xblLsoany < CIBI "IN, (g

f”ggpl(-ml (R") ”XB”U(-)(]Rn),

SO

p
106, 1 Loy < CHIR oy [l o0 ey -

Therefore, we complete the proof of Theorem 3.3.

4. Boundedness of higher-order BMO commutator of Parameterized Marcinkiewicz integrals

In this part, we will give the BMO estimate for the commutators[b"’, yg] on central Morry spaces with
variable exponent. Therefore, let us first recall the space BMO(IR").

Lemma 4.1%4] Let us first recall that the space BMO(R™) consists of all locally integrable f such that

I = sup fB () — foldx,

BcR”

here, B is a circle with zero as the center and R as the radius, fz = ﬁ fB f(x)dx, is called the average on B. In
1961, John and Nirenberg [6] proved that BMO functions satisfy John-Nirenberg inequality. The following
is an important corollary related to John-Nirenberg inequality.

for 1 < g < oo, we have

1/q
Il fllBmo, = (éfBlf(x)—fBl"dX) = | fll-
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Lemma 4.2l Let b € BMO(R"), m is a positive integer, and there exist constants C > 0, such that for any
k,j € Zwith k > j, B; € By, we have

(1) Cc 1||b||BlN[O(1Rn Sup —”(b bB)mXB”Lq()(]R" < C”b”BMO IRn)/
Bl Lo @)

) ”(b_ij)mXBk”U(')(]R” Clk = 7)™ 1bllgptoqrn 1B, L0 (R -

where ) .
By =B(0,2) ={xeR:|x| <25, B;=B(0,2/)={xeR: x| <2/}

Theorem 4.3 Let b € BMO(R"), m is a positive integer, Q € L3(S"1)(1 < s < =) is a homogeneous function
of degree zero and satisfies (1.1). Suppose that

/p2() +1/s =1/p(), p1(), p2(),9() € Z(R*) NLH,
1 1

1
= + —,
q()  pi()  p2()
Then [b™, uf)] is bounded from 2P0 (R") into %704 (R") and the following inequality holds:

6, )

n
-1 —_
A< '0<p<3s'

) < Cllbllgyom) [1f ”ggmwm‘

Proof of Theorem 4.3
Let f € #POAR"), the decomposition of f(x) is the same as that in the third part. The meanings
represented by symbol B and symbol bg are also the same as those in the third part. Write
", upl fxsllomy < 116 = be)" (g, (fx2e) Xl
+I(b — bg)" () (f x 2By ) X BlILs0 ()
+|qu)((b = bp)" (f x28)) xBllLso ®m)
+|Iu§2((b - bB)m(fX(ZB)f))XB||Lq<->(Rn)
= Wi+ W+ W3+ Wy

Firstly, we estimate Wy, by Definition 2.1, Lemma 3.1 and Lemma 4.2. At the same time, ,ug was bounded
from LPO(IR") to LPO(IR"™). We can obtain

Wi < Cllupy (sl o 16 = b8)" xbllo e
< C ”fXZB“Un O(R?) [16Enoe 1Bl 220 aRr)
< C”b“gMO(]R“) f“@pl(»,,\(an) |2B|A||XZB||LV1(')(]R")||XB||LV2(')(]R’1)
< Cbligyore ) 2B 1Bl ey
A
< CIBI B0y (11| a0 ey NBl 30 -

Next, we estimate W3, by Definition 2.1, Lemma 3.1, Lemma 4.2 and [upQ was bounded from LFO(R") to
[PO(IR™). We have

Wi < ClI(b - bs)" fx28lla0re)
< Clb = bg)" x2Bll 20 Ryl f X281 10 ey
< C”b”glMO(]Rn)”XZB”LPz(-)(]Rn) fXZB”Lpl(.)(]R,Z)
< Clblgsome 1] asro ey 12B1 D280 oyl 28l 1m0 e
< CIIb”BMO(]R“) f“g;’rq(')ﬂ\(][{n) |2B|A”XB”U’I(')(]R")”XB”LPZ(-)(IRn)
< CIBMBIomey (1] o e DBl e)-
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Next, we estimate W, and Wj. When estimating U, in the second part, we get

116y (Fxcr ()1 < CIBE A1l g1y

Using this formula and Lemma 4.2, we have

Wy = I(b—be)" (U (fxes)xsllomwe
< CIBM |l o ey 10 = B5) " X80
A
< B [[Al] s oy I o e 1Bl
A
< CIBMBIomey 1] om0 e B0

Next, let us estimate Wy, the process is similar to the calculation process of Uy. Similarly, we first need
to estimate | yg ((b — bp)" fX(ZB)c) (x)|. We divide it into two parts, G; and G,.

‘MPQ (®—b8)" fxcamy) (x)’

- fo ” L_M (b(y) l—x bf);gx_y)
f(;lxl+lyl
’ jl;ojlyl

=G+ Gs.

1

5 1

dt )’
12p+1

1

2 1

dt \’
£2p+1

1

2 1

dt '
12p+1

Firstly, we estimate G;. According to Minkowski’s inequality, the formula (3.2), Definition 2.1, Lemma 2.5
and Lemma 4.2, we have

fxesydy

IA

fxesydy

f (b(y) = bp)"Qx — y)
[x—yl<t

lx — yl"=F

fxesydy

f (b(y) = bp)"Qx — )
lx—yl<t

lx — y|*=p

1
Ib(y) - bsl"|Q(x — y)l ( 1 )
G < — |f x 2By f —dt| d
! R lx — yl*=° fs) b—yl<t<lelyl £2P /
b(y) — bg|™|Q(x — 2
B R e S M S S
R b= yl™? =y (nl + )™
S Ib(y) — bsI"IQ(x — )| 1 1
=i Jo1p\2tp Ix -yl lx -yl (Ix + Iy1)
S Ib(y) = bel" Q@ = )| (1l + )’
M s et
=7 Jok1p\2kB byl lx =yl
S (Ixl + [yl)"
< b(y) — bg|"1Q(x — —d
D [y P00 I DU
< Y (Re2Y @R[ ) - b0 - i)y,
= 2k+1B\2kB

k=1
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- P (mke1p\ P
C Y (22R)" (2R) " 1Ol BN facyssllmo e

<
k=1
(k + 1) 1bllgyio e 1X 2Bl 20 ey
(o) p _ —n—p
< CY e+ 1" (22R) (2IR) ™ RSl sl oD oy
k=1
k
‘“f||g;m<»),A(Rﬂ) 2 +1B|A||7(2k”3||L”1<‘)(1R”)
oo P _ —n-p
< CY k1 (22R) (2R) B |l oy 2 BI sl
k=1
_1
.”XZkHB||Lpi(')(]Rr1)|2k+1B| 5||b||g1MO(R“)
< T R )
k=1
2 BN BB bl
— — -5 ©
< C ”f”@pl(_,l,\(w) ”b“glMO(]Rn)lBl/\ Z(k +1)"2 (n+p)(k=1)+n(A+1)(k+1)— 2 (k+1)+ % +(k+2)p
k=1
< Bl B Y -+ 1y enh e =3
k=1
A
< GBI Ibllgpomn [|f ”@vﬂ-»A(R@'

Next, we estimate G,, according to Minkowski’s inequality, Definition 2.1, Lemma 2.5 and Lemma 4.2, we
have

b(y) — bal"|Qx(x — y)I © 1 \2
Gy < N =y |f X2yl f tszdt dy
b(y) — bal"|Q(x — y)I
- f : PEEIAC ||x oY
|b(y) — be™|Q(x — v)| 1
[ H s
2By lx —yl*= [x — y|P
. Ib(y) — bal"|Q(x — y)| 1
: f O = i sy
26415\ 2k lx -yl ylP
< Ib(y) — bl |Qx = )| I3
Z‘ j;mg\sz ()= bs = yIfy) yln
< Le7R)T f Ib(y) = bl 12x = )l F(y)Idy
k=1 2k+1B\2kB
= CZ 2k_1R ”QllLS(S"’l)|2kB|1/s“fXZ"“B”LPN-)(R”)
k=1

(k4 1) 12l 0 e I o e
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€Y (2R) 2Bl s gy 2 B s

<
k=1
(k4 1)" gl o oy 1287 BI BII
gl (R™) BMO(R")
k-1 knil k+1 k+1 /\klf—
< 62<k+ 1" (21R) " 2B ]| o ey 12 BIZ B2 B bl
—n(l— _n nk
< - “b”]n;MO(Rn)lBlA Z‘(k + 1)m2 n(k=1)+n(A+1)(k+1)— 2 (k+1)+%
k=1
< C Hf”gam(-),/‘(]Rn) ”b”gMo(]Rn)lBl/\ Z(k + 1)m2—n(k—1)+n()\+1)(k+1)—2
k=1
A
< CIBMIBIRore -
So
|48, (6 = b)Y Fxany ) 9] < CIBP Bl o .
We have
Us = [l (b= be)"(fx By )Xl we
< CIBMIBI ooy 1] om0 ey B 002
So
b, 11 fxellowe < CIBIMIbome) Il groy-
So

P
16, pe ) fllggonwey < Cliblgpomrn )

Therefore, we complete the proof of Therorem 4.3.

References

(1]
[2]

(3]
[4]
(5]
(6]
[7]
(8]
9]
[10]

[11]
[12]

[13]
[14]

[15]

A.Benedek, A. P. Caldeorén, R. Panzone, Convolution operators on Banach value function, Proc. Nat. Acad. Sci. 48 (3)(1962), 356-365.
D. Chen, Y. X. Wang, Boundedness of the commutators of the Marcinkiewicz integral in Triebel-Lizorkin space, Proc. Nat. Acad. Sci. 30
(5)(2003), 481-484.

L. Diening, P. Harjulehto, P. Hast6, M. RtZi¢ka. Lebesgue and Sobolev spaces with variable exponents, Partial Differential Equations
with Variable Exponents. 2017(2015), 25-44.

Z.W. Fu, S. Z. Lu, H. B. Wang, L. G. Wang, Singular integral operators with rough kernels on central Morrey spaces with variable
exponent, Annals Academiae Scientiarum Fennicae. 44(1)(2019), 505-522.

M. Izuki, Boundedness of sublinear operators on Herz spaces with variable exponent and application to wavelet characterization, Anal
Math. 36(2010), 33-50.

F. John, L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure Appl. Math. 2(1961), 415-426.

0. Kovakik, J. Rakosnik, On spaces [P® and W&P®), Czechoslovak mathematical journal. 41(4)(1991), 592-618.

S. Z. Lu, H. X. Mo, The boundedness of commutators for the Marcinkiewicz integrals, Acta Mathematica Sina. 49(3)(2006), 481-490.

C. C. Niu, H. B. Wang, Hardy-type operators with rough kernels on central Morrey space with variable exponent, Advances in Operator
Theory. 8(2)(2023), 26.

C. C. Niu, H. B. Wang, N-dimensional fractional Hardy operators with rough kernels on central Morrey spaces with variable exponents,
AIMS Mathematics. 8(5)(2023), 10379-10394.

A. Nekvinda, Hardy-Littlewood maximal operator on LPM(R"), Mathematical Inequalities and Applications. 7(2)(2004), 255-266.

X. Qi, Boundedness of Lipschitz commutators of Bochner-Riesz operators with variable exponential values on variable exponential spaces,
Journal of Hubei University (Natural Science Edition). 43(2021), 16-21.

E. M. Stein, On the function of littlewood-play, lusin and Marcinkiewicz, lusin and Marcinkiewicz. 88 (3)(1958), 430—466.

S. P. Tao, L. L. Li, Boundedness of Marcinkiewicz integrals and commutators on Morrey spaces with variable exponents, Chinese Annals
of Mathematics, Series A. 37(1)(2016), 59-74.

H. B. Wang, Z. W. Fu, Z. G. Lu, Higher order commutators of Marcinkiewicz integral on variable Lebesgue spaces, Acta Math Sci.
32(6)(2012), 1092-1101.



[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]

[24]
[25]

Y. Yang et al. / Filomat 40:4 (2026), 1271-1286 1286

L. W. Wang, Marcinkiewicz integrals operators and commutators on Herz spaces with variable exponents, Journal of Function Spaces.
2014(1)(2014), 1-9.

H. B. Wang, Marcinkiewicz integrals on Herz-type spaces with variable exponent, Journal of Shandong University of Technology.
29(4)(2015), 16-20.

Y. Y. Wei, J. Zhang, Boundedness of commutators for the Marcinkiewicz integral operators on Herz Triebel-Lizorkin spaces with variable
exponent, Journal of Shandong University. 57(12)(2022), 55-63.

H. B. Wang, C. C. Niu, Bilinear fractional Hardy-type operators with rough kernels on central Morrey spaces with variable exponents,
Czechoslovak Mathematical Journal. 74(2)(2024), 493-514.

L. W.Wang, The Commutators of Multilinear Maximal and Fractional-Type Operators on Central Morrey Spaces with Variable Exponent,
Journal of Function Spaces. 2022(1)(2022), 1-13.

H.B. Wang, J. S. Xu, J. Tan, Boundedness of multilinear singular integrals on central Morrey spaces with variable exponents, Front. Manth.
15(5)(2020), 1101-1034.

L. ]J. Wang, S. P. Tao, Parameterized Littlewood-Play operators and their commutators on Herz spaces with variable exponents, Turkish
Journal of Mathematics. 40(2016), 122-145.

H. B. Wang, D. Y. Yan, Higher-Order Commutators of Parametric Marcinkiewicz Integrals on Herz Spaces with variable exponent, Journal
of Function Spaces. 1(2018), 1-11.

D. H. Wang, J. Zhou, A new type of BMO space, Acta Mathematica Sinica, Chinese Series. 60(5)(2017), 833-846.

A.C.Zhang,].Y. Chen, S. B. Wang, Boundedness of Parametric Marcinkiewicz integral Commutators with rough kernels on homogeneous
Morrey-Herz spaces, Mathematica applicata. 31(1)(2018), 141-147.



