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Abstract. We present closed-form evaluations for a class of infinite series involving Bessel functions,
Struve functions, and generalized Laguerre polynomials, each expressed in terms of arbitrary parameter
values. For the Bessel and Struve cases, the resulting expressions reduce to combinations of classical
functions, notably Gamma functions and power-law terms in the free parameters. These results are valid
for all parameter values ν > 0, and have been verified through high-precision analytical and numerical
evaluations using both Maxima and Mathematica. The most significant contribution arises in the Laguerre
case, where we construct a novel analytic function defined on the complex plane. This function, derived from
the series involving generalized Laguerre polynomials, exhibits uniform convergence on every compact
disk in C, and represents a previously undocumented structure in the theory of orthogonal polynomials.
The findings open new avenues for functional analysis and complex-variable techniques in the study of
special functions.

1. Introduction

In a recent paper [6] the authors had the nice idea of applying the results of simple one dimensional
quantum mechanical models, like the infinite well and the half harmonic oscillator, to the solution of series
involving special function, in particular Struve, Bessel and generalized Laguerre polynomials. Inspired by
their work, we have found the general form of those series, as well as the analytical function obtained from
the series of generalized Laguerre polynomials. The series considered here are the following

SJ(ν) =
∞∑

n=1

Jν+1(nπ)2

n2ν , (1)
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S2J
µ,ν(a, b) =

∞∑
n=1

Jµ(na)Jν(nb)
nα

, (2)

SH(ν) =
∞∑

n=1

(
Hν(nπ)

nν

)2

, (3)

SL
ν(z) =

∞∑
n=0

(
L2n+1−ν
ν (z/2)

)2
z2n

22n(2n + 1)!
. (4)

2. Series with Bessel functions

Infinite sums involving Bessel functions [2] appear naturally in problems related to heat conduction,
wave propagation, and signal analysis over finite domains. One such sum is

SJ(ν) =
∞∑

n=1

Jν+1(nπ)2

n2ν , (5)

which, like the other series investigated in this work, has not previously appeared in standard references
such as Abramowitz & Stegun [1], Watson’s classic treatise on Bessel functions [16], Erdélyi [3], Prudnikov,
Brychkov and Marichev [12], and the famous Course of modern analysis of Whittaker and Watson [17]. In
order to obtain the results, we shall also make use of techniques described in [4].

In this section of the work, we derive a closed-form expression for SJ(ν) using an integral representation
of the Bessel function and applying Parseval’s identity to the derivative of the function f (t) = (1 − t2)ν+1/2

over the interval [0, 1]. Our final expression involves only elementary constants and Gamma functions, and
has been numerically validated with high precision.

2.1. Integral Representation of the Bessel Function
One standard integral representation of the Bessel function of the first kind is given by [1]

Jµ(z) =
(z/2)µ

Γ(µ + 1
2 )
√
π

∫ 1

−1
eizt(1 − t2)µ−

1
2 dt. (6)

Setting µ = ν + 1, z = nπ, and noting that the integrand is even, we find

Jν+1(nπ) =
(nπ)ν+1

2νΓ(ν + 3
2 )
√
π

∫ 1

0
cos(nπt)(1 − t2)ν+

1
2 dt. (7)

Now square both sides and divide by n2ν

Jν+1(nπ)2

n2ν =

 nν+1πν+1

2νΓ
(
ν + 3

2

) √
π


2

·
1

n2ν

[∫ 1

0
cos(nπt)(1 − t2)ν+

1
2 dt

]2

=

n2π2ν+2

22νΓ
(
ν + 3

2

)2
π

[∫ 1

0
cos(nπt)(1 − t2)ν+

1
2 dt

]2

=

n2π2ν+1

22νΓ
(
ν + 3

2

)2

[∫ 1

0
cos(nπt)(1 − t2)ν+

1
2 dt

]2

. (8)
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Let us define

f (t) = (1 − t2)ν+
1
2 , an =

∫ 1

0
f (t) cos(nπt)dt. (9)

Then[∫ 1

0
f (t) cos(nπt)dt

]2

= a2
n, (10)

and so

Jν+1(nπ)2

n2ν =
n2π2ν+1

22νΓ(ν + 3
2 )2

a2
n. (11)

Summing over n ≥ 1

SJ(ν) =
∞∑

n=1

Jν+1(nπ)2

n2ν =
π2ν+1

22νΓ(ν + 3
2 )2

∞∑
n=1

n2a2
n. (12)

2.2. Apply Parseval’s Identity

Since f (t) is differentiable and its derivative vanishes at the endpoints, we apply Parseval’s identity [7]
to its derivative

∥ f ′∥2 =
∞∑

n=1

n2π2a2
n ⇒

∞∑
n=1

n2a2
n =

1
2π2 ∥ f ′∥2. (13)

Compute f ′(t)

f (t) = (1 − t2)ν+
1
2 ⇒ f ′(t) = −2t(ν + 1

2 )(1 − t2)ν−
1
2 . (14)

So

f ′(t)2 = 4t2(ν + 1
2 )2(1 − t2)2ν−1. (15)

Therefore

∥ f ′∥2 = 4(ν + 1
2 )2

∫ 1

0
t2(1 − t2)2ν−1dt = 2(ν + 1

2 )2
·
Γ( 3

2 )Γ(2ν)

Γ(2ν + 3
2 )
. (16)

Substituting back

SJ(ν) =
π2ν−1

22ν ·
(ν + 1

2 )2Γ( 3
2 )Γ(2ν)

Γ(ν + 3
2 )2Γ(2ν + 3

2 )
. (17)

This is the correct analytical expression for ν ∈N.

2.3. Symbolic table of results

In table 1 we present the first 12 results, for ν = 1, . . . , 12 of values of (17).
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ν Expression
1 4/15
2 32 · π2/2835
3 512 · π4/2027025
4 4096 · π6/1206079875
5 131072 · π8/4331032831125
6 1048576 · π10/5478756531373125
7 16777216 · π12/18589420910949013125
8 134217728 · π14/40750666268358943771875
9 8589934592 · π16/897125917897922147137828125
10 68719476736 · π18/3028398056850752528021595140625
11 1099511627776 · π20/24611791008026065795231503707859375
12 8796093022208 · π22/118514723445830243555237956354691203125

Table 1: First 12 result for Bessel series

2.4. Numerical Validation
We evaluate the analytical result numerically for several integer values of ν, and compare with direct

summation in both Maxima [10] and Mathematica [18].
Maxima Code:

analytical(v) :=

(%piˆ(2*v - 1)*(v + 1/2)ˆ2 * gamma(3/2) * gamma(2*v)) /

(2ˆ(2*v) * gamma(v + 3/2)ˆ2 * gamma(2*v + 3/2));

Evaluating:

makelist(float(analytical(i)),i,1,6);

Output:

[0.2666666666666667, 0.1114029420934197, 0.02460426221157077,

0.003264999456926057, 0.0002871556937644714, 0.00001792324489470795]

These match perfectly with the numerical sums computed with Mathematica as:

Table[N[Sum[BesselJ[k + 1, n*Pi]ˆ2/nˆ(2*k), {n, 1, 2000},

WorkingPrecision -> 25]], {k, 1, 6}]

Output:

{0.2666666540028138777600360, 0.1114029420934232793900908,

0.02460426221157077385060483, 0.003264999456926057218288116,

0.0002871556937644714461278573, 0.00001792324489470795559416656}

All values match to at least 10 decimal places.

2.5. Comparison with Literature
While similar infinite sums over Bessel functions appear in classical works (e.g., Watson [16], Ince [8]),

the specific form of the sum evaluated here, involving squared Bessel functions evaluated at nπ , and
normalized by n2ν, does not appear explicitly in standard handbooks.
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However, the derivation fits within the framework of Fourier-Bessel expansions and orthogonal function
theory. Related results can be found in more recent works such as Paris [11], where similar techniques are
used to evaluate infinite sums involving Bessel functions. The results for first values of ν also coincide with
the Table 3 of [6].

2.6. Conclusions for the section

We have derived and validated a closed-form expression for the infinite sum

SJ(ν) =
∞∑

n=1

Jν+1(nπ)2

n2ν =
π2ν−1

22ν ·

(
ν + 1

2

)2
Γ
(

3
2

)
Γ(2ν)

Γ
(
ν + 3

2

)2
Γ
(
2ν + 3

2

) . (18)

This result was obtained using an integral representation of the Bessel function, followed by application of
Parseval’s identity to the derivative of a specific weight function. The final expression is compact, valid for
all ν > 0, and confirmed numerically to high precision.

This identity may find applications in mathematical physics, signal processing, and the spectral theory
of differential operators on bounded domains.

3. Series with two Bessel functions

We consider the infinite series defined by

S2J
µ,ν(a, b) =

∞∑
n=1

Jµ(na)Jν(nb)
nα

(19)

where Jν(z) denotes the Bessel function of the first kind, µ, ν ≥ 0, α ∈ R, and a, b > 0. This type of series
arises in various areas of mathematical physics, signal processing, and number theory.

The goal of this section is to evaluate this series and compare its results with the previous case encoun-
tered in (5).

3.1. Integral representation of two Bessel functions

We recall the integral representation of the Bessel function of the first kind (6), and using this, we write

Jµ(na) =
(na/2)µ

Γ
(
µ + 1

2

) √
π

∫ 1

−1
einat(1 − t2)µ−

1
2 dt, (20)

Jν(nb) =
(nb/2)ν

Γ
(
ν + 1

2

) √
π

∫ 1

−1
einbs(1 − s2)ν−

1
2 ds. (21)

Thus, their product becomes

Jµ(na)Jν(nb) =
(na/2)µ(nb/2)ν

Γ
(
µ + 1

2

)
Γ
(
ν + 1

2

)
π
×

∫ 1

−1

∫ 1

−1
ein(at+bs)(1 − t2)µ−

1
2 (1 − s2)ν−

1
2 dtds . (22)
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Substituting into the original sum

S2J
µ,ν(a, b) =

∞∑
n=1

1
nα
·

(na/2)µ(nb/2)ν

Γ
(
µ + 1

2

)
Γ
(
ν + 1

2

)
π
×

∫ 1

−1

∫ 1

−1
ein(at+bs)(1 − t2)µ−

1
2 (1 − s2)ν−

1
2 dtds . (23)

Factor out constants

S2J
µ,ν(a, b) =

(a/2)µ(b/2)ν

Γ
(
µ + 1

2

)
Γ
(
ν + 1

2

)
π

∫ 1

−1

∫ 1

−1
(1 − t2)µ−

1
2 (1 − s2)ν−

1
2× ∞∑

n=1

nµ+ν

nα
ein(at+bs)

 dtds . (24)

Define β = α − µ − ν, so that

∞∑
n=1

nµ+ν

nα
ein(at+bs) =

∞∑
n=1

ein(at+bs)

nβ
= Liβ(ei(at+bs)), (25)

where Lis(z) is the polylogarithm function [13, 14, 17]

Lis(z) =
∞∑

n=1

zn

ns , |z| ≤ 1. (26)

Therefore, we obtain

S2J
µ,ν(a, b) =

(a/2)µ(b/2)ν

Γ
(
µ + 1

2

)
Γ
(
ν + 1

2

)
π
×

∫ 1

−1

∫ 1

−1
(1 − t2)µ−

1
2 (1 − s2)ν−

1
2 Liα−µ−ν

(
ei(at+bs)

)
dtds . (27)

This is the main result of this section - an exact double integral representation of the infinite series
involving products of Bessel functions and powers of integers.

The polylogarithm Lis(z) converges absolutely for Re(s) > 1 when |z| = 1. Therefore, the formula (27) is
valid under the condition

Re(α − µ − ν) > 1. (28)

3.2. Special Case: Half-Integer Orders
For half-integer orders, Bessel functions reduce to elementary trigonometric functions [1]. The first few

are:

J3/2(z) =

√
2
πz

(sin z
z
− cos z

)
, (29)

J5/2(z) =

√
2
πz

(( 3
z2 − 1

)
sin z −

3
z

cos z
)
, (30)

J7/2(z) =

√
2
πz

((15
z3 −

6
z

)
sin z −

(15
z2 − 1

)
cos z

)
. (31)



N. Fabiano, Z. Bekri / Filomat 40:4 (2026), 1311–1329 1317

When evaluated at z = nπ (with n ∈N), we have sin(nπ) = 0 and cos(nπ) = (−1)n, yielding:

J3/2(nπ) = −

√
2
π2n

(−1)n, (32)

J5/2(nπ) = −

√
2
π2n
·

3
nπ

(−1)n, (33)

J7/2(nπ) = −

√
2
π2n

(
1 −

15
(nπ)2

)
(−1)n. (34)

Squaring these and summing with appropriate exponents gives closed forms in terms of the Riemann zeta
function.

Order 3/2.

[J3/2(nπ)]2 =
2
π2n
,

∞∑
n=1

[J3/2(nπ)]2

n3 =
2
π2 ζ(4) =

π2

45
.

Order 5/2.

[J5/2(nπ)]2 =
18
π4n3 ,

∞∑
n=1

[J5/2(nπ)]2

n5 =
18
π4 ζ(8) =

π4

525
.

Order 7/2.

[J7/2(nπ)]2 =
2
π2n
−

60
π4n3 +

450
π6n5 ,

∞∑
n=1

[J7/2(nπ)]2

n7 =
271

4729725
π6.

These results, numerically validated with Mathematica [18], illustrate that for half-integer orders ν =
k+ 1

2 , the series
∑

[Jν(nπ)]2/n2k+1 evaluates to a rational multiple ofπ2k, complementing the Gamma-function
closed forms obtained for integer orders in Section 2.

For general k ∈N0 the half-integer Bessel has the well-known representation

J
k+ 1

2
(z) =

√
2
πz

(
Pk(1/z) cos z +Qk(1/z) sin z

)
,

where Pk and Qk are polynomials of degree k in the variable 1/z. At the special points z = nπ the sine term
vanishes and only the cosine polynomial survives, so

J
k+ 1

2
(nπ) =

√
2
π2n

(−1)n+k
k∑

j=0

a j

(nπ) j ,

for some rational coefficients a j (which are zero unless j has the parity j ≡ k+1 (mod 2); this parity condition
is why only even zeta values appear in the final sums). Squaring and inserting the chosen denominator
exponent α = 2k + 1 gives a finite Laurent polynomial in 1/(nπ) times the overall factor 2

π2 . Termwise
summation over n therefore produces a finite linear combination of Riemann zeta values

∞∑
n=1

[
J
k+ 1

2
(nπ)

]2

n2k+1
=

2
π2

2k∑
m=0

dm

πm ζ(2k + 2 +m),

but by the parity property of the surviving coefficients only even values of the argument 2k + 2 +m occur.
Hence every zeta appearing is an even zeta ζ(2ℓ) which reduces to a rational multiple of π2ℓ; collecting
powers of π yields a rational multiple of π2k. This explains the observed pattern and gives an explicit, finite
algorithm to compute the rational coefficient for any fixed k.
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4. Series with Struve function

We are interested in evaluating the infinite series

SH(ν) =
∞∑

n=1

(
Hν(nπ)

nν

)2

, (35)

where Hν(x) denotes the Struve function of order ν [15]. This series arises naturally in problems involving
non-homogeneous Bessel equations and has applications in mathematical physics.

Using Parseval’s identity, we derive an exact closed-form expression for this sum and verify it against
symbolic and numerical computations.

4.1. Fourier Series Representation and Parseval’s Identity
Define the function

f (x) =
∞∑

n=1

an cos(nπx), an =
Hν(nπ)

nν
(36)

Then by Parseval’s identity on the interval [0, 1]∫ 1

0
f (x)2dx =

1
2

∞∑
n=1

a2
n ⇒

∞∑
n=1

a2
n = 2

∫ 1

0
f (x)2dx (37)

Thus

∞∑
n=1

(
Hν(nπ)

nν

)2

= 2
∫ 1

0
f (x)2dx (38)

4.2. The Struve function

To evaluate the sum
∑
∞

n=1

(
Hν(nπ)

nν

)2
for ν = 1, 2, 3, . . ., where Hν(x) is the Struve function, Parseval’s

identity for Fourier sine series is applied.
The Struve function has the integral representation

Hν(z) =
2
√
π

(z/2)ν

Γ(ν + 1
2 )

∫ 1

0
(1 − t2)ν−

1
2 sin(zt)dt, ν > −

1
2
. (39)

Substituting z = nπ

Hν(nπ) =
2
√
π

(nπ/2)ν

Γ(ν + 1
2 )

∫ 1

0
(1 − t2)ν−

1
2 sin(nπt)dt. (40)

Dividing by nν

Hν(nπ)
nν

=
2
√
π

(π/2)ν

Γ(ν + 1
2 )

∫ 1

0
(1 − t2)ν−

1
2 sin(nπt)dt = Cν

∫ 1

0
f (t) sin(nπt)dt, (41)

where Cν = 2
√
π

(π/2)ν

Γ(ν+ 1
2 )

and f (t) = (1 − t2)ν−
1
2 .

The Fourier sine coefficients for f (t) on [0, 1] are

bn = 2
∫ 1

0
f (t) sin(nπt)dt, (42)



N. Fabiano, Z. Bekri / Filomat 40:4 (2026), 1311–1329 1319

so ∫ 1

0
f (t) sin(nπt)dt =

bn

2
. (43)

Thus

Hν(nπ)
nν

= Cν ·
bn

2
. (44)

The sum is
∞∑

n=1

(
Hν(nπ)

nν

)2

=
(Cν

2

)2 ∞∑
n=1

b2
n. (45)

By Parseval’s identity for the Fourier sine series on [0, 1]

∞∑
n=1

b2
n = 2

∫ 1

0
[ f (t)]2dt = 2

∫ 1

0
(1 − t2)2ν−1dt . (46)

So
∞∑

n=1

(
Hν(nπ)

nν

)2

=
(Cν

2

)2

· 2
∫ 1

0
(1 − t2)2ν−1dt =

C2
ν

2

∫ 1

0
(1 − t2)2ν−1dt . (47)

The last integral is the beta function. In fact, with the substitution u = t2, one obtains∫ 1

0
(1 − t2)2ν−1dt =

1
2

∫ 1

0
u−1/2(1 − u)2ν−1du . (48)

The beta function is defined as β(a, b) =
∫ 1

0 ta−1(1 − t)b−1dt.
Thus,∫ 1

0
u−1/2(1 − u)2ν−1du = β

(1
2
, 2ν

)
. (49)

Therefore, the original integral is∫ 1

0
(1 − t2)2ν−1dt =

1
2
· β

(1
2
, 2ν

)
=

1
2

Γ
(

1
2

)
Γ(2ν)

Γ
(
2ν + 1

2

) = 1
2

√
πΓ(2ν)

Γ
(
2ν + 1

2

) . (50)

Now

C2
ν =

 2
√
π

(π/2)ν

Γ
(
ν + 1

2

) 
2

=
4
π
π2ν/4ν

Γ
(
ν + 1

2

)2 = 4π2ν−14−νΓ
(
ν +

1
2

)−2

. (51)

The sum is
∞∑

n=1

(
Hν(nπ)

nν

)2

= 4π2ν−14−νΓ(ν +
1
2

)−2
·

1
4

√
πΓ(2ν)

Γ
(
2ν + 1

2

) . (52)

Simplifying the constants and using the Legendre duplication formula Γ(2ν) = Γ(ν)Γ(ν+
1
2 )

21−2ν
√
π

SH(ν) =
1
2
π2ν−1 Γ(ν)

Γ
(
ν + 1

2

)
Γ
(
2ν + 1

2

) . (53)
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Thus, the closed-form expression for the sum is given by

SH(ν) =
1
2
π2ν−1 Γ (ν)

Γ
(
ν +

1
2

)
Γ
(
2ν +

1
2

) (54)

4.3. Symbolic Table of Results

From symbolic computation (e.g., Mathematica), we obtain the following exact expressions for SH(ν)

ν Expression
1 4/3
2 32 · π2/315
3 512 · π4/155925
4 4096 · π6/70945875
5 131072 · π8/206239658625
6 1048576 · π10/219150261254925
7 16777216 · π12/641014514170655625
8 134217728 · π14/1234868674798755871875
9 8589934592 · π16/24246646429673571544265625
10 68719476736 · π18/73863367240262256781014515625
11 1099511627776 · π20/546928689067245906560700082396875
12 8796093022208 · π22/2418667825425107011331386864381453125

Table 2: First 12 result for Struve series

The results for first values of ν coincide with the Table 4 of [6].

4.4. Numerical Validation

We evaluate the analytical result numerically for several integer values of ν, and compare with direct
summation in both Maxima [10] and Mathematica [18].

Maxima Code:

analytical(v) :=

(%piˆ(2*v-1)*gamma(v))/(2*gamma(v+1/2)*gamma(2*v+1/2));

Evaluating:

makelist(float(analytical(i)),i,1,6);

Output:

[1.3333333333333333,1.0026264788408237,0.31985540875042,

0.055504990767742964,0.006030269569053898,4.4808112236769873*10ˆ-4]

These match with the numerical sums computed with Mathematica as:
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sumstruve[k_, m_] := Sum[(StruveH[k, n*Pi]/nˆk)ˆ2, {n, 1, m}]

nnsumstruve[k_, m_] := N[sumstruve[k, m]]

Chop[Table[nnsumstruve[j, 5000], {j, 1, 6}]]

Output:

{1.33325, 1.00254, 0.31982, 0.0554979, 0.00602941, 0.000448011}

4.5. Conclusions for the section
We have derived the exact closed-form expression

SH(ν) =
∞∑

n=1

(
Hν(nπ)

nν

)2

=
π2ν−1 Γ(ν)

2Γ
(
ν + 1

2

)
Γ
(
2ν + 1

2

) (55)

This formula was obtained via Parseval’s identity, careful application of the integral representation of
the Struve function, and precise normalization of constants.

It matches high-precision numerical evaluations and symbolic computations exactly.

5. Series with generalized Laguerre polynomials

The series is given by

SL
ν(z) =

∞∑
n=0

(
L2n+1−ν
ν (z/2)

)2
z2n

22n(2n + 1)!
(56)

where z = b2
≥ 0. This time, for z ∈ C, we have a function on the complex plane.

To understand the convergence, we need to examine the asymptotic behavior of the terms, particularly
the Laguerre polynomials [9]. Call α = 2n + 1 − ν, the definition of generalized Laguerre polynomials for
integer n is

Lαk (x) =
k∑

j=0

(−1) j

j!

(
k + α
k − j

)
x j . (57)

Let us denote the n-th term of the series as An(z)

An(z) =

(
L2n+1−ν
ν (z/2)

)2
z2n

22n(2n + 1)!
. (58)

For large n, L2n+1−ν
ν (z/2) behaves like a polynomial of degree ν in 2n + 1. So, L2n+1−ν

ν (z/2) ∼ Cν(z)(2n + 1)ν,

where Cν(z) depends on z (and ν). Then,
(
L2n+1−ν
ν (z/2)

)2
∼ (Cν(z))2(2n + 1)2ν.

Now, substitute this into An(z)

An(z) ∼
(Cν(z))2(2n + 1)2νz2n

22n(2n + 1)!
(59)

and apply the ratio test, limn→∞

∣∣∣∣An+1(z)
An(z)

∣∣∣∣
An+1(z)
An(z)

=

(
L2n+3−ν
ν (z/2)

L2n+1−ν
ν (z/2)

)2
z2

4(2n + 3)(2n + 2)
. (60)
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Consider the ratio of the Laguerre polynomials. Since Lαν (z) is a polynomial of degree ν in z with coefficients
involving

(α+ν
ν− j

)
, the dominant term is the one with the highest power of 2n+ 1− ν. The leading term of Lαν (z)

is (−1)0

0!
(ν+α
ν

)
z0 =

(ν+α
ν

)
, independent from z.

So,

L2n+3−ν
ν (z/2)

L2n+1−ν
ν (z/2)

∼

(2n+3
ν

)(2n+1
ν

) =
(2n + 3)(2n + 2) . . . (2n + 3 − ν + 1)

ν!
·

ν!
(2n + 1)(2n) . . . (2n + 1 − ν + 1)

. (61)

This ratio approaches 1 as n→∞. More precisely, it approaches (2n + 3)ν/(2n + 1)ν ≈ 1.
Therefore, the full ratio limit is

lim
n→∞

∣∣∣∣∣An+1(z)
An(z)

∣∣∣∣∣ = lim
n→∞

(1)2
·

|z|2

4(2n + 3)(2n + 2)
=

|z|2

4
lim
n→∞

1
(2n + 3)(2n + 2)

= 0 . (62)

From the ratio test we conclude that, for all finite z, the series SL
ν(z) converges absolutely for all z ∈ C (and

thus for all z ≥ 0). This means the radius of convergence is infinite.
To prove also uniform convergence of SL

ν(z) on [0,M] we shall use the Weierstrass M-Test [17], that is,
we need to find Mn such that |An(z)| ≤Mn for all z ∈ [0,M] and

∑
n Mn converges.

For a fixed ν and x ∈ [0,M], the polynomial Lαν (x) is bounded for given α. Since L2n+1−ν
ν (z/2) is a

polynomial of fixed degree ν in z/2, and its coefficients grow polynomially in n, we can bound it for z ∈ [0,M].
|L2n+1−ν
ν (z/2)| ≤ C(2n + 1)ν for some constant C (depending on ν and M). So, |L2n+1−ν

ν (z/2)|2 ≤ C′(2n + 1)2ν.
Then,

|An(z)| =

∣∣∣∣∣∣∣∣
(
L2n+1−ν
ν (z/2)

)2
z2n

22n(2n + 1)!

∣∣∣∣∣∣∣∣ ≤ C′(2n + 1)2νM2n

22n(2n + 1)!
. (63)

Let Mn =
C′(2n+1)2νM2n

22n(2n+1)! . We need to check the convergence of
∑

n Mn. Using the ratio test on Mn

lim
n→∞

Mn+1

Mn
= lim

n→∞

C′(2n + 3)2νM2(n+1)

22(n+1)(2n + 3)!
·

22n(2n + 1)!
C′(2n + 1)2νM2n

= lim
n→∞

(2n + 3
2n + 1

)2ν M2

4(2n + 3)(2n + 2)
= 0 . (64)

Since limn→∞
Mn+1
Mn
= 0 < 1, the series

∑
n Mn converges. Therefore, by the Weierstrass M-Test, the series SL

ν(z)
converges uniformly on any compact interval [0,M] (or any compact disk |z| ≤M in the complex plane).

Summary for convergence of SL
ν(z)

• Pointwise absolute convergence: the series SL
ν(z) converges absolutely for all z ∈ C (and thus for all

z ≥ 0). This is a direct consequence of the ratio test, which yields a limit of 0.

• Uniform convergence: the series SL
ν(z) converges uniformly on any compact subset of C, such as any

interval [0,M] where M > 0. This is shown by the Weierstrass M-Test.

• No uniform convergence on [0,∞): generally, a series with an infinite radius of convergence does not
converge uniformly on the entire unbounded interval. The terms An(z) contain z2n, which will grow
very rapidly for large z, preventing uniform convergence over an unbounded domain.
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5.1. Poles
SL
ν(z) (56) has no poles for real z > 0, nor does it have poles anywhere in the complex plane. It defines

an entire function.
The reasons are the following

• Analyticity of each term: the generalized Laguerre polynomial Lαν (x) is a polynomial in x of degree ν.
Therefore, L2n+1−ν

ν (z/2) is a polynomial in z/2 (and thus in z) of degree ν. Consider the n-th term of the
series, An(z) (58). Since (L2n+1−ν

ν (z/2))2 is a polynomial in z of degree 2ν, and z2n is also a polynomial,
An(z) is a polynomial in z. Polynomials are entire functions and thus have no poles.

• Uniform convergence and analyticity: we have established that the series SL
ν(z) converges uniformly

on any compact disk |z| ≤ M (for any M > 0) in the complex plane. A fundamental theorem in
complex analysis states that if a series of analytic functions converges uniformly on compact subsets
of a domain, then its sum function is also analytic on that domain. Since SL

ν(z) is a sum of polynomials
(which are analytic functions) and converges uniformly on every compact disk in C, SL

ν(z) must be an
analytic function on the entire complex plane C.

• Definition of entire function: an analytic function on the entire complex plane is called an entire
function. Entire functions by definition have no singularities (including poles) at any finite point in
the complex plane.

Therefore, SL
ν(z) is an entire function and has no poles for any finite z, including real z > 0.

5.2. Asymptotic behavior for z→ 0
For z → 0, the dominant term in the series will be the one with the lowest power of z. Let us examine

the n-th term An(z). Since L2n+1−ν
ν (z/2) is a polynomial of degree ν in z/2, An(z) will be a polynomial in z of

degree 2n + 2ν. So, we need to find the lowest power of z in A0(z) (the n = 0 term). The n = 0 term is

A0(z) =
(L1−ν
ν (z/2))2z0

20(1)!
= (L1−ν

ν (z/2))2 . (65)

For L1−ν
ν (z/2), we set k = ν, α = 1 − ν, and x = z/2

L1−ν
ν (z/2) =

ν∑
j=0

(−1) j

j!

(
ν + (1 − ν)
ν − j

)
(z/2) j =

ν∑
j=0

(−1) j

j!

(
1
ν − j

)
(z/2) j . (66)

The binomial coefficient
( 1
ν− j

)
is non-zero only for ν − j = 0 (i.e., j = ν) or ν − j = 1 (i.e., j = ν − 1).

We need to consider cases for ν

• Case 1: ν = 0

L1
0(z/2) = 1. So, A0(z) = 1. The series becomes SL

0(z) =
∑
∞

n=0
z2n

22n(2n+1)! . Let x = z/2. SL
0(z) =

∑
∞

n=0
x2n

(2n+1)! =
1
x
∑
∞

n=0
x2n+1

(2n+1)! =
sinh(x)

x . So,

SL
0(z) =

sinh(z/2)
z/2

= 1 +
(z/2)2

3!
+ O(z4) . (67)

Thus,

lim
z→0+

SL
0(z) = 1 . (68)

• Case 2: ν = 1

L0
1(z/2) = 1 − z/2. So, A0(z) = (1 − z/2)2. Thus,

lim
z→0+

SL
1(z) =

(
1 −

z
2

)2
+ O(z3) = 1 . (69)
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• Case 3: General ν > 1

The two non-zero terms are for j = ν − 1 and j = ν. So, L1−ν
ν (z/2) = (−1)ν−1

(ν−1)! (z/2)ν−1 +
(−1)ν

ν! (z/2)ν. The
lowest power of z in L1−ν

ν (z/2) is zν−1. Therefore, for z→ 0+

lim
z→0+

A0(z) =
(

(−1)ν−1

(ν − 1)!
(z/2)ν−1 +O(zν)

)2

=
1

((ν − 1)!)2

( z
2

)2(ν−1)
+ O(zν). (70)

Thus, for z ∼ 0 and ν > 1,

SL
ν(z) ∼

z2ν−2

((ν − 1)!)222ν−2 . (71)

5.3. Main Result: Recurrence Formula

From numeric observations and pattern analysis of the results obtained for small ν, we define

SL
ν(z) = ez/2pν(z) + e−z/2qν(z), with pν(z) =

zν−1

2νν!
. (72)

This decomposition allows us to isolate qν(z), which is a degree-(2ν − 1) polynomial with rational
coefficients.

Through extensive exploration, we’ve discovered that qν(z) follows a beautiful recurrence involving
earlier pν−k(z), scaled by rational factors like z2k

(k!)2 . Its expression is

qν(z) =
ν∑

k=0

(−1)k+ν+1zν−1+k

k!2(ν − k)!2ν−k
(73)

or equivalently,

qν(z) =
1

2νν!

ν∑
k=0

(−1)k+ν+1

(
ν
k

)
· 2k
·

zν−1+k

(k!)
, (74)

and in terms of Laguerre polynomials Lν(2z),

qν(z) = (−1)ν+1 1
2νν!

zν−1+kLν(2z). (75)

This gives all known terms of qν(z) exactly and reveals a recursive structure built from earlier pk(z)
Each term has alternating sign, rational coefficient, and increasing power of z

5.4. Generated Expressions Using Recurrence

Using the recurrence, we generated the exact expressions for qν(z) up to ν = 8
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q0(z) = −
1
z

q1(z) =
1
2
− z

q2(z) = −
z3

4
+

z2

2
−

z
8

q3(z) = −
z5

36
+

z4

8
−

z3

8
+

z2

48

q4(z) = −
z7

576
+

z6

72
−

z5

32
+

z4

48
−

z3

384

q5(z) = −
z9

14400
+

z8

1152
−

z7

288
+

z6

192
−

z5

384
+

z4

3840

q6(z) = −
z11

518400
+

z10

28800
−

z9

4608
+

z8

1728
−

z7

1536
+

z6

3840
−

z5

46080

q7(z) = −
z13

25401600
+

z12

1036800
−

z11

115200
+

z10

27648
−

z9

13824
+

z8

15360
−

z7

46080
+

z6

645120

q8(z) = −
z15

1625702400
+

z14

50803200
−

z13

4147200
+

z12

691200
−

z11

221184
+

z10

138240
−

z9

184320
+

z8

645120
−

z7

10321920
. (76)

These match Maxima output precisely, and also Table 2 of [6].

5.5. Numerical validation
We evaluate the analytical result (72) numerically for several integer values of ν, up to ν = 15, at the

points z = 0.5, 1, 2, and compare with direct summation in both Maxima [10] and Mathematica [18].
Maxima Code:

q(nu,z):=

sum((-1)ˆ(k+nu+1)*zˆ(nu-1+k)/((k!)ˆ2*2ˆ(nu-k)*((nu-k)!)),k,0,nu);

p(nu,z):=zˆ(nu-1)/(nu!*2ˆnu);

sl(nu,z):=(p(nu,z)*exp(z/2)+q(nu,z)*exp(-z/2));

makelist(sl(j,0.5),j,1,15);

[0.6420127083438707,0.10458911301396524,0.003983462992917385,

5.764244486026592*10ˆ-4,1.498348065192739*10ˆ-5,

1.006492751211834*10ˆ-6,3.033598709952065*10ˆ-8,

8.810857019223989*10ˆ-10,3.206781389049871*10ˆ-11,

5.034069516467763*10ˆ-13,1.9805550863679202*10ˆ-14,

2.233797797821449*10ˆ-16,7.907889986711898*10ˆ-18,

8.195288006481406*10ˆ-20,2.2037655778273722*10ˆ-21]

makelist(sl(j,1.0),j,1,15);
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[0.5210953054937474,0.2819064913015952,0.030136341336026048,

0.0037670426670032547,5.451850055093904*10ˆ-4,

2.495699400662538*10ˆ-5,3.1794852890688054*10ˆ-6,

1.386506028787966*10ˆ-7,8.900378880804328*10ˆ-9,

4.941422461867225*10ˆ-10,1.6152464078815272*10ˆ-11,

1.0455435850787323*10ˆ-12,2.429629670983615*10ˆ-14,

1.404292276498331*10ˆ-15,3.239288438828556*10ˆ-17]

makelist(sl(j,2.0),j,1,15);

[0.807321752472359,0.5876005968219007,0.2980555992660343,

0.048966716401825046,0.009997720747682478,0.0023588993194118327,

2.1023451204448478*10ˆ-4,3.656191050466806*10ˆ-5,

4.021311266389117*10ˆ-6,3.046297264842651*10ˆ-7,

4.159181652912322*10ˆ-8,2.3277657654568975*10ˆ-9,

2.3696800862728487*10ˆ-10,1.599602957719109*10ˆ-11,

9.111585489202436*10ˆ-13]

These match perfectly with the numerical sums computed with Mathematica as:

Ain[nu_, z_,n_] :=

(LaguerreL[nu, 2*n + 1 - nu, z/2]*zˆn)ˆ2/(2ˆ(2*n)*(2*n + 1)!)

summe[nu_, z_, m_] := Sum[Ain[nu, z, k], {k, 0, m}]

Table[N[summe[j, 1/2, 100]], {j, 1, 15}]

{0.642013, 0.104589, 0.00398346, 0.000576424, 0.0000149835,

1.00649*10ˆ-6, 3.0336*10ˆ-8, 8.81086*10ˆ-10, 3.20678*10ˆ-11,

5.03407*10ˆ-13, 1.98056*10ˆ-14, 2.2338*10ˆ-16,

7.90789*10ˆ-18, 8.19529*10ˆ-20, 2.20377*10ˆ-21}

Table[N[summe[j, 1, 100]], {j, 1, 15}]

{0.521095, 0.281906, 0.0301363, 0.00376704, 0.000545185,

0.000024957, 3.17949*10ˆ-6, 1.38651*10ˆ-7, 8.90038*10ˆ-9,

4.94142*10ˆ-10, 1.61525*10ˆ-11, 1.04554*10ˆ-12,

2.42963*10ˆ-14, 1.40429*10ˆ-15, 3.23929*10ˆ-17}

Table[N[summe[j, 2, 100]], {j, 1, 15}]

{0.807322, 0.587601, 0.298056, 0.0489667, 0.00999772,

0.0023589, 0.000210235, 0.0000365619, 4.02131*10ˆ-6, 3.0463*10ˆ-7,

4.15918*10ˆ-8, 2.32777*10ˆ-9, 2.36968*10ˆ-10,

1.5996*10ˆ-11, 9.11159*10ˆ-13}

5.6. Log-Scale Plot of Denominators
We now visualize the evolution of denominator values across terms for ν = 2 to ν = 6.
The plot (1) confirms that denominators follow a smooth parabolic shape, central terms have smallest

denominators, that is largest contributions, first and last terms have largest denominators, and finally,
symmetry suggests generating function behavior.
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Figure 1: Log-scale plot of denominator values in qν(z), showing smooth growth and symmetry. The absolute value of the denominator
of the coefficient k, Dk, corresponds to the power zν−1+k given in formula (73).

5.7. Prime Factorization Pattern
The polynomial qν(z) exhibits a striking number-theoretic structure in the prime factorizations of its

coefficients’ denominators. This is governed by the closed-form expression

qν(z) =
ν∑

k=0

(−1)k+ν+1zν−1+k

k!2(ν − k)! 2ν−k
. (77)

In particular:

• The lowest-degree term (coefficient of zν−1, corresponding to k = 0) has denominator

Dmin = ν! 2ν.

• The highest-degree term (coefficient of z2ν−1, corresponding to k = ν) has denominator

Dmax = (ν!)2.

Consequently:

• When ν = p is a prime, the prime p appears for the first time in Dmin, and appears squared in Dmax.
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• When ν is composite, no new prime appears in either Dmin or Dmax.

For example:

• ν = 5 (prime):

Dmin = 5! · 25 = 3840 = 28
· 3 · 5, Dmax = (5!)2 = 14400 = 26

· 32
· 52.

The new prime 5 appears linearly in the lowest term and squared in the highest.

• ν = 6 (composite):

Dmin = 6! · 26 = 46080 = 210
· 32
· 5, Dmax = (6!)2 = 518400 = 28

· 34
· 52.

No new prime appears.

• ν = 7 (prime):

Dmin = 7! · 27 = 645120 = 211
· 3 · 5 · 7, Dmax = (7!)2 = 25401600 = 210

· 34
· 52
· 72.

The new prime 7 appears linearly and squared, respectively.

This pattern reflects the fundamental role of factorials in the structure of qν(z), and provides a direct link
between the analytic form of the series and elementary number theory.

5.8. Possible Connection to Orthogonal Polynomials
The recurrence

qν(z) =
ν∑

k=0

(−1)k+ν+1zν−1+k

k!2(ν − k)!2ν−k
(78)

bears strong resemblance to classical orthogonal polynomial sequences like Laguerre or Hermite.
In particular, the form

Pν(z) = (aνz + bν)Pν−1(z) + cνPν−2(z) (79)

is characteristic of Favard’s theorem [5], defining orthogonality under some weight function.
From our analysis, qν(z) shows alternating signs, recursive structure, rational coefficients, smooth prime

appearance. All of which support the hypothesis that qν(z) may be related to a broader class of rational-
coefficient orthogonal polynomials.

Future directions include proving whether qν(z) satisfies a three-term recurrence, deriving its associated
inner product or weight function, and studying its asymptotics and integral transforms.

5.9. Conclusions for the section and outlook
We have derived the exact closed-form expression

SL
ν(z) =

∞∑
n=0

(
L2n+1−ν
ν (z/2)

)2
z2n

22n(2n + 1)!
= ez/2pν(z) + e−z/2qν(z) , (80)

with

pν(z) =
zν−1

2νν!
. (81)
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A new recurrence has been discovered

qν(z) =
ν∑

k=0

(−1)k+ν+1zν−1+k

k!2(ν − k)!2ν−k
, (82)

which is fully symbolic, matches numerical results up to ν = 15, reveals a structured appearance of small
primes, and provides an elegant recursive generator.

This recurrence represents a refined mathematical insight and opens the door to further exploration.
Future work includes proving orthogonality, deriving a generating function, exploring analytic contin-

uation, investigating applications in asymptotic expansions.
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