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Abstract. In this work, we consider the Dirac operator with the spectral parameter boundary conditions
and the jump condition at the point 5. We investigate the spectral properties and establish a new uniqueness
theorem of the half inverse problem for discontinuous impulsive Dirac operator operators by constructing
the Weyl function and exploiting its relevant properties. We conclude that if the potential is known on
(0, @), where @ < 3, then the potential on (0, ), the partial parameters in the boundary conditions and
jump conditions can be uniquely determined by only one spectrum.

1. Introduction

e
1, x<-=
Define o(x) = 7% (0 < a < 1). Consider the following impulsive Dirac operator:
a, X > E
Ly := By'(x) + Q(x)y(x) = Ao(x)y(x), x € (0, g) U (g,n), 1)
here 0 1 (x) () ()
plx qlx nx
B = ’ = ’ = ’
(51 ofe=(a o) @=(n)

the function p(x) and g(x) are real-valued functions in L?(0, 7t), A is the spectral parameter.
We denote by L = L(p(x),q(x), 0(x), Rij(A),a) (i,j = 0,1) the boundary value problem generated by
with the boundary conditions

U(y) :=Ro1(A)y2(0) + Roo(A)y1(0)

=Ro1(A) (y21(0)) + Roo(A) (yn(O)) =0,

y22(0) y12(0) @
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V(y) :=R11(A)y2(m) + Rio(A)y1 ()

“Ru(A) (y 21(”)) + Rio(1) (y ”(”)) -0, )
yzz(ﬂ) ylz(ﬂ)

and the discontinuous conditions
T T a 0
y(§+0)=Ay(§—0)f A=[O - ] (4)

where g € R and
ri/
Rij(A) = Zcilerif_l (ran=r020,¢c10=1,1i,j=0,1)
=0

are arbitrary polynomials of degree r; with real coefficients such that R;;(1) and Rj(A) have no common
Zeros.

This paper focuses on half inverse problem for the discontinuous Dirac problem. Here the half inverse
problem refers to reconstructing the potential function over the entire interval and boundary condition
parameters using spectral data and partial potential information from half of the interval. However, the
primary problem addressed in this work and its key innovation is investigating whether reconstruction
remains possible when given even less information: specifically, whether the discontinuous Dirac operator
can still be uniquely determined using just one spectrum when provided with potential function information
from less than half of the interval.

The boundary value problem with a discontinuous always arises in mathematics, physics, geophysics,
and other aspects of natural sciences. This kind of problem has been studied by many authors (see, e.g.,
[1H3, 15,18, 10, [16, [17,20H22] and the references therein).

In 1978, Hochstadt and Lieberman (see [13]) firstly studied the half inverse problem for the Sturm-
Liouville operator, and showed that if the potential is known a priori on half interval, then one spectrum
is sufficient to determine the potential on the whole interval. Subsequently, scholars generalized the
conclusions of the Sturm-Liouville operator to the Dirac operator. For example, Mochizuki and Trooshin
[15] considered the Dirac problem L = L(p(x), q(x), 1,0, 1), with the separable boundary conditions, where
Ro1(A)=R10(A) =0, they proved the uniqueness theorem by a set of values of eigenfunctions in some internal
point and a single spectrum. In 2005, Amirov [1] investigated the problem L = L(p(x), g(x),1,0,a), where
Ro1(A) = Rip(A) = 0, described the express of the Dirac equation, spectral property, and gave the uniqueness
theorem by the Weyl function.

The research on the Dirac operator with boundary conditions depending on the spectral parameter has
also attracted the attention of many scholars (see, e.g., [9,[11}[12]). In 2011, Keskin and Ozkan [14] provided
spectral characteristics, the representation of resolvent and proved the inverse problem by three kinds of
data: (i) the Weyl function; (ii) the sets of eigenvalues and norming constants; (iii) two different eigenvalues
sets. In [7], Gildii investigated the discontinuous Dirac operator with eigenparameter dependent boundary
and two transmission conditions, they got some properties of eigenvalues and eigenfunctions, and pre-
sented the uniqueness theorem by using the Weyl function and some spectral data. Yang [19] studied the
Titchmarsh-Weyl theorem about the discontinuous Dirac equations with boundary conditions depending
polynomially on the spectral parameter, and obtained two analogues of Hochstadt-Lieberman theorem
and Mochizuki-Trooshin theorem. Guo, Wei and Yao considered the Dirac operator with eigenparameter
boundary conditions and a finite number of transmission conditions. They used the Weyl function or two
spectra to reconstruct the operator and extended Hochstadt-Lieberman theorem to the above cases (see [6]).

In this paper, we study the half inverse problem for the Dirac operator L = L(p(x), q(x), o(x), Rij(A),a) (i, j =
0,1) and establish a new half inverse problem. Using the potential function information on the less than
half of the interval, the uniqueness theorem can be proved by one spectrum, i.e. if the potential Q(x) is
given on (0, @) (see Figure 1), where @ < 7, then only a single spectrum can uniquely determine the
potential Q(x) on the whole interval and some parameters in the boundary conditions and jump conditions.
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Figure 1: The case of Q(x).

2. Preliminaries
Let v1(x, A), v2(x, A), p(x, A), P(x, A) be the solutions of the equation (T), satisfying the jump condition ()

and the following initial conditions, respectively:

_(vn(0)\ (0 _ (v @) _ (1
ml0. 1) = (012(0)) - (1)/ 0= (022(0)) B (O)

_(#1(0) _( Roi(A) ) (lPl(Tf)) ( Ri1(A) )

w090 o H ) 45 =(GmH “n)
It is clearly that these solutions are entire functions with respect to A, and U(p)=V(y)=0. It implies that
@(x, A) = Ro1(A)va(x, A) = Roo(A)v1(x, A), 5)
P(x, A) = M(Dva(x, A) = Aa(Dvi(x, A). (6)

Here Al(A) = V(Ul), AQ(/\) = V(Uz).

Lemma 2.1. [I6]] The following asymptotic relations hold as |A| — oo,

A0 [ cos A(x) + O(e919)), 0<x< g

prle )= {/\ [(@} cos Ap(x) + a} cos A(m — p(x)) + O], g <x<m,

Vo sin Ag(x) + O(2100)], 0<x<Z,

Pl {/\ [(af sin Ap(x) + a7 sin A(m — p(x))) + O(¢%H0W))], g <x<m,
/\ru[cos M(rr) — d(x)) + O(E\SAI(¢(H)—¢(X)))]I O<x<Z
o) = {/\ [(@ cos A((m) = p(x) + 13 cos A@() + P(x) = 7)) + O(ePHE=6)], g <x<m,
A [ sin A(@(m) = (x)) + O(FHEM-0D) ], 0<x< g
vl b {/\’“[( 3 Sin A(P(m) — (X)) + a; sin A(@ (1) + p(x) — 7)) + OeP M=o ], g <x<m,

here (x) = [ o(Ddt, aF = L= L) and af = 1(L +aa).

Denote

AA) = [p(x), ()],
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where

[p(x0), p()] = @1(x)2(x) — P2(X)¢P1(x)

is the Wronskian of ¢(x) and (x), which is independent of x and satisfies the following formula:

[p@), pO|,_5 o = [P, Y] _s -

The function A(A) is called the characteristic function of L, which is entire in A, and it has an at most
countable set of zeros {A,},cz (counting with multiplicities). It follows from (5), (6) and (7) that

A(A) = V() = =U(¥) = Ro1(4)A2(A) = Roo(AM)A1(A). (8)
Together Lemma 2.1 with (5)-(8), we have that

A= Aol [(a{r sin /\(;[)(71) +C¥I sin A(n—(1‘[)(71)))+O(e|3/\|¢1(n))],
[A] = 0. ©)

Define the sector S. 1+ := {A € C: |A| > A%, ¢ < argA < 7 — ¢} for € > 0, A* > 0. The asymptotic formula (9)
implies

|A(/\)| > Ce,/\*lAlrn-HmEISAW(H)’ A€ Ss,/\*/ (10)

where C; »- is a constant.

3. Weyl function and related properties

This section characterizes the representation and related properties of the Weyl function, and sub-
sequently employs these results to establish uniqueness theorems for Dirac operators with eigenvalue
dependent boundary conditions. The developed theory serves as the mathematical foundation for proving
the half inverse problems in Section 4.

Consider a boundary V~alue problem L = L((x), §(x), 5(x), R,-]-()\),ﬁ) of the same form but with different
coefficients fi(x), §(x), 5(x), R;j(A), 4. We agree that if a certain symbol v denotes an object related to L, then ©
denotes the analogous object related to L.

Let @ 1) = q)l(x/ /\)
¢ (x’ ) B (I)Z(xr /\)
following boundary conditions U(®) = 1, V(®) = 0. It follows from U(y) = —A(A), V(i) = 0 that

) be the solution of the equation , satisfying the jump condition (H), and the

)
D(x,A) = A (11)
Together (8) with (1), it can be deduced that [¢(x, A), ®(x, A)] = 1. By virtue of (8), we obtain that
1
DOx, )= ——— x,A) + M(A)p(x, A)). 12
(5 = o 1(0) + Mp(x, ) (12)
It follows from (12) that
M(A) = V) _ A(A) (13)

Vi) AR

The functions ®(x, A) and M(A) are respectively referred to the Weyl-solution and Weyl-type function for
the operator L. It is different from the classic Dirac operator, here A;(A) and A(A) have common zeros.

Next, the following lemma is given by analyzing and discussing the relationship between the functions
Aq(A) and A(A).
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Lemma 3.1. (i) A1(A) and Ay(A) have no zeros.
(ii) Let A* is the zero of A(A), i.e. A(A*) = 0. Then A1(A*)Rp1(A*) # 0 or A1(A*) = Rp1(A*) = 0.

Proof. The proof of (i): In virtue of , if A1(A) and A;(A) have common zero A*, i.e. Aj(A*) = Ay(A*) =0,
then

Ri1(A")v12(m, A*) + Rig(A)v11(mr, A7) = 0, (14)
Ri1(A")vaa(m, A7) + Rig(A")vo21(mr, A7) = 0. (15)

Since [vo(1t, A*), v1(1t, A¥)] = 1, i.e. the determinant of vy(71, A*) and vq(7, A*) is 1 in and . That
means Rj1(A*) = Rip(A*) = 0. This conclusion contradicts the assumption that Rip(A) and Rj;(A) have no
common zero point.

The proof of (ii): It follows from the result of (i) that if A(A*) = A;(A*) = 0, then Ax(A*) # 0. By virtue of
, we get Ro1(A*) = 0. Similarly, if A(A*) = Rg1(A*) = 0, then Rgp(A*) # 0. That means A;(A*) =0. O

Define

(Pl(xr A) qjl (x/ /\)
P2(x,A)  Do(x, A) )

W(x, A) =
we can obtain that detW(x, A) = 1.
Theorem 3.2. Let Rpi(A) = Roi(A) (i = 0,1). If M(A) = M(A), then Q(x) = Q(x) a.e. x € (0,7) and a = .
Proof. It follows from the expressions of ¢(x, A) and ¢ (x, A) along with @ that

W6, I < Copr A0 90, pessp, i=1,2.

Introduce the matrix
P(x, A) = [Pij1]ij=1,2/

which satisfies
P(x, )€W(x, ) = W(x, A). (16)
By calculating, we have

P11(x, A) =1 (x, D)Pa(x, A) = @alx, NP1 (x, A), (17)
Pia(x, A) = = @1(x, M)D1(x, A) + Pr(x, 1)P@i(x, A),
P1 (xr A) =P11(X, A)(ﬁl(xl /\) + PlZ(x/ /\)(pZ(xr /\)/
@1(x, A) =P11(x, )P1(x, A) + Pia(x, M) Da(x, A).
Since M(A) = M(A) and together with (12),

Pll (X, A)_ 1= ((Pl (xr A)_(Pl (X, A))(i)Z(x/ /\)_(q)l (JC, A)_(i)l (X, /\))(P2(x/ /\)/ (18)
Pra(x, A) =~(1(x, A1 (x, A))D1(x, 1) +(@1(x, 1) = D1 (x, 1)) P1(x, A). (19)

Substituting into (17), we have

P A) = le( 01 el A) + Mg, )

- ROl (/\) (PZ(X, /\)(Ul(x, /\) + M(A)@l(x, /\))
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11(A)g01(x A)D12(x, A) + 1( )qol(x , M@a(x, AM(A)
R 1(A)(p2(x Mvii(x, A) — R 1(A)(p2(x M@1(x, A)M(A).

Considering the conditions M(A) = M(A) and Ry; = Ro;(i = 0, 1) and substituting (2) into the above formula,
we get

Pi(x, ) = 1()\) ——(p1(x, A)D12(x, A) — Pa(x, Av11(x, A))

=%wd@MMw@J%RMMm@JWMMM

— (Ror (M), A) = Roo(M)ora(ar, A)wna (x, V)]
=v21(x, A)D12(x, A) — Da(x, A)v11(x, A).

Similarly, we can obtain
P1a(x, A) = D1(x, Mv11(x, A) — va1(x, A)D11(x, A).
From the expressions of P11(x, A) and P1»(x, A), itis known that when x € [0, 7)U (5, ], P11(x, A) and P12(x, A)

are entire function with respect to A.
Using the expressions of ¢(x, ) and (x, A), (9) and (I8), it can be calculated that

C C
IPu(x, A) =1 < —, [P )<,

ar P S
We can also get that
C C
|Pn(x,A) = 1] < — ik [P21(x, M)l < ik pE S

By Liouville’s theorems and Phragmen-Lindel6f’s in [4], we deduce that

Pri(x, A) = Po(x,A) =1, Pra(x, A) = Par(x,A) =0
By virtue of , we obtain @k(x, 1) = @k(x, A), Dx(x, ) = Dr(x, A), k = 1,2. Thatis Q(x) = Q(x) a.e. x € (0, 7)
anda=4. O

4. Half inverse problem

In this section, considering the Dirac operator L = L(p(x), g(x), o (x),
Rij(A),a) given in section 3, the half inverse problem for the Dirac operator L = L(p(x), 4(x), 6(x), R;j(A), a) can
be investigated. Let Roo(4) and Rg;(A) be known a priori.

Theorem 4.1. Assume r1; < ro1. If A, = A, for all n € Z (counting with multiplicities), Q(x) = Q(x) on (0, %n)),
Roo(A) = Roo(A), Ro1(A) = Ror(A) and a = @&, then Q(x) = Q(x) a.e. on (0, 7) and a = 4.

In order to prove Theorem we need the help of following Lemma.

Lemma 4.2. If A, = A, for all n € Z (counting with multiplicities) and a = &, then a = a.
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Proof. Tt is known that A(A) and A(A) are entire functions of A of order 1. So the characteristic function
can be uniquely determined by the eigenvalues up to an exponential factor. Since A, = A, for all n € Z,
we obtain that A(A) = C1e©*A(A), where C;, C, # 0 are some constant. Together @ with @« = & , we have
at = Cef'at and a~ = C1e“2%a™, that is

It is clearly that
a=Cie%a, a'=Ceal. (20)
In view of 4,4 > 0 and dividing two formulas in 20), soa =a. O

Proof. [Proof of Theorem For convenience, denote d = @ Since ¢1(m, A) = Ry1(A), P2(mt, A) = =Ryp(A),
and using Green formula, we can obtain

j; (Q() = Q)Y(x, WP (x, Adx = [, P10, A) = [, Pl(m, A)
= C(Ol /\) - C(n/ /\)/ (21)

where C(x, A) = [¢, P](x, A).
In virtue of Q(x) = Q(x) (x € (0,d)), we have

0N =Ed, )= )+ [ Q0= QN A A 22)
According to the expression ((x, A) and , we can calculate

C(0,A) = 1(0, M)Y2(0, A) = 2(0, M1 0, A)
1

T 0, D) - 520 )U) @)
e ~
= S 10, U() - 10, DU 24

Substituting (6) into and (24), it follows that

€0, 1) = —@[Awwm _ AWV, (25)
1 . _
- R AWVE) - AVen] (26)

Since A, = A, for all n € Z (counting with multiplicities), so A(A) = A(A), i.e.

1 ~
c(0,4) = —mA(A)[V(vz) — V(02)] (27)
1 _
= Ron A)A(A)[V(vl) - V(] (28)

It follows from Lemmathat if A, is a zero of multiplicity m, for A(A), then A, is a zero of multiplicity
m,, for C(0, A), i.e. A(A) and (0, A) have the same common zeros. We have

(0, Aw) = C(d, Au) = Y1(d, An)ih2(d, An) = P2(d, A) 1 (d, An) (29)
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Next, we shall prove that is valid for all A € C.
In view of [18] and using Schwarz inequality, it follows from Lemma 2.1 and that

|an:KMJnSmmMH¢L<qw—Qmquw%nmw|
< K, M1 Q0 = Q) e ( [ It 07, )Pe)

< GA™ 4+ Co |1 Q@) — Q@) Iz | )\|V11+rne2|5/\\(¢(n)—d)
= CLIAI™™ 4+ Ca || Q(x) = Q) [lp A 710

— O(|A|V11+711e|3|0(ﬂ)). (30)
Denote
oA

From the above conclusion, it can be known that (0, A) and A(A) have the common zeros. By and (30),
we have

o) _
A |

Xl = | CoplAI™ ™, p€Ssy,

where r11 < rp1. Using Phragmen-Lindel6f’s theorem and Liouville’s theorem, it can be calculated that
C(0,A) =(d,A) =0. That s,

V1(d, )Pa(d, 1) — Ya(d, Hi(d, 2) = 0. (31)
So (29) is valid for all A € C. Through transformation of (31)), we obtain

l;bl(dr A) — 17[}1(5[/ /\)
Ua(d,A)  Po(d, A)

(32)

We rigorously demonstrate that the fraction :ﬁ;g;; is the Weyl function of the boundary value problem

Li(p(x),q(x), 0(x), Rij(A), a, b) for the equation (1) on (d, ) with the boundary conditions 12(d, A) = 0, V(¢)) = 0
without the discontinuity.

Let y(x, A) be the solutions of the equation (x € (d,m)), satisfying the the boundary conditions
y2(d, A) =1, V(y) = 0. By applying the same line of reasoning as above, we can derive that the characteristic
function of L is Y(A) := ¢2(d, A). In virtue of V(¢) = 0, we can get the Weyl solution for L;:

YA _ g
T~ $a@ )

It follows from that the Weyl function of L; is

llbl (d/ A)
Pa(d, A)

In view of , My(A) = My(A). According to Theorem 3.1, Weyl function can uniquely determine the
potential function, so Q(x) = Q(x) (x € (d, n)).

Since M(A) = M(A), we can get @(x, 1) = D(x, A), x € (@, 1t) though Theorem 3.1. Analogously, because
of A, = Ay, n > 0 (counting with multiplicities), it follows from the proof in Lemma 4.2 that A(A) = A(A).
Comparing with , it can be deduced that ¢(x, A) = i(x, A). Based on the initial value condition of y(x, A)
at the right endpoint 7, it can be proved that Ryo(A) = Rip(A), Ri1(A) = Riy(A). O

y(x, ) (33)

Mo(A) =
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