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Higher-order commutators of the parameterized Marcinkiewicz
integrals on central Morrey spaces with variable exponent

Yanqi Yanga,∗, Lulu Yanga, Shuangping Taoa

aCollege of Mathematics and Statistics, Northwest Normal University, Gansu Lanzhou 730070, P. R. China

Abstract. By using the method of function decomposition on central Morrey spaces with variable exponent
and with the help of the boundedness of parameterized Marcinkiewicz integrals with rough kernels on
Lp(·)(Rn), the boundedness of higher-order Lipschitz commutator and higher-order BMO commutator of
parameterized Marcinkiewicz integrals is estimated and obtained on central Morrey spaces with variable
exponent.

1. Introduction

Suppose that Sn−1 denotes the unit sphere in Rn(n ≥ 2) equipped with normalized Lebesgue measure.
Let Ω ∈ Lipβ(R

n−1) for 0 < β ≤ 1 be a homogeneous function of degree zero and

∫
Sn−1
Ω(x′)dδ(x′) = 0, (1.1)

where, x′ = x
|x| , x , 0.

Parameterized Marcinkiewicz integral operator µρ
Ω

is defined by

µ
ρ
Ω

( f )(x) =
(∫

∞

0
|Fρ
Ω,t(x)|2

dt
t2ρ+1

) 1
2

,

where

Fρ
Ω,t(x) =

∫
|x−y|≤t

Ω(x − y)
|x − y|n−ρ

f (y)dy.
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When ρ = 1, It is Stein [13] introduced and studied the following Marcinkiewicz integral operator
related to the Littlewood-Paley 1 function on Rn

µΩ( f )(x) =
[ ∫ ∞

0

∣∣∣∣ ∫
|x−y|≤t

Ω(x − y)
|x − y|n−1 f (y)dy

∣∣∣∣2 dt
t3

]1/2

.

It was shown that in [13] µ is of weak type (1, 1) and when 1 < p ≤ 2, µ is type (p, p), where the Lipschitz
continuous function Ω is homogeneous of degree zero and vanishes on the unit sphere.

The boundedness of Marcinkiewicz integral operator on function spaces has aroused great interest
among mathematicians. Currently, there have been numerous research results regarding the Marcinkiewicz
integrals, we refer the readers to references [1,2,8,14-18,25].

In 2019, Fu et al. [4] introduced the central Morrey spaces with variable exponent and proved the
boundedness of the fractional singular integrals and its commutator on above space. Since then, the central
Morrey spaces with variable exponent have been widely studied by a significant number of authors, see
[9,10,19,20] and the references therein.

Motivated by [1,2,4,8-10,13-20,25], the aim of this paper is to prove the boundedness of higher-order
Lipschitz commutator and higher-order BMO commutator of the parameterized Marcinkiewicz integrals
on central Morrey spaces with variable exponent.

We end this section by introducing some conventional notations which will be used later. Throughout
this paper, the letter C represents a constant independent of parameters, and its value may vary in different
contexts. We will denote the Lebesgue measure and the characteristic function of a measure set A ⊂ Rn

by |A| and χA, respectively. The notation f ≈ 1 means that there exist constants C1, C2 > 0, such that
C11 ≤ f ≤ C21. If f ≤ C1, we then write f ≲ 1.

2. Preliminaries

The variable Lebesgue spaces Lp(·)(Rn) become one of the important class function spaces due to the
seminal paper [7] by Kováčik and Rákosnı́k. Now, we give some notations and basic definitions on
Lp(·)(Rn). Given a measure function p(·) : Rn

→ [1,∞). Let p′(·) be the conjugate exponent of p(·), that means
1/p(·) + 1/p′(·) = 1. The Lp(·) (Rn) is defined by

Lp(·) (Rn) :=

 f is measurable on Rn :
∫
Rn

(
| f (x)|
λ

)p(x)

dx < ∞ for some constant λ > 0

 ,
then Lp(·) (Rn) is a Banach function space equipped with the Luxemburg-Nakano norm

∥ f ∥Lp(·)(Rn) := inf

λ > 0 :
∫
Rn

(
| f (x)|
λ

)p(x)

dx ⩽ 1

 .
The space Lp(·)

loc (Rn) is defined by Lp(·)
loc (Rn) :=

{
f : fχK ∈ Lp(·) (Rn) for all compact subsets K ⊂ Rn

}.

The set P(R) consists of all p(·) : Rn
→ [1,∞) satisfying

p− := ess inf
x∈Rn

p(x) > 1, p+ := ess sup
x∈Rn

p(x) < ∞.

The set P0(R) consists of all p(·) : Rn
→ (0,∞) satisfying

p− := ess inf
x∈Rn

p(x) > 0, p+ := ess sup
x∈Rn

p(x) < ∞.
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Let f ∈ L1
loc(Rn), the Hardy-Littlewood maximal operator is defined by

M f (x) := sup
x∈B

1
|B|

∫
B
| f (y)|dy , (2.1)

here, B is a circle with zero as the center and r as the radius. The set B(Rn) consists of p(·) ∈P(Rn) satisfying
the condition that the Hardy-Littlewood maximal operator M is bounded on Lp(·)(Rn).
Definition 2.1[4] Let q(·) ∈ P (Rn) and λ ∈ R. The central Morrey space with variable exponent is defined
by

Ḃq(·),λ(Rn) =
{

f ∈ Lq(·)
loc (Rn) : ∥ f ∥Ḃq(·),λ(Rn) < ∞

}
,

where

∥ f ∥Ḃq(·),λ(Rn) = sup
R>0

∥ fχB(0,R)∥Lq(·)(Rn)

|B(0,R)|λ∥χB(0,R)∥Lq(·)(Rn)
.

Definition 2.2[12] For 0 < β ≤ 1, the norm definition of Lipschitz space Lipβ(Rn) is as follows

∥ f ∥Lipβ(Rn) = sup
x,h∈Rn,h,0

| f (x + h) − f (x)|
|h|β

< ∞.

Definition 2.3[11] Let α(·) be a real-valued function on Rn.
(i) For any x, y ∈ Rn, |x − y| ≤ 1/2, if

|α(x) − α(y)| ≲
1

− log(|x − y|)
, (2.2)

then α(·) is said local log-Hölder continuous on Rn.
(ii) For all x ∈ Rn, if

|α(x) − α(0)| ≲
1

log(e + 1/|x|)
, (2.3)

then α(·) is said log-Hölder continuous functions at origin, denote by P
log
0 (Rn) the set of all log-Hölder

continuous at origin.
(iii) If there exist α∞ ∈ R, for x ∈ Rn, if

|α(x) − α∞| ≲
1

log(e + |x|)
, (2.4)

then α(·) is said log-Hölder continuous at infinity.
(iv) The set LH(Rn) consists of all exponents p(·) defined on Rn which are locally log-Hölder con-

tinuous and log-Hölder continuous at infinity. The set P
log
0 (Rn) consists of all measurable functions

p(·) ∈ P(Rn) being log-Hölder continuous at the origin and the set P
log
∞ (Rn) consists of all measurable

functions p(·) ∈P(Rn) which are log-Hölder continuous at infinity.

Lemma 2.4[7] (Generalized Hölder’s inequality) Let p(·) ∈ P(Rn). If f ∈ Lp(·)(R) and 1 ∈ Lp′(·)(R), then f1
is integrable on Rn and ∫

Rn
| f (x)1(x)|dx ≤ rp∥ f ∥Lp(·)(Rn)∥1∥Lp′ (·)(Rn),

where

rp = 1 +
1

p−
−

1
p+
.
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Lemma 2.5[5] Suppose p(·) ∈ B(Rn). Then there exists a positive constant C such that for all balls B in Rn,

1
|B|
∥χB∥Lp(·)(Rn)∥χB∥Lp′ (·)(Rn) ≤ C.

Lemma 2.6[5] Let p(·) ∈ B(Rn). Then there exists a positive constant C such that for all balls B in Rn and all
measurable subsets S ⊂ B,

∥χB∥Lp(·)(Rn)

∥χS∥Lp(·)(Rn)
≤ C
|B|
|S|
,

∥χS∥Lp(·)(Rn)

∥χB∥Lp(·)(Rn)
≤ C

(
|S|
|B|

)δ1

,
∥χS∥Lp′ (·)(Rn)

∥χB∥Lp′ (·)(Rn)
≤ C

(
|S|
|B|

)δ2

,

where δ1, δ2 ∈ (0, 1) are constants.

Lemma 2.7[21] Let p(·) ∈P(Rn) ∩ LH. Then

∥χQ∥Lp(·)(Rn) ≈

{
|Q|1/p(x), |Q| ≤ 2n, x ∈ Q;
|Q|1/p(∞), |Q| ≥ 1,

for every cube (or ball) Q ⊂ Rn, where p(∞) = lim
x→∞

p(x).

3. Boundedness of higher-order Lipschitz commutator of Parameterized Marcinkiewicz integrals

In this section, we will give the boundedness of higher-order Lipschitz commutator of the Parameterized
Marcinkiewicz integrals. Now, we recall two Lemmas.

Lemma 3.1[3] Let p(·), q(·), s(·) ∈ (Rn) be such that

1
s(x)
=

1
p(x)

+
1

q(x)
,

for almost every x ∈ Rn. Then
∥ f1∥Ls(·)(Rn) ≤ 2∥ f ∥Lp(·)(Rn)∥1∥Lq(·)(Rn),

for all f ∈ Lp(·)(Rn) and 1 ∈ Lq(·)(Rn).

Lemma 3.2[22] Let b ∈ Lipβ(Rn), m is a positive integer, and there exist constants C > 0, such that for any
k, j ∈ Zwith k > j, B j ∈ Bk, we have

(1) C−1
∥b∥mLipβ(Rn) ≤ sup

B
|B|−mβ/n

∥χB∥
−1
Lq(·)(Rn)∥(b − bB)mχB∥Lq(·)(Rn) ≤ C∥b∥mLipβ(Rn);

(2) ∥(b − bB j )
mχBk∥Lq(·)(Rn) ≤ C|Bk|

mβ/n
∥b∥mLipβ(Rn)

∥χBk∥Lq(·)(Rn),

where
Bk = B(0, 2k) = {x ∈ R : |x| ≤ 2k

}, B j = B(0, 2 j) = {x ∈ R : |x| ≤ 2 j
}.

Theorem 3.3 Let b ∈ Lipβ(Rn), 0 < β ≤ 1, m is a positive integer, Ω ∈ Ls(Sn−1)(1 ≤ s < ∞) is a homogeneous
function of degree zero and satisfies (1.1) . Suppose that

1/p2(·) + 1/s = 1/p′1(·), p1(·), p2(·), q(·) ∈P(Rn) ∩ LH,

1
q(·)
=

1
p1(·)

+
1

p2(·)
, λ1 < −mβ/n − 1, 0 < ρ <

n
3s
, λ = λ1 +mβ/n,
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then [bm, µ
ρ
Ω

] is bounded from Ḃp1(·),λ1 (Rn) into Ḃq(·),λ(Rn) and the following inequality holds:

∥∥∥[bm, µ
ρ
Ω

] f
∥∥∥
Ḃq(·),λ(Rn)

≤ C∥b∥mLipβ(Rn)

∥∥∥ f
∥∥∥
Ḃp1(·),λ1 (Rn)

.

Proof of Theorem 3.3
Let f ∈ Ḃp1(·),λ1 (Rn), We have decomposition f (x) = f1 + f2, f1 = fχ2B, f2 = fχ(2B)c . Let R = 2i, i ∈ Z, for

fixed R > 0, denote B(0,R) by B. Let bB be the mean value of b on the ball B. Write

∥[bm, µ
ρ
Ω

] fχB∥Lq(·)(Rn) ≤ ∥(b − bB)m(µρ
Ω

( fχ2B))χB∥Lq(·)(Rn)

+∥(b − bB)m(µρ
Ω

( fχ(2B)c ))χB∥Lq(·)(Rn)

+∥µ
ρ
Ω

((b − bB)m( fχ2B))χB∥Lq(·)(Rn)

+∥µ
ρ
Ω

((b − bB)m( fχ(2B)c ))χB∥Lq(·)(Rn)

= U1 +U2 +U3 +U4.

Firstly, we estimate U1. In 2018, Wang H. B. et al published an article. In this article, they proved µρ
Ω

is
bounded from Lp(·)(Rn) to Lp(·)(Rn). For detailed process, we refer the readers to reference [23]. At the same
time, by Definition 2.1, Lemma 3.1 and Lemma 3.2, we have

U1 ≤ C
∥∥∥µρ
Ω

( fχ2B)
∥∥∥

Lp1(·)(Rn)
∥(b − bB)mχB∥Lp2(·)(Rn)

≤ C
∥∥∥ fχ2B

∥∥∥
Lp1(·)(Rn)

|B|mβ/n∥b∥mLipβ(Rn)∥χB∥Lp2(·)(Rn)

≤ C|B|mβ/n∥b∥mLipβ(Rn)

∥∥∥ f
∥∥∥
Ḃp1(·),λ1 (Rn)

|2B|λ1∥χ2B∥Lp1(·)(Rn)∥χB∥Lp2(·)(Rn)

≤ C|B|mβ/n∥b∥mLipβ(Rn)

∥∥∥ f
∥∥∥
Ḃp1(·),λ1 (Rn)

|2B|λ1∥χB∥Lp1(·)(Rn)∥χB∥Lp2(·)(Rn)

≤ C|B|λ1+mβ/n
∥b∥mLipβ(Rn)

∥∥∥ f
∥∥∥
Ḃp1(·),λ1 (Rn)

∥χB∥Lq(·)(Rn).

Where

∥χB∥Lp1(·)(Rn)∥χB∥Lp2(·)(Rn) ≈ |B|
1

p1(·)+
1

p2(·) ≈ |B|
1

q(·) ≈ ∥χB∥Lq(·)(Rn). (3.1)

Next we estimate U3, by Definition 2.1, Lemma 3.1, Lemma 3.2 and the boundedness of Parameterized
Marcinkiewicz integral operator on Lebesgue spaces with variable exponents.

U3 ≤ C∥(b − bB)m fχ2B∥Lq(·)(Rn)

≤ C∥(b − bB)mχ2B∥Lp2(·)(Rn)∥ fχ2B∥Lp1(·)(Rn)

≤ C|2B|mβ/n∥b∥mLipβ(Rn)∥χ2B∥Lp2(·)(Rn)

∥∥∥ fχ2B

∥∥∥
Lp1(·)(Rn)

≤ C|2B|mβ/n∥b∥mLipβ(Rn)

∥∥∥ f
∥∥∥
Ḃp1(·),λ1 (Rn)

|2B|λ1∥χ2B∥Lp1(·)(Rn)∥χ2B∥Lp2(·)(Rn)

≤ C|2B|mβ/n∥b∥mLipβ(Rn)

∥∥∥ f
∥∥∥
Ḃp1(·),λ1 (Rn)

|2B|λ1∥χB∥Lp1(·)(Rn)∥χB∥Lp2(·)(Rn)

≤ C|2B|mβ/n∥b∥mLipβ(Rn)

∥∥∥ f
∥∥∥
Ḃp1(·),λ1 (Rn)

|2B|λ1∥χB∥Lq(·)(Rn)

≤ C|B|λ1+mβ/n
∥b∥mLipβ(Rn)

∥∥∥ f
∥∥∥
Ḃp1(·),λ1 (Rn)

∥χB∥Lq(·)(Rn).
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To estimate U2, we first need to estimate |µρ
Ω

(
fχ(2B)c

)
(x)|, we have

|µ
ρ
Ω

(
fχ(2B)c

)
(x)|

=

∫ ∞

0

∣∣∣∣∣∣
∫
|x−y|≤t

Ω(x − y)
|x − y|n−ρ

fχ(2B)c dy

∣∣∣∣∣∣2 dt
t2ρ+1


1
2

≤

∫ |x|+|y|

0

∣∣∣∣∣∣
∫
|x−y|≤t

Ω(x − y)
|x − y|n−ρ

fχ(2B)c dy

∣∣∣∣∣∣2 dt
t2ρ+1


1
2

+

∫ ∞

|x|+|y|

∣∣∣∣∣∣
∫
|x−y|≤t

Ω(x − y)
|x − y|n−ρ

fχ(2B)c dy

∣∣∣∣∣∣2 dt
t2ρ+1


1
2

= J1 + J2.

Firstly, we estimate J1. According to Minkowski’s inequality, we can obtain

J1 ≤

∫
Rn

|Ω(x − y)|
|x − y|n−ρ

| fχ(2B)c |

(∫
|x−y|≤t≤|x|+|y|

1
t2ρ+1 dt

) 1
2

dy

≤

∫
Rn

|Ω(x − y)|
|x − y|n−ρ

| fχ(2B)c |

∣∣∣∣∣∣ 1
|x − y|2ρ

−
1(

|x| + |y|
)2ρ

∣∣∣∣∣∣
1
2

dy

≤

∞∑
k=1

∫
2k+1B\2kB

|Ω(x − y)|
|x − y|n−ρ

| f (y)|

∣∣∣∣∣∣ 1
|x − y|2ρ

−
1(

|x| + |y|
)2ρ

∣∣∣∣∣∣
1
2

dy.

When x ∈ B, y ∈ 2k+1B \ 2kB, k ≥ 1, k ∈ N∗, we have(
1

|x − y|2ρ

)2

+

 1(
|x| + |y|

)2ρ

2

≥ 2

 1
|x − y|2ρ

1(
|x| + |y|

)2ρ

 ,(
1

|x − y|2ρ

)2

+

 1(
|x| + |y|

)2ρ

2

≥
1

|x − y|2ρ
1(

|x| + |y|
)2ρ ,(

1
|x − y|2ρ

)2 (
|x| + |y|

)2ρ +
1(

|x| + |y|
)2ρ ≥

1
|x − y|2ρ

,(
1

|x − y|2ρ

)2 (
|x| + |y|

)2ρ
≥

1
|x − y|2ρ

−
1(

|x| + |y|
)2ρ ,

so

1
|x − y|2ρ

−
1(

|x| + |y|
)2ρ ≤

(
1

|x − y|2ρ

)2 (
|x| + |y|

)2ρ . (3.2)

According to the above formula, we can get that

J1 ≤

∞∑
k=1

∫
2k+1B\2kB

|Ω(x − y)|
|x − y|n−ρ

| f (y)|
(
|x| + |y|

)ρ
|x − y|2ρ

dy

≤

∞∑
k=1

∫
2k+1B\2kB

|Ω(x − y)|| f (y)|
(
|x| + |y|

)ρ
|x − y|n+ρ

dy

≤

∞∑
k=1

(
R + 2k+1R

)ρ (
2k−1R

)−n−ρ
∫

2k+1B\2kB
|Ω(x − y)|| f (y)|dy.
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Noticing that 1/p′1(·) = 1/s + 1/p2(·), we have∫
2k+1B\2kB

|Ω(x − y)|| f (y)|dy

≤ C
∥∥∥Ω(x − y)χ2k+1B(y)

∥∥∥
Lp′1(·)(Rn)

∥ fχ2k+1B∥Lp1(·)(Rn)

≤ C
∥∥∥Ω(x − y)χ2k+1B(y)

∥∥∥
Ls(Rn)

∥χ2k+1B(y)∥Lp2(·)(Rn)∥ fχ2k+1B∥Lp1(·)(Rn). (3.3)

For x ∈ B and y ∈ 2k+1B, x− y ∈ 2k+2B. Noticing thatΩ is homogeneous of degree zero andΩ ∈ Ls(Sn−1), we
obtain∥∥∥Ω(x − y)χ2k+1B(y)

∥∥∥
Ls(Rn)

=

(∫
2k+1B
|Ω(x − y)|sdy

)1/s

≤

(∫
2k+2B
|Ω(z)|sdy

)1/s

=

∫ 2k+2R

0

∫
Sn−1
|Ω(z′)|sdσ(z′)rn−1dr

1/s

= C∥Ω∥Ls(Sn−1)|2
kB|1/s. (3.4)

Thus, we have

J1 ≤ C
∞∑

k=1

(
R + 2k+1R

)ρ (
2k−1R

)−n−ρ
∥Ω∥Ls(Sn−1)|2

kB|1/s∥χ2k+1B∥Lp2(·)(Rn)∥ fχ2k+1B∥Lp1(·)(Rn)

≤ C
∞∑

k=1

(
2k+2R

)ρ (
2k−1R

)−n−ρ
|2kB|1/s∥χ2k+1B∥Lp2(·)(Rn)

·

∥∥∥ f
∥∥∥
Ḃp1(·),λ1 (Rn)

|2k+1B|λ1∥χ2k+1B∥Lp1(·)(Rn)

≤ C
∞∑

k=1

(
2k+2R

)ρ (
2k−1R

)−n−ρ
|2kB|1/s

∥∥∥ f
∥∥∥
Ḃp1(·),λ1 (Rn)

|2k+1B|λ1∥χ2k+1B∥Lp1(·)(Rn)

·∥χ2k+1B∥Lp′1(·)(Rn)
|2k+1B|−

1
s

≤ C
∞∑

k=1

(
2k+2R

)ρ (
2k−1R

)−n−ρ
|2kB|1/s

∥∥∥ f
∥∥∥
Ḃp1(·),λ1 (Rn)

|2k+1B|λ1 |2k+1B||2k+1B|−
1
s

≤ C
∥∥∥ f

∥∥∥
Ḃp1(·),λ1 (Rn)

|B|λ1

∞∑
k=1

2−(n+ρ)(k−1)+n(λ1+1)(k+1)− n
s (k+1)+ nk

s +(k+2)ρ

≤ C
∥∥∥ f

∥∥∥
Ḃp1(·),λ1 (Rn)

|B|λ1

∞∑
k=1

2−n(k−1)+n(λ1+1)(k+1)− n
s +3ρ

≤ C|B|λ1
∥∥∥ f

∥∥∥
Ḃp1(·),λ1 (Rn)

.

When |2k+1B| ≤ 2n and x ∈ 2k+1B, by Lemma 2.7 and 1/p2(·) + 1/s = 1/p′1(·), we have

∥χ2k+1B∥Lp2(·)(Rn) ≈ |2
k+1B|

1
p2(x) ≈ ∥χ2k+1B∥Lp′1(·)(Rn)

|2k+1B|−
1
s .

When |2k+1B| ≥ 1, we have

∥χ2k+1B∥Lp2(·)(Rn) ≈ |2
k+1B|

1
p2(∞) ≈ ∥χ2k+1B∥Lp′1(·)(Rn)

|2k+1B|−
1
s .
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So we obtain
∥χ2k+1B∥Lp2(·)(Rn) ≈ ∥χ2k+1B∥Lp′1(·)(Rn)

|2k+1B|−
1
s .

For J2, using the Minkowski’s inequality, by the formula (3.3), (3.4), Definition 2.1 and Lemma 2.5, we
can obtain

J2 ≤

∫
Rn

|Ω(x − y)|
|x − y|n−ρ

| fχ(2B)c |

(∫
∞

|x|+|y|

1
t2ρ+1 dt

) 1
2

dy

≤

∫
Rn

|Ω(x − y)|
|x − y|n−ρ

| fχ(2B)c |
1

|x − y|ρ
dy

≤

∞∑
k=1

∫
2k+1B\2kB

|Ω(x − y)|
|x − y|n−ρ

| f (y)|
1

|x − y|ρ
dy

≤

∞∑
k=1

∫
2k+1B\2kB

|Ω(x − y)|| f (y)|
1

|x − y|n
dy

≤

∞∑
k=1

(
2k−1R

)−n
∫

2k+1B\2kB
|Ω(x − y)|| f (y)|dy

≤ C
∞∑

k=1

(
2k−1R

)−n
∥Ω∥Ls(Sn−1)|2

kB|1/s∥χ2k+1B∥Lp2(·)(Rn)∥ fχ2k+1B∥Lp1(·)(Rn)

≤ C
∞∑

k=1

(
2k−1R

)−n
|2kB|1/s∥χ2k+1B∥Lp2(·)(Rn)

·

∥∥∥ f
∥∥∥
Ḃp1(·),λ1 (Rn)

|2k+1B|λ1∥χ2k+1B∥Lp1(·)(Rn)

≤ C
∞∑

k=1

(
2k−1R

)−n
|2kB|1/s

∥∥∥ f
∥∥∥
Ḃp1(·),λ1 (Rn)

|2k+1B|λ1∥χ2k+1B∥Lp1(·)(Rn)

·∥χ2k+1B∥Lp′1(·)(Rn)
|2k+1B|−

1
s

≤ C
∞∑

k=1

(
2k−1R

)−n
|2kB|1/s

∥∥∥ f
∥∥∥
Ḃp1(·),λ1 (Rn)

|2k+1B|λ1 |2k+1B||2k+1B|−
1
s

≤ C
∥∥∥ f

∥∥∥
Ḃp1(·),λ1 (Rn)

|B|λ1

∞∑
k=1

2−n(k−1)+n(λ1+1)(k+1)− n
s (k+1)+ nk

s

≤ C
∥∥∥ f

∥∥∥
Ḃp1(·),λ1 (Rn)

|B|λ1

∞∑
k=1

2−n(k−1)+n(λ1+1)(k+1)− n
s

≤ C|B|λ1
∥∥∥ f

∥∥∥
Ḃp1(·),λ1 (Rn)

.

Summarizing the estimates of J1 and J2, we conclude that

|µ
ρ
Ω

(
fχ(2B)c (x)

)
| ≤ C|B|λ1

∥∥∥ f
∥∥∥
Ḃp1(·),λ1 (Rn)

.

So, we have

U2 = ∥(b − bB)m(µρ
Ω

( fχ(2B)c ))χB∥Lq(·)(Rn)

≤ C|B|λ1
∥∥∥ f

∥∥∥
Ḃp1(·),λ1 (Rn)

∥(b − bB)mχB∥Lq(·)(Rn)

≤ C|B|λ1
∥∥∥ f

∥∥∥
Ḃp1(·),λ1 (Rn)

|B|mβ/n∥b∥mLipβ(Rn)∥χB∥Lq(·)(Rn)

≤ C|B|λ1+mβ/n
∥b∥mLipβ(Rn)

∥∥∥ f
∥∥∥
Ḃp1(·),λ1 (Rn)

∥χB∥Lq(·)(Rn).
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Estimate U4. We divide
∣∣∣∣µρΩ (

(b − bB)m fχ(2B)c

)
(x)

∣∣∣∣ into the following two parts

∣∣∣∣µρΩ (
(b − bB)m fχ(2B)c

)
(x)

∣∣∣∣
=

∫ ∞

0

∣∣∣∣∣∣
∫
|x−y|≤t

(b(y) − bB)mΩ(x − y)
|x − y|n−ρ

fχ(2B)c dy

∣∣∣∣∣∣2 dt
t2ρ+1


1
2

≤

∫ |x|+|y|

0

∣∣∣∣∣∣
∫
|x−y|≤t

(b(y) − bB)mΩ(x − y)
|x − y|n−ρ

fχ(2B)c dy

∣∣∣∣∣∣2 dt
t2ρ+1


1
2

+

∫ ∞

|x|+|y|

∣∣∣∣∣∣
∫
|x−y|≤t

(b(y) − bB)mΩ(x − y)
|x − y|n−ρ

fχ(2B)c dy

∣∣∣∣∣∣2 dt
t2ρ+1


1
2

= H1 +H2.

Firstly, we estimate H1. According to Minkowski’s inequality and the formula (3.2), we have

H1 ≤

∫
Rn

|b(y) − bB|
m
|Ω(x − y)|

|x − y|n−ρ
| fχ(2B)c |

(∫
|x−y|≤t≤|x|+|y|

1
t2ρ+1 dt

) 1
2

dy

≤

∫
Rn

|b(y) − bB|
m
|Ω(x − y)|

|x − y|n−ρ
| fχ(2B)c |

∣∣∣∣∣∣ 1
|x − y|2ρ

−
1(

|x| + |y|
)2ρ

∣∣∣∣∣∣
1
2

dy

≤

∞∑
k=1

∫
2k+1B\2kB

|b(y) − bB|
m
|Ω(x − y)|

|x − y|n−ρ
| f (y)|

∣∣∣∣∣∣ 1
|x − y|2ρ

−
1(

|x| + |y|
)2ρ

∣∣∣∣∣∣
1
2

dy

≤

∞∑
k=1

∫
2k+1B\2kB

|b(y) − bB|
m
|Ω(x − y)|

|x − y|n−ρ
| f (y)|

(
|x| + |y|

)ρ
|x − y|2ρ

dy

≤

∞∑
k=1

∫
2k+1B\2kB

|b(y) − bB|
m
|Ω(x − y)|| f (y)|

(
|x| + |y|

)ρ
|x − y|n+ρ

dy

≤

∞∑
k=1

(
R + 2k+1R

)ρ (
2k−1R

)−n−ρ
∫

2k+1B\2kB
|b(y) − bB|

m
|Ω(x − y)|| f (y)|dy.

In order to continue the calculation, we need to estimate the value of
∫

2k+1B\2kB |b(y) − bB|
m
|Ω(x − y)|| f (y)|dy.

By Lemma 3.1, Lemma 3.2 and 1/p′1(·) = 1/s + 1/p2(·), we have

∫
2k+1B\2kB

|b(y) − bB|
m
|Ω(x − y)|| f (y)|dy

≤ C
∥∥∥(b(y) − bB)mΩ(x − y)χ2k+1B(y)

∥∥∥
Lp′1(·)(Rn)

∥ fχ2k+1B∥Lp1(·)(Rn)

≤ C
∥∥∥Ω(x − y)χ2k+1B(y)

∥∥∥
Ls(Rn)

∥(b(y) − bB)mχ2k+1B(y)∥Lp2(·)(Rn)∥ fχ2k+1B∥Lp1(·)(Rn)

≤ C
∥∥∥Ω(x − y)χ2k+1B(y)

∥∥∥
Ls(Rn)

∥ fχ2k+1B∥Lp1(·)(Rn)

· |2k+1B|mβ/n∥b∥mLipβ(Rn)
∥χ2k+1B∥Lp2(·)(Rn). (3.5)
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Summing up the above estimates, by Definition 2.1 and Lemma 2.5, we can obtain

H1 ≤ C
∞∑

k=1

(
R + 2k+1R

)ρ (
2k−1R

)−n−ρ
∥Ω∥Ls(Sn−1)|2

kB|1/s∥ fχ2k+1B∥Lp1(·)(Rn)

·|2k+1B|mβ/n∥b∥mLipβ(Rn)
∥χ2k+1B∥Lp2(·)(Rn)

≤ C
∞∑

k=1

(
2k+2R

)ρ (
2k−1R

)−n−ρ
|2kB|1/s∥χ2k+1B∥Lp2(·)(Rn)|2

k+1B|mβ/n∥b∥mLipβ(Rn)

·

∥∥∥ f
∥∥∥
Ḃp1(·),λ1 (Rn)

|2k+1B|λ1∥χ2k+1B∥Lp1(·)(Rn)

≤ C
∞∑

k=1

(
2k+2R

)ρ (
2k−1R

)−n−ρ
|2kB|1/s

∥∥∥ f
∥∥∥
Ḃp1(·),λ1 (Rn)

|2k+1B|λ1∥χ2k+1B∥Lp1(·)(Rn)

·∥χ2k+1B∥Lp′1(·)(Rn)
|2k+1B|−

1
s |2k+1B|mβ/n∥b∥mLipβ(Rn)

≤ C
∞∑

k=1

(
2k+2R

)ρ (
2k−1R

)−n−ρ
|2kB|1/s

∥∥∥ f
∥∥∥
Ḃp1(·),λ1 (Rn)

|2k+1B|λ1

·|2k+1B||2k+1B|−
1
s |2k+1B|mβ/n∥b∥mLipβ(Rn)

≤ C
∥∥∥ f

∥∥∥
Ḃp1(·),λ1 (Rn)

∥b∥mLipβ(Rn)|B|
λ1+mβ/n

∞∑
k=1

2−(n+ρ)(k−1)+n(λ1+mβ/n+1)(k+1)− n
s (k+1)+ nk

s +(k+2)ρ

≤ C
∥∥∥ f

∥∥∥
Ḃp1(·),λ1 (Rn)

∥b∥mLipβ(Rn)|B|
λ1+mβ/n

∞∑
k=1

2−n(k−1)+n(λ1+mβ/n+1)(k+1)− n
s +3ρ

≤ C|B|λ1+mβ/n
∥b∥mLipβ(Rn)

∥∥∥ f
∥∥∥
Ḃp1(·),λ1 (Rn)

.

For H2, using the Minkowski’s inequality, by the formula (3.4), (3.5) and Definition 2.1, we can obtain

H2 ≤

∫
Rn

|b(y) − bB|
m
|Ω(x − y)|

|x − y|n−ρ
| fχ(2B)c |

(∫
∞

|x|+|y|

1
t2ρ+1 dt

) 1
2

dy

≤

∫
Rn

|b(y) − bB|
m
|Ω(x − y)|

|x − y|n−ρ
| fχ(2B)c |

1
|x − y|ρ

dy

≤

∞∑
k=1

∫
2k+1B\2kB

|b(y) − bB|
m
|Ω(x − y)|

|x − y|n−ρ
| f (y)|

1
|x − y|ρ

dy

≤

∞∑
k=1

∫
2k+1B\2kB

|b(y) − bB|
m
|Ω(x − y)|| f (y)|

1
|x − y|n

dy

≤

∞∑
k=1

(
2k−1R

)−n
∫

2k+1B\2kB
|b(y) − bB|

m
|Ω(x − y)|| f (y)|dy

≤ C
∞∑

k=1

(
2k−1R

)−n
∥Ω∥Ls(Sn−1)|2

kB|1/s∥ fχ2k+1B∥Lp1(·)(Rn)

·∥χ2k+1B∥Lp2(·)(Rn)|2
k+1B|mβ/n∥b∥mLipβ(Rn)
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≤ C
∞∑

k=1

(
2k−1R

)−n
|2kB|1/s

∥∥∥ f
∥∥∥
Ḃp1(·),λ1 (Rn)

|2k+1B|λ1∥χ2k+1B∥Lp1(·)(Rn)

·∥χ2k+1B∥Lp′1(·)(Rn)
|2k+1B|−

1
s |2k+1B|mβ/n∥b∥mLipβ(Rn)

≤ C
∞∑

k=1

(
2k−1R

)−n
|2kB|1/s

∥∥∥ f
∥∥∥
Ḃp1(·),λ1 (Rn)

|2k+1B|λ1

·|2k+1B||2k+1B|−
1
s |2k+1B|mβ/n∥b∥mLipβ(Rn)

≤ C
∥∥∥ f

∥∥∥
Ḃp1(·),λ1 (Rn)

∥b∥mLipβ(Rn)
|B|λ1+mβ/n

∞∑
k=1

2−n(k−1)+n(λ1+mβ/n+1)(k+1)− n
s (k+1)+ nk

s

≤ C
∥∥∥ f

∥∥∥
Ḃp1(·),λ1 (Rn)

∥b∥mLipβ(Rn)
|B|λ1+mβ/n

∞∑
k=1

2−n(k−1)+n(λ1+mβ/n+1)(k+1)− n
s

≤ C|B|λ1+mβ/n
∥b∥mLipβ(Rn)

∥∥∥ f
∥∥∥
Ḃp1(·),λ1 (Rn)

.

So ∣∣∣∣µρΩ (
(b − bB)m fχ(2B)c

)
(x)

∣∣∣∣ ≤ C|B|λ1+mβ/n
∥b∥mLipβ(Rn)

∥∥∥ f
∥∥∥
Ḃp1(·),λ1 (Rn)

.

We have

U4 = ∥µ
ρ
Ω

((b − bB)m( fχ(2B)c ))χB∥Lq(·)(Rn)

≤ C|B|λ1+mβ/n
∥b∥mLipβ(Rn)

∥∥∥ f
∥∥∥
Ḃp1(·),λ1 (Rn)

∥χB∥Lq(·)(Rn).

Summarizing all the estimates of U1, U2, U3 and U4, we conclude that

∥[b, µρ
Ω

] fχB∥Lq(·)(Rn) ≤ C|B|λ1+mβ/n
∥b∥mLipβ(Rn)

∥∥∥ f
∥∥∥
Ḃp1(·),λ1 (Rn)

∥χB∥Lq(·)(Rn),

so
∥[b, µρ

Ω
] f ∥Ḃq(·),λ(Rn) ≤ C∥b∥mLipβ(Rn)

∥∥∥ f
∥∥∥
Ḃp1(·),λ1 (Rn)

.

Therefore, we complete the proof of Theorem 3.3.

4. Boundedness of higher-order BMO commutator of Parameterized Marcinkiewicz integrals

In this part, we will give the BMO estimate for the commutators
[
bm, µ

ρ
Ω

]
on central Morry spaces with

variable exponent. Therefore, let us first recall the space BMO(Rn).

Lemma 4.1[24] Let us first recall that the space BMO(Rn) consists of all locally integrable f such that

∥ f ∥∗ = sup
B⊂Rn

1
|B|

∫
B
| f (x) − fB|dx,

here, B is a circle with zero as the center and R as the radius, fB = 1
|B|

∫
B f (x)dx, is called the average on B. In

1961, John and Nirenberg [6] proved that BMO functions satisfy John-Nirenberg inequality. The following
is an important corollary related to John-Nirenberg inequality.

for 1 < q < ∞, we have

∥ f ∥BMOq :=
(

1
|B|

∫
B
| f (x) − fB|qdx

)1/q

≈ ∥ f ∥∗.
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Lemma 4.2[22] Let b ∈ BMO(Rn), m is a positive integer, and there exist constants C > 0, such that for any
k, j ∈ Zwith k > j, B j ∈ Bk, we have

(1) C−1
∥b∥mBMO(Rn) ≤ sup

B

1
∥χB∥Lq(·)(Rn)

∥(b − bB)mχB∥Lq(·)(Rn) ≤ C∥b∥mBMO(Rn);

(2) ∥(b − bB j )
mχBk∥Lq(·)(Rn) ≤ C(k − j)m

∥b∥mBMO(Rn)∥χBk∥Lq(·)(Rn).

where
Bk = B(0, 2k) = {x ∈ R : |x| ≤ 2k

}, B j = B(0, 2 j) = {x ∈ R : |x| ≤ 2 j
}.

Theorem 4.3 Let b ∈ BMO(Rn), m is a positive integer,Ω ∈ Ls(Sn−1)(1 ≤ s < ∞) is a homogeneous function
of degree zero and satisfies (1.1). Suppose that

1/p2(·) + 1/s = 1/p′1(·), p1(·), p2(·), q(·) ∈P(Rn) ∩ LH,

1
q(·)
=

1
p1(·)

+
1

p2(·)
, λ < −1, 0 < ρ <

n
3s
,

Then [bm, µ
ρ
Ω

] is bounded from Ḃp1(·),λ(Rn) into Ḃq(·),λ(Rn) and the following inequality holds:∥∥∥[bm, µ
ρ
Ω

] f
∥∥∥
Ḃq(·),λ(Rn)

≤ C∥b∥mBMO(Rn)

∥∥∥ f
∥∥∥
Ḃp1(·),λ(Rn)

.

Proof of Theorem 4.3
Let f ∈ Ḃp1(·),λ(Rn), the decomposition of f (x) is the same as that in the third part. The meanings

represented by symbol B and symbol bB are also the same as those in the third part. Write

∥[bm, µ
ρ
Ω

] fχB∥Lq(·)(Rn) ≤ ∥(b − bB)m(µρ
Ω

( fχ2B))χB∥Lq(·)(Rn)

+∥(b − bB)m(µρ
Ω

( fχ(2B)c ))χB∥Lq(·)(Rn)

+∥µ
ρ
Ω

((b − bB)m( fχ2B))χB∥Lq(·)(Rn)

+∥µ
ρ
Ω

((b − bB)m( fχ(2B)c ))χB∥Lq(·)(Rn)

= W1 +W2 +W3 +W4.

Firstly, we estimate W1, by Definition 2.1, Lemma 3.1 and Lemma 4.2. At the same time, µρ
Ω

was bounded
from Lp(·)(Rn) to Lp(·)(Rn). We can obtain

W1 ≤ C
∥∥∥µρ
Ω

( fχ2B)
∥∥∥

Lp1(·)(Rn)
∥(b − bB)mχB∥Lp2(·)(Rn)

≤ C
∥∥∥ fχ2B

∥∥∥
Lp1(·)(Rn)

∥b∥mBMO(Rn)∥χB∥Lp2(·)(Rn)

≤ C∥b∥mBMO(Rn)

∥∥∥ f
∥∥∥
Ḃp1(·),λ(Rn)

|2B|λ∥χ2B∥Lp1(·)(Rn)∥χB∥Lp2(·)(Rn)

≤ C∥b∥mBMO(Rn)

∥∥∥ f
∥∥∥
Ḃp1(·),λ(Rn)

|2B|λ∥χB∥Lq(·)(Rn)

≤ C|B|λ∥b∥mBMO(Rn)

∥∥∥ f
∥∥∥
Ḃp1(·),λ(Rn)

∥χB∥Lq(·)(Rn).

Next, we estimate W3, by Definition 2.1, Lemma 3.1, Lemma 4.2 and µρ
Ω

was bounded from Lp(·)(Rn) to
Lp(·)(Rn). We have

W3 ≤ C∥(b − bB)m fχ2B∥Lq(·)(Rn)

≤ C∥(b − bB)mχ2B∥Lp2(·)(Rn)∥ fχ2B∥Lp1(·)(Rn)

≤ C∥b∥mBMO(Rn)∥χ2B∥Lp2(·)(Rn)

∥∥∥ fχ2B

∥∥∥
Lp1(·)(Rn)

≤ C∥b∥mBMO(Rn)

∥∥∥ f
∥∥∥
Ḃp1(·),λ(Rn)

|2B|λ∥χ2B∥Lp1(·)(Rn)∥χ2B∥Lp2(·)(Rn)

≤ C∥b∥mBMO(Rn)

∥∥∥ f
∥∥∥
Ḃp1(·),λ(Rn)

|2B|λ∥χB∥Lp1(·)(Rn)∥χB∥Lp2(·)(Rn)

≤ C|B|λ∥b∥mBMO(Rn)

∥∥∥ f
∥∥∥
Ḃp1(·),λ(Rn)

∥χB∥Lq(·)(Rn).
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Next, we estimate W2 and W4. When estimating U2 in the second part, we get

|µ
ρ
Ω

(
fχ(2B)c (x)

)
| ≤ C|B|λ

∥∥∥ f
∥∥∥
Ḃp1(·),λ(Rn)

.

Using this formula and Lemma 4.2, we have

W2 = ∥(b − bB)m(µρ
Ω

( fχ(2B)c ))χB∥Lq(·)(Rn)

≤ C|B|λ
∥∥∥ f

∥∥∥
Ḃp1(·),λ(Rn)

∥(b − bB)mχB∥Lq(·)(Rn)

≤ C|B|λ
∥∥∥ f

∥∥∥
Ḃp1(·),λ(Rn)

∥χB∥Lq(·)(Rn)∥b∥
m
BMO(Rn)

≤ C|B|λ∥b∥mBMO(Rn)

∥∥∥ f
∥∥∥
Ḃp1(·),λ(Rn)

∥χB∥Lq(·)(Rn).

Next, let us estimate W4, the process is similar to the calculation process of U4. Similarly, we first need

to estimate
∣∣∣∣µρΩ (

(b − bB)m fχ(2B)c

)
(x)

∣∣∣∣. We divide it into two parts, G1 and G2.

∣∣∣∣µρΩ (
(b − bB)m fχ(2B)c

)
(x)

∣∣∣∣
=

∫ ∞

0

∣∣∣∣∣∣
∫
|x−y|≤t

(b(y) − bB)mΩ(x − y)
|x − y|n−ρ

fχ(2B)c dy

∣∣∣∣∣∣2 dt
t2ρ+1


1
2

≤

∫ |x|+|y|

0

∣∣∣∣∣∣
∫
|x−y|≤t

(b(y) − bB)mΩ(x − y)
|x − y|n−ρ

fχ(2B)c dy

∣∣∣∣∣∣2 dt
t2ρ+1


1
2

+

∫ ∞

|x|+|y|

∣∣∣∣∣∣
∫
|x−y|≤t

(b(y) − bB)mΩ(x − y)
|x − y|n−ρ

fχ(2B)c dy

∣∣∣∣∣∣2 dt
t2ρ+1


1
2

= G1 + G2.

Firstly, we estimate G1. According to Minkowski’s inequality, the formula (3.2), Definition 2.1 , Lemma 2.5
and Lemma 4.2, we have

G1 ≤

∫
Rn

|b(y) − bB|
m
|Ω(x − y)|

|x − y|n−ρ
| fχ(2B)c |

(∫
|x−y|≤t≤|x|+|y|

1
t2ρ+1 dt

) 1
2

dy

≤

∫
Rn

|b(y) − bB|
m
|Ω(x − y)|

|x − y|n−ρ
| fχ(2B)c |

∣∣∣∣∣∣ 1
|x − y|2ρ

−
1(

|x| + |y|
)2ρ

∣∣∣∣∣∣
1
2

dy

≤

∞∑
k=1

∫
2k+1B\2kB

|b(y) − bB|
m
|Ω(x − y)|

|x − y|n−ρ
| f (y)|

∣∣∣∣∣∣ 1
|x − y|2ρ

−
1(

|x| + |y|
)2ρ

∣∣∣∣∣∣
1
2

dy

≤

∞∑
k=1

∫
2k+1B\2kB

|b(y) − bB|
m
|Ω(x − y)|

|x − y|n−ρ
| f (y)|

(
|x| + |y|

)ρ
|x − y|2ρ

dy

≤

∞∑
k=1

∫
2k+1B\2kB

|b(y) − bB|
m
|Ω(x − y)|| f (y)|

(
|x| + |y|

)ρ
|x − y|n+ρ

dy

≤

∞∑
k=1

(
R + 2k+1

)ρ (
2k−1R

)−n−ρ
∫

2k+1B\2kB
|b(y) − bB|

m
|Ω(x − y)|| f (y)|dy,
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≤ C
∞∑

k=1

(
2k+2R

)ρ (
2k−1R

)−n−ρ
∥Ω∥Ls(Sn−1)|2

kB|1/s∥ fχ2k+1B∥Lp1(·)(Rn)

· (k + 1)m
∥b∥mBMO(Rn)∥χ2k+1B∥Lp2(·)(Rn)

≤ C
∞∑

k=1

(k + 1)m
(
2k+2R

)ρ (
2k−1R

)−n−ρ
|2kB|1/s∥χ2k+1B∥Lp2(·)(Rn)∥b∥

m
BMO(Rn)

·

∥∥∥ f
∥∥∥
Ḃp1(·),λ(Rn)

|2k+1B|λ∥χ2k+1B∥Lp1(·)(Rn)

≤ C
∞∑

k=1

(k + 1)m
(
2k+2R

)ρ (
2k−1R

)−n−ρ
|2kB|1/s

∥∥∥ f
∥∥∥
Ḃp1(·),λ(Rn)

|2k+1B|λ∥χ2k+1B∥Lp1(·)(Rn)

·∥χ2k+1B∥Lp′1(·)(Rn)
|2k+1B|−

1
s ∥b∥mBMO(Rn)

≤ C
∞∑

k=1

(k + 1)m
(
2k+2R

)ρ (
2k−1R

)−n−ρ
|2kB|1/s

∥∥∥ f
∥∥∥
Ḃp1(·),λ(Rn)

·|2k+1B|λ|2k+1B||2k+1B|−
1
s ∥b∥mBMO(Rn)

≤ C
∥∥∥ f

∥∥∥
Ḃp1(·),λ(Rn)

∥b∥mBMO(Rn)|B|
λ
∞∑

k=1

(k + 1)m2−(n+ρ)(k−1)+n(λ+1)(k+1)− n
s (k+1)+ nk

s +(k+2)ρ

≤ C
∥∥∥ f

∥∥∥
Ḃp1(·),λ(Rn)

∥b∥mBMO(Rn)|B|
λ
∞∑

k=1

(k + 1)m2−n(k−1)+n(λ+1)(k+1)− n
s +3ρ

≤ C|B|λ∥b∥mBMO(Rn)

∥∥∥ f
∥∥∥
Ḃp1(·),λ(Rn)

.

Next, we estimate G2, according to Minkowski’s inequality, Definition 2.1, Lemma 2.5 and Lemma 4.2, we
have

G2 ≤

∫
Rn

|b(y) − bB|
m
|Ω(x − y)|

|x − y|n−ρ
| fχ(2B)c |

(∫
∞

|x|+|y|

1
t2ρ+1 dt

) 1
2

dy

≤

∫
Rn

|b(y) − bB|
m
|Ω(x − y)|

|x − y|n−ρ
| fχ(2B)c |

1
|x − y|ρ

dy

=

∫
(2B)c

|b(y) − bB|
m
|Ω(x − y)|

|x − y|n−ρ
| f (y)|

1
|x − y|ρ

dy

≤

∞∑
k=1

∫
2k+1B\2kB

|b(y) − bB|
m
|Ω(x − y)|

|x − y|n−ρ
| f (y)|

1
|x − y|ρ

dy

≤

∞∑
k=1

∫
2k+1B\2kB

|b(y) − bB|
m
|Ω(x − y)|| f (y)|

1
|x − y|n

dy

≤

∞∑
k=1

(
2k−1R

)−n
∫

2k+1B\2kB
|b(y) − bB|

m
|Ω(x − y)|| f (y)|dy

≤ C
∞∑

k=1

(
2k−1R

)−n
∥Ω∥Ls(Sn−1)|2

kB|1/s∥ fχ2k+1B∥Lp1(·)(Rn)

·(k + 1)m
∥χ2k+1B∥Lp2(·)(Rn)∥b∥

m
BMO(Rn)
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≤ C
∞∑

k=1

(
2k−1R

)−n
|2kB|1/s

∥∥∥ f
∥∥∥
Ḃp1(·),λ(Rn)

|2k+1B|λ∥χ2k+1B∥Lp1(·)(Rn)

·(k + 1)m
∥χ2k+1B∥Lp′1(·)(Rn)

|2k+1B|−
1
s ∥b∥mBMO(Rn)

≤ C
∞∑

k=1

(k + 1)m
(
2k−1R

)−n
|2kB|1/s

∥∥∥ f
∥∥∥
Ḃp1(·),λ(Rn)

|2k+1B||2k+1B|λ|2k+1B|−
1
s ∥b∥mBMO(Rn)

≤ C
∥∥∥ f

∥∥∥
Ḃp1(·),λ(Rn)

∥b∥mBMO(Rn)|B|
λ
∞∑

k=1

(k + 1)m2−n(k−1)+n(λ+1)(k+1)− n
s (k+1)+ nk

s

≤ C
∥∥∥ f

∥∥∥
Ḃp1(·),λ(Rn)

∥b∥mBMO(Rn)|B|
λ
∞∑

k=1

(k + 1)m2−n(k−1)+n(λ+1)(k+1)− n
s

≤ C|B|λ∥b∥mBMO(Rn)

∥∥∥ f
∥∥∥
Ḃp1(·),λ(Rn)

.

So ∣∣∣∣µρΩ (
(b − bB)m fχ(2B)c

)
(x)

∣∣∣∣ ≤ C|B|λ∥b∥mBMO(Rn)

∥∥∥ f
∥∥∥
Ḃp1(·),λ(Rn)

.

We have

U4 = ∥µ
ρ
Ω

((b − bB)m( fχ(2B)c ))χB∥Lq(·)(Rn)

≤ C|B|λ∥b∥mBMO(Rn)

∥∥∥ f
∥∥∥
Ḃp1(·),λ(Rn)

∥χB∥Lq(·)(Rn).

So
∥[b, µρ

Ω
] fχB∥Lq(·)(Rn) ≤ C|B|λ∥b∥mBMO(Rn)

∥∥∥ f
∥∥∥
Ḃp1(·),λ(Rn)

∥χB∥Lq(·)(Rn).

So
∥[b, µρ

Ω
] f ∥Ḃq(·),λ(Rn) ≤ C∥b∥mBMO(Rn)

∥∥∥ f
∥∥∥
Ḃp1(·),λ(Rn)

.

Therefore, we complete the proof of Therorem 4.3.
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