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Abstract. We present closed-form evaluations for a class of infinite series involving Bessel functions,
Struve functions, and generalized Laguerre polynomials, each expressed in terms of arbitrary parameter
values. For the Bessel and Struve cases, the resulting expressions reduce to combinations of classical
functions, notably Gamma functions and power-law terms in the free parameters. These results are valid
for all parameter values v > 0, and have been verified through high-precision analytical and numerical
evaluations using both Maxima and Mathematica. The most significant contribution arises in the Laguerre
case, where we construct a novel analytic function defined on the complex plane. This function, derived from
the series involving generalized Laguerre polynomials, exhibits uniform convergence on every compact
disk in C, and represents a previously undocumented structure in the theory of orthogonal polynomials.
The findings open new avenues for functional analysis and complex-variable techniques in the study of
special functions.

1. Introduction

In a recent paper [6] the authors had the nice idea of applying the results of simple one dimensional
quantum mechanical models, like the infinite well and the half harmonic oscillator, to the solution of series
involving special function, in particular Struve, Bessel and generalized Laguerre polynomials. Inspired by
their work, we have found the general form of those series, as well as the analytical function obtained from
the series of generalized Laguerre polynomials. The series considered here are the following
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2. Series with Bessel functions

Infinite sums involving Bessel functions [2] appear naturally in problems related to heat conduction,
wave propagation, and signal analysis over finite domains. One such sum is

sSw=Y ”;(#)2 5)
n=1

which, like the other series investigated in this work, has not previously appeared in standard references
such as Abramowitz & Stegun [1]], Watson's classic treatise on Bessel functions [16], Erdélyi [3], Prudnikov,
Brychkov and Marichev [12], and the famous Course of modern analysis of Whittaker and Watson [17]. In
order to obtain the results, we shall also make use of techniques described in [4].

In this section of the work, we derive a closed-form expression for S/(v) using an integral representation
of the Bessel function and applying Parseval’s identity to the derivative of the function f(t) = (1 — £?)"+1/2
over the interval [0, 1]. Our final expression involves only elementary constants and Gamma functions, and
has been numerically validated with high precision.

2.1. Integral Representation of the Bessel Function
One standard integral representation of the Bessel function of the first kind is given by [1]

(z/2)F !
T(u+3) Vi Ja

Setting 1 = v + 1, z = nm, and noting that the integrand is even, we find

Ju(z) = (1 - tz)“_%dt. (6)

I O _ oyl
Jo+1(nm) = 2V1"(v+%)\/ﬁ i cos(nmt)(1 — )" 2dt. (7)

Now square both sides and divide by n%"

2
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ERRES 1
C— f cos(nmt)(1 — 2" 2dt| =
2T (v+3)yr) 7 Lo
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1 1
—_— [f cos(nmt)(1 —t2)v+§dt] =
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Let us define

1
fH=0- ﬂ)w%, a, = j; f(t) cos(nit)dt. (9)
Then
1 2
[f f(t)cos(nnt)dt] =a?, (10)
0
and so
]v+1(7177)2 B n2m2v+l
2 2T+ R (11)

Summing over n > 1
v+l s

2
S](V Z ]V+1(7’l77) szl_, V " 3) Z 7’1211 (12)

n=

2.2. Apply Parseval’s Identity

Since f(t) is differentiable and its derivative vanishes at the endpoints, we apply Parseval’s identity [7]
to its derivative

IFIP = ;nznzaz > Z” &= 5 IF I (13)
Compute f'(t)
£ = (=BT = f(t) = =21+ (1~ ) 7. (14)
So
0P = 480 + D20 - AP, (15)
Therefore
1 T(3)r2v)
"ne _ 12 201 _ 2\2v-1 36 _ 12 -2
LAl —4(1/+2) fo (1=t dt 2(v+2) —T(2V+%). (16)
Substituting back
L TRy
SV = Ty 3er@v+3) | {17

This is the correct analytical expression for v € IN.

2.3. Symbolic table of results
In table[I|we present the first 12 results, for v = 1,...,12 of values of (17).
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Expression

4/15

32-7i*/2835

512 - /2027025

4096 - 11°/1206079875

131072 - 7e8/4331032831125

1048576 - 11'0/5478756531373125

16777216 - 1'% /18589420910949013125

134217728 - 71'*/40750666268358943771875

8589934592 - 7116 /897125917897922147137828125
68719476736 - 1t'® /3028398056850752528021595140625
1099511627776 - *° /24611791008026065795231503707859375
8796093022208 - 1*2/118514723445830243555237956354691203125

[E Y
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Table 1: First 12 result for Bessel series

2.4. Numerical Validation

We evaluate the analytical result numerically for several integer values of v, and compare with direct
summation in both Maxima [10] and Mathematica [18].
Maxima Code:

analytical(v) :=
Gpi~ 2*v - 1D)*(v + 1/2)7°2 * gamma(3/2) * gamma(2*v)) /
(27 (2*v) * gamma(v + 3/2)72 * gamma(2*v + 3/2));

Evaluating:
makelist(float(analytical(i)),i,1,6);
Output:

[0.2666666666666667, 0.1114029420934197, 0.02460426221157077,
0.003264999456926057, 0.0002871556937644714, 0.00001792324489470795]

These match perfectly with the numerical sums computed with Mathematica as:

Table[N[Sum[Bessell[k + 1, n*Pi]"2/n"(2*k), {n, 1, 2000},
WorkingPrecision -> 2517, {k, 1, 6}]

Output:

{0.2666666540028138777600360, 0.1114029420934232793900908,
0.02460426221157077385060483, 0.003264999456926057218288116,
0.0002871556937644714461278573, 0.00001792324489470795559416656}

All values match to at least 10 decimal places.

2.5. Comparison with Literature

While similar infinite sums over Bessel functions appear in classical works (e.g., Watson [16], Ince [8]),
the specific form of the sum evaluated here, involving squared Bessel functions evaluated at n7 , and
normalized by n?", does not appear explicitly in standard handbooks.
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However, the derivation fits within the framework of Fourier-Bessel expansions and orthogonal function
theory. Related results can be found in more recent works such as Paris [11], where similar techniques are
used to evaluate infinite sums involving Bessel functions. The results for first values of v also coincide with
the Table 3 of [6].

2.6. Conclusions for the section

We have derived and validated a closed-form expression for the infinite sum

wwzzbﬁTF:#H‘ﬁ -
n=1

This result was obtained using an integral representation of the Bessel function, followed by application of
Parseval’s identity to the derivative of a specific weight function. The final expression is compact, valid for
all v > 0, and confirmed numerically to high precision.

This identity may find applications in mathematical physics, signal processing, and the spectral theory
of differential operators on bounded domains.

3. Series with two Bessel functions

We consider the infinite series defined by

o= Y LD "

ne
n=1

where ], (z) denotes the Bessel function of the first kind, p,v > 0, « € R, and a,b > 0. This type of series
arises in various areas of mathematical physics, signal processing, and number theory.

The goal of this section is to evaluate this series and compare its results with the previous case encoun-
tered in (5).

3.1. Integral representation of two Bessel functions

We recall the integral representation of the Bessel function of the first kind (6), and using this, we write

:M 1inat1_2p—ld 20
J, () Wﬁﬂﬁﬁf( YR, (20)

(nb/2)v ! inbs 2 -1
(b)) = ————— 1- ds. 21
Ju(ib) r@+9v%£f (1~ as @

Thus, their product becomes

(na/2)"(nb/2)"
1"(/4+ %)F(V+ %)n

1 1 1 1
.f.fe“mma—ﬂWEa—ﬁyfw%- =
-1J-1

Ju(na)J, (nb) =
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Substituting into the original sum

2 ( 1 (na/2)"(nb/2)"
S, b) = ;na T )F(v+ )

f f ein(at+bs)(1 _ tz)u—z(l — sz)v‘idtds . @3)
-1J-1

Factor out constants

§%.(a,b) = ouzwavzy jﬂbf(l—t5”2 1- )" 2x

T(u+3)T(v

i ﬂein(aﬁbs) dtds (24)
na '

n=1
Define f = @ — u — v, so that

2 gty " 2, pin(at+bs) )

(at+bs) _ _ T (iat+bs)
—e = = Lig(e , 25
Z{ — Zf g (e (25)

where Li;(z) is the polylogarithm function [13} [14][17]

X n

L) = Y| ‘Z— 2 < 1. (26)

n=1

Therefore, we obtain

S 0 b = @21
L I T Ay
1 1
f 1 f 1(1 - tZ)#-%(l - sZ)V—% Lig-oy (¢149) dtds . 27)

This is the main result of this section - an exact double integral representation of the infinite series
involving products of Bessel functions and powers of integers.

The polylogarithm Lis(z) converges absolutely for Re(s) > 1 when |z| = 1. Therefore, the formula is
valid under the condition

Re(a —p—-v)>1. (28)

3.2. Special Case: Half-Integer Orders

For half-integer orders, Bessel functions reduce to elementary trigonometric functions [1]. The first few
are:

2 (sinz

J32(z) = A/ — (T - cosz), (29)

nz

J52(2) = \/g((z% - l)sinz - gcosz), (30)

J72(2) = 2 ((E - é)sinz - (i—f - 1)cosz). (31)

nz\\z3 z
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When evaluated at z = nnt (with n € IN), we have sin(nm) = 0 and cos(nn) = (-1)", yielding:

Jaa(n) = = | —— (1", (32)
™n
Jop(mm) = = 5=+ (-1, (33)

2 ( 15 )(—1)". (34)

J72(nm) = — Ty

2n

Squaring these and summing with appropriate exponents gives closed forms in terms of the Riemann zeta
function.

Order 3/2.
2 o [Jsp(mm)2 2 2
Uptvm = 2 L™ @@= 35
Order 5/2.
18 > [Jsp(mm)]? 18 e
Usptimf =22 L™ = ® = 55
Order 7/2.

(9]

60 450 Z[]m(nn)]Z_ 271
mnd - ménd’ n? 4729725

Urp(nm)P = % Y

These results, numerically validated with Mathematica [18], illustrate that for half-integer orders v =
k+ 1, the series Y[, (nm)]*/n**! evaluates to a rational multiple of 7%, complementing the Gamma-function
closed forms obtained for integer orders in Section 2|

For general k € INy the half-integer Bessel has the well-known representation

]k+%(z) = \/g(Pk(l/z) cosz + Qx(1/2) sinz),

where Py and Qy are polynomials of degree k in the variable 1/z. At the special points z = nm the sine term
vanishes and only the cosine polynomial survives, so

4j
(nmy’’

k
_ 2 n+k
Je ) =\ 5 (DY

j=0
for some rational coefficients a; (which are zero unless j has the parity j = k+1 (mod 2); this parity condition
is why only even zeta values appear in the final sums). Squaring and inserting the chosen denominator
exponent @ = 2k + 1 gives a finite Laurent polynomial in 1/(nm) times the overall factor % Termwise

summation over 1 therefore produces a finite linear combination of Riemann zeta values

2
o0 []k+1 (nn)] 2k
2 2 A

n=1 m=0

but by the parity property of the surviving coefficients only even values of the argument 2k + 2 + m occur.
Hence every zeta appearing is an even zeta {(2¢) which reduces to a rational multiple of 7%*; collecting
powers of 7 yields a rational multiple of 1. This explains the observed pattern and gives an explicit, finite
algorithm to compute the rational coefficient for any fixed k.
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4. Series with Struve function

We are interested in evaluating the infinite series

> (Hunmm)\'
§"w) = 2; (n—) , (35)

where H, (x) denotes the Struve function of order v [15]. This series arises naturally in problems involving
non-homogeneous Bessel equations and has applications in mathematical physics.

Using Parseval’s identity, we derive an exact closed-form expression for this sum and verify it against
symbolic and numerical computations.

4.1. Fourier Series Representation and Parseval’s Identity
Define the function

e8]

fx) = ;an cos(nmx), an = @ (36)
Then by Parseval’s identity on the interval [0, 1]
' 2 1y, o ' 2
j(; f(x) dsz;anﬁnZ_;an:2‘f0 f(x)“dx (37)
Thus
i (@)2 ok fo flopas (38)
n=1

4.2. The Struve function

2
To evaluate the sum )., (H”g,m)) for v = 1,2,3,..., where H,(x) is the Struve function, Parseval’s

identity for Fourier sine series is applied.
The Struve function has the integral representation

Vv 1
Hy(z) = = &/ 2)1 f (1— )} sin@tdt, v> -, (39)
(v+3)Jo 2

VRT
Substituting z = nn

_ 2 (mpy
Bl = =10y D

Dividing by n"

1
f (1 - )"~ 2 sin(nmt)dt. (40)
0

Hom) _ 2 /2 (' o1 R
— = \/%—F(v+%)j;(1 ) sm(nnt)dt—Cvf(; f(t) sin(nmt)dt, 41)

where C, = %F(Z/f);) and f(t) = (1 - £2)"1.

The Fourier sine coefficients for f(¢) on [0, 1] are

1
b, = Zf f(t) sin(nt)dt, (42)
0
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Cle)
! b
f f(t) sin(nmt)dt = 5" (43)
0
Thus
Bom _ o b (44)
nv 2
The sum is
Z(H (nn)) ( ) Zb (45)
n=1
By Parseval’s identity for the Fourier sine series on [0, 1]
1 1
=2 f [F(O)]Pdt =2 f (1-3)>dt . (46)
0 0

So

i (HV,E:R) )2 _ (%)2 _zfol(l gy = %2 fol(l gy (47)

n=1

The last integral is the beta function. In fact, with the substitution u = 2, one obtains

1 1
f (1-2)»dt = E f u 21— u)?du . (48)
0 2 Jo
The beta function is defined as B(a, b) = fol 711 = P14t
Thus,
! 1
f u‘l/z(l - u)z"_ldu = ﬁ(§,2v) . (49)
0
Therefore, the original integral is
1 r(1)r@v) T(2
f (1_t2)2v—1dt: 1ﬁ(1/2v): 1 (2) — 1 \/E ( V) . (50)
0 2 7\2 2r(2v+1) 2r(2v+})
Now
2 , 5
CE — i (7'(/2)1 _ é ' /4 > = 4n2v—14—vr(v+ %) . (51)
‘/El"(v+§) nl“(v+%)
The sum is
) 2
v r'e
2 (H (7n)) — 4T ) g Vi) (52)
i\ n 4T (2v+1)
Simplifying the constants and using the Legendre duplication formula I'(2v) = %Té)
r
SHw) = %7‘(2”_1 v (53)

F(v+ %)F(2v+ %)
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Thus, the closed-form expression for the sum is given by

SH(y) = L1 L) (54)

2 1 1
F(V+ E)F(ZV'F z)

4.3. Symbolic Table of Results

From symbolic computation (e.g., Mathematica), we obtain the following exact expressions for S(v)

Expression

4/3

32-7?/315

512 - 1*/155925

4096 - /70945875

131072 - 71®/206239658625

1048576 - 1110/219150261254925

16777216 - 1'% /641014514170655625

134217728 - 114 /1234868674798755871875

8589934592 - 116 /24246646429673571544265625
68719476736 - 11'8 /73863367240262256781014515625
1099511627776 - 1*° /546928689067245906560700082396875
8796093022208 - 71*2/2418667825425107011331386864381453125

[EE Y
e =NIN-JICCIEN (- NS, NGV ST A

Table 2: First 12 result for Struve series

The results for first values of v coincide with the Table 4 of [6].

4.4. Numerical Validation

We evaluate the analytical result numerically for several integer values of v, and compare with direct
summation in both Maxima [10] and Mathematica [18].
Maxima Code:

analytical(v) :=
(%pi~ (2*v-1)*gamma(v))/(2*gamma(v+1/2)*gamma(2*v+1/2));
Evaluating:
makelist(float(analytical(i)),i,1,6);
Output:

[1.3333333333333333,1.0026264788408237,0.31985540875042,
0.055504990767742964,0.006030269569053898,4.4808112236769873%10"-4]

These match with the numerical sums computed with Mathematica as:
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sumstruve[k_, m_] := Sum[(StruveH[k, n*Pi]/n"k) "2, {n, 1, m}]

nnsumstruve[k_, m_] := N[sumstruve[k, m]]
Chop[Table[nnsumstruvel[j, 5000], {j, 1, 6}]1]

Output:

{1.33325, 1.00254, 0.31982, 0.0554979, 0.00602941, 0.000448011}

4.5. Conclusions for the section
We have derived the exact closed-form expression

N Hv(nn))zz 1T ()
0= 3 27 (= r(2vs ) )

This formula was obtained via Parseval’s identity, careful application of the integral representation of
the Struve function, and precise normalization of constants.
It matches high-precision numerical evaluations and symbolic computations exactly.

5. Series with generalized Laguerre polynomials

The series is given by

o0 (LE"H_V(Z/Z))Z ZZn
L —
Sk =2, 2120 + 1)! (56)

n=0

where z = b? > 0. This time, for z € C, we have a function on the complex plane.

To understand the convergence, we need to examine the asymptotic behavior of the terms, particularly
the Laguerre polynomials [9]. Call a = 2n + 1 — v, the definition of generalized Laguerre polynomials for
integer n is

k .

(-1)/ (k + a) ,

L=y EX(kra) (57)
Py j! \k—j

Let us denote the n-th term of the series as A,,(z)

(L%”H_V (2/2))2 221

A = G 1

(58)

For large n, L2"*17¥(z/2) behaves like a polynomial of degree v in 21 + 1. So, L2"*17"(z/2) ~ C,(z)(2n + 1)",
where C,(z) depends on z (and v). Then, (L%”“‘V(Z/Z))2 ~ (C,(2))%(2n + 1)>".
Now, substitute this into A;(z)

_ (C@PEn+ 1P

An@) 2100 +1)! (59)
and apply the ratio test, lim, AA"ZES)
Awi@) _ (L@ 2 (€0
An(z)  \121v(z/2)) 4@n+3)2n+2)
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Consider the ratio of the Laguerre polynomials. Since L§(z) is a polynomial of degree v in z with coefficients
involving (‘fj‘]’), the dominant term is the one with the highest power of 211 + 1 —v. The leading term of L (z)

is (‘0_11)0(‘/:“)20 = ("'"), independent from z.

So,

13 z/2) () _
L%nH_V(Z/Z) (2nv+1) -

2n+3)2n+2)...2n+3-v+1) ! 61)

V! 2n+1)Q2n)...2n+1-v+1) "
This ratio approaches 1 as n — co. More precisely, it approaches (2n + 3)"/(2n + 1)V = 1.
Therefore, the full ratio limit is
. An+l(z) . 2 |Z|2
lim |————| = lim (1) —————= =
e | AL z) Jim (1) 421 + 3)(2n + 2)
2

1

|2 . 62)

“ ym—
PR D P

From the ratio test we conclude that, for all finite z, the series Sk(z) converges absolutely for all z € C (and
thus for all z > 0). This means the radius of convergence is infinite.

To prove also uniform convergence of SL(z) on [0, M] we shall use the Weierstrass M-Test [17], that is,
we need to find M, such that |A,(z)| < M, for all z € [0, M] and }_,, M,, converges.

For a fixed v and x € [0,M], the polynomial L%(x) is bounded for given a. Since L2"*17"(z/2) is a
polynomial of fixed degree v in z/2, and its coefficients grow polynomially in #, we can bound it for z € [0, M].
|L21+1=(z/2)] < C(2n + 1)¥ for some constant C (depending on v and M). So, [L2"17(z/2)*> < C'(2n + 1)%".

Then,

(L3"+1_V(Z/2))2 221
22121 + 1)!

e Vit Vi

An(@] = = T 0+ 1)

(63)

’ 2v A f2n
LetM, = % We need to check the convergence of Y.u M. Using the ratio test on M,

My ~ Im C’'(2n + 3)?"M2+1) ' 221(2n + 1)!
M,  noe 22041 (2p + 3)! C'(2n + 1)z M2n

2n+3 )ZV M? 0

2n+1/) 4(2n+3)(2n +2)

lim

n—oo

- lim ( (64)

n—oo

Since lim;;, 0 1\;1\2: L =0 < 1, the series ), M, converges. Therefore, by the Weierstrass M-Test, the series S.(z)
converges uniformly on any compact interval [0, M] (or any compact disk |z| < M in the complex plane).

Summary for convergence of SL(z)

e Pointwise absolute convergence: the series Sk(z) converges absolutely for all z € C (and thus for all
z > 0). This is a direct consequence of the ratio test, which yields a limit of 0.

e Uniform convergence: the series SL(z) converges uniformly on any compact subset of C, such as any
interval [0, M] where M > 0. This is shown by the Weierstrass M-Test.

e No uniform convergence on [0, ): generally, a series with an infinite radius of convergence does not
converge uniformly on the entire unbounded interval. The terms A,(z) contain z*", which will grow
very rapidly for large z, preventing uniform convergence over an unbounded domain.
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5.1. Poles

SL(z) has no poles for real z > 0, nor does it have poles anywhere in the complex plane. It defines
an entire function.

The reasons are the following

e Analyticity of each term: the generalized Laguerre polynomial L{(x) is a polynomial in x of degree v.
Therefore, L?'*17V(z/2) is a polynomial in z/2 (and thus in z) of degree V. Con31der the n-th term of the
series, A, (z) ( . Since (L2"17"(z/2))? is a polynomial in z of degree 2v, and z?" is also a polynomial,
An(z) is a polynomial in z. Polynomials are entire functions and thus have no poles.

e Uniform convergence and analyticity: we have established that the series SL(z) converges uniformly
on any compact disk |z| < M (for any M > 0) in the complex plane. A fundamental theorem in
complex analysis states that if a series of analytic functions converges uniformly on compact subsets
of a domain, then its sum function is also analytic on that domain. Since SL(z) is a sum of polynomials
(which are analytic functions) and converges uniformly on every compact disk in C, SL(z) must be an
analytic function on the entire complex plane C.

e Definition of entire function: an analytic function on the entire complex plane is called an entire
function. Entire functions by definition have no singularities (including poles) at any finite point in
the complex plane.

Therefore, SL(z) is an entire function and has no poles for any finite z, including real z > 0.

5.2. Asymptotic behavior for z — 0

For z — 0, the dominant term in the series will be the one with the lowest power of z. Let us examine
the n-th term A, (z). Since L2"*17"(z/2) is a polynomial of degree v in z/2, A,(z) will be a polynomial in z of
degree 2n + 2v. So, we need to find the lowest power of z in Ay(z) (the n = 0 term). The n = 0 term is

(L)"(z/2)%2"

Ao(d) = =gy = L@/ (65)
For L!7V(z/2), wesetk=v,a =1 -v,and x = z/2
v (-1) (V+(1 )) (=1y ( )
L! 2 2)) = 2) . 66
V<z/>];], P O ;]. (/2) (66)

The binomial coefficient (Vij) isnon-zero only forv—-j=0(@e.,j=v)orv—j=1(@e,j=v-1).
We need to consider cases for v

e Casel: v=0
Li(z/2) = 1. So, Ag(z) = 1. The series becomes Sj(z) = Y2, Wnﬂ)‘ Let x = z/2. Sk(z) = Yooso (221”1), =
1 Z x2n+1 — smh(x) S
n=0 Qv :
Lo sinh(z/2) - @2R
Sy(2) = o 1+ al +0(z%) . (67)
Thus,
lim Si(z)=1. (68)
e Case2:v=1

L9(z/2) =1 -2/2. So, Ay(z) = (1 - z/2)*. Thus,

lim SH(z) = (1 - g)z L0 =1. 69)
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e Case 3: General v > 1

The two non-zero terms are for j = v —1and j = v. So, LI7(z/2) = ((; 1_)1;,1 (z/2)" 1 + %(Z/Z)V. The

lowest power of z in L17(z/2) is z"~1. Therefore, for z — 0*

(-1
(v-1!

2
v—1 v _ 1 Z 20-1) v
(/2! + O(z )) = G ( ) +0(2). (70)

Jim Ao(z) = V-2 \2

Thus, forz~0andv > 1,

L ZZV—Z
5,2) ~ s |- 71
MO~ 1)
5.3. Main Result: Recurrence Formula
From numeric observations and pattern analysis of the results obtained for small v, we define
L 2 2 . 2!
SL(z) = &Ppu(z) + € **q,(z), withp,(z) = ol (72)

This decomposition allows us to isolate g,(z), which is a degree-(2v — 1) polynomial with rational
coefficients.
Through extensive exploration, we’ve discovered that g,(z) follows a beautiful recurrence involving

earlier p,_(z), scaled by rational factors like % Its expression is

v (_1)k+v+1zv—1+k

qv(z) = Z R —R* (73)

k=0

or equivalently,

_ 1 - krv+1[V . k_ZV_Hk
& = kz_;‘(_l) (k) SR 74)

and in terms of Laguerre polynomials L,(2z),

30 = (1) 2L 22) (75)

This gives all known terms of ¢, (z) exactly and reveals a recursive structure built from earlier pi(z)
Each term has alternating sign, rational coefficient, and increasing power of z

5.4. Generated Expressions Using Recurrence

Using the recurrence, we generated the exact expressions for g,(z) up tov =8
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1
qo(Z) = _E
1
q1(z) = 57
2 2z
qz(z)——z‘*'?—g
(Z)—_i+é_£+é
PE="367"8 "8 "1
7 25 P A B
1O = st T T M
9 ZS Z7 Z6 Z5 Z4
95(2) = ~T3200 " 1152 ~ 288 T 192 384 T 3840
le ZlO Z9 ZS Z7 Z6 Z5
=— + - + - + -
96() = ~ 518400 T 28800 ~ 2608 T 1728 ~ 1536 ' 3840 _ 46080
ZlS 212 le ZlO Z9 ZS
97(2) = = 35201600 T 1036800 _ 115200 © 27648 ~ 13824 T 15360

7 6

Z_ 4 2z
46080 645120

15 L4 413 212 11
7)== 1635700400 * 50803200 4147200 * 691200 221184 "
10 9 8 7

z _z L= : z
138240 184320 645120 10321920 °

(76)
These match Maxima output precisely, and also Table 2 of [6]].

5.5. Numerical validation

We evaluate the analytical result numerically for several integer values of v, up to v = 15, at the
points z = 0.5,1,2, and compare with direct summation in both Maxima [10] and Mathematica [18].
Maxima Code:

q(nu,z):=
sum((-1) " (k+nu+1)*z" (nu-1+k) /((k!) "2%2" (nu-k) *((nu-k) 1)) ,k,0,nu) ;

p(nu,z):=z" (nu-1)/(nu!*2"nu) ;
sl(nu,z):=(p(nu, z) *exp(z/2)+q(nu, z) *exp(-z/2));
makelist(sl(j,0.5),j,1,15);

[0.6420127083438707,0.10458911301396524,0.003983462992917385,
5.764244486026592%107-4,1.498348065192739%10"-5,
1.006492751211834%107-6,3.033598709952065%10"-8,
8.810857019223989%10°-10,3.206781389049871*%10"-11,
5.034069516467763*107-13,1.9805550863679202*10"-14,
2.233797797821449%107-16,7.907889986711898*10"-18,
8.195288006481406%107-20,2.2037655778273722%10"7-21]

makelist(sl(j,1.0),j,1,15);
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[0.5210953054937474,0.2819064913015952,0.030136341336026048,
0.0037670426670032547,5.451850055093904*10" -4,
2.495699400662538*%107-5,3.1794852890688054%10" -6,
1.386506028787966*10"-7,8.900378880804328*%10"-9,
4.941422461867225%107-10,1.6152464078815272*10"-11,
1.0455435850787323%107-12,2.429629670983615%10"-14,
1.404292276498331%107-15,3.239288438828556*107-17]

makelist(sl(j,2.0),j,1,15);

[0.807321752472359,0.5876005968219007,0.2980555992660343,
.048966716401825046,0.009997720747682478,0.0023588993194118327,
.1023451204448478%10"-4,3.656191050466806%10" -5,
.021311266389117%10°-6,3.046297264842651*10"-7,
.159181652912322*%10"°-8,2.3277657654568975%10" -9,
.3696800862728487*10°-10,1.599602957719109*10"-11,
.111585489202436%10"-13]

O N B NS

These match perfectly with the numerical sums computed with Mathematica as:

Ain[nu_, z_,n_] :=
(LaguerreL[nu, 2*n + 1 - nu, z/2]*z'n)"2/QR"R*n)*2*n + 1))

summe[nu_, z_, m_] := Sum[Ain[nu, z, k], {k, 0, m}]
Table[N[summe[j, 1/2, 10011, {j, 1, 15}]

{0.642013, 0.104589, 0.00398346, 0.000576424, 0.0000149835,
1.00649%10"-6, 3.0336%*10°-8, 8.81086*107-10, 3.20678*107-11,
5.03407*%107-13, 1.98056*%10"-14, 2.2338*10"-16,
7.90789*%10"°-18, 8.19529*%10"-20, 2.20377*%10"-21}

Table[N[summe[j, 1, 10011, {j, 1, 15}]

{0.521095, 0.281906, 0.0301363, 0.00376704, 0.000545185,
0.000024957, 3.17949*%10°-6, 1.38651*10°-7, 8.90038*10°-9,
4.94142%10°-10, 1.61525%107-11, 1.04554*107-12,
2.42963*107-14, 1.40429*10°-15, 3.23929*10°-17}

Table[N[summe[j, 2, 10011, {j, 1, 15}]

{0.807322, 0.587601, 0.298056, 0.0489667, 0.00999772,
0.0023589, 0.000210235, 0.0000365619, 4.02131*10°-6, 3.0463%10"-7,
4.15918*10°-8, 2.32777%107-9, 2.36968*10"-10,

1.5996%10°-11, 9.11159%10"-13}

5.6. Log-Scale Plot of Denominators

We now visualize the evolution of denominator values across terms forv =2 tov = 6.

The plot (I) confirms that denominators follow a smooth parabolic shape, central terms have smallest
denominators, that is largest contributions, first and last terms have largest denominators, and finally,
symmetry suggests generating function behavior.
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Log-scale Denominators in qy(z)
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Figure 1: Log-scale plot of denominator values in g, (z), showing smooth growth and symmetry. The absolute value of the denominator
of the coefficient k, Dy, corresponds to the power z~1*¥ given in formula .

5.7. Prime Factorization Pattern

The polynomial g,(z) exhibits a striking number-theoretic structure in the prime factorizations of its
coefficients” denominators. This is governed by the closed-form expression

4 (_1)k+v+1zv—1+k
qv(2) = kz_;‘ w2k (77)

In particular:

e The lowest-degree term (coefficient of z'~!, corresponding to k = 0) has denominator

Dimin = V12V,
e The highest-degree term (coefficient of z"~!, corresponding to k = v) has denominator
Dinax = (V)%
Consequently:

e When v = p is a prime, the prime p appears for the first time in Dp,in, and appears squared in Dax.
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e When v is composite, no new prime appears in either Dyin O Dmax-
For example:
e v =5 (prime):
Dmin =5!-2°=3840=2%-3.5, Dy = (5!)% = 14400 = 2° - 32 - 52,
The new prime 5 appears linearly in the lowest term and squared in the highest.
e v = 6 (composite):
Dimin = 6! -2° = 46080 = 210.32.5,  Dp. = (6!)? = 518400 = 28 - 3% . 52,
No new prime appears.
e v =7 (prime):
Dmin = 7!-2” = 645120 = 211 -3.5.7, Dpax = (7!)* = 25401600 = 210 . 3% . 52. 72,
The new prime 7 appears linearly and squared, respectively.

This pattern reflects the fundamental role of factorials in the structure of ¢,(z), and provides a direct link
between the analytic form of the series and elementary number theory.

5.8. Possible Connection to Orthogonal Polynomials

The recurrence

v (__1)k+v+1zv71+k

@) =) ————— 78
() k2w — k)2 @8
k=0
bears strong resemblance to classical orthogonal polynomial sequences like Laguerre or Hermite.
In particular, the form
Py(z) = (@2 + by)Py-1(2) + ¢, Py2(2) (79)

is characteristic of Favard’s theorem [5]], defining orthogonality under some weight function.

From our analysis, 4, (z) shows alternating signs, recursive structure, rational coefficients, smooth prime
appearance. All of which support the hypothesis that g,(z) may be related to a broader class of rational-
coefficient orthogonal polynomials.

Future directions include proving whether g, (z) satisfies a three-term recurrence, deriving its associated
inner product or weight function, and studying its asymptotics and integral transforms.

5.9. Conclusions for the section and outlook

We have derived the exact closed-form expression

2
) L?"+1_V(Z/2)) ZZn
L\ — ( v — 22 —z/2
SL(z) ZS 1) p,(2) + e 20,(2) |, (80)
with
Zv—l
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A new recurrence has been discovered

v (_1)k+v+1zv—1+k

qv(z) = Z o —RF (82)

k=0

which is fully symbolic, matches numerical results up to v = 15, reveals a structured appearance of small
primes, and provides an elegant recursive generator.
This recurrence represents a refined mathematical insight and opens the door to further exploration.
Future work includes proving orthogonality, deriving a generating function, exploring analytic contin-
uation, investigating applications in asymptotic expansions.
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