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Abstract. In this work, we consider the Dirac operator with the spectral parameter boundary conditions
and the jump condition at the point π2 . We investigate the spectral properties and establish a new uniqueness
theorem of the half inverse problem for discontinuous impulsive Dirac operator operators by constructing
the Weyl function and exploiting its relevant properties. We conclude that if the potential is known on
(0, ϕ(π)

2 ), where ϕ(π)
2 < π

2 , then the potential on (0, π), the partial parameters in the boundary conditions and
jump conditions can be uniquely determined by only one spectrum.

1. Introduction

Define σ(x) =


1, x <

π
2

α, x >
π
2

(0 < α < 1). Consider the following impulsive Dirac operator:

Ly := By′(x) +Q(x)y(x) = λσ(x)y(x), x ∈
(
0,
π
2

)
∪

(π
2
, π

)
, (1)

where

B =
(

0 1
− 1 0

)
, Q(x) =

(
p(x) q(x)
q(x) −p(x)

)
, y(x) =

(
y1(x)
y2(x)

)
,

the function p(x) and q(x) are real-valued functions in L2(0, π), λ is the spectral parameter.
We denote by L = L(p(x), q(x), σ(x),Ri j(λ), a) (i, j = 0, 1) the boundary value problem generated by (1)

with the boundary conditions

U(y) :=R01(λ)y2(0) + R00(λ)y1(0)

=R01(λ)
(
y21(0)
y22(0)

)
+ R00(λ)

(
y11(0)
y12(0)

)
= 0, (2)
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V(y) :=R11(λ)y2(π) + R10(λ)y1(π)

=R11(λ)
(
y21(π)
y22(π)

)
+ R10(λ)

(
y11(π)
y12(π)

)
= 0, (3)

and the discontinuous conditions

y
(π

2
+ 0

)
= Ay

(π
2
− 0

)
, A =

a 0

0 a−1

 , (4)

where a ∈ R and

Ri j(λ) =
ri j∑

l=0

ci jlλ
ri j−l (ri1 = ri0 ≥ 0, ci10 = 1, i, j = 0, 1)

are arbitrary polynomials of degree ri with real coefficients such that Ri1(λ) and Ri0(λ) have no common
zeros.

This paper focuses on half inverse problem for the discontinuous Dirac problem. Here the half inverse
problem refers to reconstructing the potential function over the entire interval and boundary condition
parameters using spectral data and partial potential information from half of the interval. However, the
primary problem addressed in this work and its key innovation is investigating whether reconstruction
remains possible when given even less information: specifically, whether the discontinuous Dirac operator
can still be uniquely determined using just one spectrum when provided with potential function information
from less than half of the interval.

The boundary value problem with a discontinuous always arises in mathematics, physics, geophysics,
and other aspects of natural sciences. This kind of problem has been studied by many authors (see, e.g.,
[1–3, 5, 8, 10, 16, 17, 20–22] and the references therein).

In 1978, Hochstadt and Lieberman (see [13]) firstly studied the half inverse problem for the Sturm-
Liouville operator, and showed that if the potential is known a priori on half interval, then one spectrum
is sufficient to determine the potential on the whole interval. Subsequently, scholars generalized the
conclusions of the Sturm-Liouville operator to the Dirac operator. For example, Mochizuki and Trooshin
[15] considered the Dirac problem L = L(p(x), q(x), 1, 0, 1), with the separable boundary conditions, where
R01(λ)=R10(λ)=0, they proved the uniqueness theorem by a set of values of eigenfunctions in some internal
point and a single spectrum. In 2005, Amirov [1] investigated the problem L = L(p(x), q(x), 1, 0, a), where
R01(λ) = R10(λ) = 0, described the express of the Dirac equation, spectral property, and gave the uniqueness
theorem by the Weyl function.

The research on the Dirac operator with boundary conditions depending on the spectral parameter has
also attracted the attention of many scholars (see, e.g., [9, 11, 12]). In 2011, Keskin and Ozkan [14] provided
spectral characteristics, the representation of resolvent and proved the inverse problem by three kinds of
data: (i) the Weyl function; (ii) the sets of eigenvalues and norming constants; (iii) two different eigenvalues
sets. In [7], Güldü investigated the discontinuous Dirac operator with eigenparameter dependent boundary
and two transmission conditions, they got some properties of eigenvalues and eigenfunctions, and pre-
sented the uniqueness theorem by using the Weyl function and some spectral data. Yang [19] studied the
Titchmarsh-Weyl theorem about the discontinuous Dirac equations with boundary conditions depending
polynomially on the spectral parameter, and obtained two analogues of Hochstadt-Lieberman theorem
and Mochizuki-Trooshin theorem. Guo, Wei and Yao considered the Dirac operator with eigenparameter
boundary conditions and a finite number of transmission conditions. They used the Weyl function or two
spectra to reconstruct the operator and extended Hochstadt-Lieberman theorem to the above cases (see [6]).

In this paper, we study the half inverse problem for the Dirac operator L = L(p(x), q(x), σ(x),Ri j(λ), a) (i, j =
0, 1) and establish a new half inverse problem. Using the potential function information on the less than
half of the interval, the uniqueness theorem can be proved by one spectrum, i.e. if the potential Q(x) is
given on (0, ϕ(π)

2 ) (see Figure 1), where ϕ(π)
2 < π

2 , then only a single spectrum can uniquely determine the
potential Q(x) on the whole interval and some parameters in the boundary conditions and jump conditions.
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Figure 1: The case of Q(x).

2. Preliminaries

Let υ1(x, λ), υ2(x, λ), φ(x, λ), ψ(x, λ) be the solutions of the equation (1), satisfying the jump condition (4),
and the following initial conditions, respectively:

υ1(0, λ) =
(
υ11(0)
υ12(0)

)
=

(
0
1

)
, υ2(0, λ) =

(
υ21(0)
υ22(0)

)
=

(
1
0

)
.

φ(0, λ)=
(
φ1(0)
φ2(0)

)
=

(
R01(λ)
− R00(λ)

)
, ψ(π, λ)=

(
ψ1(π)
ψ2(π)

)
=

(
R11(λ)
− R10(λ)

)
.

It is clearly that these solutions are entire functions with respect to λ, and U(φ)=V(ψ)=0. It implies that

φ(x, λ) = R01(λ)υ2(x, λ) − R00(λ)υ1(x, λ), (5)
ψ(x, λ) = ∆1(λ)υ2(x, λ) − ∆2(λ)υ1(x, λ). (6)

Here ∆1(λ) = V(υ1), ∆2(λ) = V(υ2).

Lemma 2.1. [6] The following asymptotic relations hold as |λ| → ∞,

φ1(x, λ) =


λr01

[
cosλϕ(x) +O

(
e|ℑλ|ϕ(x)

)]
, 0 < x <

π
2
,

λr01
[
(α+1 cosλϕ(x) + α−1 cosλ(π − ϕ(x))) +O

(
e|ℑλ|ϕ(x)

)]
,
π
2
< x < π,

φ2(x, λ) =


λr01

[
sinλϕ(x) +O

(
e|ℑλ|ϕ(x)

)]
, 0 < x <

π
2
,

λr01
[
(α+1 sinλϕ(x) + α−1 sinλ(π − ϕ(x))) +O

(
e|ℑλ|ϕ(x)

)]
,
π
2
< x < π,

ψ1(x, λ) =


λr11

[
cosλ(ϕ(π) − ϕ(x)) +O

(
e|ℑλ|(ϕ(π)−ϕ(x))

)]
, 0 < x <

π
2
,

λr11
[
(α+2 cosλ(ϕ(π) − ϕ(x)) + α−2 cosλ(ϕ(π) + ϕ(x) − π)) +O

(
e|ℑλ|(ϕ(π)−ϕ(x))

)]
,
π
2
< x < π,

ψ2(x, λ)=


λr11

[
sinλ(ϕ(π) − ϕ(x)) +O

(
e|ℑλ|(ϕ(π)−ϕ(x))

)]
, 0 < x <

π
2
,

λr11
[
(α+2 sinλ(ϕ(π) − ϕ(x)) + α−2 sinλ(ϕ(π) + ϕ(x) − π)) +O

(
e|ℑλ|(ϕ(π)−ϕ(x))

)]
,
π
2
< x < π,

here ϕ(x) =
∫ x

0 σ(t)dt, α±1 =
1
2 (a ± 1

aα ) and α±2 =
1
2 ( 1

a ± aα).

Denote

∆(λ) := [φ(x), ψ(x)], (7)
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where

[φ(x), ψ(x)] = φ1(x)ψ2(x) − φ2(x)ψ1(x)

is the Wronskian of φ(x) and ψ(x), which is independent of x and satisfies the following formula:

[φ(x), ψ(x)]
∣∣∣
x= π2 −0

= [φ(x), ψ(x)]
∣∣∣
x= π2 +0

.

The function ∆(λ) is called the characteristic function of L, which is entire in λ, and it has an at most
countable set of zeros {λn}n∈Z (counting with multiplicities). It follows from (5), (6) and (7) that

∆(λ) = V(φ) = −U(ψ) = R01(λ)∆2(λ) − R00(λ)∆1(λ). (8)

Together Lemma 2.1 with (5)-(8), we have that

∆(λ)=λr11+r01
[
(α+1 sinλϕ(π)+α−1 sinλ(π−ϕ(π)))+O

(
e|ℑλ|ϕ(π)

)]
,

|λ| → ∞. (9)

Define the sector Sε,λ∗ := {λ ∈ C : |λ| ≥ λ∗, ε < argλ < π − ε} for ε > 0, λ∗ > 0. The asymptotic formula (9)
implies

|∆(λ)| ≥ Cε,λ∗ |λ|r11+r01 e|ℑλ|ϕ(π), λ ∈ Sε,λ∗ , (10)

where Cε,λ∗ is a constant.

3. Weyl function and related properties

This section characterizes the representation and related properties of the Weyl function, and sub-
sequently employs these results to establish uniqueness theorems for Dirac operators with eigenvalue
dependent boundary conditions. The developed theory serves as the mathematical foundation for proving
the half inverse problems in Section 4.

Consider a boundary value problem L̃ = L(p̃(x), q̃(x), σ̃(x), R̃i j(λ), ã) of the same form but with different
coefficients p̃(x), q̃(x), σ̃(x), R̃i j(λ), ã. We agree that if a certain symbol υ denotes an object related to L, then υ̃
denotes the analogous object related to L̃.

Let Φ(x, λ) =
(
Φ1(x, λ)
Φ2(x, λ)

)
be the solution of the equation (1), satisfying the jump condition (4), and the

following boundary conditions U(Φ) = 1, V(Φ) = 0. It follows from U(ψ) = −∆(λ), V(ψ) = 0 that

Φ(x, λ) = −
ψ(x, λ)
∆(λ)

. (11)

Together (8) with (11), it can be deduced that [φ(x, λ),Φ(x, λ)] ≡ 1. By virtue of (8), we obtain that

Φ(x, λ) =
1

R01(λ)
(υ1(x, λ) +M(λ)φ(x, λ)). (12)

It follows from (12) that

M(λ) = −
V(υ1)
V(φ)

= −
∆1(λ)
∆(λ)

. (13)

The functions Φ(x, λ) and M(λ) are respectively referred to the Weyl-solution and Weyl-type function for
the operator L. It is different from the classic Dirac operator, here ∆1(λ) and ∆(λ) have common zeros.

Next, the following lemma is given by analyzing and discussing the relationship between the functions
∆1(λ) and ∆(λ).
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Lemma 3.1. (i) ∆1(λ) and ∆2(λ) have no zeros.
(ii) Let λ∗ is the zero of ∆(λ), i.e. ∆(λ∗) = 0. Then ∆1(λ⋆)R01(λ⋆) , 0 or ∆1(λ⋆) = R01(λ⋆) = 0.

Proof. The proof of (i): In virtue of (3), if ∆1(λ) and ∆2(λ) have common zero λ∗, i.e. ∆1(λ∗) = ∆2(λ∗) = 0,
then

R11(λ∗)υ12(π, λ∗) + R10(λ∗)υ11(π, λ∗) = 0, (14)
R11(λ∗)υ22(π, λ∗) + R10(λ∗)υ21(π, λ∗) = 0. (15)

Since [υ2(π, λ⋆), υ1(π, λ⋆)] ≡ 1, i.e. the determinant of υ2(π, λ⋆) and υ1(π, λ⋆) is 1 in (14) and (15). That
means R11(λ⋆) = R10(λ⋆) = 0. This conclusion contradicts the assumption that R10(λ) and R11(λ) have no
common zero point.

The proof of (ii): It follows from the result of (i) that if ∆(λ⋆) = ∆1(λ⋆) = 0, then ∆2(λ⋆) , 0. By virtue of
(8), we get R01(λ⋆) = 0. Similarly, if ∆(λ⋆) = R01(λ⋆) = 0, then R00(λ⋆) , 0. That means ∆1(λ⋆) = 0.

Define

Ψ(x, λ) =
(
φ1(x, λ) Φ1(x, λ)
φ2(x, λ) Φ2(x, λ)

)
.

we can obtain that detΨ(x, λ) ≡ 1.

Theorem 3.2. Let R0i(λ) = R̃0i(λ) (i = 0, 1). If M(λ) = M̃(λ), then Q(x) = Q̃(x) a.e. x ∈ (0, π) and a = ã.

Proof. It follows from the expressions of φ(x, λ) and ψ(x, λ) along with (9) that

|Ψ(i)(x, λ)| ≤ Cδ,ρ∗ |λ|−r01 e−|ℑλ|ϕ(x), ρ ∈ Sδ,λ∗ , i = 1, 2.

Introduce the matrix
P(x, λ) = [Pi j(x,λ)]i, j=1,2,

which satisfies

P(x, λ)Ψ̃(x, λ) = Ψ(x, λ). (16)

By calculating, we have

P11(x, λ) =φ1(x, λ)Φ̃2(x, λ) − φ̃2(x, λ)Φ1(x, λ), (17)

P12(x, λ) = − φ1(x, λ)Φ̃1(x, λ) + φ̃1(x, λ)Φ1(x, λ),
φ1(x, λ) =P11(x, λ)φ̃1(x, λ) + P12(x, λ)φ̃2(x, λ),

Φ1(x, λ) =P11(x, λ)Φ̃1(x, λ) + P12(x, λ)Φ̃2(x, λ).

Since M(λ) = M̃(λ) and together with (12),

P11(x, λ)− 1= (φ1(x, λ)−φ̃1(x, λ))Φ̃2(x, λ)−(Φ1(x, λ)−Φ̃1(x, λ))φ̃2(x, λ), (18)

P12(x, λ)=−(φ1(x, λ)−φ̃1(x, λ))Φ̃1(x, λ)+(Φ1(x, λ)−Φ̃1(x, λ))φ̃1(x, λ). (19)

Substituting (12) into (17), we have

P11(x, λ) =
1

R̃01(λ)
φ1(x, λ)(υ̃12(x, λ) + M̃(λ)φ̃2(x, λ))

−
1

R01(λ)
φ̃2(x, λ)(υ1(x, λ) +M(λ)φ1(x, λ))
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=
1

R̃01(λ)
φ1(x, λ)υ̃12(x, λ) +

1
R̃01(λ)

φ1(x, λ)φ̃2(x, λ)M̃(λ)

−
1

R01(λ)
φ̃2(x, λ)υ11(x, λ) −

1
R01(λ)

φ̃2(x, λ)φ1(x, λ)M(λ).

Considering the conditions M(λ) = M̃(λ) and R0i = R̃0i(i = 0, 1) and substituting (2) into the above formula,
we get

P11(x, λ) =
1

R̃01(λ)
(φ1(x, λ)υ̃12(x, λ) − φ̃2(x, λ)υ11(x, λ))

=
1

R̃01(λ)

[
(R̃01(λ)υ21(x, λ) − R̃00(λ)υ11(x, λ))υ̃12(x, λ)

− (R̃01(λ)υ̃22(x, λ) − R̃00(λ)υ̃12(x, λ))υ11(x, λ)
]

=υ21(x, λ)υ̃12(x, λ) − υ̃22(x, λ)υ11(x, λ).

Similarly, we can obtain

P12(x, λ) = υ̃21(x, λ)υ11(x, λ) − υ21(x, λ)υ̃11(x, λ).

From the expressions of P11(x, λ) and P12(x, λ), it is known that when x ∈ [0, π2 )∪ (π2 , π], P11(x, λ) and P12(x, λ)
are entire function with respect to λ.

Using the expressions of φ(x, λ) and ψ(x, λ), (9) and (18), it can be calculated that

|P11(x, λ) − 1| ≤
C
|λ|
, |P12(x, λ)| ≤

C
|λ|
, ρ ∈ Sε,λ∗ .

We can also get that

|P22(x, λ) − 1| ≤
C
|λ|
, |P21(x, λ)| ≤

C
|λ|
, ρ ∈ Sε,λ∗ .

By Liouville’s theorems and Phragmen-Lindelöf’s in [4], we deduce that

P11(x, λ) ≡ P22(x, λ) ≡ 1, P12(x, λ) ≡ P21(x, λ) ≡ 0.

By virtue of (16), we obtain φk(x, λ) = φ̃k(x, λ), Φk(x, λ) = Φ̃k(x, λ), k = 1, 2. That is Q(x) = Q̃(x) a.e. x ∈ (0, π)
and a = ã.

4. Half inverse problem

In this section, considering the Dirac operator L̃ = L(p(x), q(x), σ(x),
Ri j(λ), a) given in section 3, the half inverse problem for the Dirac operator L = L(p(x), q(x), σ(x),Ri j(λ), a) can
be investigated. Let R00(λ) and R01(λ) be known a priori.

Theorem 4.1. Assume r11 < r01. If λn = λ̃n for all n ∈ Z (counting with multiplicities), Q(x) = Q̃(x) on (0, ϕ(π)
2 ),

R00(λ) = R̃00(λ), R01(λ) = R̃01(λ) and α = α̃, then Q(x) = Q̃(x) a.e. on (0, π) and a = ã.

In order to prove Theorem 4.1, we need the help of following Lemma.

Lemma 4.2. If λn = λ̃n for all n ∈ Z (counting with multiplicities) and α = α̃, then a = ã.
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Proof. It is known that ∆(λ) and ∆̃(λ) are entire functions of λ of order 1. So the characteristic function
can be uniquely determined by the eigenvalues up to an exponential factor. Since λn = λ̃n for all n ∈ Z,
we obtain that ∆(λ) = C1eC2λ∆̃(λ), where C1,C2 , 0 are some constant. Together (9) with α = α̃ , we have
α+ = C1eC2λα̃+ and α− = C1eC2λα̃−, that is

1
2

(a ±
1

aα
) =

C1eC2λ

2
(ã ±

1
ãα

).

It is clearly that

a = C1eC2λã, a−1 = C1eC2λã−1. (20)

In view of a, ã > 0 and dividing two formulas in (20), so a = ã.

Proof. [Proof of Theorem 4.1] For convenience, denote d = ϕ(π)
2 . Sinceψ1(π, λ) = R11(λ), ψ2(π, λ) = −R10(λ),

and using Green formula, we can obtain∫ π

0
(Q(x) − Q̃(x))ψ(x, λ)ψ̃T(x, λ)dx = [ψ, ψ̃](0, λ) − [ψ, ψ̃](π, λ)

= ζ(0, λ) − ζ(π, λ), (21)

where ζ(x, λ) = [ψ, ψ̃](x, λ).
In virtue of Q(x) = Q̃(x) (x ∈ (0, d)), we have

ζ(0, λ)=ζ(d, λ)=ζ(π, λ)+
∫ π

d
(Q(x) − Q̃(x))ψ(x, λ)ψ̃T(x, λ)dx. (22)

According to the expression ζ(x, λ) and (2), we can calculate

ζ(0, λ) = ψ1(0, λ)ψ̃2(0, λ) − ψ2(0, λ)ψ̃1(0, λ)

= −
1

R00(λ)
(ψ2(0, λ)U(ψ̃) − ψ̃2(0, λ)U(ψ)) (23)

= −
1

R01(λ)
(ψ̃1(0, λ)U(φ) − ψ1(0, λ)U(ψ̃)). (24)

Substituting (6) into (23) and (24), it follows that

ζ(0, λ) = −
1

R00(λ)
[∆̃(λ)V(υ2) − ∆(λ)V(υ̃2)], (25)

=
1

R01(λ)
[∆(λ)V(υ̃1) − ∆̃(λ)V(υ1)], (26)

Since λn = λ̃n for all n ∈ Z (counting with multiplicities), so ∆(λ) = ∆̃(λ), i.e.

ζ(0, λ) = −
1

R00(λ)
∆(λ)[V(υ2) − V(υ̃2)] (27)

=
1

R01(λ)
∆(λ)[V(υ̃1) − V(υ1)]. (28)

It follows from Lemma 3.1 that if λn is a zero of multiplicity mn for ∆(λ), then λn is a zero of multiplicity
mn for ζ(0, λ), i.e. ∆(λ) and ζ(0, λ) have the same common zeros. We have

ζ(0, λn) = ζ(d, λn) = ψ1(d, λn)ψ̃2(d, λn) − ψ2(d, λn)ψ̃1(d, λn) (29)
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Next, we shall prove that (29) is valid for all λ ∈ C.
In view of [18] and using Schwarz inequality, it follows from Lemma 2.1 and (22) that

|ζ(0, λ)| = |ζ(d, λ)| ≤ |ζ(π, λ)| +
∣∣∣∣ ∫ π

d
(Q(x) − Q̃(x))ψ(x, λ)ψ̃T(x, λ)dx

∣∣∣∣
≤ |ζ(π, λ)|+ ∥ Q(x) − Q̃(x) ∥2

( ∫ π

d
|ψ(x, λ)ψ̃T(x, λ)|2dx

) 1
2

≤ C1|λ|
r11+r11 + C2 ∥ Q(x) − Q̃(x) ∥2 |λ|r11+r11 e2|ℑλ|

(
ϕ(π)−d

)
= C1|λ|

r11+r11 + C2 ∥ Q(x) − Q̃(x) ∥2 |λ|r11+r11 e|ℑλ|ϕ(π)

= O(|λ|r11+r11 e|ℑ|σ(π)). (30)

Denote

χ(λ) =
ζ(0, λ)
∆(λ)

.

From the above conclusion, it can be known that ζ(0, λ) and ∆(λ) have the common zeros. By (10) and (30),
we have

|χ(λ)| =
∣∣∣∣ζ(0, λ)
∆(λ)

∣∣∣∣ ≤ Cδ,ρ∗ |λ|r11−r01 , ρ ∈ Sδ,ρ∗ ,

where r11 < r01. Using Phragmen-Lindelöf’s theorem and Liouville’s theorem, it can be calculated that
ζ(0, λ) = ζ(d, λ) ≡ 0. That is,

ψ1(d, λ)ψ̃2(d, λ) − ψ2(d, λ)ψ̃1(d, λ) = 0. (31)

So (29) is valid for all λ ∈ C. Through transformation of (31), we obtain

ψ1(d, λ)
ψ2(d, λ)

=
ψ̃1(d, λ)

ψ̃2(d, λ)
. (32)

We rigorously demonstrate that the fraction ψ1(d,λ)
ψ2(d,λ) is the Weyl function of the boundary value problem

L1(p(x), q(x), σ(x),Ri j(λ), a, b) for the equation (1) on (d, π) with the boundary conditionsψ2(d, λ) = 0, V(ψ) = 0
without the discontinuity.

Let y(x, λ) be the solutions of the equation (1) (x ∈ (d, π)), satisfying the the boundary conditions
y2(d, λ) = 1, V(y) = 0. By applying the same line of reasoning as above, we can derive that the characteristic
function of L1 is Υ(λ) := ψ2(d, λ). In virtue of V(ψ) = 0, we can get the Weyl solution for L1:

y(x, λ) =
ψ(x, λ)
Υ(λ)

=
ψ(x, λ)
ψ2(d, λ)

. (33)

It follows from (33) that the Weyl function of L1 is

M0(λ) :=
ψ1(d, λ)
ψ2(d, λ)

.

In view of (32), M0(λ) = M̃0(λ). According to Theorem 3.1, Weyl function can uniquely determine the
potential function, so Q(x) = Q̃(x) (x ∈ (d, π)).

Since M(λ) = M̃(λ), we can getΦ(x, λ) = Φ̃(x, λ), x ∈ (ϕ(π)
2 , π) though Theorem 3.1. Analogously, because

of λn = λ̃n, n ≥ 0 (counting with multiplicities), it follows from the proof in Lemma 4.2 that ∆(λ) = ∆̃(λ).
Comparing with (11), it can be deduced that ψ(x, λ) = ψ̃(x, λ). Based on the initial value condition of ψ(x, λ)
at the right endpoint π, it can be proved that R10(λ) = R̃10(λ), R11(λ) = R̃11(λ).
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