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Atomic decomposition on Grand Herz-Hardy spaces on locally compact
Vilenkin groups

Babar Sultan
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Abstract. In this paper, we introduce the idea of grand Herz-Hardy spaces on locally compact Vilenkin
groups. Then we obtain the central block and atomic decomposition on these spaces.

1. Introduction

The idea of Herz-Hardy spaces are introduced in [1, 2]. In this paper, we extend these results to grand
Herz spaces and define the concept of grand Herz-Hardy spaces on locally compact Vilenkin group. We
obtain the atomic decomposition of these spaces.

In this paper, Q denotes the locally compact abelian group containing a strictly decreasing sequence of
compact open subgroups {Qm}

∞

m=−∞ such that

1.
⋂
∞

m=−∞Qm = {0} and ∪∞m=−∞Qm = Q,
2. sup

{
order

(
Qm
Qm+1

)
: m ∈ Z

}
< ∞.

Let m ∈ Z, then Q′ denotes the dual group of Q and define as Q′m =
{
γ ∈ Q′ : γ(y) = 1 for all y ∈ Qm

}
. Then{

Q
′
m
}∞
m=−∞ is a strictly increasing sequence of open compact subgroups of Q′ and

1.
⋂
∞

m=−∞Q
′
m = {1} and ∪∞m=−∞Q

′
m = Q

′,

2. order
(
Q
′

m+1
Q′m

)
= order

(
Qm
Qm+1

)
.

Let 1A denote the characteristic function of a set A and dγ and dx denotes the Haar measures of Q′ and Q
respectively. Let |A| denotes the Haar measure of a measurable subset A ofQ, orQ′ such that |Q0| =

∣∣∣Q′0∣∣∣ = 1.

Let m ∈ Z, then |Qm|
−1 =

∣∣∣Q′m∣∣∣ := nm. Since 2nm ≤ nm+1 where m ∈ Z, implies that
∞∑

m=t0

(nm)−β ≤ C
(
nt0

)−β and

t0∑
m=−∞

(nm)a
≤ C

(
mt0

)a for any β > 0, t0 ∈ Z. Define the function d : Q × Q → R by d(s, t) = 0 when s − t = 0

and d(s, t) = (nm)−1 when s − t ∈ Qm\Qm+1, then d defines a metric on Q × Q and the topology on Q induced
by this metric is the same as the original topology on Q. Let y ∈ Q, we set |y| = d(y, 0). Then |y| = (nm)−1 if
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and only if y ∈ Qm \ Qm+1. Let ⟨y⟩ = max
{
1,

∣∣∣y∣∣∣}. Lets define a metric d̄ on Q′ × Q′ such that |γ| = nm+1 iff

γ ∈ Q′m+1\Q
′
m. Let f̂ and f∨ denote the Fourier transform and inverse Fourier transform, respectively. We

have
(
1Qm

)∧ (γ) =
∣∣∣Q′m∣∣∣−1

1Q′m (γ) and
(
1Q′m

)∨
(y) = |Qm|

−1 1Qm (y) =: ∆n(y) for each m ∈ Z. The spaces S(Q) ( or
S(Q′) ) andS′(Q) (orS′(Q′) ) denote the spaces of test functions and distributions onQ (orQ′ ), respectively.

Let ω(y) be a nonnegative locally integrable function on Q. By Lq
ω(Q) we denote the weighted Lebesgue

space with respect to the weight measure ω(y)dy and 0 < q < ∞. Let ω(A) =
∫

A ω(y)dy. Let A1(Q) is the
usual Muckenhoupt class of weights. It is easy to verify that ω(y) = |y|β with −1 < β ≤ 0 is an A1(Q)-weight.
Let ω1, ω2 denotes the non-negative weights, 0 ≤ β < ∞, θ > 0 and 0 < p, q < ∞. Then the homogeneous
grand Herz spaces K̇β,p),θ

q (ω1, ω2;Q) are defined by

K̇β,p),θ
q (ω1, ω2;Q) =

{
1 : 1 is a measurable function on Q and

∥∥∥1∥∥∥K̇β,p),θ
q (ω1,ω2;Q) < ∞

}
, where

∥∥∥1∥∥∥K̇β,p)
q (ω1,ω2;Q) = sup

ϵ>0

ϵθ ∞∑
k=−∞

[ω1 (Qk)]β(1+ϵ)p
∥∥∥11Qk\Qk+1

∥∥∥(1+ϵ)p

Lq
ω2

(Q)


1/(1+ϵ)p

.

Let 1 ∈ S′(Q), define maximal functions 1∗(y) and Q∗r(y) as

1∗(y) = sup
m∈Z

∣∣∣1 ∗ ∆m(y)
∣∣∣ = sup

m∈Z

∣∣∣∣∣∣nm

∫
y+Qm

1(x)dx

∣∣∣∣∣∣ ,
and

Q
∗

r(y) = sup
m∈N

∣∣∣1 ∗ ∆m(y)
∣∣∣ = sup

m∈N

∣∣∣∣∣∣nm

∫
y+Qm

1(x)dx

∣∣∣∣∣∣ .
Let ω1, ω2 denote the non-negative weights, 0 ≤ β < ∞, θ > 0 and 0 < p, q < ∞. Then the homogeneous
grand Herz-Hardy spaces HK̇β,p),θ

q (ω1, ω2;Q) are defined by

HK̇β,p),θ
q (ω1, ω2;Q) =

{
1 ∈ S′(Q) : 1∗ ∈ K̇β,p),θ

q (ω1, ω2;Q)
}

and
hK̇β,p),θ

q (ω1, ω2;Q) =
{
1 ∈ S′(Q) : Q∗r ∈ K̇β,p),θ

q (ω1, ω2;Q)
}
.

Numerous studies have explored various extensions and versions of Herz-type spaces. For a comprehensive
account of these developments and related results, see [5–18].

2. Central atomic decomposition on grand Herz-Hardy spaces

Definition 2.1. Let ω1, ω2 be non-negative weights, 0 ≤ a < ∞ and 0 < q < ∞.
(a) A function a ∈ Lq

ω2
(Q) is said to be a central

(
β, q;ω1, ω2

)
Q

-block with the support Qm for some m ∈ Z, if i) supp
a ⊆ Qm; ii) ∥a∥Lq

ω2
(Q) ≤ [ω1 (Qm)]−β.

(b) A function a ∈ Lq
ω2

(Q) is said to be a central
(
β, q;ω1, ω2

)
Q

-atom with the supportQm for some m ∈ Z, if it satisfies
i) and ii) in (a), and iii)

∫
Q

a(y)dy = 0.

Theorem 2.2. Let ω1 ∈ A1(Q) and ω2 be any non-negative weight function on Q. Assume 0 < β < ∞, θ > 0, 1 ≤

q < ∞ and 0 < p < ∞. Then 1 ∈ K̇β,p),θ
q (ω1, ω2;Q) if and only if 1(y) =

∞∑
k=−∞

λkbk(y), where bk is a central(
β, q;ω1, ω2

)
Q

-block supported on Qk and sup
ϵ>0
ϵθ

∞∑
k=−∞

|λk|
(1+ϵ)p < ∞. Moreover,

∥∥∥1∥∥∥K̇β,p),θ
q (ω1,ω2;Q) ∼ inf

sup
ϵ>0

ϵθ ∞∑
k=−∞

|λk|
(1+ϵ)p


1/(1+ϵ)p

 ,
where the infimum is taken over all the decompositions of 1 as above.
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Proof. Let 1 ∈ K̇β,p),θ
q (ω1, ω2;Q), write 1 as

1(y) =
∑
k∈Z

1(y)1Qk\Qk+1 (y)

=
∑
k∈Z

(ω1 (Qk))β
∥∥∥11Qk\Qk+1

∥∥∥
Lq
ω2

1(y)1Qk\Qk+1 (y)

(ω1 (Qk))β
∥∥∥11Qk\Qk+1

∥∥∥
Lq
ω2

(Q)

:=
∑
k∈Z

λkbk(y),

where λk = (ω1 (Qk))β
∥∥∥11Qk\Qk+1

∥∥∥
Lq
ω2

(Q)
and bk(y) =

1(y)1Qk\Qk+1
(y)

(ω1(Qk))β
∥∥∥11Qk\Qk+1

∥∥∥
L

q
ω2

(Q)

. It is easy to see that supp bk ⊂ Qk and

|bk∥Lq
ω2

(Q) = (ω1 (Qk))−β. So bk(y) is a
(
β, q;ω1, ω2

)
Q

-atom supported in Qk. Thus we have

sup
ϵ>0

ϵθ∑
k∈Z

|λk|
(1+ϵ)p


1/(1+ϵ)p

= sup
ϵ>0

ϵθ ∞∑
k=−∞

[ω1 (Qk)]β(1+ϵ)p
∥∥∥11Qk\Qk+1

∥∥∥(1+ϵ)p

Lq
ω2

(Q)


1/(1+ϵ)p

=
∥∥∥1∥∥∥K̇β,p),θ

q (ω1,ω2;Q) < ∞.

Conversely, let 1(y) = λkbk(y) and sup
ϵ>0

(
ϵθ

∑
k∈Z
|λk|

(1+ϵ)p
)1/(1+ϵ)p

< ∞. For j ∈ Z, we have

∥∥∥11Q j\Q j+1

∥∥∥
Lq
ω2

(Q)
=

∥∥∥∥∥∥∥
∑

k∈Z

λkbk

 1Q j\Q j+1

∥∥∥∥∥∥∥
Lq
ω2

(Q)

≤

∑
k≤ j

|λk|
∥∥∥bk1Q j\Q j+1

∥∥∥
Lq
ω2

(Q)
.

Case 1: When 0 < (1 + ϵ)p ≤ 1. We get

∥∥∥1∥∥∥K̇β,p),θ
q (ω1,ω2;Q) = sup

ϵ>0

ϵθ
∞∑

j=−∞

[
ω1

(
Q j

)]β(1+ϵ)p ∥∥∥11Q j\Q j+1

∥∥∥(1+ϵ)p

Lq
ω2

(Q)


1/(1+ϵ)p

≤ sup
ϵ>0

ϵθ
∞∑

j=−∞

[
ω1

(
Q j

)]β(1+ϵ)p ∑
k≤ j

|λk|
(1+ϵ)p

∥∥∥bk1Q j\Q j+1

∥∥∥(1+ϵ)p

Lq
ω2

(Q)




1/(1+ϵ)p

≤ sup
ϵ>0

ϵθ
∞∑

j=−∞

[
ω1

(
Q j

)]β(1+ϵ)p ∑
k≤ j

|λk|
(1+ϵ)p [ω1(Qk)]−β(1+ϵ)p




1/(1+ϵ)p

≤ sup
ϵ>0

ϵθ
∞∑

k=−∞

|λk|
(1+ϵ)p

 ∞∑
j=k

[ω1(Qk)]−β(1+ϵ)p
[
ω1

(
Q j

)]β(1+ϵ)p


1/(1+ϵ)p

≤ sup
ϵ>0

ϵθ
∞∑

k=−∞

|λk|
(1+ϵ)p

∞∑
j=k

ω1

(
Q j

)
ω1 (Qk)


β(1+ϵ)p

1/(1+ϵ)p

≤ sup
ϵ>0

ϵθ∑
k∈Z

|λk|
(1+ϵ)p


1/(1+ϵ)p

< ∞.

Case 2: When 1 ≤ (1 + ϵ)p < ∞:

∥∥∥11Q j\Q j+1

∥∥∥
Lq
ω2

(Q)
≤C[ω1(Q j)]β/2

∑
k≤ j

|λk|
(1+ϵ)p [ω1(Qk)]β(1+ϵ)p/2


1/(1+ϵ)p

.
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And therefore

∥∥∥1∥∥∥K̇β,p),θ
q (ω1,ω2;Q) = sup

ϵ>0

ϵθ
∞∑

j=−∞

[
ω1

(
Q j

)]β(1+ϵ)p ∥∥∥11Q j\Q j+1

∥∥∥(1+ϵ)p

Lq
ω2

(Q)


1/(1+ϵ)p

≤C sup
ϵ>0

ϵθ
∞∑

j=−∞

[
ω1

(
Q j

)]β(1+ϵ)p/2 ∑
k≤ j

|λk|
(1+ϵ)p [ω1(Qk)]β(1+ϵ)p/2




1/(1+ϵ)p

≤ sup
ϵ>0

ϵθ
∞∑

k=−∞

|λk|
(1+ϵ)p

∞∑
j=k

ω1

(
Q j

)
ω1 (Qk)


β(1+ϵ)p

1/(1+ϵ)p

≤ sup
ϵ>0

ϵθ∑
k∈Z

|λk|
(1+ϵ)p/2


1/(1+ϵ)p

< ∞.

Theorem 2.3. Let ω1, ω2 ∈ A1(Q), 1 < q < ∞,−1 < β ≤ 0 and 0 < p ≤ 1. Then 1 ∈ HK̇β,p),θ
q (ω1, ω2;Q)

iff 1 =
∞∑

k=−∞
λkak in distributional sense, where each ak is a central

(
β, q;ω1, ω2

)
Q

-atom supported on Qk, and

sup
ϵ>0
ϵθ

∞∑
k=−∞

|λk|
(1+ϵ)p < ∞. Moreover,

∥∥∥1∥∥∥HK̇β,p),θ
q (ω1,ω2;Q) ∼ inf

sup
ϵ>0

ϵθ ∞∑
k=−∞

|λk|
(1+ϵ)p


1/(1+ϵ)p

 ,
where the infimum is taken over all the decompositions of 1 as above.

Proof.

1(z) =
∞∑

t0=−∞

1(z)1Qt0 \Qt0+1 (z)

=

∞∑
t0=−∞

1(z)1Qt0 \Qt0+1 (z) −


∫

Qt0 \Qt0+1

1(y)dy

 1Qt0+1\Qt0+2 (z)∣∣∣(Qt0+1\Qt0+2
)∣∣∣


+

∞∑
t0=−∞

∫
Qt0 \Qt0+1

1(y)dy

 1Qt0+1\Qt0+2 (z)∣∣∣(Qt0+1\Qt0+2
)∣∣∣

=:I1 + I2.

If

bt0 (z) := 1(z)1Qt0 \Qt0+1 (z) −

∫
Qt0 \Qt0+1

1(y)dy

 1Qt0+1\Qt0+2 (z)∣∣∣(Qt0+1\Qt0+2
)∣∣∣ .

It is easy to note that
∫

bt0 (z)dz = 0, where supp bt0 ⊂ Qt0\Qt0+2 ⊂ Qt0 . Let β > −1, then from Lemma 1 of [3] and
(1) in [4] yields

ω1
(
Qt0+1\Qt0+2

)
≈ ω1

(
Qt0+1

)
≈

(
mt0+1

)−(β+1)
≈

(
mt0

)−(β+1) .
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Next, we get∫
Qt0

∣∣∣bt0 (z)
∣∣∣(1+ϵ)p dω1(z)

1/(1+ϵ)p

≤

∫
Qt0 \Qt0+1

|1(z)|(1+ϵ)pdω1(z)

1/(1+ϵ)p

+

∫
Qt0 \Qt0+1

|1(z)|dz

 ω1
(
Qt0+1\Qt0+2

)1/(1+ϵ)p∣∣∣(Qt0+1\Qt0+2
)∣∣∣

≤

∫
Qt0 \Qt0+1

|1(z)|(1+ϵ)pdω1(z)

1/(1+ϵ)p

+

∫
Qt0 \Qt0+1

|1(z)|(1+ϵ)p|z|βdz

1/(1+ϵ)p

×

(
mt0

)β/(1+ϵ)p ∣∣∣(Qt0\Qt0+1
)∣∣∣1−1/(1+ϵ)p

ω1
(
Qt0+1\Qt0+2

)1/(1+ϵ)p∣∣∣(Qt0+1\Qt0+2
)∣∣∣

≤C0

∫
Qt0 \Qt0+1

|1(z)|(1+ϵ)pdω1(z)

1/(1+ϵ)p

.

Hence we get

at0 (z) :=

C0

∫
Qt0 \Qt0+1

|1(y)|(1+ϵ)pdω1(y)

1/(1+ϵ)p
−1

ω1
(
Qt0

)1/(1+ϵ)p−1 bt0 (z),

is a central
(
β, q;ω1, ω2

)
Q

-atom. Let

λt0 := C0ω1
(
Qt0

)1−1/(1+ϵ)p

∫
Qt0 \Qt0+1

|1(z)|(1+ϵ)pdω1(z)

1/(1+ϵ)p

.

Then I1 =
∞∑

t0=−∞
λt0 at0 (z), and

sup
ϵ>0
ϵθ

∞∑
t0=−∞

λt0 ≤ C0 sup
ϵ>0
ϵθ

∞∑
t0=−∞

ω1
(
Qt0

)1/((1+ϵ)p)′
∥∥∥11Qt0 \Qt0+1

∥∥∥
Lq
ω2

(Q)

≤ C0∥1∥K̇β,1),θ
q (ω1,ω2;Q) ≤ C0

∥∥∥1∗∥∥∥K̇β,1),θ
q (ω1,ω2;Q) = C0

∥∥∥1∥∥∥HK̇β,1),θ
q (ω1,ω2;Q) .

To estimate I2, we write 1̃Qt0 \Qt0+1 (z) =
∣∣∣(Qt0\Qt0+1

)∣∣∣−1
1Qt0 \Qt0+1 (z); then

I2 =

∞∑
t0=−∞

∫
Qt0 \Qt0+1

1(y)dy

 1̃Qt0+1\Qt0+2 (z)

=

∞∑
t0=−∞


∞∑

j=t0

∫
Q j\Q j+1

1(y)dy

 (̃
1Qt0+1\Qt0+2 (z) − 1̃Qt0 \Qt0+1 (z)

)
=:

∞∑
t0=−∞

ht0 (z),

where

ht0 (z) : =

 ∞∑
j=t0

∫
Q j\Q j+1

1(y)dy

 (̃1Qt0+1\Qt0+2 (z) − 1̃Qt0 \Qt0+1 (z)
)
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=

∫
Qt0

1(y)dy

 (̃1Qt0+1\Qt0+2 (z) − 1̃Qt0 \Qt0+1 (z)
)
.

Hence supp ht0 ⊂ Qt0\Qt0+2 ⊂ Qt0 and
∫

ht0 (z)dz = 0. Consequently we get

∣∣∣ht0 (z)
∣∣∣ ≤C1

∣∣∣(Qt0

)∣∣∣ 1∗(z)1Qt0
(z)

(∣∣∣(Qt0

)∣∣∣−1
1Qt0 \Qt0+1 (z) +

∣∣∣(Qt0+1
)∣∣∣−1

1Qt0+1\Qt0+2 (z)
)

≤ C11
∗(z)1Qt0 \Qt0+1 (z) + C11

∗(z)1Qt0+1\Qt0+2 (z)
)
.

We have ∥∥∥ht0

∥∥∥
Lq
ω2

(Q)
≤ C1

∥∥∥1∗1Qt0 \Qt0+1

∥∥∥
Lq
ω2

(Q)
+ C1

∥∥∥1∗1Qt0+1\Qt0+2

∥∥∥
.

Thus

at0 (z) :=
{
C1

∥∥∥1∗1Qt0 \Qt0+1

∥∥∥
Lq
ω2

(Q)
+ C1

∥∥∥1∗1Qt0+1\Qt0+2

∥∥∥
Lq
ω2

(Q)

}−1
ω1

(
Qt0

)1/(1+ϵ)p−1 ht0 (z),

is a central (β, q;ω1, ω2)Q-atom. If we write

λt0 :=
{
C1

∥∥∥1∗1Qt0 \Qt0+1

∥∥∥
Lq
ω2

(Q)
+ C1

∥∥∥1∗1Qt0+1\Qt0+2

∥∥∥
Lq
ω2

(Q)

}
ω1

(
Qt0

)1−1/(1+ϵ)p .

Then I2 =
∑
λt0 at0 , and

sup
ϵ>0
ϵθ

∞∑
t0=−∞

∣∣∣λt0

∣∣∣ ≤ C1

∥∥∥1∗∥∥∥K̇β,1),θ
q (ω1,ω2;Q) = C1

∥∥∥1∥∥∥HK̇β,1),θ
q (ω1,ω2;Q) .

Next we will prove that 1 =
∑
λt0 at0 ∈ S′(Q). Firstly we will have

λt0

∫
Qt0+1\Qt0+2

at0 (z)dz→ 0 as t0 →∞. (1)

Thus, we get ∫
Qt0+1\Qt0+2

bt0 (z)dz→ 0 and
∫
Qt0+1\Qt0+2

ht0 (z)dz→ 0.

As t0 →∞. Next by using the definitions of bt0 , ht0 , and (1), we get∫
Qt0 \Qt0+1

1(y)dy→ 0 and
∫
Qt0

1(y)dy→ 0. (2)

As t0 → ∞. Let β = 0, 1 ∈ L1(Q) then 0 <
∣∣∣Qt0\Qt0+1

∣∣∣ ≤ ∣∣∣Qt0

∣∣∣→ 0 as t0 → ∞, (2) holds. If −1 < β < 0, 1 ∈ L1
β(Q),

then |y| ≤
(
mt0

)−1 for y ∈ Qt0 , and |y| =
(
mt0

)−1 for y ∈ Qt0\Qt0+1, we obtain∣∣∣∣∣∣
∫
Qt0

1(y)dy

∣∣∣∣∣∣ ≤ (
mt0

)β ∫
Qt0

∣∣∣∣1(y)
∥∥∥∥ y

∣∣∣β dy ≤
(
mt0

)β∥∥∥∥ 1∥∥∥∥
L1
ω2

(Q)
→ 0.

If t0 →∞, and ∣∣∣∣∣∣
∫
Qt0 \Qt0+1

1(y)dy

∣∣∣∣∣∣ ≤
∫
Qt0 \Qt0+1

|1(y)|dy ≤
∫
Qt0

|1(y)|dy→ 0.
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If t0 →∞, then (2) also holds.
If φ ∈ S(Q), φ is constant on the cosets ofQt0 inQ but not on the cosets ofQt0−1 (unless φ(z) ≡ 0 ) and suppφ ⊂ Qm.
Obviously, t0 ≥ m. Because 1(z) =

∑
λt0 at0 (z) pointwise, from (1) and

∫
Qt0 \Qt0+2

at0 (z)dµ(z) = 0, it follows

⟨1, φ⟩ =

∫  ∞∑
t0=−∞

λt0 at0 (z)

φ(z)dz

=

∞∑
t=m

∫
Qt\Qt+1

 t∑
t0=t−1

λt0 at0 (z)

φ(z)dz

=

∞∑
t=m

(
λt−1

∫
Qt\Qt+1

at−1φ + λt

∫
Qt\Qt+1

atφ

)
.

Hence we have

=


λm−1

∫
Qm\Qm+1

am−1φ, t0 = m,

λm−1

∫
Qm\Qm+1

am−1φ +
t0−1∑
t=m
λt

∫
atφ, t0 > m,

= lim
m1→∞
m2→∞

∫  m2∑
t0=−m1

λt0 at0

φ,
that is, 1 =

∑
λt0 at0 in S′(Q).

Let 0 < (1 + ϵ)p < 1 yields limn→∞Qn = limn→∞ 1 ∗ ∆n = 1 ∈ S′(Q) and Qn(z) = 1 ∗ ∆n(z) is a function on Q
which is constant on the cosets of Qn in Q. It is easy to note that

|Qn(z)| ≤ 1∗(z) (3)
(Qn)∗ (z) ≤ 1∗(z), (4)∫
Qt0 \Qt0+1

Qn(z)dz→ 0 and
∫
Qt0

Qn(z)dz→ 0 as t0 →∞. (5)

Using (3),(4) and (5) for Qn, similarly we get

Qn(z) =
∞∑

t0=−∞

λt0 an
t0

(z) (6)

in S′(Q) pointwise, where sup
ϵ>0
ϵθ

∞∑
t0=−∞

∣∣∣λt0

∣∣∣(1+ϵ)p ≤ C
∥∥∥1∥∥∥(1+ϵ)p

HK̇β,p),θ
q (Q)

, and each an
t0

(z) is a central
(
β, q;ω1, ω2

)
Q

-atom

supported in Qt0 , note that supp an
t0
⊂ Qt0\Qt0+2. Hence we get

sup
n∈N

∥∥∥an
0(z)

∥∥∥
Lq
ω2

(Q)
≤ ω1 (Q0)1/q−1/(1+ϵ)p .

Then using the Banach-Alaoglu theorem yields a subsequence
{
a

nv0
0

}
of

{
an

0

}
converging in the weak* topology of Lq

ω2
(Q)

to some a0 ∈ Lq
ω2

(Q). It is easy to verify that a0 is a central
(
β, q;ω1, ω2

)
Q

-atom supported in Q0. Next, since

sup
nv0

∥∥∥a
nv0
1 (z)

∥∥∥
Lq
ω2

(Q)
≤ ω1 (Q1)1/q−1/(1+ϵ)p .

Another application of the Banach-Alaoglu theorem yields a subsequence
{
a

nv1
1

}
of

{
a

nv0
1

}
and a central

(
β, q;ω1, ω2

)
Q

-
atom a1 with supp a1 ⊂ Q1 which converges weak* in Lq

ω2
(Q) to a1. Hence we get

sup
nv1

∥∥∥a
nv1
−1 (z)

∥∥∥
Lq
ω2

(Q)
≤ ω1 (Q−1)1/q−1/(1+ϵ)p .
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Again repeating the process we get the subsequence
{
anv−1
−1

}
of

{
a

nv1
−1

}
which converges weak* in Lq

ω2
(Q) to some

a−1 ∈ Lq
ω2

(Q), and a−1 is a central
(
β, q;ω1, ω2

)
Q

-atom supported in Q−1. Repeating the above process, for each

t0 ∈ Z, we can find a subsequence
{
a

nvt0
t0

}
of

{
an

t0

}
converging weak* in Lq

ω2
(Q) to some at0 ∈ Lq

ω2
(Q), and at0 is a central(

β, q;ω1, ω2
)
Q

-atom supported in Qt0 . Then the diagonal method yields a sequence {nv} of natural numbers such that
for every t0 ∈ Z, limv→∞ anv

t0
= at0 in the weak* topology of Lq

ω2
(Q), and therefore, in S′(Q). Next we will prove that

1 =

∞∑
t0=−∞

λt0 at0 (7)

in S′(Q). Next, we get

⟨1, φ⟩ = lim
nv→∞

〈
Qnv , φ

〉
= lim

nv→∞

〈 ∞∑
t0=−∞

λt0 anv
t0
, φ

〉

=


limnv→∞ λm−1

∫
anv

m−1φ, t0 = m,

limnv→∞

{
λm−1

∫
anv

m−1φ +
t0−1∑
t0=m
λt0

∫
anv

t0
φ

}
, t0 > m,

=


λm−1

∫
am−1φ, t0 = m,

λm−1

∫
am−1φ +

t0−1∑
t0=m
λt0

∫
at0φ, t0 > m,

= lim
m1→∞
m2→∞

∫  m2∑
t0=−m1

λt0 at0

φ,
that is, (7) holds in S′(Q).

Conversely, suppose 1 =
∞∑

j=−∞
λ ja j in S′(Q), where a j is a central

(
β, q;ω1, ω2

)
Q

-atom. Then 1∗(z) ≤
∞∑

j=−∞

∣∣∣λ j

∣∣∣ a∗j(z)

and ∥∥∥1∗∥∥∥(1+ϵ)p

K̇β,p),θ
q (Q)

≤

∞∑
j=−∞

∣∣∣λ j

∣∣∣(1+ϵ)p ∥∥∥∥a∗j
∥∥∥∥(1+ϵ)p

K̇β,p),θ
q (Q)

.

Next it is remaining to prove that ∥∥∥∥a∗j
∥∥∥∥(1+ϵ)p

K̇β,p),θ
q (Q)

≤ C,

where C is independent of a j. Let supp a j ⊂ Qn j , we need to prove that supp a∗j ⊂ Qn j . Hence we get

a j ∗ ∆n(z) = mn

∫
Qnj∩(z+Qn)

a j(y)dy.

Thus, if z < Qn j then for n j ≥ n,Qn j ⊆ Qn and Qn j ∩ (z + Qn) , ∅ implies Qn j ∩ (z + Qn) ⊆ Qn, so a j ∗ ∆n(z) = 0.
If n > n j, then Qn ⊆ Qn j which leads to Qn j ∩ (z + Qn) = ∅. Note a∗j(z) = supn∈Z

(
a j ∗ ∆n

)
(z) and supp a∗j ⊂ Qn j .

Hence we get∥∥∥∥a∗j
∥∥∥∥(1+ϵ)p

K̇β,p),θ
q (Q)

= sup
ϵ>0
ϵθ

∞∑
t0=−∞

ω1(Qt0 )1−(1+ϵ)p/q
∥∥∥∥a∗j1Qt0 \Qt0+1

∥∥∥∥(1+ϵ)p

K̇β,p),θ
q (Q)

≤ C sup
ϵ>0
ϵθ

∞∑
t0=−∞

ω1(Qt0 )1−(1+ϵ)p/q
∥∥∥a j

∥∥∥(1+ϵ)p

Kβ,p),θ
q (Q)

≤ C.

Which completes the proof.
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