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Quaternion Toeplitz matrices and their fundamental properties

Muhammad Ahsan Khan®*, Sohail Khan?®

*University of Kotli, Azad Jammu and Kashmir, Kurti, Kotli, Azad Jammu and Kashmir, Pakistan

Abstract. Toeplitz matrices are characterized by their constant diagonals, have been extensively studied
in various settings, including over real and complex numbers. However, their study over quaternions is
quite sparse. In this paper, we investigate the structure and the algebraic properties of quaternion Toeplitz

matrices. Most importantly, we established a complete characterization of all normal Toeplitz matrices
having entries commutative quaternions.

1. Introduction

A kind of square matrix in which every diagonal that descends from left to right is constant is called a

Toeplitz matrix. For instance, in a n X n matrix, if the first row is (pg p-1---pi-n) and the first column is
Po

, then the Toeplitz matrix consists of n? entries and will look like as:

Pn-1

Po p-1 p-2 - Pl-n
p1 Po p-1 - P2-n
T=| P2 P1 Po o P3en| .
Pn-1 Pn-2 Pn-3 " Po

These matrices are useful in many areas of mathematics and practical disciplines, like integral equations,
time series analysis, and queuing theory, see [8][12H15] 22| 23] 26|31} 132]. In addition to that their algebraic
and analytical theory is a vital part of modern analysis and algebra and there exists a wide literature
concerning Toeplitz matrices having elements, from the algebra of complex numbers. The most important
references concerning these matrices are [4, 26| 29) [31] 33] and [13H18]. They studied the general form
of complex (block) Toeplitz matrices, which also include applications to probability theory, statistics, and
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image restoration. A comprehensive and excellent overview of the uses of complex Toeplitz matrices in
various areas of pure and applied mathematics is also available in [31].

Whereas, quaternions are a complicated system of hypercomplex numbers that expand besides the
notion of complex numbers. Rather than two components like a complex number pg + p1i, quaternions have
four components py + p1i + p2j + psk where i, j and k are imaginary units adhering to the following product
rules:

=i =K =ijk = -1

These numbers are important in algebra because they offer a fundamental example of a division algebra
over the real numbers that is not commutative. These were initially introduced by Sir William Rowan
Hamilton in 1843 [10}[11], extended the idea of complex numbers into a non commutative four-dimensional
setting. The study of other kinds of noncommutative rings and algebras, which are now important in com-
plex algebraic fields like representation theory and ring theory, were made possible by the noncommutative
structure of quaternions.

The reality that quaternions constitute a division algebra is regarded as one of their most essential
properties. This shows that every nonzero quaternion is non-singular concerning the product, which is
quite rare in higher dimensional algebras, just as real and complex numbers algebras do.

Following Hamilton’s discovery of quaternions, Segre suggested commutative quaternions to provide
the commutative property in products [28]. It is possible to split down commutative quaternions into
two complex variables [5, (6, [19] [20]. Like quaternions, the collection of commutative quaternions is 4-
dimensional. However, this collection includes isotropic and zero divisor elements [19} [20]. It has been
observed that commutative quaternion matrices lack an appropriate theory. For a complete study on
commutative quaternions and their matrices, see [5} 16} [19] 20 28] and further references therein. Using
complex representations of commutative quaternion matrices, the authors of [19, 20] examined various
algebraic features of commutative quaternion matrices. We refer the reader to the lectures of [2, (7, 21} 25,
30, 34], for detailed study of quaternions and their matrices. Several writers have provided studies on
quaternion matrix norms; for example, [24] 25 [30] and more references referenced therein.

Classical Toeplitz matrices are generalized to Toeplitz matrices with quaternion entries, in which every
entry is a quaternion instead of a commutative scalar. The non commutative aspect of quaternion product
creates intrinsic difficulties and applies when the entries are quaternions, affecting the matrix’s structure
and properties. It would be reasonable to mention here that quaternion Toeplitz matrices have been studied
very little from an algebraic point of view. The authors of [18] have extracted some maximal left algebras
and certain algebraic properties as well, but the theory is not developed to the extent that the theory
of complex Toeplitz matrices is. The main task of the current paper is to obtain basic algebraic results
and to generalize some of the main results of [9] 29], concerning Toeplitz matrices over quaternions and
commutative quaternions.

The plan of the paper is as : After the introductory section, we will study quaternions, commutative
quaternions, their matrices and the basic properties concerning them. In the third section, we will introduce
quaternion Toeplitz matrices and prove several fundamental results related to them. The final section is
particularly important, as it deals with the complete classification of normal quaternion Toeplitz matrices
whose entries are commutative quaternions.

2. Quaternions, Commutative Quaternions, and Their matrices: Basic Properties

This section deals with the introduction of quaternions and their arithmetic: product, conjugate, norm,
etc. Additionally, we offer quaternion representations as complex 2 X 2 matrices and real 4 X 4 matrices. We
begin with the following basic definition:

Set a structured basis multiplication in H using the following formulas: {1, 1, j, k} in a four-dimensional
real vector space H (one can pick H = R*, the vector space of rows or columns composed of four real
components).

li=il=i, 1j=j1=j, 1k=kl=k
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==K =ijk=-1, ij=—ji=k, jk=-kj=i, ki=-ik=j,

and by the condition that the multiplication of H’s elements commutes with scalar multiplication and is
distributive with regard to addition:

pla+r)=pg+pr, @@+rp=qp+rp, plaqg)=alpq)

foreachp,q,rinHand a € R.

Notably, the product of any two basis vectors in IH is + another basis vector, the set {+1, +i, +j, £k}, forms
anon-abelian group under multiplication, known as the quaternion group and typically represented by the
symbol Qg. The (real) quaternions are the elements of IH which possess the algebraic operations of H as a
real vector space, along with multiplication defined as previously described. Obviously the multiplication
in H is non commutative.

Proposition 2.1. [27] For any p,q,r € H, H is an algebra with the identity 1: p(qr) = (pq)r, 1p = p1 = p. In future
work, we use the quaternion al; to determine the real number a.

Definition 2.2. [27] If p = po + p1i + p2j + psk, We define R(p) = po, the real of p. The vector portion (or imaginary
part) of pis 3(p) = p1i+p2j +psk, po — p1i—p2j — psk = R(p) — I(p) defines the conjugate of p, which is represented

by the symbol p. lipll = \Jpp = Jp3 + P> + P2 + p2 € Ris the norm of p. If llpll = 1, then p € H is a unit quaternion.

The following conclusion gathers some of the main properties of quaternions, related to norm, conjugate,
and inverse. These properties be crucial in understanding the algebraic structure and geometric interpre-
tation of quaternions.

Proposition 2.3. [27,134] Suppose that p, q € H. Then:
(i) pp = pp;
(ii) Each p € H\{0} has an inverse. More specifically, p(p/|Ip|*) = 1;
p~t =p/lpl* € H;
(iii) |pll = lipll;

(iv) In fact, ||.|| is a norm on H; to be more specific, for any p, q € H one has :
lIpll = O with equality, provided that if p = 0; |lp + qll < llpll + ligll,  llpgll = llgpll = lipllligll;

(v) jaj = kak = @ for every a € C;
(vi) pq = qp;
(vii)) p=p & peR;
(viii) ifp € H, then pq = qp foreveryge H < p e R;
(ix) p and p are solutions of the following qudratic equations with real coefficients ; > — 2R (p)t + [Ip|l*> = 0;

(x) The inequality of the Cauchy-Schwarz type is max {I?’\(pq)l, |5(pq)|} < llpllligll.
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Quaternions are frequently represented as matrices of size 4 over C. This section will explore the
structural properties of these representation. These representations are described as.

Writing p = po + p1i + p2j + psk = po + p1i + (p2 + psi)j = p + Gj, with po, p1,p2,p3 € R, define

_[pot+pi  p2+psi
:H = . .
xiH— MICL )= (PP 2T

where, po, p1, P2, p3 € R, and M;[C] is the 4 dimensional algebra of matrices over C.

Proposition 2.4. [34] x is a unital isomorphism of H onto the four dimensional algebra of matrices of the type
p ) -
= =|, wherep,§ € C.
(_’7 p
Just like quaternion numbers, one can also express quaternion matrices in a complex combination of
complex matrices. Let M be any matrix n X n with quaternion entries, then we may express M as M =
Ao + Aji + Ayj + Ask = A + Bj, where A = Ag + Aji, B = Ay + Asi are n X n complex matrices. Denote by
X1(M), the complex representation matrix of quaternion matrix M as

A B
Xl(M)—(_E Z)'
i 1+i 1 i
_fi+j+k 14k -1+ —i i 1
Example 2.5. LetM—( it j+k)' Then 1 (M) = ; 1 0 1+i
-1 -i -1+i 0

Lemma 2.6. [1] The map x1 is a continuous, injective ring homomorphism. In particular, if c € R, and M, N are
quaternion matrices of size n’, then

1. xa(eM) = cxa(M);

2. xitM + N) = xi(M) + x1(N);
3. x1i(MN) = xi(M)x1(N);

4. (M) = xa(M)".

We now proceed to introduce the definition of tensor product operator of rank 1.
Definition 2.7. [18] The tensor product p ® q of p,q € H" is a n X n matrix defined by
pRqyr=<r,g>p forall reH"

We now bigin the study of commutative quaternions introduced by [28], together with their corresponding
matrices.
The set

H = {P =po +pii+p2j +pskl  po,pip2.p3 € ]R}

represents the set of commutative quaternions, where the following product rules are satisfied by the basis
elements i, j, k ¢ R:

?=K*=ijk=-1, =1, ij=ji=k jk=kj=1i, ki=ik=-j.

It is evident from the preceding that the product operation in H is commutative, meaning that for
each p,qin H, pg = qp. We now present explicitly in terms of components the product of commutative



M. A. Khan, S. Khan / Filomat 40:4 (2026), 1287-1300 1291

quaternions. Suppose that p = po + p1i + p2j + psk and g = go + q1i + 92j + gsk are in H, then their product is
defined following ways,

Pq = podo — prdr + p2g2 — paqgs + (p1go + Poq1 + p3qz + p2q3)i + (podz + p2qo — p19s — paq)j
+ (p3q0 + pogs + p1g2 + p2q1)k.

By using matrix multiplication, the previous relation can be represented as a real matrix of dimension 16 as

Po —PpP1 P2 —Ps3
pr Po PpP3 P2

p2 —ps Po —p1|
Ps P2 pP1 Po

Which is quite helpful in computing quaternions.

1o Po —P1 P2 —P3)(40

n|y_|pt Po Ps P2 ||m

72 P2 —pP3 Po —P1ll492

r3) \Ps P2 P1 Po)\q3
It should be noted that there are some striking differences between H and H. Forany p = po+p1i+p2j+psk €
H, there is only one adjoint p = py — p1i — p2j — psk, while for p = py + p1i + p2j + psk € H, there exist three
types of conjugate, called the principal conjugate, symbolized by p), p® and p®® and are given as:

,  where pq=ry+ri+nrj+rk

pV = po = pri + paj — pak

p? = po +pii - paj — pak

p? = po — pri — paj + psk.
The norm |lp|| of p is given by

lIpll = i/ lppOp@pO| = i/ [(po + p2)* + (p1 + p3)][(po — p2)* + (p1 = p3)*] 2 0.

Ifpo+p2=0,p1+p3=00rpyo—p2=0,p1 —p3 =0, then |p|| = 0, and if ||p]| # 0, then p has an inverse with

(1)) 3)
ivlicati ; -1 _ Py
respect to multiplication given as p™ = Tl

The following result shows that, similar to quaternions, we can express every commutative quaternion
as a 2 X 2 complex matrix.

Theorem 2.8. [19] Each commutative quaternion has a distinct representation as a complex array of size 4.

The algebra of matrices, whose elements are all in H, is symbolized throughout by M,[H]. The matrix

addition is the ordinary matrix addition and the product is the usual matrix product. For any T = (pl-]-))?].‘:l0

in M, [H], the scalar multiplication is defined as
qT =Tq = (qpij);izpy 9 €H.
The reader can see that if T, U are in M,[H], and g, € H, then

(@DU =¢q(TU),
(TpU = T(qU),
@nT = q(rT).
Furthermore, M, [H] is a free module over H. If T = (p,-]-);f],‘:l0 € M, [H], then there are three different

conjugates, known as principal conjugates: T = (pg));’j‘:lo € M,[H], T® = (PE?))?;O € My[H] and
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T® = (pf?)l’.f].‘jo € My[H]. T = (pﬁ)l’.f].‘zlo € M,[H] is the transpose of T; T = (T®W)! € M,[H] is the "
adjoint of T, where x = 1,2, 3. By Kt conjugate, any T € M,,(H) is considered a normal matrix if T commutes

with T'%, that is, TT'™ = T'™*T. The following result from [19] gathers a few of the main needful properties
of the matrices of M, [H].

Theorem 2.9. Suppose that T, U € M,[H], the following are true:

(i) (TW) = (Tt
(i) (TU)™ = U™T™, where x = 1,2,3;
(iii) (TU)! = U'TY;
(iv) (TU)® = T,

TO if x#p#o0

(v) Fox,p,0=1,2,3, one has (T®)® = {T i ox=p.

3. Algebraic Properties of Quaternion Toeplitz Matrices

In this section, we study in detail about the structure and the intricate properties of quaternion Toeplitz
matrices. We extend the idea of Toeplitz matrices to the quaternion setting, which introduces more com-
plexities arising from the non commutative behavior of IH. We consider it necessary to clarify here that the
techniques employed in proving the results of this section are largely inspired by the methods developed
in [9]. However, our approach is not a simple repetition; rather, it represents an adaptation and refinement
of those ideas within the framework of our setting. We now present the formal definition of Toeplitz matrix
having all entries in H.

Definition 3.1. If the elements of a finite square matrix are constant along each negative sloping diagonal, the matrix
is known to as a quaternion Toeplitz matrix. Stated differently, the arrangement of the matrix elements makes each
row a shifted version of the one before it.

Thus a finite quaternion Toeplitz matrix T has the following structure:

Po % E e P

PP Y1 o P
T=Tpy)+pl=|Pr2 P P - Yusl,
Pn-1 Pn-2 Pn-3 Po
0 0
1 Y1
wherep =| P2 | and ¢ = Y2 | are in H". In this case, the term “quaternion” means that entries in the
Pn-1 lPn—l

matrix representation given above come from the algebra IH.
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0 0
p Pt
If p = | P2 | then we define f = |Pn-2|. Let T be the square matrix consisting of zeroes with the
Pn-1 p1

exception of 1’s positioned precisely along the subdiagonal, i.e., the diagonal immediately below the
principal diagonal, that is, I has the form:

00 0 0
10 0 0
r=l0 1 0 0 |
00 0 - 0

then the following matrix represents its adjoint, which is indicated below as I™*:

01 0 0
0 0 1 0
1“*_0 0 0 O'
Lo . 1
0 0 O 0

It is apparent from the definition of I' that I = I = 0. Throughout this section, the following notations
will be employed:

o M,[H] indicates the space of finite square matrices with all of their elements in H;

e 7,[H] indicates the space of finite square Toeplitz matrices with all of their elements in IH.

Lemma 3.2. Let T be a matrix of size n> over H. Then
T = Z TUT - TTTT .
0<t<n-1
Proof. The proof follows directly, since

Z 4T - T = Z (T — TTT)T
0<t<n-1 0<t<n-1

= Z (CETTE =TT YY) = T— T = T.
0<l<n-1

We use thatI” =0. O
As a consequence of the above result, studying the much simpler equation
T-TTT* =0.

suffices to determine whether T=0.
The following result gives us the classification of all quaternion Toeplitz matrices among all quaternion
matrices.

Proposition 3.3. Suppose that T is in M, [IH], then the below assertions are proportionate.

(i) T isin T,[H].
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(ii) There exist p,p € H" such that T —TTI" = p®ey + ¢y ® V.

-1

Proof. (ii) = (i) Suppose that T = (pij);} < 18 in M, [H] satisfying

T-TTI" =p®ey+e®1Y forsome p, ¢ € H".

Po Yo
P Y1 . .
Letp=| . |andg=| . |[Dbearbitrary vectorsinIH". The vectors ey, e, - -e,-1 form the standard Hamel
Pn-1 Yn-1

basis for H", then we have

x®ep(ej) =<ej,eg > x

Z poer if j=0

= §0<k<n-1

0 if j=1,2,---,n-1
Similarly the action of eg ® 1 on ¢; yields that
eo®Y(ej) =<ej, P >eg =Yjeg forevery j=0,1,---,n-1

Thus
po+tvo P1 o Yp
x®e+e®y = ) . | 1
Pt 0 .- 0
On the other hand, simple computation implies that
Poo po1 T Pon-2 Pon-1
P10 P11 — Poo v pra—2—p0,n-—1 P1u-1 = Pon—2
T-TTI* =| P20 P21 — P1o T P2n-2 = P1n-3 P2n-1 = P1n-2 . )
Pn-1,0 Pn-11 —Pn-20 - Pn-1,n-2 — Pn-2n-3 Pn-1n-1 — Pn-2,n-2

We have from the comparison of the entries of (1) and (@),
P11 —poo =0, Pu-1,n-1 = Pn-2n-2,

i.e., T is in 7,[H]. This is the result we aimed to establish.
(i) = (i) Let us assume that T has a Toeplitz structure, that is

po E e lpn—l
21 Po - Yuo
T=|p p1 - Yus |,
Pn-1 Pn—2 - Po

then T —I'TT" is a matrix whose entries all are zero except the entries at the position (0, j) and (j, 0) for every
j=0,12,---n-1,ie,

po Y1 Yo o Yua
p 0 0 - 0

T-Ttr"=|p2 0 0 - 0

Pnai 0 0 .- 0
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Po
p1
The reader can easily verified that the identity T — I'TT* = p®ey + €y ® ¢ is valid, if one take p = | P2 |, and

Pn-1
0
12}
Y= Y2 | The proof is finished. [J

Yyt
The aforementioned lemma leads to the pleasant conclusion that follows.
Proposition 3.4. Suppose that T € M,[IH], then the below are analogous
(i) Tisin T,[H].
(ii) x1(T) is in To,[C].

Proof. We prove only (il) = (i) as (i) = (ii) is trivial. Let us suppose that x1(T) is in 7,[H], then by
Lemma

X1(T) = Tou 1 (DI, = x1(p) ® € + € ® x1(Y).
Where ¢ is 211 X 1 matrix consisting of 1’s at the zeroth position and 0 elsewhere, and I';, = x1(I'). Then by
Lemmal[2.6l we have T —T'TI" = p®ey + eo ® i, i.e, Tis in 7,[H]. O

4. Product of Quaternion Toeplitz Matrices

The central technical result of the current section pertaining to the product of quaternion Toeplitz
matrices is the subsequent Lemma.

Lemma 4.1. Assume that T = T(p, ¢) + pol and U = T(q, @) + 9,1 with po, qo € R, then
TU-TTUT" = p®¢$ — P @4 + [Tq + qop + podoco] ® eo + eo ® [TU'T Y + po¢p]. 3)

Proof. Let us denote that T(p, y) and T(q, ¢) by T and U respectively. Then since py, go € R, then they must
commute with every quaternion so, we can express

TU - TTUT" = [T + poIl[U + goI] = T[T + poI1[U + goIIT*
= TH + pQU + qOT + pol]o[ - FT&T* - FPOCIF* - qufT* - poqol"l"*
= [TU -TTUT*] + po[U — TUT"] + qo[T — TTT*] + pogoll — IT"]. 4)

Since U and T are quaternion Toeplitz matrices, then it follows from Lemma U-rar = g®ey+e)® P,
T-TIT" =p®ep +ey®1. Also, note that I — I'T* = ¢y ® 9. Then the equality (4) above takes the form

TU -TTUT* = TU + polg ® ey + 0 ® P] + golp ® €o + €9 ® Y] + poqoleo ® eol. (5)
Now
T -1TUr = T4 - Irar: + ITUr =TT + e,—1 ® e,1 JUT”
=T -rar] +[T -riritar - rie,-; ® e,_1JUT*
= T[q Rep+ep@P]+[p®ey+e)® l,b][l”fll"*] —TTe,_1 @ Te,q
®e+p®P+p@TUTen+e®@TUTY-1P®]
®e+p®P+e®@TUTY —P®3. (6)
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By combining (), (), and (6), we have arrived at
TU-TTUT" = p® ¢ - ® § + [Tq0 + poq + qop + poqoeo] ® eg + e ® [[U'T"Y + po¢p + oy
=p®p—9P®4+I[Tq+qop + poqoeo] ® g + eo @ [TU'TY + po¢pl.
The proof is therefore complete. [

The ensuing theorem delineates the conditions that are both required and adequate for the product TU-VW
of quaternion Toeplitz matrices T, U, V, and W retain its structure as a quaternion Toeplitz matrix.

Theorem 4.2. Suppose that T = T(p,) + pol, U =T(q,¢) + qol, V = T(r, A) + rol, and W = T(s, u) + sol. where,
Po, qo, 0, S0 € IR, then allowing are equivalent

(i) TU-VWisin7,[H].
(i) p®P-P®j=reou—A®3
Proof. 1t is inferred from Lemma that

TU-TTUr - VW +ITVWI* = gb®¢)—1,5®c7—r®y+/~\®§+ +[Tq + qop + poqoeo — V's — sor — roSoeo] ® ey
+ey® [TUTY +pyp —TWTA=T7oul. (7)

The (7)'s right-hand first four terms clearly relate to vectors that include 0 in the zeroth position. As a direct
implication of Lemma TU - VW is in 7,,[H] iff

PRO-—PR®G-rou+A®s=0.
This is what we wanted to prove. [

The ensuing result articulates the conditions that are both required and appropriate under which the
TU - VW vanishes, T, U, V, and W being quaternion Toeplitz matrices.

Theorem 4.3. Consider that T = T(p, ¢) + pol, U = T(q, }) + qol, V = T(r, A) + rol, and W = T(s, i) + sol, where,
Po, qo, 7o, So € IR. Suppose further that TU — VW is in T, [H], then the below are analogous

(i) TU - VIW=0.
(ii)
Tq + qop + poqoeo = V's + sor + roSp€n 8)
and
u*llb + 50(;[) + ?05060 =W'A+ 70}1 + ;05060. (9)

Proof. Because TU-VWisin7,[H], thenTU-VW =0 < (TU-VW)-I'(TU-VW)I"=0. The preceding
equation is valid if and only if the vectors involved in the tensor products with e in (7) of the proof of
Theorem[d.2]are 0. That is TU = VW iff

Tq + qop + poqoeo = V's + sor + rosoeo,

TUT Y + 5y = TWTA + Fopu. (10)
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Nevertheless, (8) and (9) are equivalent to the preceding two equations, as
ITT"UY + pygoeo = TTT"W'A + 750€0.
is derived from the subtraction of (10) from (). As implied by Lemma[3.3) this is identical as
<1,q > e+ pydyeo =< A,8 > e + 1950€0.
Up to complex conjugation, this corresponds to the zeroth component relation of (§). O
The below result elucidates when the product of two non-zero quaternion Toeplitz matrices is zero.
Theorem 4.4. Suppose that T = T(p, ) + pol and U = T(q, ¢) + qol be nonzero.
(i) If p and ¥ are linearly independent, consequently, TU = 0 suggests that U = 0.
(ii) If Y = 0, then TU = 0 implies that either U = 0or pg = qo = 0and ¢ = 0.

0 0 0
p1 : Ul
In the previously considered case, TU = 0 if and only if either p = | . |and q = O orq=| . |and
Pn-1 dn-1 qn-1
0
P71 o
Pn-1
Likewise, if p = 0, then TU = 0, and U # 0 implies that py = qo = 0 and q = 0. In this case, TU = 0 <
0 0 0 0
U1 0 1 0
eitherp=| . |andp=| . |orp=| . |andi =
l#n—l (Pn—l (Pn—l Ebn—l
(i) Ifp = A for some A € H, then TU = 0 if and only if g = A and
Tq + qop + poqoeo = 0. (11)

Proof. We give the proof of (i) and (ii), as (iii) is quite easy for the reader. By the Theorem [4.3|that if TU = 0
then,
peP-9ef=0.

(i) If p and ¢ are linearly independent, then ¢ = § = 0. Therefore U = gol. Consequently, TU = 0 suggests
that U = 0.
(ii) Eitherp = 0or ¢ = 0if ¢ = 0. Sincep = 0, T = pol, and TU = 0 in this instance, U = 0. Assume, therefore,
that ¢ = 0. T and U are both lower triangular, in other words. T or U is invertible if either py or 4o is not
Zero.

Thus po = g0 = 0.
0 0 o --- 0 0 0
o0 0 - 0 g 0
Tp,0)g=|p. m - - || 2 |= 20
VR | I :
Pn-1 Pn-2 - P1 0)\4n-1 Pn—2q1 t -+ P1gn—2

The first pair of equations is represented by T(p,0) = 0 for p; # 0, which implies that g; vanishes for
1 <i < n—2. The second set of equations is represented by g; # 0; the proof for p = 0 is comparable. [
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5. Classification of Normal Toeplitz Matrices with Commuting Quaternion Entries

Normal matrices occupy a singular place in the space of matrices due to their commutativity with their
adjoint. We take the matrices entries from H in this section. The classification of normal Toeplitz matrices
with elements from H will then be presented.

We begin with the lemma, which can be simply proved by mathematical induction.

Lemma 5.1. If T = (p; ])” € Myu[H], then T is normal with respect to k'™ adjoint if and only if
Z [pkepkg —pgkpt,k] 0 whenever €=0,1,---,n—1, where k+#¢
0<k<n-1

and
Z [pk,pk] p,kpk]—O whenever 0<i<j<n-1

0<k<n-1
The below is the primary result of this section as it deals with characterizing normal Toeplitz matrices.

Theorem 5.2. If T = T(p, )+pol € Tu[H], then T*T—TT™ = Qifand only if for eachk and s, with1 < s,k < n—1,

bt + pE Pk = Y + 9 (12)

Proof. Suppose that T™T — TT™ = 0 and let U = (u;)};_, = T"*T = TT™. Since T € 7,,[H], from Lemma
that T™T — TT'® = 0 precisely when foreach1 <r<n-land1<i<j<n,
Uy, = Z [Qbkl,b,(j) (K) ] Z [ (K) (K)p ] 0 (13)
1<k<r-1 1<ksn-r

and

R (%) (%) (%) 1 (k) (%), ()
Uij= Z [lpklpj—ﬂk pkp] 1+k] Z [ IP] i-k Eb - p] i k]

1<k<i-1 1<k<j—i-1
+ Y P v =0, (14)
1<k<n-j

respectively. Let us first evaluate equation solely on the case n = 2m, with m denoting a fixed positive
integer. In doing so, we proceed to compute the diagonal entries of U as

= ) q— ) qk=—[ Y, @-

qk
1<k<r-1 1<k<2m-r 1<k<(2m-r+1)-1 1<k<2m—(2m-r+1)

(15)
= —UWUom—r+12m—r+1,

for every r, where gy = ¢k¢(") (")pk We have u,, = —uoym—r+12m-r+1 for all . Thus it is suff1c1ent to focus on
the entries (r,r) of U, r =1, 2 ,m. A simple and straightforward computation, based on (15) shows that

Homm = Z = Z Je = —qm = =P pm =0,
1<k<m-1 1<k<m
By utilizing an iterative approach, for every r = 1,2,- -+ ,m, one can derive that
Uy = Z Gk — Z qk = Z Jk — Z Gk — (qr + qu—r)
1<k<r-1 1<k<2m-r 1<k<(r+1)-1 1<k<2m—(r+1)

= Upslr+1 — (Qr + q2m—r)-
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This leads to g, + gom—r =0, forallr =1,2,--- ,m. As a result, we arrive at
PP+ P Pamr = O + o) (16)
We now focus on case i < j, rewriting as follows

Ujj = Z Uk + Z Vi + Z Wtk,

1<k<i-1 1<k<t-1 1<k<2m—j

withl <t=j—-i<n-1, ux= 1/1;(1/153( - pkpii)k, Vik = p,(f) E’j{ - ,(f)pi’i)k, and w;y = pi?kpk - gbi’i)klpk Since

entries are belonging to H, then

Uiiv1 = Z Uikt Z w1k

1<k<i-1 1<k<2m—i—1
= Z Uk + Z W1k — M1, + W12m-i-1
1<ksi 1<k<2m—i-2

= Uitli+2 — H1,i T W1,2m-i-1-

Then 1, — w1,2m-i-1 = 0, therefore

() () _ (%) (%)
ity + Uy Wam—ir1) = Piby s + Py iP2m—(i+1)s (17)
and
Uiiva = Z Uk +Vo1 + Z w7k
1<k<i-1 1<k<2m—i-2

Z Hok +V21+ Z Wk — H2,i + W22m-i-2

1<k<i 1<k<2m—i-3

= Uip1,i+3 — U2, T W2 20m—i-2-

Then p; — wpom-i—2 = 0, therefore

lPilP,(f)z + (212_i¢2n1—(i+2) = Pip(;_)i + P(zg_ipzm—(wz)- (18)

By performing similar computations for u;;., t = 3,4,--- ,2m — i, we arrive at

P+ Y5 Wanmiisn = PP, + Py Pan—(ive- (19)
Therefore, based on the equations from —, we can infer that if T"*T — TT™* = 0 then it follows for
alll <s,k<n-1,

P + 9 P = pepl? + pl pa (20)

For the establishment of converse, let us assume that the condition in equation (12) is true for every pair
of indices 1 < s,k < n —1,. Our goal is to show that u,, = 0 whenever 1 < r < n and u;; = 0 whenever
1 <i < j < nrespectively. From the argument presented in the first part of the proof, we have established
thatu,, = ty41,41,foreachr =1,2,--- ,m,and thatu,, = —u24—r+1,2m-r+1 holds for all values of r, Additionally,
since Uy, = —Gm = z,bmlpf,’f) - pg,’f)pm =0, it follows that u,, = 0, for every r = 1,2, -+, 2m. Thus, the diagonal
entries u,, are all vanish for all .

For the case where i < j, we observe that u; 41 = Ujs1,i42, Uijr2 = Uir1,i+3,°** , Uiirt = Uis1i++1. These equalities
show that U € 7,[H]. Since entries of U are in H, we can express i, ,+1 as

Upmel = Z Ui + Z wix = 0.

1<k<m-1 1<k<2m-m-1
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As a result, it follows that u;;,1 = 0 for all values of i. Furthermore, since

Um,m+2 = Z Ukt V21 + Z wyx = 0.
1<k<m-1 1<k<2m-m-2

Consequently u;;,, =0, for alli. Forallt =1,2,---,2m — i, we have u;;,; = 0, A similar approach applies
for n = 2m + 1. Therefore, the proof is concluded. [
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