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Сажетак

Верижне разломке уводимо преко Еуклидовог алгоритма. Ко-
ристимо их за апроксимацију реалних бројева, за израчунавање
децимала броја π и других ирационалних бројева, као и код ре-
шавања Диофантових једначина. Идеја која представља основу
RSA и Рабин криптосистема је факторизација великих природних
бројева на просте чиниоце. Управо због тога посматрамо мето-
ду факторизације помоћу верижих разломака. За факторизацију
броја n користиће се развој броја

√
n у верижни разломак. Када

желимо да разбијемо неки код, потребно је да то урадимо за неко
коначно време, као и да можемо да разбијемо систем произвољне
дужине. Да бисмо то урадили потребно је да нађемо оптимално
решење, а то ће за RSA и Рабин криптосистеме бити оно решење
које убрзава факторизацију бројева. Један од начина оптимализа-
ције факторизације су свакако, већ поменути, верижни разломци.



1 Увод
Зачетком верижних разломака сматра се време старогрчког мате-

матичара Еуклида и везује се за настанак Еуклидовог алгоритма.
Прве примене верижних разломака у математици уочавамо у реша-

вању линеарних Диофантових једначина у раду индијског математи-
чара Aryabhata. Његов рад садржао је примену верижних разломака,
али не кроз опште алгоритме, већ само у конкретним примерима.

Модерна теорија верижних разломака почиње у 16. и 17. веку у
доба италијанских математичара R. Bombellia и P.Cataldia. Златно
доба за истраживање верижних разломака било је у 19. веку, али још у
18. веку је Ојлер уочио како Еуклидов алгоритам помаже при развоју
рационалног броја у верижни разломак. Метода факторизације бројева
помоћу верижних разломака нашла је примену у криптосистемима који
садрже податке од неколико стотина битова.

Криптосистемима бави се криптографија - наука која проучава ме-
тоде очувања тајности информација. Проблем прислушкивања се може
избећи криптовањем (шифровањем) информација. Постоје симетричан
и антисиметричан криптосистем и они користе јавни и/или приват-
ни кључ за шифровање и дешифровање информација. Најпознатији
криптосистем са јавним кључем је RSA криптосистем чија сигурност
се огледа у немогућности факторизације великих природних бројева.

Прости бројеви који се користе у овом алгоритму углавном садрже
неколико стотина цифара. Да бисмо помножили такве бројеве морамо
користити посебне алгоритме за множење. За такве операција потреб-
но је више времена, па ови алгоритми могу бити спори. Ипак, уколико
користимо неку од напреднијих метода факторизације броја, можемо
убрзати алгоритам, смањити његову сложеност и на тај начин пренети
жељену информацију. Зато ћемо се у раду фокусирати на криптосисте-
ме конструисане над проблемима факторизације, као и на методу убр-
завање исте помоћу верижних разломака. Најпре ћемо се осврнути на
теоријску основу верижних разломака и криптосистема конструисаним
над проблемима факторизације, а затим на саме методе факторизације.
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2 Верижни разломци
У овом одељку дефинисаћемо појам верижног разломка, као и при-

казати доказе неких особина верижних разломака. Велики део ових
резултата може се наћи у раду Д. Ђукића [2], као и у књизи [3].

2.1 Дефиниција и особине
Нека је α реалан број и q1 највећи цео број који није већи од α. Ако

α /∈ Z, онда је

α = q1 +
1

α1

, α1 > 1.

Настављајући поступак, у случају да α1, α2, ..., αk нису цели бројеви,
добијамо

α1 = q2 +
1

α2

, α2 > 1,

. . . . . . . . . . . . . . . . . . . . . ,

αk−1 = qk +
1

αk

, αk > 1

па је

α = q1 +
1

q2 +
1

q3+
1

... + 1

qk−1+
1
αk

. (1)

Дефиниција 2.1. Кажемо да је реалан број α разложив у верижни

разломак ако и само ако постоје q1, q2, ..., qk−1 ∈ Z, αk ∈ R такви да
важи (1).

Постоји и општи верижни разломак који је израз облика a0 + b1
a1+

b2

a2+
b3

a3+···

,

али, уколико другачије не нагласимо, под појмом верижног разломка
подразумеваћемо разломке као у (1).

Ако је α ирационалан број, онда су и α1, α2, ..., αk ∈ R ирационални
бројеви па се процес може неограничено настављати.
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Ако је α рационалан број представљен у облику нескративог раз-
ломка

a

b
, a ∈ Z, b ∈ N, процес је коначан и може бити реализован

помоћу Еуклидовог алгоритма. Заиста, из

a = q1b+ r1,
a

b
= q1 +

1
b
r1

b = q2r1 + r2,
b

r1
= q2 +

1
r1
r2

r1 = q3r2 + r3,
r1
r2

= q3 +
1
r2
r3

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

rn−2 = qnrn−1 + rn,
rn−2

rn−1

= qn +
1

rn−1

rn

rn−1 = qn+1rn,
rn−1

rn
= qn+1

па је
a

b
= q1 +

1

q2 +
1

q3+
1

... + 1

qn+ 1
qn+1

.

Верижни разломак, којим је представљен број
a

b
, означавамо са

[q1; q2, ..., qn+1]. Приметимо, q1 је цео број, док су бројеви q2, ..., qn+1 при-
родни бројеви.

Дефиниција 2.2. Нека је [q1; q2, ..., qn] верижни разломак за рациона-
лан број

a

b
и нека k ∈ {1, . . . , n}. Тада број qk називамо k-ти парцијални

количник (k-ти парцијални коефицијент), а број δk = q1+
1

...+ 1

qk−1+
1
qk

=

[q1; q2, . . . , qk], k-тим парцијалним разломком (k-том конвергентом)
полазног верижног разломка. Израз q′k = [qk, qk+1, . . . , qn] називамо k-
тим комплетним количником.

Пример 2.1.
45

16
= [2; 1, 4, 3].
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Решење. Заиста, из Еуклидовог алгоритма је

45 = 2 · 16 + 13,

16 = 1 · 13 + 3,

13 = 4 · 3 + 1,

3 = 3 · 1

па је
45

16
= 2 +

13

16
= 2 +

1
16
13

= 2 +
1

1 + 3
13

= 2 +
1

1 + 1
4+ 1

3

.

Одговарајући реципрочан број,
16

45
, се може представити у облику

верижног разломка [0; 2, 1, 4, 3].

Важи и обратно, сваки коначан верижни разломак се може прика-
зати у облику разломка па је очигледно следеће тврђење.

Теорема 2.1. Постоји бијекција између скупа рационалних бројева и

коначних верижних разломака.

Приметимо да се k-ти парцијални разломак δk, k > 1 верижног раз-
ломка [q1; q2, ..., qn] добија из претходног δk−1 заменом количника qk−1

са qk−1 +
1
qk
.

Сада можемо доказати следећу теорему која нам даје рекурентну
везу за бројиоце и имениоце парцијалних разломака.

Теорема 2.2. Нека је Pk бројилац и Qk именилац k-тог парциалног

разломка, тј. δk = Pk

Qk
. Тада за низове {Pk}k∈N и {Qk}k∈N, за k ≥ 2,

важи следеће:

P0 = 1, P1 = q1 Pk = qkPk−1 + Pk−2

Q0 = 0, Q1 = 1 Qk = qkQk−1 +Qk−2
(2)

Доказ. Доказ изводимо индукцијом по k ≥ 2.
За k = 2, важи

δ2 = q1 +
1

q2
=

q2q1 + 1

q21 + 0
=

q2P1 + P0

q2Q1 +Q0

=
P2

Q2

.
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Нека је тврђење испуњено за k. Докажимо да важи и за k + 1.
Како δk+1 добијамо када у δk заменимо број qk изразом qk+

1
qk+1

, то ћемо

δk+1 добити када и у формули δk = Pk

Qk
= qkPk−1+Pk−2

qkQk−1+Qk−2
уместо qk ставимо

qk +
1

qk+1
. Тада важи

Pk+1

Qk+1

= δk+1 =
(qk +

1
qk+1

)Pk−1 + Pk−2

(qk +
1

qk+1
)Qk−1 +Qk−2

=
(qkqk+1 + 1)Pk−1 + qk+1Pk−2

(qkqk+1 + 1)Qk−1 + qk+1Qk−2

=
(qkqk+1 + 1)Pk−1 + qk+1(Pk − qkPk−1)

(qkqk+1 + 1)Qk−1 + qk+1(Qk − qkQk−1)
=

qk+1Pk + Pk−1

qk+1Qk +Qk−1

,

чиме је доказано да тврђење важи и за k + 1, па важи и за свако
k ≥ 2.

Вредност верижног разломка дефинише се као

δ = lim
k→∞

δk

уколико одговарајући лимес постоји. Тада се коначни верижни разло-
мак δk назива к-том апроксимацијом верижног разломка.

Последица 2.1. Важи [q1; q2, . . . , qk−1, q
′
k] =

q′kPk−1+Pk−2

q′kQk−1+Qk−2
за k ≥ 2.

Теорема 2.3. Нека је n ∈ N и нека је [q1; q2, . . . , qn] = Pn

Qn
. Тада је

[qn; qn−1, . . . , q1] =
Pn

Pn−1
.

Доказ. Доказ изводимо индукцијом по n ≥ 1. За n = 1 тврђење триви-
јално важи, тј. [q1] = q1

1
= P1

Q1
= P1

P0
. Претпоставимо да тврђење важи за

n−1, тј. [qn−1; qn−2 . . . , q1] =
Pn−1

Pn−2
. Тада, користећи Теорему 2.2, добијамо

[qn; qn−1, . . . , q1] = qn +
1

[qn−1; qn−2, . . . , q1]
= qn +

Pn−2

Pn−1

=
qnPn−1 + Pn−2

Pn−1

=
Pn

Pn−1

,

чиме је доказано тврђење за свако n ≥ 1.
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Посматрајмо, сада, разлику δk − δk−1, k > 1, суседних парцијалних
разломака:

δk − δk−1 =
Pk

Qk

− Pk−1

Qk−1

=
PkQk−1 −QkPk−1

QkQk−1

.

Означимо са hk = PkQk−1−QkPk−1. Заменом Pk и Qk, као у формулама
(2), добијамо

hk = PkQk−1 −QkPk−1

= (qkPk−1 + Pk−2)Qk−1 − (qkQk−1 +Qk−2)Pk−1

= Pk−2Qk−1 −Qk−2Pk−1 = −hk−1.

(3)

Одавде, непосредно, следи следеће тврђење.

Теорема 2.4. Важи

PkQk−1 −QkPk−1 = (−1)k, k ≥ 1. (4)

Доказ. Доказ индукцијом по k. Нека је hk = PkQk−1−QkPk−1. За k = 1
је

h1 = P1Q0 −Q1P0 = q10− 1 · 1 = −1 = (−1)1.

Нека је k > 1 и тврђење тачно за k − 1. Тада, из (3) и индуктивне
претпоставке, следи

hk = −hk−1 = −(−1)k−1 = (−1)k.

Теорема 2.5. Парцијални разломци δk =
Pk

Qk

, k ∈ N, су нескративи.

Доказ. Из Теореме 2.4 следи да НЗД(Pk, Qk) дели (−1)k па је зато
НЗД(Pk, Qk) = 1. Дакле, како су конвергенти верижног разломка уза-

јамно прости, то су парцијални разломци δk =
Pk

Qk

, k ∈ N, нескрати-
ви.
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Теорема 2.6. Важи

Pk

Qk

− Pk−1

Qk−1

=
(−1)k

QkQk−1

, k ≥ 2.

Доказ. Користећи Теорему 2.4 добијамо да важи

Pk

Qk

− Pk−1

Qk−1

=
PkQk−1 −QkPk−1

QkQk−1

=
(−1)k

QkQk−1

, k ≥ 2.

Приметимо, за парно k разлика δk − δk−1 је позитивна, а за непарно
k негативна. Према (2), Qk расте па је апсолутна вредност посматра-

не разлике све мања. Отуда је низ δk =
Pk

Qk

, са парним индексима

опадајући, а низ са непарним индексима растући. Између њих се као
последњи (највећи у растућем поднизу ако је k непаран број и најмањи
у опадајућем низу ако је k паран број) налази разломак

a

b
.

Пример 2.2. 79
38

= [2; 12, 1, 2].

Решење. Према (2), P1 = 2, P2 = 25, P3 = 27, P4 = 79, Q1 = 1, Q2 = 12,
Q3 = 13, Q4 = 38 па је

2

1
<

27

13
<

79

38
<

25

12
.

Теорема 2.7. Важи

PkQk−2 −QkPk−2 = qk(−1)k−1, k ≥ 2.

Такође,

Pk

Qk

− Pk−2

Qk−2

=
(−1)k−1qk
QkQk−2

, k ≥ 2.

Доказ. Користећи Теорему 2 и Теорему 4, добијамо да важи

PkQk−2 −QkPk−2 = (qkPk−1 − Pk−2)Qk−2 − (qkQk−1 −Qk−2)Pk−2

= qk(Pk−1Qk−2 −Qk−1Pk−2) = qk(−1)k−1
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и

Pk

Qk

− Pk−2

Qk−2

=
PkQk−2 −QkPk−2

QkQk−2

=
qk(−1)k−1

QkQk−2

.

Шта је са ирационалним бројевима? Верижни разломак којим се
представља ирационалан број је бесконачан. Ирационални бројеви се,
са великом прецизношћу, могу апроксимирати верижним разломцима.
На пример, број π = [3; 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 1, 4, 2, 1, 1, 2, 2, 2, 2, ...].

Заокруживањем броја π на четири децимале, 3,1416, правимо сто
пута већу грешку него када апроксимирамо број π разломком [3; 7, 15, 1].

Дефиниција 2.3. Бесконачан верижни разломак [q1; q2, q3, . . . ] нази-
вамо периодичан верижни разломак уколико постоји део разломка који
се бесконачно пута понавља. Записујемо [q1; q2, . . . , qk, qk+1, . . . , qn] уко-
лико се део qk+1, . . . , qn понавља бесконачно много пута.

Пример 2.3. Представити
√
2 у облику верижног разломка.

Решење. Из
√
2 = 1+ a следи 2 = (1 + a)2 па је 2 = 1+ 2a+ a2, односно

a(2 + a) = 1. Тада је

a =
1

2 + a
=

1

2 + 1
2+a

=
1

2 + 1
2+ 1

2+...

па је
√
2 = 1 +

1

2 + 1
2+ 1

2+...

.

Дакле,
√
2 = [1; 2, 2, 2, 2, ...] = [1; 2].

Пример 2.4. Представити
√
5 у облику верижног разломка.

9



Решење. Нека је ⌊
√
5⌋ највећи цео број који није већи од броја

√
5. Из√

5 = ⌊
√
5⌋+ (

√
5− ⌊

√
5⌋) следи

√
5 = ⌊

√
5⌋+ 1

1√
5−⌊

√
5⌋

= 2 +
1
1√
5−2

= 2 +
1√
5 + 2

па је први парцијални количник q1 = ⌊
√
5⌋ = 2. Затим,

q2 = ⌊
√
5 + 2⌋ = 4,

√
5 = 2 +

1

4 + 1
1√

5+2−4

= 2 +
1

4 + 1
1√
5−2

= 2 +
1

4 + 1
2+

√
5

.

Поступак се наставља на исти начин. Сви наредни парцијални коли-
чници су једнаки количнику q2 па је

√
5 = [2; 4, 4, 4, ...] = [2; 4].

2.2 Представљање бројева преко верижних разло-
мака

Рационални бројеви

Представљање рационалног броја верижним разломком је једин-
ствено ако захтевамо да се развој не завршава јединицом.

Уколико допустимо да се развој завршава јединицом, тада постоји
још један начин за представљање рационалног броја, као у следећој
теореми.

Теорема 2.8. Сваки рационалан број се може на тачно један начин

развити у коначан верижни разломак [q1; q2, . . . , qn] у коме је qn ̸= 1.
Уколико је дозвољено да последњи члан буде 1, тада постоји још

тачно један начин, и то је [q1; q2, . . . , qn−1, qn − 1, 1].

Доказ. Нека је дат рационалан број a
b
, a ∈ Z, b ∈ Q. Фиксирајмо број a

и изведимо доказ трансфинитном индукцијом по b.
За b = 1 тврђење је јасно, јер је a

1
= [a]. Претпоставимо да је b > 1

и да је тврђење тачно за све рационалне бројеве са имениоцима мањим
од b.

10



Тада важи q1 =
⌊a
b

⌋
, па је

a

b
= q1 +

1

b

a− q1b

.

Из Теореме о дељењу са остатком имамо да је a = q1b + r1, где је
0 ≤ r1 < b. Зато следи да је a − q1b < b, па можемо применити индук-
цијску претпоставку на разломак b

a−q1b
. Дакле, разломак b

a−q1b
се може

развити у верижни разломак на тачно један, односно два начина, па
се и почетни број a

b
може развити у верижни разломак на тачно један,

односно два начина, чиме је доказано тврђење.

Теорема 2.9. Број је рационалан ако и само ако се може представити

као коначан верижни разломак.

Доказ. (⇐ :) Докажимо да се сваки коначан верижни разломак може
представити као рационалан број. Овај смер доказујемо математичком
индукцијом по дужини верижног разломка. Нека је дат коначан вери-
жни разломак [q1; q2, . . . , qn].

Уочимо да важи [q1] = q1. Докажимо, сада, базу индукције за n = 2:

[q1; q2] = q1 +
1

q2
=

q1q2 + 1

q2

Како је q1 цео, а q2 природан број, тврђење важи, односно q1q2+1
q2

је
рационалан број.

Нека је сада n > 1. Претпоставимо да тврђење важи за све верижне
разломке дужине n− 1. Даље, важи

[q1; q2, . . . , qn] = q1 +
1

[q2; q3, . . . , qn]
.

Из индукцијске претпоставке имамо да је [q2; q3, . . . , qn] рационалан број
и нека је [q2; q3, . . . , qn] =

a
b
. Тада је

[q1; q2, . . . , qn] = q1 +
1
a
b

= q1 +
b

a
=

q1a+ b

a

11



чиме смо доказали да је и верижни разломак [q1; q2, . . . , qn] рационалан
број. Тиме је доказан индукцијски корак, па је и тврђење доказано.

(⇒ :) Докажимо, сада, да се сваки рационалан број може предства-
ити као коначан верижни разломак. Претпоставимо да је a

b
рационалан

број, где је a ∈ Z, b ∈ N. Математичком индукцијом по b доказаћемо да
се a

b
може записати као коначан верижни разломак. Најпре, покажимо

базу индукције. За b = 1 важи
a

b
=

a

1
= a = [a]

Претпоставимо да се сваки рационалан број чији је именилац мањи
од b може приказати као коначан верижни разломак. Из Теореме о
дељењу са остатком можемо закључити да постоје цели бројеви q1 и r,
0 ≤ r < b, за које важи

a = bq1 + r.

Када једнакост a = bq1 + r поделимо са b, добићемо
a

b
= q1 +

r

b
.

Ако је r = 0, тада је a
b
= q1 = [q1] и тврђење важи. Ако је r ̸= 0, онда је

a

b
= q1 +

1
b
r

.

Како је r < b, можемо искористити индукцијску претпоставку за b
r
, тј.

за неке природне бројеве q2, q3, . . . , qn важи

b

r
= [q2; q3, . . . , qn] .

Тада је
a

b
= q1 +

1

[q2; q3, . . . , qn]
= [q1; q2, q3, . . . , qn]

што је и требало доказати.

Користећи везу међу бројиоцима и имениоцима узастопних парци-
јалних разломака доказану у Теореми 4, као и чињеницу доказану у
Теореми 2.8 да постоје тачно два представљања рационалног броја у
верижни разломак, при чему се њихове дужине разликују за 1, може
се доказати следећа теорема.
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Теорема 2.10. Нека су a, b, c и d природни бројеви такви да је |ad −
bc| = 1 и b > d, и ако је

a

b
= [q1; q2, . . . , qn] = [q1; q2, . . . , qn − 1, 1], (qn > 1)

онда је

c

d
= [q1; q2, . . . , qn−1] и ad− bc = (−1)n,

или

c

d
= [q1; q2, . . . , qn−1, qn − 1] и ad− bc = (−1)n+1.

Ирационални бројеви

Теорема 2.11. Ирационалан број је решење квадратне једначине са

целобројним коефицијентима ако и само ако се може представити

као периодаичан верижни разломак.

Доказ. (⇐ :) Докажимо да ако ирационалан број можемо представи-
ти као периодичан верижни разломак, тада је он решење квадратне
једначине.

Претпоставимо да је x = [q1; q2, . . . , qm, qm+1, . . . , qn], са периодом
qm+1, . . . , qn. Тада је q′m+1 = q′n+1, па на основу Последице 2.1 имамо да
важи

x =
[
q1, . . . , qm, q

′
m+1

]
=

q′m+1Pm + Pm−1

q′m+1Qm +Qm−1

=
[
q1, . . . , qm, . . . , qn, q

′
m+1

]
=

q′m+1Pn + Pn−1

q′m+1Qn +Qn−1

.

Одавде је −q′m+1 =
Pm−1−Qm−1x

Pm−Qmx
= Pn−1−Qn−1x

Pn−Qnx
, и множењем последње јед-

накости добијамо квадратну једначину са целобројним коефицијентима
по x:

(Qm−1Qn −Qn−1Qm)x
2 − (Pm−1Qn + PmQn−1 − PnQm−1 − Pn−1Qm)x

+(Pm−1Pn − Pn−1Pm) = 0.
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(⇒ :) Докажимо сада други смер, односно да је ирационалан број
решење квадратне једначине са целобројним коефицијентима ако се
може приказати као периодичан верижни разломак.

Нека је x = [q1; q2, . . .] решење квадратне једначине P (x) = ax2 +
bx+ c = 0 са целобројним коефицијентима a, b, c. За свако n ∈ N важи

x =
[
q1; q2, . . . , qn, q

′
n+1

]
=

q′n+1Pn + Pn−1

q′n+1Qn +Qn−1

,

одакле добијамо да q′n+1 задовољава квадратну једначину

fn
(
q′n+1

)
= Anq

′2
n+1 +Bnq

′
n+1 + Cn = 0,

где је
An = aP 2

n + bPnQn + cQ2
n,

Bn = 2aPnPn−1 + b (PnQn−1 + Pn−1Qn) + 2cQnQn−1,

Cn = aP 2
n−1 + bPn−1Qn−1 + cQ2

n−1.

Проценимо сада коефицијенте An, Bn, Cn. Ако ставимо P (t) = a(t −
x)(t− y) (где је y = − b

a
− x такође ирационалан број), тада важи

An = Q2
nP

(
Pn

Qn

)
= aQ2

n

(
Pn

Qn

− x

)(
Pn

Qn

+
b

a
+ x

)
,

па је

|An| < |a|Q2
n

1

Q2
n

(
2|x|+

∣∣∣∣ ba
∣∣∣∣+ 1

)
= 2|x||a|+ |b|+ |a|.

Аналогно је |Cn| < 2|x||a|+ |b|+ |a|. Даље, директним множењем и ко-
ришћењем Теореме 4, лако се проверава да је B2

n − 4AnCn =
(b2 − 4ac) (PnQn−1 − QnPn−1)

2 = b2 − 4ac, одакле је |Bn|2 ≤ 4|An||Cn| +
|b2 − 4ac|, па је |Bn| ≤

√
4|An||Cn|+ |b2 − 4ac|.

Према томе, за сваки од коефицијената An, Bn, Cn, па тако и за по-
лином fn, има само коначно много могућности, па за неке различите
k,m, n важи fk = fm = fn. То значи да су q′k+1, q

′
m+1 и q′n+1 нуле истог

квадратног полинома, па су неке две исте. Нека је без губљења општо-
сти q′m+1 = q′n+1, развој броја x у верижни разломак је исти после m-тог
и после n-тог места, тј. периодичан је.

Последица 2.2. [q1; q2, . . . , qn] =
Pn−Qn−1±

√
(Pn+Qn−1)

2+4(−1)n

2Qn
.
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Доказ. Нека је x = [q1; q2, . . . , qn], тада је x = q′1 = q′n+1, па је

x = [q1; q2, . . . , qn, q
′
n+1] =

xPn + Pn−1

xQn +Qn−1

,

чиме смо добили квадратну једначину по x: Qnx
2−(Pn−Qn−1)x−Pn−1 =

0. Решавањем добијене квадратне једначине, уз коришћење Теореме 4,

налазимо да су решења једнака Pn−Qn−1±
√

(Pn+Qn−1)
2+4(−1)n

2Qn
, што је и

требало доказати.

Теорема 2.12. Нека за природне бројеве a, b, c, d и реалан број t > 1

важи b > d, |ad−bc| = 1 и нека је x =
ta+ c

tb+ d
. Тада су

a

b
и

c

d
узастопни

парцијални разломци броја x.

Доказ. Нека је
a

b
= [q1; q2, . . . , qn]. Из Теореме 2.10 закључујемо да по-

стоји n такво да је (−1)n = ad− bc и
c

d
= [q1; q2, . . . , qn−1].

Знамо да се x може представити као x =
ta+ c

tb+ d
= [q1; q2, . . . , qn, t].

Како је t > 1, можемо га развити у верижни разломак, и то нека је t =
[qn+1; qn+2, . . .] (qn+1 ≥ 1). Тада имамо развој x = [q1; q2, . . . , qn, qn+1, . . .]

и у њему су узастопни парцијални разломци
Pn

Qn

и
Pn−1

Qn−1

управо једнаки
a

b
и

c

d
.

Теорема 2.13. Нека је x ∈ R и нека разломак

a

b
такав да је

∣∣∣a
b
− x

∣∣∣ <
1

2b2
. Тада је

a

b
парцијални разломак за x.

Доказ. Развијмо
a

b
у верижни разломак [q1; q2, . . . , qn]. Из Теореме 2.10

закључујемо да можемо подесити парност броја n тако да (−1)n
(a
b
− x

)
буде позитивно.

Означимо са
Pn

Qn

=
a

b
и

Pn−1

Qn−1

парцијалне разломке за
a

b
. Нека је x

облика x =
tPn + Pn−1

tQn +Qn−1

.
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Ако је t > 1, из Теореме 2.12 следи да су
Pn

Qn

и
Pn−1

Qn−1

парцијални
разломци за x.

Заиста,

1

2Q2
n

> (−1)n
(a
b
− x

)
= (−1)n

PnQn−1 − Pn−1Qn

Qn (tQn +Qn−1)
=

1

Qn (tQn +Qn−1)

>
1

(t+ 1)Q2
n

,

па је t+ 1 > 2, тј. t > 1.

Теорема 2.14. За сваки природан број d који није квадрат, развој

√
d

у верижни разломак је облика

[
q1; q2, q3, q4, . . . , q4, q3, q2, 2q1

]
. За свако

n важи qn ≤ 2q1 = 2⌊
√
d⌋, при чему је qn = 2⌊

√
d⌋ ако и само ако је∣∣P 2

n−1 − dQ2
n−1

∣∣ = 1.

Доказ. Нека је
√
d = [q1; q2, q3, . . .]. Ако је [q1; q2, . . . , qk] =

Pk

Qk
, важи

qn+1 < q′n+1 =
q′n+1Qn +Qn−1 −Qn−1

Qn

<
q′n+1Qn +Qn−1

Qn

=
1

Qn

(
Pn −Qn

√
d
) =

1

P 2
n − dQ2

n

(
Pn

Qn

+
√
d

)

<
1

P 2
n − dQ2

n

(2⌊
√
d⌋+ 2).

Специјално, ако је |P 2
n − dQ2

n| > 1, важи qn+1 < 2⌊
√
d⌋.

Како Пелова једначина x2 − dy2 = 1 има бесконачно много решења
(x, y) у скупу природних бројева, таква је и једначина |x2 − dy2| = 1.
Свако решење (x, y) задовољава∣∣∣∣xy −

√
d

∣∣∣∣ = 1

y
|x− y

√
d| = 1

y(x+ y
√
d)

<
1

2y2
,

па је, према Теореми 2.13, x
y
конвергент за

√
d, тј. x

y
= [q1; q2, . . . , qn] =

Pn

Qn
за неко n. Осим тога, тада је P 2

n−dQ2
n = ±1 истог знака као Pn

Qn
−
√
d,

па из Теореме 2.6 имамо P 2
n − dQ2

n = (−1)n.
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Како бисмо доказали да верижни разломак за развој броја
√
d

има периоду q2, q3, . . . , q3, q2, 2q1, тј. да елементи периоде без послед-
њег чине палиндром а да је последњи једнак 2q1, потребно је доказати
[q1; . . . , qn] = [qn; . . . , q1] и qn+1 = 2q1.

Имамо да је [q2, . . . , qn] =
Qn

Pn−q1Qn
и [q2, . . . , qn−1] =

Qn−1

Pn−1−q1Qn−1
. Из

Теореме 2.3 закључујемо да важи [qn, . . . , q2] =
Qn

Qn−1
. Дакле, довољно је

доказати да је Qn−1 = Pn − q1Qn.
Најпре, уочимо да важи Qn > Pn − q1Qn јер је Qn

Pn−q1Qn
> 1 и важи

|Pn (Pn − q1Qn)−Qn (dQn − q1Pn)| = |P 2
n − dQ2

n| = 1.

Одредимо број t за који је tPn+(dQn−q1Pn)
tQn+(Pn−q1Qn)

=
√
d. Како је ова једнакост

еквивалентна са

t
(
Pn −Qn

√
d
)

=
(
q1 +

√
d
)
Pn −

(
q1
√
d+ d

)
Qn

=
(
q1 +

√
d
)(

Pn −Qn

√
d
)
,

добијамо t = q1 +
√
d > 1. Како су испуњене све претпоставке из Те-

ореме 2.12, следи да су dQn−q1Pn

Pn−q1Qn
и Pn

Qn
узастопни парцијални разломци

за
√
d. Одатле, даље, имамо да је dQn−q1Pn

Pn−q1Qn
= Pn−1

Qn−1
, а како су пар-

цијални разломци нескративи, следи да је Qn−1 = Pn − q1Qn. Дакле,
[q1; . . . , qn] = [qn; . . . , q1].

Сада је из Последице 2.2

[
2q1, q2, . . . , q2

]
=

Pn + q1Qn −Qn−1 −
√

(Pn + q1Qn +Qn−1)
2 + 4(−1)n

2Qn

.

Како је Qn−1 = Pn − q1Qn и P 2
n + (−1)n = dQ2

n, тада је
[
2q1, q2, . . . , q2

]
=

q1Qn+
√

P 2
n+(−1)n

Qn
= q1 +

√
d.

Дакле, следи да је
[
q1; q2, q3, . . . , q2, 2q1

]
=

√
d и qn+1 = 2q1.
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Пример 2.5. Упоредити верижне разломке квадратних корена бројева
1234 и 2024.

Решење. Бројеви 1234 и 2024 нису квадратни корени ни једног броја.
Ипак, њих можемо представити на суштински другачији начин, па ће и
њихови развоји у верижне разломке бити другачијег типа - број

√
1234

има развој у бесконачан верижни разломак, док број
√
2024 има бес-

коначан, али периодичан развој у верижни разломак. За број
√
2024

можемо применити и Теорему 2.14.
Како је ⌊

√
1234⌋ = 35, то је q1 = 35, односно како је ⌊

√
2024⌋ = 44, то

је у том случају q1 = 44. Након рачунања свих конвергената добијамо
следеће развоје:

√
1234 =[35; 7, 1, 3, 1, 4, 4, 2, 9, 1, 1, 2, 3, 1, 1, 34, 1, 1, 3, 2, 1, 1, 9, 2, 4,

4, 1, ...]

√
2024 = [44; 1, 88]

Разлог зашто се број
√
2024 могао представити преко периодичног

верижног разломка, а број
√
1234 не, је зато што се број 2024 може

представити као 2024 = 45 · 45− 1 = 4 · 506, тј. имамо Пелову једначину
452−506·22 = 1, а број 1234 не можемо представити на тај начин.

Последица 2.3. Уређени пар природних бројева (x, y) је решење једна-

чине |x2 − dy2| = 1 ако и само ако је, за неко n ∈ N, разломак x
y
n-ти

парцијални разломак за

√
d = [q1; q2, . . .] и qn+1 = 2⌊

√
d⌋. При томе је

x2 − dy2 = (−1)n−1
.

Последица 2.4. Једначина x2 − dy2 = −1 има целобројна решења ако

и само ако верижни разломак за

√
d има период непарне дужине.
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2.3 Алгоритам за рачунање верижних разломака

Вредност верижних разломака није практично израчунавати при-
меном дефиниције, јер би се такво рачунање обављало са десне на леву
страну. То би значило да се дубина израчунавања мора одредити уна-
пред.

Ојлеров алгоритам представља бољи начин за рачунање вредности

верижних разломака δk =
Pk

Qk

. То је алгоритам где се те вредности

рачунају применом рекурентних израза из Теореме 2.2. За овај приступ
није потребно познавање дубине израчунавања унапред, али директна
примена израза из Теореме 2.2 доводи до тога да вредности Pk иQk буду
или веома мале или веома велике. То може довести до поткорачења или
прекорачења у аритметици покретног зареза.

Ове проблеме решава модификовани Ленцов алгоритам за верижне

разломке.
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Algorithm 1: Модификовани Ленцов алгоритам
Input: Вредности ak, bk тачност израчунавања ε, као и

вредност δ > 0
R0 := a0
if a0 = 0 then

R0 := δ
else

if |a0| < δ then
R0 := δ · sign a0

end
end
C0 := R0, D0 := 0,∆0 := +∞, k := 0
while |∆k − 1| ≥ ε do

k := k + 1
Ck := ak + bk/Ck−1

if Ck = 0 then
Ck := δ

else
if |Ck| < δ then

Ck := δ · signCk

end
end
Dk := ak + bkDk−1

if Dk = 0 then
Dk := δ

else
if |Dk| < δ then

Dk := δ · signDk

end
end
Dk := 1/Dk,∆k := CkDk, Rk := Rk−1∆k

end
return Rk
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Пример 2.6. Рачунање вредности броја e.

Решење. Овом проблему приступићемо на два начина - преко Тејлоро-
вог реда и преко верижних разломака.

Број e можемо представити преко верижног разломка као

e =

[
2;

1

1
,
2

1
,
3

2
,
4

3
, . . .

]
где је a0 = 2, ak = k(k ∈ N), b1 = 1, bk = k − 1(k ≥ 2).

k esk ecjk ∆s
k ∆cf

k

1 2.0000000000 3.0000000000 7.18e− 001 2.81e− 001
2 2.5000000000 2.6666666667 2.18e− 001 5.16e− 002
3 2.6666666667 2.7272727273 5.16e− 002 8.99e− 003
4 2.7083333333 2.7169811321 9.94e− 003 1.30e− 003
5 2.7166666667 2.7184466019 1.61e− 003 1.64e− 004
6 2.7180555556 2.7182633318 2.26e− 004 1.84e− 005
7 2.7182539683 2.7182836939 2.78e− 005 1.86e− 006
8 2.7182787698 2.7182816577 3.05e− 006 1.70e− 007
9 2.7182815256 2.7182818428 3.02e− 007 1.43e− 008
10 2.7182818011 2.7182818274 2.73e− 008 1.10e− 009
11 2.7182818262 2.7182818285 2.26e− 009 7.94e− 011
12 2.7182818283 2.7182818285 1.72e− 010 5.31e− 012
13 2.7182818284 2.7182818285 1.22e− 011 3.34e− 013
14 2.7182818285 2.7182818285 8.14e− 013 1.90e− 014
15 2.7182818285 2.7182818285 5.01e− 014 2.22e− 015

Табела 1: Вредности броја e добијене помоћу Тејлоровог реда и вери-
жног разломка, као и одговарајуће апсолутне грешке.

У Табели 1 су дате вредности esk и ecfk , као и грешке ∆s
k = |esk − e| и

∆cf
k =

∣∣∣ecfk − e
∣∣∣ израчунавања броја е помоћу Тејлоровог развоја броја

ex за x = 1 и одговарајућег облика верижног разломка.

Можемо приметити да применом верижног разломка добијамо го-
тово за цео ред величине већу тачност него сумирањем реда. За k = 30
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ова разлика је 3 реда величине. Тејлоров развој функције ex за x = 1
веома брзо конвергира, па би у случају примене неког споријег реда,
резултати били још погоднији за верижне разломке.

Пример 2.7. Број π.

Решење. Број π можемо представити преко верижног разломка као

π =

[
4

1
,
12

2
,
32

2
,
52

2
, . . .

]
=

[
3;

12

6
,
32

6
,
52

6
,
72

6
, . . .

]
=

[
4

1
,
12

3
,
22

5
,
32

7
, . . .

]

3 Диофантове једначине

Диофантова једначина је једначина облика

f (x1, . . . , xk) = 0

где је f полином (од k променљивих x1, . . . , xk ) са целим коефици-
јентима, чија решења тражимо искључиво у скупу целих бројева. Не
постоји алгоритам који би за сваку Диофантову једначину одлучивао
да ли она има решења. Диофантове једначине могу бити линеарне и
нелинеарне.

Дефиниција 3.1. Једначину ax + bz = c, где су a, b и c цели бројеви
и a ̸= 0 , b ̸= 0, називамо линеарна Диофанова једначина. Бројеви x и y
који задовољавају једначину називају се решења једначине.

Пример нелинеарних диофантских једначина који користи методу
верижног разломка су Пелове једначине.

Дефиниција 3.2. Нека је m позитиван цео број који није потпун ква-
драт. Тада је Пелова једначина једначина облика

x2 −my2 = 1.
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Тривијална решења сваке Пелове једначине су x = ±1, y = 0, док
су сва друга решења нетривијална.

Код решавања неких Диофантових једначина јављају се парцијални
разломци, док њихова важност долази до изражаја при решавању Пе-
лових једначина. То су једначине облика x2−dy2 = 1, где је d природан
број који није потпун квадрат.

Уз ову једначину анализира се и једначина x2−dy2 = −1. Означимо
конвергенте у развоју верижног разломка броја

√
d са Pk

Qk
. Тада важи

P 2
k − dQ2

k = (−1)k+1tk+1,

где је низ {tk}k∈N дефинисан у алгоритму за развој броја
√
d у верижни

разломак.

Одавде можемо закључити да једначина x2 − dy2 = 1 увек има
(бесконачно) решења у скупу природних бројева, док једначина x2 −
dy2 = −1 има решења ако и само ако је дужина периода r у развоју од√
d непарна. Ако је (X,Y ) најмање решење у скупу природних бројева

једначине x2 − dy2 = 1, онда је (X,Y ) = (Pr−1, Qr−1) или (P2r−1, Q2r−1)
у зависности од тога да ли је дужина периода r парна или непарна.

4 Криптографија јавног кључа

4.1 Увод у криптографију
Криптографија проучава методе за успешан пренос информација

преко несигурног комуникацијског канала.
Поруку коју пошиљалац жели послати примаоцу зовемо отворени

текст. Пошиљалац отворени текст, најпре, промени користећи дого-
ворени кључ. Тај поступак зове се шифровање, а добијени резултат
шифрат. Након тога пошиљалац пошаље шифрат преко неког кому-
никацијског канала. Противник прислушкујући може сазнати садржај
шифрата, али како не зна кључ, не може одредити отворени текст. За
разлику од њега, прималац зна кључ којим је шифрирана порука, па
може дешифровати шифрат и одредити отворени текст.
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Шифровање се може извршити помоћу јавног и приватног кључа
у зависности од тога на који начин желимо пренети информацију и
омогућити њено дешифровање.

Дефиниција 4.1. Криптосистем је уређена петорка (P, C,K, E ,D), где
је P коначан скуп свих отворених текстова, C коначан скуп свих ши-
фрата, K коначан скуп свих могућих кључева, E скуп свих функција
шифровања и D скуп свих функција дешифровања. За сваки K ∈ K
постоји eK ∈ E и одговарајући dK ∈ D. Притом су eK : P → C и
dK : C → P функције са својством да је dK (eK(x)) = x за сваки x ∈ P.

Функције које се користе за шифровање eK и дешифровање dK за-
висе од кључа K који се мора разменити пре комуникације. Тада се
уочава нови проблем: Како разменити кључ, уколико не постоји безбе-
дан комуникацијски канал?

Идеја јавног кључа се састоји у томе да се конструишу криптоси-
стеми код којих би из познавања функције шифровања eK било немо-
гуће у реалном времену израчунати функцију дешифровања dK . Да-
кле, у криптосистему са јавним кључем сваки корисник K има два
кључа: јавни eK и тајни dK . Пошиљалац шифрује отворени текст по-
моћу јавног кључа примаоца eB, тј. примаоцу шаље шифрат y = eB(x).
Прималац тада дешифрује шифрат користећи свој тајни кључ dB,
dB(y) = dB (eB(x)) = x. Такође, прималац мора имати неку додатну
информацију, односно скривени улаз (trapdoor), о функцији eB, да би
само он могао израчунати њен инверз dB, док је свима другима то немо-
гуће. Такве функције чији је инверз тешко израчунати без познавања
неког додатног податка зову се хеш функције.

Криптосистеми са јавним кључем су спорији од модерних симетри-
чних криптосистема (DES, IDEA, AES), па се у пракси не користе за
шифровање порука, већ за шифровање кључева, који се потом користе
у комуникацији помоћу неког симетричног криптосистема.

Криптосистеме са јавним кључем, такође, користимо када желимо
да ”дигитално потпишемо” поруку. Односно, ако пошиљалац пошаље
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шифрат z = dA (eB(x)), онда прималац може бити сигуран да је пору-
ку послала права особа (јер само она зна функцију dA), а такође то
показује и једнакост eA(z) = eB(x).

4.2 Криптосистеми засновани на проблему факто-
ризације

Криптосистеми са јавним кључем и хеш функцијама обично су кон-
струисани над математичким проблемима велике сложености, а један
од познатих и често примењиваних проблема је проблем факторизације
великих природних бројева.

Најпознатији криптосистем са јавним кључем је RSA криптосистем.
Он је настао у 1977. години, а име је добио по почетним словима својих
проналазача: Rivest, Shamir и Adleman. Његова сигурност је заснована
управо на тешкоћи факторизације великих природних бројева.

Након RSA криптосистема, налази се Рабинов криптосистем. На-
стао је у 1979. години, а заснован је на проблему рачунања квадратног
корена сложеног броја. Његово разбијање еквивалентно је решавању
проблема квадратног корена, па је, еквивалентно и проблему фактори-
зације.

1) RSA криптосистем

Нека је n сложен број облика n = pq, где су p и q различити прости
бројеви и φ(n) Ојлерова функција.

Нека је P = C = Zn. Тада је

K = {(n, p, q, d, e) : n = pq, de ≡φ(n) 1}.

За K ∈ K можемо дефинисати

eK(x) = xe mod n, dK(y) = yd mod n, x, y ∈ Zn.

Вредности n и e су јавне вредности, док су вредности p, q и d тајне
вредности, па је (n, e) јавни, док је (p, q, d) тајни кључ.
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Како је n = pq, то је

φ(n) = φ(pq) = (p− 1)(q − 1) = n− p− q + 1.

Требало би доказати да су функције eK и dK једна другој инверзне.

За доказ су нам потребне Ојлерова и Мала Фермаова теорема. Ојлерова
теорема каже да за x ∈ Z, n ∈ N код којих је НЗД(x, n) = 1 важи
xφ(n) ≡n 1. Док је Мала Фермаова теорема последица Ојлерове теореме,
и каже да за прост број p који не дели x, важи xp−1 ≡p 1.

Закључујемо да важи dK (eK(x)) ≡n xde . Како је de ≡φ(n) 1, следи
да постоји природан број k такав да је de = kφ(n) + 1.

Дискутујемо случајеве по могућим вредностима за НЗД(n, x).

1◦ НЗД(n, x) = 1: Користећи Ојлерову теорему, имамо да важи

xde = xkφ(n)+1 =
(
xφ(n)

)k · x ≡n x.

2◦ НЗД(n, x) = n: Тада је xde ≡n 0 ≡n x.

3◦ НЗД(n, x) = p: Тада је xde ≡p 0 ≡p x, тј. p | xde − x. Из Мале
Фермаове теореме следи xde = (xq−1)

(p−1)k · x ≡q x, па q | xde − x.
Како су p и q различити прости бројеви, они су узајамно прости,
па следи pq | xde − x. Дакле, важи xde ≡n x.

4◦ НЗД(n, x) = q: Аналогном дискусијом као у случају 3◦ добијамо
да важи xde ≡n x.

Како смо у сваком случају добили да је xde ≡n x, то значи да је
dK (eK(x)) = x.

Сигурност RSA криптосистема представља претпоставка да је функ-
ција eK(x) = xe mod n хеш функција, тј. функција чији инверз није ла-
ко одредити без додатних података. Додатни податак који омогућава
дешифровање је познавање факторизације n = pq. Уколико се број n
факторише, може се израчунати φ(n) = (p − 1)(q − 1). Тако уствари
добијамо експонент d уколико преко Еуклидовог алгортима решимо
линеарну конгруенцију

de ≡φ(n) 1.
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Пример 4.1. Генерисање RSA тајног кључа.

Решење. Изаберимо велике просте бројеве p и q. Нека су то p = 11 и
q = 3. Тада је n = pq = 11 · 3 = 33 и φ(n) = (p− 1)(q − 1) = 10 · 2 = 20.

Сада треба одабрати број e који је узајамно прост са φ(n) = 20.
Нека је то број e = 3.

Треба пронаћи број d такав да је задовољено de ≡φ(n) 1. То радимо
на следећи начин:

de ≡φ(n) 1 ⇔ 3d ≡20 1
НЗД(7,20)=1⇐⇒ 21d ≡20 7 ⇔ d ≡20 7.

Јавни кључ је (n, e) = (33, 3), а приватни је d = 7.

Након израчунатог кључа d, параметре p и q потребно је уништити
на сигуран начин, јер управо од њих и зависи сигурност.

Пример 4.2. Шифрирање и дешифровање RSA криптосистема

Решење. Нека је, као у претходном примеру, јавни кључ (n, e) = (33, 3),
а приватни d = 7 и нека је изабрана порука m = 8.

Шифровање, односно генерисање шифрата c, представљено је на
следећи начин:

c ≡n me, c ≡33 8
3 ≡33 17.

Дешифровање шифрата c представљено је као:

m ≡n cd, m ≡33 17
7 ≡33 8.

2) Рабинов криптосистем

Нека је број n сложен број облика n = pq, где су p и q прости бројеви
такви да је p ≡4 q ≡4 3. Нека је P = C = Zn. Тада је

K = {(n, p, q) : n = pq}.

За K ∈ K можемо дефинисати

eK(x) = x2 mod n, dK(y) =
√
y mod n.
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Вредност n је јавна, а вредности p и q су тајне.

Конкретно, за поруку m < n рачунамо шифрат c тако да је m2 ≡n c.
Како бисмо из шифрата c добили поруку m потребно је пронаћи

решења конгруенцијске једначине x2 ≡n c. Означимо са mp остатак при
дељењу c

p+1
4 са p, а са mq остатак при дељењу броја c

q+1
4 са q. Овако

одабрани mp и mq су, заправо, такви да важи m2
p ≡p c и m2

q ≡q c.
Заиста, m2

p ≡p c
p+1
2 ≡p c · c p−1

2 . Како је m2 ≡pq c, то важи и m2 ≡p c,

па је c квадратни остатак по модулу p, тј. Лежандров симбол1
(

c
p

)
=

1. (Уколико p | c, доказ је тривијалан, па претпостављамо да су p и
c узајамно прости.) Из Ојлеровог критеријума за квадратне остатке
имамо да је c

p−1
2 ≡p

(
c
p

)
= 1, па је m2

p ≡p c. Аналогно се доказује и за
mq.

Како су p и q узајамно прости бројеви, из Безуове теореме следи да
постоје a, b ∈ Z тако да је ap + bq = 1. Користећи Кинеску теорему о
остацима, добијамо четири решења полазне конгруенцијске једначине,
и то:

r1 = (apmq + bqmp) mod n,

r2 = n− r1,

r3 = (apmq − bqmp) mod n,

r4 = n− r3.

Једно од ова четири решења је почетна порука m. Које тачно реше-
ње је тражена порука не можемо тачно знати без додатних информа-
ција.

Пример 4.3. Шифрирање и дешифровање Рабин криптосистема.

Решење. Нека је p = 7 и q = 19. Тада је n = 133. Нека је порука m = 25.
Шифрат c тада рачунамо из m2 ≡n 625 ≡133 93, па је c = 93.

Даље, рачунамо m7 користећи c
p+1
4 ≡p 93

2 ≡7 4, па је m7 = 4. Такође,
из c

q+1
4 ≡19 935 ≡19 6, следи m19 = 6. Користећи Еуклидов алгоритам,

налазимо a и b тако да је 7a+ 19b = 1, и добијамо a = −8 и b = 3.
1Нека је a цео број и p прост број, већи од 2, такав да је (a, p) = 1. Лежандров сим-

бол (
a

p
) дефинише се као:

(
a
p

)
=

{
1, ако је а квадратни остатак по модулу p

−1, ако је а квадратни неостатак по модулу p
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Израчунајмо сада потенцијалне кандидате за тражену поруку:

r1 = (apmq + bqmp) mod n = ((−8) · 7 · 6 + 3 · 19 · 4) mod 133 = 25,

r2 = n− r1 = 133− 25 = 108,

r3 = (apmq − bqmp) mod n = ((−8) · 7 · 6− 3 · 19 · 4) mod 133 = 32,

r4 = n− r3 = 133− 32 = 101.

Тражена порука је r1. Приметимо да за сва 4 кандидата, ri, i ∈ {1, 2, 3, 4}
важи да је r2i ≡133 93, i ∈ {1, 2, 3, 4}.

Недостатак Рабиновог криптосистема јесте тај што функција eK
није инјективно пресликавање.

Постоје четири решења по модулу n чији квадрати дају шифрат
c, па дешифровање није могуће спровести на једнозначан начин (осим
ако је отворени текст неки смислени текст, а то није случај код размене
кључева, за шта се криптосистеми са јавним кључем првенствено и
користе). Један начин за решавање овог проблема је да се у отворени
текст на одређени начин убаци извесна правилност. То се може урадити
тако да се последња 64 бита понове и тада можемо очекивати да ће само
једно од 4 решења дати резултат који има задату правилност.

5 Факторизација
Да бисмо разбили отворени текст RSA или Рабин криптосистема,

потребно је за одређено коначно време извршити факторизацију. (То су
криптосистеми са јавним кључем и они су конструисани над проблемом
факторизације. Самим тим, њихово разбијање, односно дешифровање,
биће решавање тог проблема факторизације).

Уколико желимо да дешифрујемо поруку која носи више информа-
ција, пожељно је, а некада и потребно, да решење проблема буде брже
у односу на решење које је дешифровало поруку са мање информаци-
ја. То значи да би наш унапређени алгоритам, требало за исто време
да обради више информација у односу на почетни алгоритам, тј. уна-
пређени алгоритам би требало да буде ефикаснији. Односно, сложеност
алгоритма би требала бити мања.
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5.1 Сложеност алгоритма
Алгоритам је метода (процедура) за решавање неке класе проблема,

која за улазне податке одређеног типа даје одговор (излазне податке)
у коначном времену.

Упоређујемо их у односу на број елементарних корака потребних
за њихово извршавање, као и на потребан простор (меморију). Под
елементарним кораком подразумевамо логичку операцију дисјункције,
конјукције или негације на битовима - нулама и јединицама. Величину
улазних података ћемо мерити бројем битова потребних за њихов при-
каз.

Да бисмо проценили сложеност неког алгоритма, потребно је да про-
учимо асимптотско понашање броја операција кад величина улазних
података неограничено расте. Због тога нам није потребно, а често и
није могуће, извести тачну формулу за број операција неког алгоритма.

Дефиниција 5.1. Нека су f, g : R → R две функције. Тада пишемо:

(1) f(x) = O(g(x)) ако постоје x0,M > 0 тако да је |f(x)| ≤ M |g(x)|
за свако x > x0;

(2) f(x) ∼ g(x) ако је lim
x→∞

f(x)
g(x)

= 1;

(3) f(x) = o(g(x)) ако је lim
x→∞

f(x)
g(x)

= 0.

Сложеност алгоритма представља број операција за „најспорији”
случај при уносу произвољних података.

Просечна сложеност алгоритма представља просечан број операци-
ја.

Дефиниција 5.2. Полиномијалан алгоритам је алгоритам чији је број
операција у најспоријем случају функција облика O

(
nk

)
, где је n ду-

жина улазног податка (у битовима), а k је константа. Алгоритме који
нису полиномијални, зовемо експоненцијални.
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Како тежимо ка најбржем алгоритму (да бисмо брже дешифровали
податке) и што тежем проблему (да би се теже разбио кључ) и то у
просечном случају, тада уз сложеност алгоритма посматрамо и остале
елементе који могу утицати на брзину и применљивост алгоритма. То
су просечан број операција, као и степен полинома сложености алго-
ритма. Зато, може се десити да је проблем над којим смо конструисали
кључ „тежак” у изолованом, али не и у просечном случају, као и то да
асимптотски спорији алгоритам, може бити брже извршен.

Дефиниција 5.3. Субекспоненцијални алгоритам је алгоритам чија је
сложеност функција облика O

(
eo(n)

)
, где је n дужина улазног податка.

Најбољи познати алгоритми за факторизацију природног броја N
су субекспоненцијални и њихова сложеност је функција облика

LN(v, c) = O
(
ec(lnN)v(ln lnN)1−v

)
за v = 1

2
или v = 1

3
. Уочимо да за v = 0 имамо LN(0, c) = O ((lnN)c), док

за v = 1 имамо LN(1, c) = O (N c). Дакле, субекспоненцијални алгорит-
ми који одговарају вредностима v, 0 < v < 1, су асимптотски спорији
од полиномијалних, али су бржи од тотално експоненцијалних, тј. оних
чија је сложеност функција облика O

(
en

k
)
. Полиномијални алгоритми

спадају у ефикасне, док експоненцијални спадају у неефикасне алго-
ритме.

5.2 Метода верижног разломка
Општа метода факторизације мотивисана је Фермаовом факториза-

цијом примењеном на број n који је производ два „блиска” броја. Такав
број n је разлика квадрата два природна броја од којих је један јако
мали, а други је близу броја

√
n.

Односно, ако је n = ab, где је |a−b| број близу нуле, тада је n = t2−s2

и t = a+b
2
, а s = a−b

2
. Заиста, када је задовољено да је |a− b| близу нуле,

број s је јако мали, а број t је мало већи од
√
n.

Једноставним испробавањем могућности за t међу бројевима ⌊
√
n⌋+

1, ⌊
√
n⌋+ 2, · · · , налазимо t, а самим тим и одређујемо факторизацију

броја n.
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Касније методе, мотивисане Фермаовом факторизацијом, модифи-
коване су тако да уместо тражења бројева s и t који задовољавају
n = t2 − s2, тражимо бројеве s и t такве да задовољавају n | t2 − s2, тј.
t2 ≡n s2.

Уколико t2 ̸≡n s2, тада кажемо да су НЗД(t + s, n) и НЗД(t − s, n)
нетривијални фактори броја n.

Најстарија метода која се ослања на такав алгоритам је управо ме-

тода верижног разломка. 2

Нека је n сложен број чију факторизацију желимо да пронађемо.
Уколико n није потпун квадрат, тада је развој броја

√
n у верижни

разломак периодичан. Тачније биће:

x = [a0; a1, a2, · · · , ar−1, 2a0]

Верижни разломак тада рачунамо преко алгоритма:

a0 = ⌊
√
n⌋, s0 = 0, t0 = 1

ai = ⌊a0 + si
ti

⌋, si+1 = aiti − si, ti+1 =
n− s2i+1

ti
, за i ≥ 0

Нека је Pi

Qi
= [a0; ai, ai, · · · , ai]. Тада важи следеће:

P 2
i − nQ2

i = (−1)i+1 · ti+1 и 0 < ti < 2
√
n.

Одавде закључујемо да парцијални разломци верижног разломка за-
довољавају конгруенције облика

P 2
i ≡n wi,

где је wi релативно мали број. Ако пронађемо wi-ове такве да им
је производ потпун квадрат (нека су то wk1, · · · , wkm , такви да важи
wk1 · · ·wkm = w2), тада смо пронашли конгруенцију Pk1 · · ·Pkm ≡n w2,
па су НЗД(Pk1 · · ·Pkm +w, n) и НЗД(Pk1 · · ·Pkm −w, n) кандидати за не-
тривијалан фактор броја n. Уколико нисмо пронашли ни један фактор

2Метода верижног разломка другачије се назива Brillhart-Morrisonova метода бу-
дући да су је они 1970. године искористили за факторизацију Фермаовог броја 22

7

+1.
Ипак, основна идеја се може наћи већ у радовима Kraitchika, Lehmera и Powersa 20-
тих и 30-тих година 20. века
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траженог броја n, треба потражити другу комбинацију бројева wi и
понављамо поступак. Због периодичности развоја броја

√
n у верижни

разломак бројеви ti, односно wi, почеће да се понављају.

Илуструјмо ову методу наредним примером.

Пример 5.1. Факторисати број 16463 помоћу верижних разломака.

Решење. Развој броја
√
16463 у верижни разломак је

√
16463 = [128; 3, 4, 10, 1, 12, 1, 1, 2, 7, 1, 7, 2, 1, 1, 12, 1, 10, 4, 3, 256].

Коефицијенти из развоја броја
√
16463 у верижни разломак дати су

следећом табелом:

i si ti ai Pi(modN)
0 0 1 128 128
1 128 79 3 385
2 109 58 4 1668
3 123 23 10 602
4 107 218 1 2270
5 111 19 12 11379
6 117 146 1 13649
7 29 107 1 8565
8 78 97 2 14316
9 116 31 7 9999
10 101 202 1 7852
11 101 31 7 15574
12 116 97 2 6074

Из табеле видимо да је

(−1)8 · t8 · (−1)12 · t12 = 97 · 97 = 972

Можемо приметити и да је

P 2
7 ·P 2

11 = 85652·155742 = (8565·15574)2 = 1333913102 ≡16463 8084
2 ≡16463 97

2
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Важи и P 2
i ≡n wi, па је P 2

7 · P 2
11 ≡16463 w7 · w11, тј. одатле је

w7 · w11 ≡16463 97
2

Кандидати за нетривијалан фактор броја 16463 су НЗД(8084 +
97, 16463) и НЗД(8084 − 97, 16463). Највећи заједнички делилац тих
бројева добијамо употребом Еуклидовог алгоритма, а то су бројеви 101
и 163.

Управо то су и фактори броја 16463 који је требало да факторише-
мо, тј. важи 16463 = 101 · 163.

5.3 Уопштена метода верижног разломка
Уколико уопштимо овај метод, метода верижног разломка постаје

ефикаснија метода. Да бисмо то постигли, користимо базу фактора за
налажење релација облика wk1 · · ·wkm = w2 на следећи начин.

Формирамо базу фактора B која се састоји од броја -1, као и про-
стих бројева мањих или једнаких одабраној граници M . Неће се сваки
прост број налазити у факторској бази, већ ће се за непаран прост
број pi мањи или једнак одабраној граници рачунати вредност Лежан-
дровог симбола n по pi. Сада треба сваки wi приказати као линеарну
комбинацију елемената базе фактора B.

Нека база фактора има m елемената.
Након факторизације бар m + 1 бројева wi, посматрамо одговарајуће
векторе парности експонената. Уколико је експонент паран, пише се 0,
уколико је непаран пише се 1. То су вектори у Zm

2 , где је Z2 = {0, 1}.
Како таквих вектора има више од димензије припадног векторског
простора, они су линеарно зависни. Гаусовом методом елиминације мо-
жемо пронаћи њихову нетривијалну линеарну комбинацију која даје
нула вектор. То значи да можемо пронаћи подскуп wi-ова такав да је
сума припадних вектора парности парна, а одатле закључујемо да је
производ тих wi-ова потпун квадрат.

Код методе верижног разломка, отприлике пола простих бројева се
може изоставити из базе фактора B. Ако p | wi, онда p | P 2

i − nQ2
i , тј.

P 2
i ≡p nQi

2, па је n квадратни остатак по модулу p. Зато се из базе
фактора могу избацити сви они фактори p такви да n није квадратни
остатак по модулу p.
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Што се тиче сложености методе верижног разломка, може се пока-
зати да је оптималан избор границе такав да је M ≈ e

√
lnn ln lnn, па је

очекивани број операција

O
(
e(

√
2+ε)

√
lnn ln lnn

)
.

Оваква процена није формално доказана, већ се заснива на недока-
заним хеуристичким претпоставкама.

Пример 5.2. Факторисати број 12378523 помоћу верижних разломака.

Решење. Нека је база фактора B = {−1, 2, 3, 11, 13} таква да се састоји
од броја -1 и свих простих бројева мањих или једнаких од 13. За горњу
границу простих фактора узимамо број 79.

Када израчунамо развој броја
√
12378523 у верижни разломак, до-

бијамо бројеве ti. Посматрајмо само оне бројеве ti које у потпуности
можемо факторисати помоћу факторске базе. Факторисани бројеви ti
са припадним векторима парности експонената приказани су у наред-
ној табели:

i (−1)iti -1 2 3 11 13 79 41 59 37
3 −3 · 13 1 0 1 0 1
6 33 · 79 0 0 1 0 0 1
7 −2 · 32 · 41 1 1 0 0 0 0 1
8 32 · 132 0 0 0 0 0 0 0

Како за i = 8 имамо нула-врсту, то је (−1)8ti = (3 · 13)2. Сада тре-
ба испитати да ли је тај број фактор броја n и одређујемо решење
P 2
7 ≡n (−1)8ti. Добијамо 123784842 ≡n 392. Како је највећи заједнички

делилац бројева 12378484−39 и n једнак 1, то је на овај начин немогуће
факторисати број n. Због тога одбацујемо врсту i = 8 и настављамо са
рачунањем развоја верижног разломка.
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i (−1)iti -1 2 3 11 13 79 41 59 37
11 −32 · 59 1 0 0 0 0 0 0 1
13 −2 · 32 · 112 1 1 0 0 0 0 0 0
16 2 · 3 · 13 · 41 0 1 1 0 1 0 1 0
22 3 · 13 · 59 0 0 1 0 1 0 0 1
25 −3 · 372 1 0 1 0 0 0 0 0 0
32 112 · 41 0 0 0 0 0 0 1 0 0
43 −3 · 13 · 41 1 0 1 0 1 0 1 0 0

Тренутно у таблици имамо 10 врста, јер не рачунамо врсту i = 8 (од-
бацили смо је, јер је нула-врста, а нисмо добили факторизацију броја n
преко ње). У скупу свих фактора који се појављују у факторизацијама
има 9 елемената, па одатле закључујемо да постоји могућност налаже-
ња потпуног квадрата. Гаусовим елиминацијама тражимо комбинацију
која даје потпуни квадрат. Неке комбинације које дају потпуни квадрат
те одговарајуће конгруенције су:

t3t7t16 ≡n P 2
2P

2
6P

2
15,

t3t11t22 ≡n P 2
2P

2
10P

2
21,

t7t13t32 ≡n P 2
6P

2
12P

2
31,

t7t11t16t22 ≡n P 2
6P

2
10P

2
15P

2
21.

Рачунањем долазимо до закључка да ни једна од тих комбинација
не даје нетривијалне факторе броја n, па настављамо тражити нула-
врсту.

Тако долазимо до комбинације:

t3t32t43 =
(
32 · 112 · 132 · 412

)
= 175892.

Имамо конгруенцију:

P 2
2P

2
31P

2
42 ≡n 175892,

(56293 · 1351545 · 9955325)2 ≡n 175892,

123423012 ≡n 175892,

123423012 − 175892 ≡n 0.

Највећи заједнички делилац бројева 12342301−17589 и n = 12378523
је број 1993, па је он један фактор броја n. Највећи заједнички делилац
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бројева 12342301 + 17589 и n = 12378523 је број 6211, па је то други
фактор, тј. чинилац, броја n.
На тај начин добили смо факторизацију броја n = 1993·6211 = 12378523.

Коментар: Налажење потпуног квадрата међу бројевима ti не зна-
чи и добијање фактора броја n. Може се десити да као НЗД добијемо
број 1 или сам број n, па тада треба тражити неки други потпуни ква-
драт, а ако га не успемо пронаћи, тада треба да се вратимо на почетак
и израчунамо још више бројева ti.

6 Уместо закључка
У самом почетку рада прошли смо кроз теоријске основе верижних

разломака, као и криптосистема.
Приказали смо то да се сваки рационалан број може приказати у

облику коначног, док се сваки ирационалан број може приказати у
облику бесконачног верижног разломка.

Истакли смо криптосистеме конструисане над проблемима факто-
ризације, а затим и описали методу њиховог дешифровања помоћу
верижних разломака. Такође, дат је приказ и општијег метода преко
базе фактора.

Код методе верижног разломка често се уместо развоја броја
√
n,

посматра развој броја
√
kn у верижни разломак, за неки цео број k који

није потпун квадрат. То радимо онда кад број
√
n нема довољно дуг

период. Невезано за то да ли посматрамо развој броја
√
n или броја√

kn, k ∈ Z, операције које извршавамо су операције по модулу n.
Такође, број k утиче на просте бројеве у бази фактора, па ће добрим

одабиром броја k и број простих бројева у бази фактора бити мањи.

Важно је напоменути и то да ће онај који задаје шифру имати ек-
споненцијално лакши посао од оног који ту шифру жели да дешифрује.
До тога долази зато што је испитивање простости великог броја алго-
ритам полиномске сложености, а самим тим је лакши проблем него
факторизација.
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Уз то, за исти ниво безбедности, дужина хеш вредности мора бити
бар два пута већа од дужине тајног кључа код симетричног шифарског
система.
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