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Atomic decomposition on Grand Herz-Hardy spaces on locally compact
Vilenkin groups
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Abstract. In this paper, we introduce the idea of grand Herz-Hardy spaces on locally compact Vilenkin
groups. Then we obtain the central block and atomic decomposition on these spaces.

1. Introduction

The idea of Herz-Hardy spaces are introduced in [1, 2]. In this paper, we extend these results to grand

Herz spaces and define the concept of grand Herz-Hardy spaces on locally compact Vilenkin group. We
obtain the atomic decomposition of these spaces.

In this paper, Q denotes the locally compact abelian group containing a strictly decreasing sequence of
compact open subgroups {@y},,-_, such that

1. Myecco @ = {0} and Uy__ Q= Q,

2. sup {order(QQm"il) im emZ:ri 0.

Let m € Z, then @ denotes the dual group of Q and define as Q), = {y e @ : y(y) = 1 forall y € Q,} . Then
(@}, is a strictly increasing sequence of open compact subgroups of Q and

1. Myeeeo @, = {1}and Uy__ Q) = Q,

Q;H»l — Qm
2. order ( a ) = order (le )

Let 14 denote the characteristic function of a set A and dy and dx denotes the Haar measures of Q and Q
respectively. Let |A| denotes the Haar measure of a measurable subset A of Q, or @ such that |Qy| = Q{J =1.

Let m € Z, then |Q,,| ! = |Q;,1 := Ny Since 21y, < nyyq where m € Z, implies that ) ()P < C(nto)_ﬁ and

m:to

t
i ()" < C(my,)" for any B > 0,y € Z. Define the functiond : Q X Q —» R by d(s,t) = 0 whens—t =0

and d(s, t) = (1n,,)”" when s — t € Q,\Qy11, then d defines a metric on Q x Q and the topology on Q induced
by this metric is the same as the original topology on Q. Let y € Q, we set |y| = d(y,0). Then |y| = (1,,)"" if
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and only if y € Q \ Q1. Let (y) = max{l, y|} Lets define a metric d on Q X Q such that |y| = 1,1 iff

ye \@,. Let fand f¥ denote the Fourier transform and inverse Fourier transform, respectively. We

have (1g,)" () = |@, - 1g,(y) and (la;n)v (1) = 1Qul " 1g, (y) = An(y) for each m € Z. The spaces S(Q) ( or
S(@))and &' (Q) (or S'(Q’) ) denote the spaces of test functions and distributions on Q (or Q" ), respectively.

Let w(y) be a nonnegative locally integrable function on Q. By L (Q) we denote the weighted Lebesgue
space with respect to the weight measure w(y)dy and 0 < g < co. Let w(A) = fA w(y)dy. Let A1(Q) is the

usual Muckenhoupt class of weights. It is easy to verify that w(y) = |yl with —1 < g < 0is an A;(Q)-weight.
Let w1, w; denotes the non-negative weights, 0 < 8 < 00, 8 > 0 and 0 < p,q < 0. Then the homogeneous

grand Herz spaces Ks’p )0 (w1, wy; Q) are defined by
Kg’p 6 (w1, w2; Q) = {g : g is a measurable function on Q and ”g“ K (01 @) < 00}/ where
. 1/(1+e)p
_ 0 B(1+e), (1+e)p

||g||K§,p><mW2;Q) = Selig {e k_Z‘ [w1 Q)P Hglak\0k+1 17,@

Let g € ©/(Q), define maximal functions g*(y) and Q;(y) as
7'(y) = sup |g = Au(y)| = sup [, f g(x)dx|,
meZ. meZ }/+Qm

and

Ny f g(x)dx
y+Qm

Let w1, w; denote the non-negative weights, 0 < < 00, 8 > 0 and 0 < p,q < co. Then the homogeneous

Q(y) = sup g * Au(y)| = sup
melN melN

grand Herz-Hardy spaces HKg’p )6 (w1, wo; Q) are defined by

HKg’p)’e (w1, w2 Q) = {g €ed@Q:yg € KS’V)’G (a)l,a)z;Q)}

and
th,p),@ (1,02, Q) = {g €G@Q:Q € KS”’)’Q (a)1,w2;Q)}.

Numerous studies have explored various extensions and versions of Herz-type spaces. For a comprehensive
account of these developments and related results, see [5-18].

2. Central atomic decomposition on grand Herz-Hardy spaces

Definition 2.1. Let w1, w, be non-negative weights, 0 < a < coand 0 < q < co.
(a) A function a € LY, (Q) is said to be a central (B, q; w1, w2)g-block with the support Q,, for some m € Z, if i) supp

0 C Qu; i) llallyy_q) < [w1 (Qu)] ™.

(b) A functiona € LZ,Z (Q) is said to be a central (B, q; w1, wz)Q—atom with the support Q,, for some m € Z, if it satisfies

i) and ii) in (a), and iii) an(y)dy =0.

Theorem 2.2. Let w; € A1(Q) and w, be any non-negative weight function on Q. Assume 0 < f < 00,60 > 0,1 <

g <ocoand 0 < p < oo. Then g € Kg’p)’e (w1, w2; Q) if and only if g(y) = Y. Axbk(y), where by is a central
k=—c0

(B, q; w1, w2)g-block supported on Qy and sup el ¥ A1+ < 0. Moreover,
e>0 k=—c0

) 1/(+e)p
~ 3 0 (I+e)p
“g)‘Kﬁ"’”’(wl,wz;a) inf{sup [e Z |Ax] ] ,
e>0

k=—c0

where the infimum is taken over all the decompositions of g as above.
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Proof. Let g € Kg'p)’e (w1, w2; Q), write g as
9(y) = Z MR ()

keZ
( )1Q Q+1( )
:Z (w1 Q) ||.q1ak\Qk+1 L ’ yﬁ i—
=~ “2 (w1 (Q)) ”ngk\Qk+1 ()
=) Adi(y),
keZ
where Ay = (01 Q) Hgldk\ak+1 1@ and bi(y) = I¥)19\q.,, V) . It is easy to see that supp by C Q and

@@y 190\Qi ”Lz;z @

|bk||L7”2(Q) = (w1 (Q)) . So bi(y) is a (B, q; w1, w2)g-atom supported in Q. Thus we have

1/(1+e)p I 1/(1+e)p
(1+e)p
sup [69 Z Mk|(1+e)pJ = sup {69 Z [w: (Qk)]{3(1+e)l’ ”.’ﬂQk\Qm }

L‘Y
>0 ez e>0 ()

k=—00
= . o
”g”Kg'p)'e((m,an;Q) < ’

1/(1+e)p
) < oo. For j € Z, we have

Conversely, let g(y) = Axbi(y) and sup (69 Y Ay Few
e>0 kez

(Z )\kbk] 1g,\q;.

keZ

< Z Akl |[Brlaay.,
U,@ ksi

Hg 1o)\@in

L,@ ~ L, @"

Case 1: When 0 < (1 +€)p < 1. We get

e Z [“’1 (Qf)]ﬁ(HW |71a)\@.,

j=—o0

0 i [wr (@) [Z AU (S PR

k<j

1/(1+e)p
(1+e)p
1,@

”9 “ K9 (0, 00:Q) = s::g

<sup
e>0

1/(1+e)p
(1+e)p
L, (@

<sup
e>0

1/(1+e)p
[ (@) [Z A [ (Q»]‘ﬁmew]

k<j

=

- ks 1/(1+e)p
e Y 1At [Z [01(QU)] PP [y (Qj)]ﬁ(“f)lﬂ}
=k

k=—00 Ji

<sup
e>0

B(1+e)p 1/(1+e)p

(o)

WS>
j=k

k=—00

1/(1+e)p
<sup [ee Z |/\k|(1+€)l’] < 0.

e>0 keZ

w1 (Q)
w1 (Qk)

<sup
e>0

= = = = =
(o
gk
g

Case2: When1 < (1 +€)p < oo:

1/(1+e)p
710, ;.. U@ <Clw1(Q))]F Z|}\k|(1+€)l” [wl(gk)]mne)p/z] _

k<j
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And therefore
1/(1+e)p
— 0 \1pA+er (+e)p
||!7“1'<5"’>'0<ml,w2;a) —SupA€ Z [wl (Q])] |71, \0;.. 1@
j=—00
1/(1+e)p
<Csuple? Z [a) (Q})]ﬁ(ue)p/z ZM (o [ (@Q)F+orr2
= p 1A% k w1 (&
e>0 je—co <)
B(l+e)p 1/(+e)p
<sup e? i I/\k|(1+f)!fi “1 <Qj)
R L@ (@)
1/(1+e)p
<sup e@zl/\k|(l+e)p/2 < oo,
e>0 keZ.
O

Theorem 2.3. Let wy, w2 € A1(Q),1 < g < 00,-1 < B<0and0 <p <1 Theng € HKs’p)’e (w1, w2; Q)

iff g = Y. Max in distributional sense, where each ay is a central (B, q; wl,wz)a—atom supported on Q, and

k=—00

(o]
supe? ¥ AT < 0o, Moreover,
e>0 k=—o00

0o 1/(1+e)p
~ i 0 (I+e)p
“g”HKg'p)’e(ml,wz;Q) lnf Sup [6 Z |Ak| ] ’
e>0 k=—co

where the infimum is taken over all the decompositions of g as above.

Proof.
g9(z) = Z 9(2)1g,\@y. (2)
ty=—00
- 1, .1\@y (2)
= 921 \@y. (2) = f gy | ————
t():Z_oo ) \QtO_H |(Qt0+1 \th+2)|
- 1Qt +1\Qt +2 (Z)
+ g(y)dy] T
tO:Z—oo (Lto \Qi0+1 |(Qf0+1 \Qf0+2)|
=ZIl + 12.
If
1Qt0+1 \Qfo +2 (Z)
by, (2) == 9(2)1q,\@,. (2) — ( fa " g(y)dy] m
to ty+1 f0+1 t0+2

It is easy to note that f by, (z)dz = 0, where supp by, C Qi)\Qy+2 C Q4. Let > =1, then from Lemma 1 of [3] and
(1) in [4] yields

w1 (Qus1\Qups2) ~ 1 Q1) = (m1y51) # ~ (my,) ¢
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Next, we get

(e} 1/(1+e)p 1/(1+e)p
+e
[ f |bey ()] deoy (z)] < ( f Ig(z)l(“e)”dwl(z)]

Q, Qi \ Qi1

1/(1+e)p
+ (f Ig(z)ldz] w1 (Qpy+1\ Qs +2)
Qto \Qtoﬂ |(Qt0+1\Qt0+2)|

1/(1+e)p
< [ [ |g<z>|<1+€>Pdw1<z>]
Q[O \Qt0+1

1/(1+e)p
+ ( f |g(z>|<“f>ﬂ|z|ﬁdz)
Qt(] \Qt()ﬂ

1-1/(1+e)
y (my, )PP I(Qto\Qto+1)| P 01 (Quusr\Qa2) 0+

|(Qto+1\Qto+2)|

1/(1+e)p
<Co ( f 9@ P dews (Z)]
Qto \Qt0+l

Hence we get

1/(+e)p) 71
a,(2) = {Co [ f . Ig(y)l(“e)’”dm(y)) } w1 Q)" by (2),

is a central (B, q; w1, w2)g-atom. Let

Jl/(lJre)p

Aty := Cowy (@) H+P ( f g P dews (2)
Q[O \Qtoﬂ

Thenly = Y, Away(z), and

to=—00

1/((1+e)py
sup e’ Z A, < Cosupe? Z wy (@) @) ”gl@o\%+1

e>0 e>0

L1,@

fp=—00 tg=—00

< Collgl, <G|y, = Colgll -
< Gollg ”Kg'“’ﬁ(wl,wz;Q) < Collg KV (@1,00,Q) Collg HKE (@1,00,Q)

. L= -1
To estimate I, we write 1q, \q, ., (2) = |(Qt0 \Qtoﬂ)l 1g,\a, . (2); then

0o

Y, ( f g(y)dyJTa,o+1\af0+z (2)
Qio \Qt[)+1

tg=—c0

Z Z LAQM gy (fat0+1\a,0+2(z)—TQIO\QI()H(Z))

tg=—00 j:to

: i hiy (2),

tg=—o00

I

where

h(2) : =(Z fa " 1!J(y)dll (fafoﬂ\aw(z)—Tato\atoﬂ(Z))
] ]+

J=to

1305
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= (L g(y)dy) aQt0+1\QrO+2 (2) - TQtO \Qy+1 (Z)) .

Hence supp hy, C Qy,\Qyy+2 C @y, and f hy,(z)dz = 0. Consequently we get

|1, (2)] <Ci1 (@)

7 @10, (@) 10,10, +[@)] " 1a,10,.0))
< C19' (@)1g, @0 (@) + C1' (D1g,0\Q, 2 (2)) -

We have

”htO”LﬂZ(Q) s Cl Hg*l@o\(’lfo+1 LZ,Z(Q) + Cl ”g*l@oﬂ\(’lfo+2

Thus

-1
w1 (@) (),

a, (Z) = {Cl ||g*1Q‘o\Qfo+1 LZ’Z(Q)}

natt 910, 1@,

is a central (B, q; w1, wz)q-atom. If we write

— . . 1-1/(1+€)
A = {Cl “g l@o\Q'o+l Li,Q +G H!] 162foﬂ\(’?fo‘f2 LZyz(Q)}a)l (@) ».

Then I = Y, Ayay, and

sup e@ Z |At0| = Cl ||g*HKﬁ’l)'H((ul,wz;Q) = Cl ”g”HKf;'l)’e(wl,wz;Q) :
e>0

ty=—00

Next we will prove that g = Y, Ayay, € S'(Q). Firstly we will have
/\tof a(z)dz = 0 asty — oo. (1)
Qt0+1\Qt0+2

Thus, we get

f by, (z)dz - 0 and f h,(z)dz — 0.
Qi +1\Qyg 42 Qi +1\Qy 42

As tg — oo. Next by using the definitions of by,, hy,, and (1), we get

[ sway—o md [ gway o @
Q\Qy i Q

to

As o — co. Let =0, g € LN(Q) then 0 < |Qi\Qiyn1| < || = 0as tg — oo, (2) holds. If =1 < p <0, g € LY(Q),
then |yl < (my,)~" for y € Qy,, and |yl = (my,)~" for y € Qi) \Qyy+1, we obtain

‘ | oy

f 9(y)dy
Q,‘O \onﬂ

< (m,)’ f@f |9(3/)Hy(ﬁ dy < (mfo)ﬁ”gHLg,z(a) -0

Iftg — oo, and

< f lg(y)ldy < f lg(y)ldy — 0.
Qi \Qyy+1 Q,
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If ty — oo, then (2) also holds.
If ¢ € S(Q), @ is constant on the cosets of Q, in Q but not on the cosets of Qy,—1 (unless p(z) = 0) and supp ¢ C Q.

Obviously, tg > m. Because g(z) = Y, Ay a,(z) pointwise, from (1) and fQ[ \Qur Mo (z)du(z) = 0, it follows

9, 9) = f [ y Atoatocz)J@(z)dz

tg=—00

i ifa\a [Z Atowz)] P2z

to=t—1

= Z (/\t—l f a1 + Atf at(p) .
Q\Qi1 Q\Qr1

Hence we have
/\m—l Lm\@mﬂ An-19, ty =m,
to—1
M-t fg .m0+ L Ar [ap, to > m,
m m+ t:m

1y
i, [ ). Ato“fo](f)f

My —00 ty=—my
thatis, g = Y, Ay, in S’ (Q).

Let 0 < (1 + €)p < 1 yields lim,,oo Q = limyeo g * Ay = g € S'(Q) and Q,,(z) = g * An(2) is a function on Q
which is constant on the cosets of Q, in Q. It is easy to note that

1Q:(2)] < g°(2) (©)
@) (2) <9'(2), (4)
f Q,(2)dz >0 and f Q.(2)dz > 0 asty— oo. 5)
Qi \Qty+1 Q
Using (3),(4) and (5) for Q,, similarly we get
Quz) = ) Ayl (2) (6)

. L © 1 1 .
in §'(Q) pointwise, where sup el Y |/\t0|( *ew <C ||g| (1+e)p and each a’;o(z) is a central (B, q;wl,a)z)Q—atom
tg=—0co

e>0 HK?WW @ ’
supported in Qy,, note that supp ay C Q;,\Qy,+2. Hence we get

1/q-1/(1
sup ”“S(Z)Hy @ < w1 (Qp) li=1/(+e)p
nelN Wy

Then using the Banach-Alaoglu theorem yields a subsequence {agv“ } of {ag} converging in the weak* topology of LY, (Q)
to some ag € LT (Q). It is easy to verify that ag is a central (B, q; w1, w3 )q-atom supported in Q. Next, since

[

sup H”TUO (Z)”LZ,Z @S @1 (@),

Ty
Another application of the Banach-Alaoglu theorem yields a subsequence {a?”l} of {a’f“"} and a central (B, q; w1, w2)g-
atom ay with supp a; C Q; which converges weak* in LY, (Q) to a1. Hence we get

sup [[a” (Z)HLzy2 @ S @1 (@_y)VrVarer

nvl
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Tlvl
-1
a-y € L1, (Q), and a_y is a central (B, q; w1, ws)q-atom supported in Q_1. Repeating the above process, for each

Aguain repeating the process we get the subsequence {af”l*l} of {a } which converges weak* in L!, (Q) to some

to € Z, we can find a subsequence {aZ:t“ } of {aZ) } converging weak* in L{, (Q) to some a;, € LY, (Q), and ay, is a central
(B, q; w1, w2)g-atom supported in Q. Then the diagonal method yields a sequence {n,} of natural numbers such that
for every to € Z,limyo @,” = ay, in the weak* topology of Ll (Q), and therefore, in S'(Q). Next we will prove that

g= i Mgz, 7)

fp=—00

in S’(Q). Next, we get

fg=—00

. n

limy, 00 A1 f a, e, to =m,
= to—1

. n, Ny

limy,, 5o {/\m_l famvfl(p + X Ay fat(: (p}, to > m,

t():m
Am=-1 fﬂm—l(P, to =m,

to—1
At [amap+ X Ay [ang, to>m,
t[]=m

my
o £ e

My —00 to=—my

that is, (7) holds in S’ (Q).
Conversely, suppose g = Y, Ajajin S'(Q), wherea;is a central (B, q; w1, w)q-atom. Then g*(z) < Y, |/\ j| a;(z)
. j=—00

J=—
and .
J||(1+ep Z (1+e)p | | (+e)p
. < Aj ai|l . .
9 KP0Q j_m| J) illktro@
Next it is remaining to prove that
. (1+e)p
fillgna <

where C is independent of a;. Let supp a; C Qy,, we need to prove that supp a;C Q. Hence we get

aj*Ay(z) = mnf aj(y)dy.
Q,,/ﬂ(z+0,,)

Thus, if z ¢ Q, then for nj > n,Q,, C Q, and Qu; N (z + Q) # 0 implies Q,; N (z + Qy) S Qy, 50 aj * Ay(2) = 0.
If n > nj, then Q, C Qy; which leads to Qu; N (z + Q,) = 0. Note a}(z) = sup,., (aj * An) (z) and supp a;. C Q.
Hence we get

(1+e)p ad (1+e)p
% _ 0 1-(+e)p/q || 1
||a‘| , =supe Z w1(Qy,) a1\ |l
] stp)rQ(Q) >0 P ® 0 ] 1o \&¢tg+1 Kslp)«Q(Q)
- _ (1+e)p
< Csup e? Z wl(Qto)l (1+e)p/q “a]'“Kﬁ,p),s(Q)
e>0 q

t0=—00

<C
Which completes the proof. [
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