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Sažetak

U radu se razmatraju elementarne i naprednije nejednakosti sa
posebnim naglaskom na metode njihovog rešavanja u takmičarskom
kontekstu. Rešenja su prikazana uz obrazloženje motivacije za primenu
odgovarajućih nejednakosti u konkretnim zadacima. Na kraju rada
ukratko su navedene neke primene nejednakosti.

1 Uvod

Nejednakosti predstavljaju značajnu oblast matematike, sa širokom pri-
menom kako unutar same discipline, tako i u srodnim oblastima poput fizike
i računarskih nauka. Pored svoje praktične važnosti, one zauzimaju posebno
mesto u matematici zbog raznovrsnosti pristupa i elegantnosti metoda koji
se koriste pri njihovom rešavanju.

Karakteristično je da su rešenja zadataka sa nejednakostima često izu-
zetno kratka, dok sam proces dolaženja do istih zahteva visok stepen uvida,
kreativnosti i iskustva. Upravo ovaj raskorak izmedu formalne jednostavnosti
i misaone složenosti čini nejednakosti pogodnim poljem za analizu strategija
rešavanja.

U radu su ideje ilustrovane prvenstveno kroz pažljivo odabrane primere.
Dokazi pojedinih teorema nisu uključeni, jer prevazilaze okvir rada i nisu
neophodni za razumevanje razmatranih metoda.

Poseban akcenat je stavljen na objašnjenje motivacije i misaonog procesa
koji vodi ka rešenju. Za razliku od standardizovanih prikaza rešenja, koja
su predstavljena kao gotovi formalni postupci, cilj ovog rada je da osvetli
razloge izbora odredenih tehnika i nejednakosti u konkretnim problemima.
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2 Elementarne algebarske nejednakosti

Elementarne algebarske nejednakosti su one koje se dokazuju elementar-
nim algebarskim transformacijama i primenom osnovnih nejednakosti (npr.
x2 ≥ 0, za x ∈ R).

2.1 Transformacije i jednostavne nejednakosti

Primer 2.1.1. Dokazati da za svaki pozitivan broj x važi nejednakost

x+
1

x
≥ 2.

Rešenje: Množenjem obe strane nejednakosti sa x (što je dozvoljeno jer
je x > 0) i pojednostavljivanjem izraza dobijamo ekvivalentnu nejednakost
(x− 1)2 ≥ 0. ■

Primer 2.1.2. Dokazati da za sve pozitivne brojeve x, y, z važi nejednakost

x+ y + z ≥ 2
(√

xy +
√
yz −

√
zx
)
.

Rešenje: Nejednakost je ekvivalentna očiglednoj
(√

x+
√
z −√

y
)2 ≥ 0. ■

Nejednakosti koje pominju samo jednu promenljivu ili koje pominju iz-
raz koji nije simetričan, niti cikličan po promenljivama, često se mogu rešiti
preuredivanjem izraza. Ovi primeri su bili relativno jednostavni; posmatraj-
mo sada jedan složeniji primer.

Primer 2.1.3. Dokazati da za sve prirodne brojeve x, y (x > y) važi nejed-
nakost

x2y + x2 + y2 ≥ xy2 + 2xy + 3y.

Kada važi jednakost?

Rešenje: Primetimo da je uslov specifičan - brojevi x i y su prirodni i važi
x > y. Zbog drugog uslova možemo razmǐsljati o rastavljanju izraza tako da
se u jednoj zagradi nalazi nenegativan izraz x − y − 1. Zbog članova x2y i
xy2 prirodno je podesiti drugu zagradu tako da je xy u njoj. Dodatno, zbog
izraza x2 moramo dodati i x. Na ovaj način dobijamo neželjeni član −x, pa
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kako bismo kompenzovali dodajemo i jedinicu u drugu zagradu. Matematički
ispisano to izgleda ovako:

(x− y − 1) (xy + x+ 1) = x2y + x2 − xy2 − 2xy − y − 1.

Primetimo da jedino nedostaje izraz y2−2y+1 = (y − 1)2, pa je nejednakost
sa početka ekvivalentna sa

(x− y − 1) (xy + x+ 1) + (y − 1)2 ≥ 0,

što je očigledno tačno. Jednakost važi za x − y − 1 = 0 i y − 1 = 0, tj. za
x = 2 i y = 1. ■

Mnoge nejednakosti mogu se rešiti ovim jednostavnim metodama. U slo-
ženijim problemima ključan korak često predstavlja upravo transformacija
izraza i primena osnovnih nejednakosti, pa su ove metode od izričitog značaja
za uspešno rešavanje zadatka.

2.2 Elementarna ograničenja proizvoda i zbirova

U narednim primerima primenjuju se elementarne metode pri analizi
ograničenja proizvoda i zbirova.

Primer 2.2.1. Dokazati nejednakost

1

2

3

4

5

6
. . .

99

100
<

1

10
.

Rešenje: Označimo izraz sa leve strane nejednakosti sa A i neka je B =
2

3

4

5

6

7
. . .

100

101
. Očigledno je A < B, jer je svaki razlomak koji se javlja kao

činilac u broju B veći od svakog razlomka u broju A, redom. Zbog toga je

A2 < AB =
1

101
<

1

102
, odakle korenovanjem sledi tvrdenje. ■

Primer 2.2.2. Dokazati da za svaki prirodan broj n važe nejednakosti

a) 1 +
1

22
+

1

32
+ · · ·+ 1

n2
<

5

3
;

b) 1 +
1

23
+

1

33
+ · · ·+ 1

n3
<

5

4
.
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Rešenje:

a) Važi sledeći niz nejednakosti i jednakosti

1

k2
<

1

k2 − 1
=

1

(k − 1)(k + 1)
=

1

2

(
1

k − 1
− 1

k + 1

)
.

Ove nejednakosti koristimo za k ≥ 3 i dobijamo

1 +
1

22
+

1

32
+ · · ·+ 1

n2

< 1 +
1

4
+

1

2

(
1

2
− 1

4
+

1

3
− 1

5
+

1

4
− 1

6
+ . . .+

1

n− 1
− 1

n+ 1

)
<

5

4
+

1

2

(
1

2
+

1

3

)
=

5

3
,

što je i trebalo dokazati (izraz se redukuje putem masovnog ponǐstavanja
članova, što se naziva konceptom teleskopske sume).

b) Radi primene slične metode kao u delu pod a) posmatramo sledeći niz
nejednakosti i jednakosti

1

k3
<

1

k3 − k
=

1

(k − 1)k(k + 1)
=

1

2

(
1

(k − 1)k
− 1

k(k + 1)

)
.

Sabiranjem ovih nejednakosti dobija se tražena nejednakost. ■

3 Nejednakosti izmedu sredina

Najpoznatije sredine brojeva jesu harmonijska, geometrijska, aritmetička,
kvadratna i kubna. Medu svim sredinama su ove navedene najkorisnije, a
medu navedenim se najčešće koristi nejednakost izmedu aritmetičke i geome-
trijske (AG nejednakost).

Sredinu reda k definǐsemo na sledeći način.

Definicija 3.1. Neka su x1, x2, . . . , xn (n ∈ N) pozitivni realni brojevi i neka
je k ∈ R. Tada je sredina reda k brojeva x1, x2, . . . , xn definisana sa

Mk (x1, x2, . . . , xn) =


n
√
x1x2 . . . xn, k = 0

k

√
xk
1 + xk

2 + . . .+ xk
n

n
, k ̸= 0
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Specijalno, harmonijska, geometrijska, aritmetička, kvadratna i kubna sre-
dina imaju oznake M−1,M0,M1,M2 i M3, redom. Često se koriste i oznake
H,G,A i K za harmonijsku, geometrijsku, aritmetičku i kvadratnu sredinu.

Bitne osobine ovih sredina navedene su u sledećoj teoremi.

Teorema 3.1. Funkcija f(k) = Mk (x1, x2, . . . , xn), pri oznakama i uslovima
iz prethodne definicije, ima sledeća svojstva:

1) f(k) je neprekidna u tački k = 0;

2) min{x1, x2, . . . , xn} ≤ f(k) ≤ max{x1, x2, . . . , xn};

3) lim
k→+∞

f(k) = max{x1, x2, . . . , xn};

4) lim
k→−∞

f(k) = min{x1, x2, . . . , xn}.

Dokaz:

1) Možemo zapisati f(k) = eln f(k) = e
1
k
ln

xk1+xk2+...+xkn
n , k ̸= 0. Neka je g(k) =

ln
xk
1 + xk

2 + . . .+ xk
n

n
. Sada je f(k) = e

g(k)
k . Primenom Lopitalovog pravi-

la1 na sledeći način

lim
k→0

g(k)

k
= lim

k→0

g′(k)

1

= lim
k→0

xk
1 lnx1 + xk

2 lnx2 + . . .+ xk
n lnxn

n
xk
1 + xk

2 + . . .+ xk
n

n

= lim
k→0

xk
1 lnx1 + xk

2 lnx2 + . . .+ xk
n lnxn

xk
1 + xk

2 + . . .+ xk
n

=
lnx1 + lnx2 + . . .+ lnxn

n

=
lnx1x2 . . . xn

n
= ln n

√
x1x2 . . . xn.

1U stranoj, a na pojedinim mestima i u našoj literaturi, uobičajen je naziv L’Hôpital-
ovo pravilo, pri čemu se izbegava transkripcija.
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Dobija se

lim
k→0

f(k) = lim
k→0

e
g(k)
k = e

lim
k→0

g(k)
k = eln

n
√
x1x2...xn = n

√
x1x2 . . . xn = f(0),

što je i trebalo dokazati.

2) a) Neka je, bez gubljenja opštosti, x1 = min{x1, x2, . . . , xn}. Nejednakost
se svodi na ekvivalentnu

x1 ≤
k

√
xk
1 + xk

2 + . . .+ xk
n

n
⇐⇒ nxk

1 ≤ xk
1 + xk

2 + . . .+ xk
n,

pri čemu je poslednja nejednakost očigledna, jer je x1 najmanji.

b) Neka je sada, bez gubljenja opštosti, x1 = max{x1, x2, . . . , xn}. Nejed-
nakost se svodi na ekvivalentnu

x1 ≥
k

√
xk
1 + xk

2 + . . .+ xk
n

n
⇐⇒ nxk

1 ≥ xk
1 + xk

2 + . . .+ xk
n,

pri čemu je poslednja nejednakost očigledna, jer je x1 najveći.

3) Neka je, bez gubljenja opštosti, x1 ≥ x2 ≥ . . . ≥ xn. Prema prethodnom
delu i primenom prostih algebarskih transformacijama dobija se da važi
nejednakost

x1 ≥ f(k) ≥ x1

k
√
n
.

Pošto je lim
k→+∞

k
√
n = 1, to je, po teoremi o dva policajca,

lim
k→+∞

f(k) = x1,

što je i trebalo dokazati.

4) Iskoristićemo prethodni deo ove teoreme. Neka opet važi, bez gubljenja
opštosti, x1 ≥ x2 ≥ . . . ≥ xn. Tvrdenje sledi iz

lim
k→−∞

f(k)[x1, x2, . . . , xn] =
1

lim
k→+∞

f(k)

[
1

x1

,
1

x2

, . . . ,
1

xn

] =
1
1
xn

= xn,

što je i trebalo dokazati. U uglastim zagradama se nalaze brojevi na koje
se odnosi f . ■
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Sledeća teorema prikazuje još jedno važno svojstvo sredina, a radi se o
teoremi o nejednakostima izmedu brojevnih sredina.

Teorema 3.2. (Nejednakosti izmedu sredina) Neka su x1, x2, . . . , xn

pozitivni brojevi i neka su a, b ∈ R. Tada važi

a > b ⇒ Ma (x1, x2, . . . , xn) ≥ Mb (x1, x2, . . . , xn) .

Jednakost važi ako i samo ako je x1 = x2 = . . . = xn. ■ 2

Ovo tvrdenje o nejednakostima izmedu sredina prikazano je na početku
kao specijalni slučaj jer ima značajnu primenu. Dokaz će biti dat u 5. pogla-
vlju, nakon razmatranja Jensenove nejednakosti.

Primena nejednakosti izmedu sredina ilustruje se kroz sledeće primere.

Primer 3.1. Dokazati da za sve pozitivne brojeve a, b, c važi nejednakost

a+ b+ c+
1

abc
≥ 4.

Kada važi jednakost?

Rešenje: Primenimo AG nejednakost na brojeve a, b, c i
1

abc
, sa ciljem da

jedino ostane konstanta. Zbog ovoga se generalno i koristi nejednakost AG,
kako bi (preko proizvoda) došlo do skraćivanja promenljivih. Dakle, prime-
nom nejednakosti AG na prethodno opisani način se dobija:

a+ b+ c+
1

abc
≥ 4

4

√
abc

1

abc
= 4,

što je i trebalo dokazati.
Jednakost važi kad je ispunjena i jednakost u AG nejednakosti, tj. kada je

a = b = c =
1

abc
. Rešavanjem dobijamo da jednakost važi ako i samo ako je

a = b = c = 1. ■

Primer 3.2. Odrediti minimalnu vrednost izraza

x+
y2

9x
+

3z2

32y
+

2

z
,

2Dokaz je dat u primeru 6.3.1.
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gde su x, y, z pozitivni realni brojevi.

Pomoć: Razmǐsljati kao u primeru 3.1. - iskoristiti AG na način da se sve
promenljive ponǐste.

Rešenje: Želimo da pametno namestimo sabirke da se sve promenljive skrate

nakon primene AG. Kada bismo odmah primenili AG na brojeve x,
y2

9x
,
3z2

32y

i
2

z
vidimo da bi nam se izgubila promenljiva x, ali ostale dve ne bi. Iz tog

razloga sabirke koji sadrže promenljivu x ostavljamo, a preostala dva sabirka
ćemo adekvatno namestiti kako bismo izgubili i promenljive y i z. Pošto
imamo y2 od drugog sabirka onda ćemo treći sabirak zapisati kao zbir dva
sabrika, da bismo nakon množenja dobili y2 u imeniocu. Posledica ovoga jeste
da u brojiocu imamo z4, pa zato poslednji sabirak zapisujemo kao zbir četiri
jednaka sabirka. Dakle, ovo bi sada izgledalo ovako

x+
y2

9x
+

3z2

32y
+

2

z
= x+

y2

9x
+

3z2

64y
+

3z2

64y
+

1

2z
+

1

2z
+

1

2z
+

1

2z

≥ 8 8

√
x
y2

9x

3z2

64y

3z2

64y

1

2z

1

2z

1

2z

1

2z
= 2.

Zadatak još nije završen, dokazali smo da je izraz sigurno veći ili jednak od
dvojke, ali to ne mora da znači da mu je to i minimum. Moramo dokazati
da se ova vrednost može dostići. Odgovarajuće vrednosti za x, y, z dobijamo
rešavanjem sistema kada važi jednakost u AG i tu dobijamo da jednakost

važi za x =
1

4
, y =

1

2
, z = 2. Dakle, minimum je zaista broj 2 i dostiže se za

navedene vrednosti x, y, z. ■

Sledeća tri primera na prvi pogled deluju kao zadaci nevezani za nejed-
nakosti, ali u stvarnosti nejednakosti se mogu primeniti na različite tipove
problema, ne samo na klasične zadatke iz nejednakosti.

Primer 3.3. Brojevi 1, 2, 3, 4, 4, 5, 9, 16, 25 upisani su u tablicu 3x3, nekim
redom. Označimo sa Pi proizvod brojeva u i-toj vrsti tablice, i = 1, 2, 3.
Odrediti najmanju moguću vrednost zbira P1 + P2 + P3.

Rešenje: Ukoliko opet posmatramo proizvod, dobijamo broj P1P2P3 što
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predstavlja proizvod svih brojeva u tablici. Ova vrednost je jako pogodna
jer je direktno možemo izračunati. Dakle, po AG nejednakosti, važi

P1 + P2 + P3 ≥ 3 3
√

P1P2P3 = 360.

Primetimo da ne mogu sva tri proizvoda biti jednaka. Zaista, tada bi svaki
proizvod bio jednak po 120, ali u jednom od tih proizvoda se nalazi broj 9,
što je nemoguće jer 9 ne deli 120. Dakle, važi P1 + P2 + P3 ≥ 361.
Za ovaj slučaj može se konstruisati primer tako da su proizvodi približno
jednaki, jer se malo odstupilo od jednakosti. Primer se može jednostavno
konstruisati na sledeći način:

1 5 25

2 4 16

3 4 9

Ovime je dokazano da je traženi minimum 361. ■

Primer 3.4. U skupu pozitivnih brojeva rešiti jednačinu

(x+ 4)(y + 2)(x+ 2y) = 32xy.

Rešenje: Uslov o pozitivnosti brojeva bi mogao biti motivacija za korǐsćenje
nejednakosti. Nije očigledno koji se drugi metod može koristiti. Probajmo,
dakle, preko AG nejednakosti. Cilj je da se pokaže da je leva strana veća
ili manja od desne strane. Sa malo isprobavanja se može naslutiti da je leva
strana ”skoro uvek” veća. Primenimo AG na svaku zagradu. To izgleda ovako

(x+ 4)(y + 2)(x+ 2y) ≥ 2
√
4x · 2

√
2y · 2

√
2xy = 32xy,

što smo baš i želeli. Jednakost ovde važi ako i samo ako su svi brojevi jednaki
na koje je korǐsćena AG, a to daje jedino rešenje polazne jednačine (x, y) =
(4, 2). ■

Primer 3.5. Naći sve trojke (x, y, z) realnih brojeva za koje važi

2x
2

(2y)2
+

2y
2

(2z)2
+

2z
2

(2x)2
=

3

2
.
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Rešenje: Ideja je slična kao i u prethodnom primeru. Eksponencijalna funk-
cija je uvek pozitivna pa ćemo primeniti AG na sledeći način

2x
2

(2y)2
+

2y
2

(2z)2
+

2z
2

(2x)2
≥ 3

3
√
2x2+y2+z2−2x−2y−2z ≥ 3

2
.

Poslednja nejednakost se dobija iz x2 + y2 + z2 − 2x− 2y− 2z ≥ −3, koja je
očigledna (zbir tri kvadrata binoma oblika (t− 1)2). Jednakost važi samo za
x = y = z = 1, te je to i jedino rešenje polazne jednačine. ■

Sledeći primer ilustruje jedan važan i zanimljiv koncept.

Primer 3.6. Neka su a, b, c pozitivni brojevi za koje važi a + b + c = 3.
Dokazati nejednakost

a

b2 + 1
+

b

c2 + 1
+

c

a2 + 1
≥ 3

2
.

Kada važi jednakost?

Rešenje: Primenom AG na ova tri razlomka direktno se nǐsta postiže. Sa
druge strane, ukoliko primenimo AG na imenioce dobijamo suprotan smer od
potrebnog. Ciljamo da taj smer promenimo. Oduzmimo od svakog razlomka
a, b, c, redom, pa na kraju dodajmo a+ b+ c. Dobijamo:

a

b2 + 1
− a+ a = a− ab2

b2 + 1
(1)

b

c2 + 1
− b+ b = b− bc2

c2 + 1
(2)

c

a2 + 1
− c+ c = c− ca2

a2 + 1
(3)

Sada, po AG, zaključujemo − ab2

b2 + 1
≥ −ab2

2b
= −ab

2
. Sabiranjem (1), (2), (3)

i korǐsćenjem dve analogne nejednakosti dobija se

a

b2 + 1
+

b

c2 + 1
+

c

a2 + 1
= a+b+c−

(
ab2

b2 + 1
+

bc2

c2 + 1
+

ca2

a2 + 1

)
≥ 3−1

2
(ab+ bc+ ca) .

Dovoljno je dokazati da važi ab+bc+ca ≤ 3, medutim, ovo sledi iz
(a+ b+ c)2

3
≥

ab+ bc+ ca, što je posledica poznate i očigledne nejednakosti a2 + b2 + c2 ≥
ab+ bc+ ca. ■

48



Nejednakosti izmedu sredina, najčešće AG, omogućavaju rešavanje pro-
blema i predstavljaju značajno i efikasno sredstvo u teoriji nejednakosti. Sle-
deći primeri ilustruju primenu drugih sredina, ne samo AG, iako je AG sre-
dina u praksi najčešće primenjivana.

Primer 3.7. Dokazati da za sve pozitivne brojeve a1, a2, . . . , an, za koje je
a1 + a2 + . . .+ an = 1, važi nejednakost∑

1≤i,j≤n

aiaj
ai + aj

≤ n

2
.

Kada važi jednakost?

Rešenje: Glavna stvar je primetiti da je svaki izraz
aiaj

ai + aj
polovina har-

monijske sredina brojeva ai i aj. Za i ̸= j primenjujemo nejednakost izmedu
aritmetičke i harmonijske sredine, dok za i = j izraze ostavljamo. Po AH je

aiaj
ai + aj

=
1

2

2
1
ai
+ 1

aj

≤ 1

2

ai + aj
2

=
ai + aj

4
.

Primenićemo ovo kao što je gore rečeno (izrazi za i = j su oblika
ai
2
). Imamo

∑
1≤i,j≤n

aiaj
ai + aj

≤ a1 + a2 + . . .+ an
2

+ (n− 1)
a1 + a2 + . . .+ an

2
=

n

2
,

što je i trebalo dokazati.

Jednakost važi kada je a1 = a2 = . . . = an =
1

n
. ■

Primer 3.8. Dokazati da za svako x > 1 važi nejednakost

x

√
x+ x

√
x+

x

√
x− x

√
x < 2 x

√
x.

Rešenje: Uslov x > 1 je dat zbog definisanosti drugog korena. Takode, bitan
je zbog nejednakosti koje ćemo koristiti u rešenju.
Ponekad u ovakvim zadacima sa korenima nije loše uvesti smene, makar bilo
samo zbog preglednosti. Dakle, neka je a = x

√
x+ x

√
x i b = x

√
x− x

√
x. Izraz

a + b treba ograničiti sa gornje strane. Možemo primetiti da je ax + bx =
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2x. Sada možemo primeniti nejednakost izmedu aritmetičke sredine (ona je
sredina reda 1) i sredine reda x > 1. Dobijamo

a+ b

2
≤ x

√
ax + bx

2
= x

√
x,

što je i trebalo dokazati.
Nejednakost je stroga jer brojevi a i b nikada ne mogu da budu jednaki za
x > 1. ■

Na kraju ove glave prikazuje se primer koji ilustruje da sposobnost rešavanja
zadatka u velikoj meri zavisi od kreativnosti rešavaoca, a ne samo od alata.
Primer takode ilustruje kako ovaj jednostavan alat može biti primenjen za
rešavanje zahtevnog problema.

Primer 3.9. Dokazati da za sve pozitivne brojeve a, b, c, za koje je a+b+c =
1, važi nejednakost

a
3
√
1 + b− c+ b 3

√
1 + c− a+ c

3
√
1 + a− b ≤ 1.

Kada važi jednakost?

Rešenje: Treći koren bi trebalo da asocira na ili kubnu ili geometrijsku
sredinu, medutim, pošto se traži nejednakost manje-jednako pokušajmo da
se usredsredimo na ideju geometrijske sredine.
Za geometrijsku sredinu je potreban proizvod, te je ideja da pod treći koren
ubacimo neka dva broja. Lako se može proveriti da jednakost važi kada su
svi brojevi jednaki, pa tada mora da važi i u AG nejednakosti ako ćemo je
koristiti, te ne bi bilo pametno da stavimo ispod korena bilo koji broj osim
jedinice. Zbog trećeg korena stavljamo dve jedinice. To izgleda ovako

a
3
√
1 + b− c+ b 3

√
1 + c− a+ c

3
√
1 + a− b

= a 3
√

1 · 1 · (1 + b− c) + b 3
√

1 · 1 · (1 + c− a) + c 3
√

1 · 1 · (1 + a− b)

≤ a
1 + 1 + 1 + b− c

3
+ b

1 + 1 + 1 + c− a

3
+ c

1 + 1 + 1 + a− b

3

= a+ b+ c+
ab− ac+ bc− ba+ ca− cb

3
= a+ b+ c = 1,

što je i trebalo dokazati.

Jednakost važi ako i samo ako je a = b = c =
1

3
. ■

50



4 Matematička indukcija u nejednakostima

Nije iznenadujuće da se metod matematičke indukcije nade u bilo kojoj
oblasti. Poznato je da je matematička indukcija jedan veoma jak alat, tako
da ćemo se u ovoj glavi upoznati sa njenom primenom u oblasti nejednakosti.

4.1 Prosta indukcija

Pod prostom indukcijom podrazumevamo indukciju gde, ako pretposta-
vimo da tvrdenje važi za neko n ∈ N, dokazujemo da tada tvrdenje važi i za
n+ 1.

Sledeći primer je primer onoga što je možda neformalno poznato kao
”funkcija koja brže raste”. U pitanju je, na primer, eksponencijalna i stepena
funkcija. Pogledajmo primer.

Primer 4.1.1. Dokazati da za sve prirodne brojeve n važi nejednakost

5n > n3.

Rešenje: Radimo indukcijom po n.

� Baza indukcije: Direktnom proverom utvrdujemo da tvrdenje važi za
n = 1 i n = 2.

� Indukcijska hipoteza: Neka tvrdenje važi za neko n ∈ N.

� Indukcijski korak: Dokažimo da važi i za n+ 1. Važi

5n+1 = 5 · 5n > 5n3 > (n+ 1)3.

Poslednja nejednakost važi jer je ekvivalentna sa n2(n−3)+3n(n2−1)+1 > 0,
što je očigledno tačno za n ≥ 3. ■

Navešćemo jednu poznatu nejednakost čiji se dokaz izvodi matematičkom
indukcijom u osnovnom slučaju kada je eksponent prirodan broj. U pitanju
je Bernulijeva nejednakost.

Teorema 4.1.1. (Bernulijeva nejednakost) Ako je x ≥ −1, tada važi

(1 + x)n ≥ 1 + nx
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za sve realne brojeve n ∈ (−∞, 0] ∪ [1,+∞], odnosno

(1 + x)n ≤ 1 + nx

za n ∈ (0, 1). Jednakost važi ako i samo ako je n = 0 ∨ n = 1 ∨ x = 0.

Dokaz: Dokaz izvodimo samo za prirodne brojeve n. Radimo indukcijom po
n.

� Baza indukcije: Za n = 1 tvrdenje važi, tada važi jednakost.

� Indukcijska hipoteza: Neka tvrdenje važi za neko n ∈ N.

� Indukcijski korak: Dokažimo da važi i za n+ 1. Imamo

(1 + x)n+1 = (1 + x)n(1 + x) ≥ (1 + nx)(1 + x) = nx2 + nx+ x+ 1

≥ nx+ x+ 1 = 1 + (n+ 1)x,

što završava dokaz. ■

Sledeća dva primera ilustruju primenu Bernulijeve nejednakosti.

Primer 4.1.2. Dokazati da za sve n,m ∈ N važi nejednakost

1
m
√
n+ 1

+
1

n
√
m+ 1

≥ 1.

Kada važi jednakost?

Rešenje: Posmatrajmo imenilac prvog sabirka na levoj strani i primenimo
Bernulijevu nejednakost

m
√
n+ 1 = (1 + n)

1
m ≤ 1 +

n

m
=

n+m

m
.

Analogno se dobija i n
√
m+ 1 ≤ 1 +

m

n
=

n+m

n
. Koristeći ove dve nejedna-

kosti se dobija

1
m
√
n+ 1

+
1

n
√
m+ 1

≥ m

n+m
+

n

n+m
= 1,

52



što je i trebalo dokazati.
Jednakost važi ako i samo ako je eksponent jednak jednici, tj. ako i samo ako
je n = m = 1. ■

Primer 4.1.3. Neka je n ∈ N, n > 1 i neka su x1, x2, . . . , xn pozitivni brojevi
za koje važi uslov x1 + x2 + . . .+ xn = 1. Dokazati nejednakost

x1−x2
1 + x1−x3

2 + . . .+ x1−x1
n < 2.

Rešenje: Sabiranjem nejednakosti (bitno je napomenuti da je svaki ekspo-
nent izmedu nule i jedinice zbog uslova o zbiru)

x
1−xi+1

i = (1 + (xi − 1))1−xi+1 ≤ 1 + (xi − 1)(1− xi+1) = xi + xi+1 − xixi+1,

za i = 1, 2, . . . , n, dobijamo

x1−x2
1 +x1−x3

2 +. . .+x1−x1
n ≤ 2(x1+x2+. . .+xn)−(x1x2+x2x3+. . .+xnx1) < 2,

što je i trebalo dokazati. ■

Sledeći primer ilustruje primenu matematičke indukcije na nejednakosti,
gde direktno rešavanje zadatka deluje otežano, ali odgovarajuća preformula-
cija omogućava dobijanje rešenja pomoću indukcije.

Primer 4.1.4. Dokazati da nejednakost

1 +
1

2
+

1

22
+

1

23
+ . . .+

1

2n
< 2

važi za sve prirodne brojeve n.

Rešenje: Direktna primena indukcije neće rešiti zadatak. Zbog toga je ge-
neralno ideja kod zadataka ovog tipa da se dokaže opštija nejednakost. Cilj

je dokazati 1 +
1

2
+

1

22
+

1

23
+ . . . +

1

2n
≤ 2 − f(n), gde je f(n) zgodno na-

meštena funkcija od n. U ovom slučaju bismo želeli da ona bude opadajuća
i to ”brzo opadajuća”, jer nakon samo par članova izraz sa leve strane je

jako blizu broju 2. Prirodno je probati f(n) =
1

2n
. Dokažimo nejednakost

1 +
1

2
+

1

22
+

1

23
+ . . .+

1

2n
≤ 2− 1

2n
indukcijom.
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� Baza indukcije: Za n = 1 je
3

2
= 1 +

1

2
≤ 2− 1

2
=

3

2
, što je tačno.

� Indukcijska hipoteza: Neka tvrdenje važi za neko n ∈ N.

� Indukcijski korak: Dokažimo da važi i za n+ 1. Važi

1 +
1

2
+

1

22
+

1

23
+ . . .+

1

2n+1
≤ 2− 1

2n
+

1

2n+1
= 2− 1

2n+1
,

što je i trebalo dokazati. ■

Dokažimo sada jednu od najkorisnijih nejednakosti o kojoj će svakako biti
reči kasnije.

Primer 4.1.5. Dokazati nejednakost Koši-Švarc-Bunjakovski (videti teore-
mu 7.1.1.).

Rešenje: Dokažimo indukcijom identitet(
n∑

i=1

a2i

)(
n∑

i=1

b2i

)
−

(
n∑

i=1

aibi

)2

=
n∑

i,j=1,i<j

(aibj − ajbi)
2,

iz kog direktno sledi tražena nejednakost.

� Baza indukcije: Za n=2 treba dokazati

(a21 + a22)(b
2
1 + b22)− (a1b1 + a2b2)

2 = (a1b2 − a2b1)
2,

što je ekvivalentno sa

a21b
2
1+a21b

2
2+a22b

2
1+a22b

2
2−a21b

2
1−2a1b1a2b2−a22b

2
2 = a21b

2
2−2a1b1a2b2+a22b

2
1,

a ovo očigledno važi.

� Indukcijska hipoteza: Neka tvrdenje važi za neko n ∈ N, pri čemu ćemo
levu stranu označiti sa Ln, a desnu sa Dn. Dakle, hipoteza je da važi
Ln = Dn.
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� Indukcijski korak: Dokažimo da tada važi i za n+ 1. Imamo

Ln+1 = Ln + a2n+1

n∑
i=1

b2i + b2n+1

n∑
i=1

a2i − 2an+1bn+1

n∑
i=1

aibi,

a za desnu stranu je

Dn+1 = Dn + (a1bn+1 − an+1b1)
2 + (a2bn+1 − an+1b2)

2

+ . . .+ (anbn+1 − an+1bn)
2.

Nakon elementarnog izračunavanja leve i desne strane (i zbog indukcij-
ske hipoteze) vidimo da je Ln+1 = Dn+1.

Dokaz je ovime završen. ■

Još jedan primer primene indukcije možemo videti u delu 5.3 pri dokazi-
vanju Jensenove nejednakosti.

4.2 Drugi tipovi indukcije

Sada ćemo dokazati nejednakost izmedu aritmetičke i geometrijske sredine
proizvoljno mnogo brojeva, ali zašto? Iako je to tvrdenje direktna posledica
teoreme 3.2,

”
elementarni“3 dokaz ovog tvrdenja (pomoću indukcije) je nešto

što smatramo jako bitnim i kreativnim, te bi bilo nezahvalno izostaviti taj
dokaz. Pošto je ovo, kao što smo rekli, samo posledica jačeg tvrdenja koje
smo dokazali, ovo navodimo kao primer.

Primer 4.2.1. Dokazati nejednakost izmedu aritmetičke i geometrijske sredi-
ne, tj. dokazati da za sve prirodne brojeve n i pozitivne brojeve x1, x2, . . . , xn

važi nejednakost

x1 + x2 + . . .+ xn

n
≥ n

√
x1x2 . . . xn.

Dokazati da jednakost važi ako i samo ako je x1 = x2 = . . . = xn.

Rešenje: Dokažimo prvo da tvrdenje važi za sve stepene dvojke. Ako je
n = 2k, k ∈ N, tvrdenje dokazujemo indukcijom po k.

3Pod ”elementarnim” dokazom smatramo dokaze koji ne zahtevaju napredno matema-
tičko znanje, ovde bi to znanje bili izvodi neophodni za korǐsćenje Jensenove nejednakosti
(pri proveri konveksnosti). Možemo i Jensenovu nejednakost samu po sebi smatrati ”nee-
lementarnom”metodom.
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� Baza indukcije: Za k = 1 je n = 2 pa dokazujemo nejednakost
a+ b

2
≥

√
ab. Ova nejednakost je ekvivalentna očiglednoj

(√
a−

√
b
)2

≥ 0.

Ovde vidimo da jednakost važi ako i samo ako je a = b.

� Indukcijska hipoteza: Pretpostavimo da tvrdenje važi za neko k ∈ N.

� Indukcijski korak: Dokažimo da onda tvrdenje važi i za k + 1. Ovo je
isto kao da prelazimo sa n na 2n. Imamo

x1 + x2 + . . .+ x2n

2n
=

1

2

(
x1 + x2 + . . .+ xn

n
+

xn+1 + xn+2 + . . .+ x2n

n

)
≥
√

x1 + x2 + . . .+ xn

n

xn+1 + xn+2 + . . .+ x2n

n

≥
√

n
√
x1x2 . . . xn

n
√
xn+1xn+2 . . . x2n

= 2n
√
x1x2 . . . x2n.

Na mestu prve nejednakosti smo koristili ono što je dokazano u bazi indukci-
je, a na mestu druge nejednakosti smo koristili indukcijsku hipotezu. Dakle,
dokazali smo da AG nejednakost važi za svakih n brojeva, gde je n stepen
dvojke. Dokazujemo sada, regresivnom indukcijom po n, da tvrdenje važi za
svaki prirodan broj n. Pretpostavimo da nejednakost važi za neko n. Izabe-

rimo xn =
x1 + x2 + . . .+ xn−1

n− 1
. Sada imamo

x1 + x2 + . . .+ xn

n
≥ n

√
x1x2 . . . xn−1

x1 + x2 + . . .+ xn−1

n− 1

⇐⇒ x1 + x2 + . . .+ xn−1

n− 1
≥ n

√
x1x2 . . . xn−1

x1 + x2 + . . .+ xn−1

n− 1

⇐⇒
(
x1 + x2 + . . .+ xn−1

n− 1

)n−1
n

≥ n
√
x1x2 . . . xn−1

⇐⇒ x1 + x2 + . . .+ xn−1

n− 1
≥ n−1

√
x1x2 . . . xn−1.

Dakle, tvrdenje je dokazano. Jednakost važi ako i samo ako je x1 = x2 =
. . . = xn. ■
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Drugi tipovi indukcije su redi, ali itekako postoje. U ovom radu se nećemo
baviti njima jer smatramo da nisu od nužnog značaja za samu oblast nejed-
nakosti koliko su za oblast indukcije.

5 Geometrijske nejednakosti

U geometrijskim nejednakostima mogu se izdvojiti dve vrste zadataka.
Prva obuhvata nejednakosti koje važe izmedu elemenata trougla, kao što su
stranice ili poluprečnici upisanih i opisanih krugova. Druga se odnosi na ne-
jednakosti u konkretnim geometrijskim konfiguracijama. Obično druga vrsta
zadataka zahteva pretežno geometrijsko znanje; stoga se u ovom radu fo-
kusiramo isključivo na prvi tip. Cilj je analizirati aspekt nejednakosti, a ne
geometrijske konstrukcije ili druge oblasti.

Radi izbegavanja konfuzije, uvode se oznake u proizvoljnom trouglu ABC,
koje su uobičajene u literaturi, ali ovde ih precizno definǐsemo.

� a, b, c - dužine stranica naspram temena A,B,C, redom;

� α, β, γ - mere uglova kod temena A,B,C, redom;

� ta, tb, tc - dužine težǐsnih duži iz temena A,B,C, redom;

� ha, hb, hc - dužine visina iz temena A,B,C, redom;

� la, lb, lc - dužine odsečaka bisektrisa unutrašnjih uglova iz temenaA,B,C,
redom;

� R, r - poluprečnici opisane i upisane kružnice, redom;

� P, s - površina i poluobim, redom.

Nadalje (u ovoj glavi) se podrazumevaju ove oznake (ako negde vidimo
a, b, c to su stranice trougla i slično).

Verovatno najjednostavnija geometrijska nejednakost jeste nejednakost
trougla, koja nam govori da su pozitivni brojevi a, b, c dužine stranica nekog
trougla ako i samo ako važe nejednakosti a+ b > c, b+ c > a, c+ a > b.

Primer 5.1. Dokazati nejednakost

3

4
(a+ b+ c) < ta + tb + tc < a+ b+ c.

Rešenje:
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Slika 1: Rešenje primera 5.1

a) Neka je tačka T težǐste trougla ABC.
Primenom nejednakosti trougla u trou-
glovima BTC,CTA,ATB dobijamo

2

3
tb +

2

3
tc > a,

2

3
tc +

2

3
ta > b,

2

3
ta +

2

3
tb > c,

što, kada saberemo, dobijamo

ta + tb + tc >
3

4
(a+ b+ c).

b) Neka je D sredǐste BC, i neka je tačka A′

simetrična tački A u odnosu na D. Tada
je ABA′C paralelogram. Primenom ne-
jednakosti trougla u trouglu ABA′ dobi-
jamo b + c > 2ta. Analogno se dobijaju
i nejednakosti c + a > 2tb i a + b > 2tc.
Sabiranjem dobijamo

ta + tb + tc < a+ b+ c,

što završava dokaz. ■

Primer 5.2. Dokazati nejednakost

1

s− a
+

1

s− b
+

1

s− c
≥ 9

s
.

Kada važi jednakost?

Rešenje: Po nejednakosti izmedu harmonijske i aritmetičke sredine važi

3
1

s− a
+

1

s− b
+

1

s− c

≤ (s− a) + (s− b) + (s− c)

3
,
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a odatle je

1

s− a
+

1

s− b
+

1

s− c
≥ 9

(s− a) + (s− b) + (s− c)
=

9

s
,

što je i trebalo dokazati.
Jednakost važi ako i samo ako je s− a = s− b = s− c, tj. ako i samo ako je
a = b = c (samo kada je trougao jednakostranični). ■

Teorema 5.1. (Ptolomejeva nejednakost) Neka su A,B,C,D četiri tačke
prostora. Tada važi nejednakost

AB · CD + AD ·BC ≥ AC ·BD.

Jednakost važi ako i samo ako su tačke A,B,C,D na istom krugu, pri čemu
su AC i BD dijagonale tog četvorougla ili su tačke A,B,C,D kolinearne, pri
čemu tačno jedna od tačaka B,D leži izmedu tačaka A,C. ■

Ovu teoremu navodimo bez dokaza, jer u dokazu preovladava znanje geo-
metrije. Jedan zanimljiv dokaz je pomoću inverzije u jednom od temena, pa
primenom nejednakosti trougla.

Primer 5.3. Dokazati da je površina konveksnog četvorougla ABCD ne veća
od

1

2
(AB · CD +BC ·DA).

U kojim četvorouglovima važi jednakost?

Rešenje: Na osnovu Ptolomejeve nejednakosti je

AB · CD + AD ·BC ≥ AC ·BD.

Sa druge strane je PABCD =
1

2
AC ·BD·sin θ, gde je θ ugao izmedu dijagonala.

Na osnovu ovoga je

1

2
(AB · CD +BC ·DA) ≥ 1

2
AC ·BD =

PABCD

sin θ
≥ PABCD,

što je i trebalo dokazati. U prvoj nejednakosti jednakost važi za tetivne
četvorouglove, a u drugoj za one četvorouglove sa medusobno normalnim
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dijagonalama, pa jednakost važi za tetivne četvorouglove sa medusobno nor-
malnim dijagonalama. ■

Motivacija prethodnog primera zasniva se na Ptolomejevoj nejednakosti,
budući da se u zadatku pojavljuje izraz identičan onom u Ptolomejevoj nejed-
nakosti. Proizvod dijagonala zatim je povezan sa površinom pomoću poznate
trigonometrijske formule.

Teorema 5.2. (Nejednakost paralelograma) Neka su A,B,C,D četiri
tačke prostora. Tada važi nejednakost

AB2 +BC2 + CD2 +DA2 ≥ AC2 +BD2.

Jednakost važi ako i samo ako su A,B,C,D temena paralelograma. ■

Neke nejednakosti u geometriji mogu se dokazivati prelaskom sa stranica
trougla (a, b, c) na pozitivne realne brojeve (x, y, z). Ovakav pristup je pone-
kad pogodan, jer eliminǐse potrebu za eksplicitnim korǐsćenjem uslova da su
a, b, c stranice trougla, budući da su brojevi x, y, z bez dodatnih ograničenja,
osim uslova pozitivnosti.

Slika 2: Trougao ABC sa upisanim
krugom

Neka upisan krug trougla ABC
dodiruje stranice BC,CA,AB u
tačkamaD,E, F , redom. Iz jednako-
sti tangentnih duži je AF = AE =
x, BF = BD = y i CE = CD = z.

Zato imamo da za stranice ovog
trougla važi

a = y + z;

b = z + x;

c = x+ y;

x, y, z > 0.

Očigledno važi i obratno, da ako
važi gornja veza za brojeve a, b, c da

su onda oni dužine stranica nekog trougla.
Primetimo još i da važi s = x+ y + z.
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Primer 5.4. Dokazati nejednakost

(a+ b− c)(b+ c− a)(c+ a− b) ≤ abc.

Kada važi jednakost?

Rešenje: Koristeći smenu a = y + z, b = z + x, c = x + y nejednakost se
svodi na

(x+ y)(y + z)(z + x) ≥ 8xyz,

koja sledi direktno iz nejednakosti izmedu aritmetičke i geometrijske sredine
primenjenu na svaku od tri zagrade.
Jednakost važi ako i samo ako je x = y = z, tj. a = b = c. ■

Teorema 5.3. (Uopštena nejednakost trougla) Neka je n ∈ N, neka su
υ⃗1, υ⃗2, . . . , υ⃗n geometrijski vektori i neka su x1, x2, . . . , xn pozitivni brojevi.
Tada važi nejednakost

|x1υ⃗1 + x2υ⃗2 + . . .+ xnυ⃗n| ≤ |x1υ⃗1|+ |x2υ⃗2|+ . . .+ |xnυ⃗n|.

Jednakost važi ako i samo ako su svi pomenuti vektori kolinearni i istog
smera. ■

Primer 5.5. Dokazati nejednakost

R ≥ 2r.

Kada važi jednakost?

Rešenje: Po poznatoj Ojlerovoj formuli je

OI2 = R(R− 2r),

odakle tvrdenje direktno sledi.
Jednakost važi ako i samo ako je OI = 0, tj. ako i samo ako je trougao
jednakostraničan (tačke O, I su centri opisanog i upisanog kruga, redom). ■

Ojlerova formula predstavlja značajnu činjenicu, ali je u ovom radu njen
dokaz izostavljen, budući da je u potpunosti geometrijske prirode.
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U nastavku se navode formule koje su korisne pri radu sa geometrij-
skim nejednakostima. Ove formule se izvode primenom geometrijskih me-
toda, najčešće korǐsćenjem trigonometrije (sinusne i kosinusne teoreme) ili
Stjuartove teoreme, čiji se dokaz takode zasniva na kosinusnoj teoremi.

Dakle, formule koje mogu biti od značaja su:

t2a =
b2 + c2

2
− a2

4
, t2b =

c2 + a2

2
− b2

4
, t2c =

a2 + b2

2
− c2

4
,

l2a = bc
(b+ c)2 − a2

(b+ c)2
, l2b = ca

(c+ a)2 − b2

(c+ a)2
, l2c = ab

(a+ b)2 − c2

(a+ b)2
,

P =
4abc

R
= rs

Primer 5.6. Dokazati nejednakost

t2a + t2b + t2c ≥
3

4
(ab+ bc+ ca).

Kada važi jednakost?

Rešenje: Koristeći formule za težǐsne duži dobijamo

t2a + t2b + t2c =
3

4
(a2 + b2 + c2) ≥ 3

4
(ab+ bc+ ca),

gde smo koristili poznatu nejednakost u poslednjoj nejednakosti (AG na svaka
dva člana).
Jednakost važi ako i samo ako je a = b = c. ■

Primer 5.7. Dokazati nejednakosti

√
s <

√
s− a+

√
s− b+

√
s− c ≤

√
3s.

Kada u drugoj nejednakosti važi jednakost?

Rešenje:

a) Dokažimo prvo nejednakost
√
s <

√
s− a+

√
s− b+

√
s− c. Obe strane

su pozitivne, pa kada kvadriramo nejednakost dobijamo ekvivalentnu

s < s−a+s−b+s−c+2(
√
s− a

√
s− b+

√
s− b

√
s− c+

√
s− c

√
s− a),
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a ova je ekvivalentna sa

0 < 2(
√
s− a

√
s− b+

√
s− b

√
s− c+

√
s− c

√
s− a),

koja je očigledno tačna.

b) Primenićemo nejednakost izmedu aritmetičke i kvadratne sredine

√
s− a+

√
s− b+

√
s− c ≤ 3

√
s− a+ s− b+ s− c

3
=

√
3s,

što je i trebalo dokazati.

Jednakost važi ako i samo ako je trougao jednakostraničan (ovo dobijamo
sredivanjem uslova

√
s− a =

√
s− b =

√
s− c). ■

Sledeći primer na prvi pogled predstavlja standardan geometrijski zada-
tak, ali se njegovo rešavanje zasniva na primeni nejednakosti. Sličan fenomen
javlja se i u oblasti nejednakosti izmedu sredina, gde se pojedini problemi,
iako naizgled nevezani za nejednakosti, rešavaju upravo njihovom primenom.
U nastavku se razmatra jedan takav primer.

Primer 5.8. Poluprečnik kruga upisanog u trougao je

√
3

3
, a obim tog trougla

je 6. Odrediti uglove tog trougla.

Rešenje: Površinu trougla možemo izračunati pomoću formule P = rs =
6

2

√
3

3
=

√
3. Takode, po Heronovom obrascu, imamo da je površina P =√

s(s− a)(s− b)(s− c). Primenićemo nejednakost izmedu aritmetičke i geo-
metrijske sredine (član s se izostavlja jer se tako dobija jača nejednakost -
da smo uzeli i s onda jednakost ne bi mogla da se dostigne pa bi nejednakost
bila grublja)

3
√
(s− a)(s− b)(s− c) ≤ s− a+ s− b+ s− c

3
=

s

3
.

Sada je (s− a)(s− b)(s− c) ≤ s3

27
, pa je

P =
√

s(s− a)(s− b)(s− c) ≤
√

s · s
3

27
=

s2
√
3

9
.
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Vidimo da je
√
3 = P ≤ s2

√
3

9
=

√
3, tj. jednakost mora da važi. Ovo je za

s− a = s− b = s− c, tj. a = b = c, pa su uglovi svi jednaki po 60◦. ■

6 Konveksnost. Jensenova nejednakost

Za izučavanje Jensenove nejednakosti neophodno je poznavati pojam kon-
veksnih, odnosno konkavnih funkcija, kao i metode ispitivanja konveksnosti
funkcije. O tome će biti reči u nastavku.

6.1 Konveksne i konkavne funkcije

Ako je (α, β) interval (na skupu R) i f : (α, β) −→ R funkcija onda znamo
da je grafik funkcije f skup {(x, y) ∈ R2 | x ∈ (α, β) ∧ y = f(x)}. Intuitivno
bi onda bilo da njen nadgrafik definǐsemo kao isti taj skup, samo da drugi
uslov promenimo u y ≥ f(x). Dakle, definǐsimo nadgrafik.

Definicija 6.1.1. Nadgrafik funkcije f : (α, β) −→ R jeste skup

{(x, y) ∈ R2 | x ∈ (α, β) ∧ y ≥ f(x)}.

Sada ćemo definisati konveksnost funkcije.

Definicija 6.1.2. Funkcija f : (α, β) −→ R je konveksna ako je konveksan
deo njenog nadgrafika nad poizvoljnim segmentom [a, b] ⊂ (α, β).

Definicija 6.1.3. Za funkciju f : (α, β) −→ R kažemo da je konveksna ako
za svake dve tačke x1, x2 ∈ (α, β) i svaka dva nenegativna broja λ1, λ2 za
koje je λ1 + λ2 = 1 važi

f(λ1x1 + λ2x2) ≤ λ1f(x1) + λ2f(x2).

Funkcija f je konkavna ako je funkcija −f konveksna, tj. ako važi

f(λ1x1 + λ2x2) ≥ λ1f(x1) + λ2f(x2).

Ako za x1 ̸= x2 jednakost važi samo za λ1λ2 = 0 onda je funkcija f strogo
konveksna (konkavna).

64



Ispitivanje konveksnosti funkcije na osnovu ove definicije jeste moguće, ali
u praksi često nije efikasno. Kod složenijih funkcija takav pristup može biti
vremenski zahtevan, pa se u narednoj glavi razmatra jednostavniji i prak-
tičniji metod za proveru konveksnosti.

6.2 Konveksne (konkavne) i diferencijabilne funkcije

Razmatraju se funkcije koje su istovremeno konveksne (odnosno konkav-
ne) i diferencijabilne. Izmedu pojmova konveksnosti i diferencijabilnosti po-
stoji značajna veza. U tom cilju navode se dve teoreme koje predstavljaju
efikasan alat za ispitivanje konveksnosti diferencijabilnih funkcija.

Ove teoreme se navode bez dokaza, budući da se njihovi dokazi ne zasni-
vaju na nejednakostima, već na metodama diferencijabilnog računa, koji ne
predstavlja osnovni fokus ovog rada.

Teorema 6.2.1. Neka je f : (α, β) −→ R diferencijabilna funkcija. Funkcija
f je konveksna (strogo konveksna) ako i samo ako je funkcija f ′ rastuća
(strogo rastuća). Slično, funkcija f je konkavna (strogo konkavna) ako i samo
ako je funkcija f ′ opadajuća (strogo opadajuća). ■

Teorema 6.2.2. Neka je f : (α, β) −→ R funkcija koja u svakoj tački
intervala (α, β) ima drugi izvod. Funkcija f je konveksna (konkavna) ako i
samo ako je funkcija f ′′(x) ≥ 0 (f ′′(x) ≤ 0), x ∈ (α, β). Ako su nejednakosti
stroge onda je f strogo konveksna (strogo konkavna). ■

Ove teoreme su od izuzetnog značaja pri ispitivanju konveksnosti funkci-
je. Zašto nam je konveksnost bitna videćemo u sledećem delu o Jensenovoj
nejednakosti.

6.3 Jensenova nejednakost

Sadržaj ove glave bio je usmeren ka uvodenju i razumevanju Jensenove
nejednakosti. Jensenova nejednakost predstavlja izuzetno značajno sredstvo
za opšte procenjivanje izraza i nalazi široku primenu i izvan oblasti klasičnih
nejednakosti. Zbog svoje opštosti i snage, ona zauzima važno mesto u teoriji
nejednakosti.

Teorema 6.3.1. (Jensenova nejednakost) Neka je f : (α, β) −→ R
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konveksna funckija i neka su λ1, λ2, . . . , λn nenegativni brojevi za koje važi
λ1 + λ2 + . . . + λn = 1. Tada za sve brojeve x1, x2, . . . , xn ∈ (α, β) važi
nejednakost

λ1f(x1) + λ2f(x2) + . . .+ λnf(xn) ≥ f(λ1x1 + λ2x2 + . . .+ λnxn).

Ako je f strogo konveksna, jednakost važi ako i samo ako je x1 = x2 = . . . =
xn ili je tačno jedan λi jednak 1, i ∈ {1, 2, . . . , n}. Za konkavne funkcije važi
analogno tvrdenje (samo je nejednakost suprotna).

Dokaz: Tvrdenje dokazujemo matematičkom indukcijom po n.

� Baza indukcije: Za n = 2 se tvrdenje svodi na definiciju konveksne
funkcije, te i važi (funkcija f je konveksna po pretpostavci).

� Indukcijska hipoteza: Neka tvrdenje važi za neko n ∈ N.

� Indukcijski korak: Neka su xi proizvoljni brojevi iz intervala (α, β),
a λi nenegativni brojevi zbira 1, i ∈ {1, 2, . . . , n, n + 1}. Neka je k =
λ2+λ3+. . .+λn+1. Za k = 0 je tvrdenje očigledno (tada važi jednakost).

Neka je, dakle, k ̸= 0. Tada su brojevi
λ2

k
,
λ3

k
, . . . ,

λn+1

k
nenegativni

brojevi čiji je zbir jednak 1, pa, po indukcijskoj hipotezi, važi

f(λ1x1 + λ2x2 + . . .+ λn+1xn+1)

= f

(
λ1x1 + k

(
λ2

k
x2 + . . .+

λn+1

k
xn+1

))
≤ λ1f(x1) + kf

(
λ2

k
x2 + . . .+

λn+1

k
xn+1

)
≤ λ1f(x1) + k

(
λ2

k
f(x2) + . . .+

λn+1

k
f(xn+1)

)
= λ1f(x1) + λ2f(x2) + . . .+ λn+1f(xn+1).

Tvrdenje je dokazano matematičkom indukcijom.
Jednakost važi (za strogo konveksne funkcije) ako i samo ako je x1 = x2 =
. . . = xn ili je tačno jedan λi jednak 1, i ∈ {1, 2, . . . , n}. Za konkavne funkcije
se tvrdenje dokazuje analogno. ■
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Primer 6.3.1. Dokazati teoremu 3.2.

Dokaz: Dokažimo da je funkcija Mk (x1, x2, . . . , xn) rastuća po k. Fiksirajmo

x1, x2, . . . , xn. Neka je a > b > 0, tada je
a

b
> 1, pa je funkcija f(x) = x

a
b

strogo konveksna na x > 0, jer joj je drugi izvod f ′′(x) =
a

b
(
a

b
− 1)x

a
b
−2 > 0.

Primenjujemo Jensenovu nejednakost

1

n
f
(
xb
1

)
+

1

n
f
(
xb
2

)
+ . . .+

1

n
f
(
xb
n

)
≥ f

(
xb
1 + xb

2 + . . .+ xb
n

n

)
⇐⇒ xa

1 + xa
2 + . . .+ xa

n

n
≥
(
xb
1 + xb

2 + . . .+ xb
n

n

)a
b

⇐⇒ a

√
xa
1 + xa

2 + . . .+ xa
n

n
≥ b

√
xb
1 + xb

2 + . . .+ xb
n

n
.

Jednakost važi, po Jensenovoj nejednakosti, ako i samo ako je x1 = x2 =
. . . = xn, što završava dokaz. ■

Primer 6.3.2. Neka su a1, a2, . . . , an pozitivni realni brojevi za koje je a1 +
a2 + . . .+ an = 1. Dokazati nejednakost

n∑
i=1

ai
1 + a1 + a2 + . . .+ ai−1 + ai+1 + . . .+ an

≥ n

2n− 1
.

Kada važi jednakost?

Rešenje: Sumu sa leve strane možemo pojednostaviti koristeći uslov o zbiru
n∑

i=1

ai
1 + a1 + a2 + . . .+ ai−1 + ai+1 + . . .+ an

=
n∑

i=1

ai
2− ai

.

Ovde je Jensenova nejednakost zgodna iz par razloga. Prvi razlog je to što
vidimo da svaki sabirak zavisi samo od jedne promenljive, te možemo posma-
trati funkciju jedne promenljive i direktno primeniti Jensenovu nejednakost.
Drugi razlog je to što imamo uslov o zbiru, što može da nas motivǐse da za
težine uzmemo upravo brojeve a1, a2, . . . , an.

Posmatrajmo, dakle, funkciju f(x) =
1

2− x
za x ∈ (0, 1). Ispitajmo sada

konveksnost koristeći teoremu 6.2.2.:

f ′′(x) = (f ′(x))
′
=

(
1

(2− x)2

)′

=
2

(2− x)3
≥ 0,
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što znači da je funkcija f konveksna na intervalu (0, 1). Koristeći Jenseno-
vu nejednakost na funkciju f i sa težinama a1, a2, . . . , an dobijamo sledeću
nejednakost.

a1f(a1) + a2f(a2) + . . .+ anf(an) ≥ f(a21 + a22 + . . .+ a2n) (⋆)

Primetimo da je funkcija f rastuća, tj. važi x ≥ y =⇒ f(x) ≥ f(y). Želimo da
ograničimo izraz a21+a22+. . .+a2n odozdo, što radimo pomoću AK nejednakosti√

a21 + a22 + . . .+ a2n
n

≥ a1 + a2 + . . .+ an
n

=
1

n
,

a odavde dobijamo

a21 + a22 + . . .+ a2n ≥ 1

n
.

Koristeći ovo, činjenicu da je f rastuća i (⋆) dobijamo

n∑
i=1

ai
2− ai

≥ f(a21 + a22 + . . .+ a2n) ≥ f(
1

n
) =

1

2− 1
n

=
n

2n− 1
,

što je i trebalo dokazati.

Jednakost važi ako i samo ako je a1 = a2 = . . . = an =
1

n
. ■

Napomena. Prošli primer smo mogli i da rešimo posmatrajući funkciju f(x) =
x

2− x
i Jensenovu nejednakost sa težinama λ1 = λ2 = . . . = λn =

1

n
. Slične

napomene važe za još neke navedene primere koji slede.

Sledeći primer ukazuje na to da može biti bitno ako uočimo da je nejed-
nakost homogena i šta možemo sa tim raditi. U dosta slučajeva nam to može
pomoći u rešavanju.

Primer 6.3.3. Dokazati da za pozitivne brojeve x, y, z važi nejednakost

x√
y + z

+
y√
z + x

+
z√
x+ y

≥
√

3

2
(x+ y + z).

Kada važi jednakost?
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Rešenje: Da bismo rešili ovaj zadatak koristićemo osobine homogenih ne-
jednakosti. Ova nejednakost je homogena jer su stepeni obe strane jednaki (i

to su jednaki po
1

2
). Ovo znači da možemo nametnuti uslov sa ciljem da na

olakša rešavanje zadatka. Ovde konkretno se može uzeti da je x+ y+ z = 1.
Ovo je opravdano, jer skaliranjem nejednakost za k (x −→ xk, y −→ yk,
z −→ zk), vidimo da će se broj k skratiti (upravo jer je nejednakost homoge-
na), te se zaista ne gubi na opštosti kada pretpostavimo da je x+ y+ z = 1.
Tada se nejednakost može zapisati u obliku

x√
1− x

+
y√
1− y

+
z√
1− z

≥
√

3

2
.

Zbog nametnutog uslova o zbiru prirodno je posmatrati funkciju f(t) =
1√
1− t

, za t ∈ (0, 1). Račun izvoda nam daje f ′′(x) =
3

4
√
(1− t)5

> 0,

pa je f konveksna. Primenjujemo Jensenovu nejednakost na funkciju f sa
težinama x, y, z:

x√
1− x

+
y√
1− y

+
z√
1− z

= xf(x) + yf(y) + zf(z) ≥ f(x2 + y2 + z2)

≥ f(
1

3
) =

√
3

2
,

što je i trebalo dokazati. U poslednjoj nejednakosti smo opet koristili, slično
kao u prošlom primeru, nejednakost izmedu aritmetičke i kvadratne sredine.
Jednakost važi ako i samo ako je x = y = z. ■

Primer 6.3.4. Dokazati da za pozitivne brojeve a, b, c važi nejednakost

a√
a2 + 8bc

+
b√

b2 + 8ca
+

c√
c2 + 8ab

≥ 1.

Kada važi jednakost?

Rešenje: Nejednakost je homogena pa pretpostavljamo da je a + b + c =
1. Ovo radimo sa ciljem da nam brojevi a, b, c budu težine. Posmatrajmo

funkciju f(x) =
1√
x
, za koju se brzo proveri da je konveksna (f ′′(x) =

69



3

4
√
x5

> 0). Primenom Jensenove nejednakosti na ovu funkciju i težine a, b, c
dobijamo

a√
a2 + 8bc

+
b√

b2 + 8ca
+

c√
c2 + 8ca

= af(a2 + 8bc) + bf(b2 + 8ca) + cf(c2 + 8ab)

≥ f(a3 + b3 + c3 + 24abc) =
1

a3 + b3 + c3 + 24abc

≥ 1

(a+ b+ c)3
= 1,

što je i trebalo dokazati. Poslednja nejednakost se dobija prostim razvijanjem
i korǐsćenjem AG na sledeći način

(a+ b+ c)3 = a3 + b3 + c3 + 6abc+ 3(a2b+ ab2 + b2c+ bc2 + c2a+ ca2)

≥ a3 + b3 + c3 + 24abc.

Jednakost važi ako i samo ako je a = b = c, to lako proveravamo izjed-
načavanjem u AG (uslov jednakosti u Jensenovoj nejednakosti je ovde malo
nezgodan). ■

Primer 6.3.5. Dokazati nejednakost iz primera 3.9. Jensenovnom nejedna-
košću.

Rešenje: Već je dat uslov a+ b+ c = 1, te nameštamo da su nam to težine.
Posmatrajmo funkciju f(x) = 3

√
x, koja je konkavna na x > 0. Po Jensenovoj

nejednakosti je

a
3
√
1 + b− c+ b 3

√
1 + c− a+ c

3
√
1 + a− b

= af(1 + b− c) + bf(1 + c− a) + cf(1 + a− b)

≤ f(a+ b+ c) = 1,

što je i trebalo dokazati.

Jednakost važi kada je 1+b−c = 1+c−a = 1+a−b, tj. za a = b = c =
1

3
. ■

Primer 6.3.6. Dokazati da za pozitivne brojeve a, b, c važi nejednakost

a+ b√
c

+
b+ c√

a
+

c+ a√
b

≥ 2
√
3(a+ b+ c).

70



Kada važi jednakost?

Rešenje: Nejednakost je homogena pa ćemo pretpostaviti da je a+b+c = 1.
Dovoljno je, dakle, dokazati nejednakost

1− a√
a

+
1− b√

b
+

1− c√
c

≥ 2
√
3.

Posmatrajmo funkciju f(x) =
1− x√

x
za x ∈ (0, 1). Račun drugog izvoda

nam dokazuje da je funkcija f konveksna (f ′′(x) = x+3

4
√
x5

> 0). Po Jensenovoj
nejednakosti je

1− a√
a

+
1− b√

b
+
1− c√

c
= f(a)+f(b)+f(c) ≥ 3f

(
a+ b+ c

3

)
= 3f(

1

3
) = 2

√
3,

što je i trebalo dokazati.
Jednakost važi ako i samo ako je a = b = c. ■

Primer 6.3.7. Neka su a, b, c pozitivni brojevi za koje je a + b + c = 3.
Dokazati nejednakost

a2

1 + bc
+

b2

1 + ca
+

c2

1 + ab
≥ 3

2
.

Rešenje: Svaki sabirak se podešava tako da predstavlja funkciju jedne pro-
menljive. Postupak je sledeći

a2

1 + bc
+

b2

1 + ca
+

c2

1 + ab
=

a3

a+ abc
+

b3

b+ abc
+

c3

c+ abc
,

i sada posmatramo funkciju f(x) =
x3

x+ abc
za x ∈ (0, 3). Računanjem dru-

gog izvoda dobijamo da je f konveksna (f ′′(x) = 2x(3a2b2c2+3abcx+x2)
(abc+x)3

> 0). Po
Jensenovoj nejednakosti je

a2

1 + bc
+

b2

1 + ca
+

c2

1 + ab
= f(a) + f(b) + f(c) ≥ 3f

(
a+ b+ c

3

)
= 3f(1)

=
3

1 + abc
.
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Dovoljno je, dakle, dokazati nejednakost

3

1 + abc
≥ 3

2
.

Primenom AG dobijamo
a+ b+ c

3
≥ 3

√
abc, tj. abc ≤

(
a+ b+ c

3

)3

= 1, što

dokazuje gornju nejednakost i završava dokaz.

Jednakost važi ako i samo ako je a = b = c =
1

3
. ■

Primer 6.3.8. Dokazati da za pozitivne brojeve a, b, c važi nejednakost

a

9bc+ 1
+

b

9ca+ 1
+

c

9ab+ 1
≥ a+ b+ c

1 + (a+ b+ c)2
.

Kada važi jednakost?

Rešenje: Slično kao u prošlom primeru, pomnožimo razlomke sa
a

a
,
b

b
, odno-

sno sa
c

c
, redom, i posmatrajmo funkciju f(x) =

x2

9abc+ x
za x > 0. Funkcija

f je konveksna jer je drugi izvod f ′′(x) =
162a2b2c2

(9abc+ x)3
> 0, za a, b, c, x > 0.

Po Jensenovoj nejednakost je

f(a)+f(b)+f(c) ≥ 3f

(
a+ b+ c

3

)
= 3

(
a+ b+ c

3

)2

9abc+
a+ b+ c

3

=
(a+ b+ c)2

a+ b+ c+ 27abc
.

Dovoljno je, dakle, dokazati nejednakost
(a+ b+ c)2

a+ b+ c+ 27abc
≥ a+ b+ c

1 + (a+ b+ c)2
,

što se, nakon unakrsnog množenje, svodi na (a+ b+ c)3 ≥ 27abc, što sledi iz
obične AG.
Jednakost važi ako i samo ako je a = b = c. ■

6.4 Jensen-konveksne funkcije

Jedna forma Jensenove nejednakosti može se primeniti na funkcije koje
nisu konveksne, već zadovoljavaju slabiji uslov poznat kao Jensenova konvek-
snost. Ovaj slabiji uslov definisan je na sledeći način.
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Definicija 6.4.1. Funkcija f : (α, β) −→ R je Jensen-konveksna na intervalu
(α, β) ako za svake dve tačke x1, x2 ∈ (α, β) važi

f (x1) + f (x2)

2
≥ f

(
x1 + x2

2

)
.

Funkcija f je strogo Jensen-konveksna ako važi stroga nejednakost. Analogna
definicija važi za Jensen-konkavne funkcije.

Za Jensen-konveksne (Jensen-konkavne) funkcije važi odredeni oblik Jen-
senove nejednakosti koji je naveden sledećom teoremom.

Teorema 6.4.1. Ako je funkcija f : (α, β) −→ R je Jensen-konveksna, onda
za sve x1, x2, . . . , xn ∈ (α, β) važi nejednakost

f (x1) + f (x2) + . . .+ f (xn)

n
≥ f

(
x1 + x2 + · · ·+ xn

n

)
.

Ako je f strogo Jensen-konveksna, jednakost važi ako i samo ako je x1 =
x2 = . . . = xn.

Dokaz: Dokaz je sličan dokazu obične Jensenove nejednakosti, pomoću in-
dukcije. ■

U nekim slučajevima lakše je dokazati da je funkcija Jensen-konveksna,
jer tada navedeni oblik Jensenove nejednakosti omogućava direktno rešavanje
problema. Generalno, oblik Jensenove nejednakosti iz Teoreme 6.4.1. se često
koristi, te je često praktičnije dokazati slabiji uslov Jensen-konveksnosti nego
punu konveksnost funkcije. Postoje funkcije koje su Jensen-konveksne, ali
nisu konveksne; za takve funkcije jedini način primene Jensenove nejednakosti
jeste kroz ovaj slabiji uslov. Ovaj oblik može se zapamtiti kao specijalni slučaj
opšte Jensenove nejednakosti, kada su sve težine jednake, tj. λ1 = λ2 = . . . =

λn =
1

n
. Naravno, zbog toga, ovaj oblik Jensenove nejednakosti se može

koristiti i kada dokažemo da je funkcija konveksna, jer je ona tad i Jensen-
konveksna.

Štavǐse, jedina stvar koja razlikuje konveksne i Jensen-konveksne funkcije
jeste neprekidnost. Dakle, ukoliko je neka funkcija Jensen-konveksna (strogo
Jensen-konveksna) i neprekidna, onda je ona konveksna (strogo konveksna).
Naravno, važi isto tvrdenje i za konkavne (strogo konkavne) funkcije. Ovo
izlažemo kao činjenicu, bez dokaza, jer se u takmičarskim zadacima retko
koristi, ali je korisno za precizno razumevanje pojmova..
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6.5 Nejednakosti izmedu težinskih sredina

Težniske sredine se mogu shvatiti kao uopštenje običnih sredina.
Težinsku sredinu reda k definǐsemo na sledeći način.

Definicija 6.5.1. Neka su x1, x2, . . . , xn i λ1, λ2, . . . , λn (n ∈ N) pozitivni
brojevi za koje važi da je λ1 + λ2 + . . . + λn = 1 i neka je k ∈ R. Tada
je težinska sredina reda k brojeva x1, x2, . . . , xn sa težinama λ1, λ2, . . . , λn

definisana sa

Mk (λ1, λ2, . . . , λn) (x1, x2, . . . , xn) =

{
xλ1
1 xλ2

2 . . . xλn
n , k = 0

k
√

λ1xk
1 + λ2xk

2 + . . .+ λnxk
n, k ̸= 0

Primetimo da je ovo zaista uopštenje običnih sredina - ako uzmemo λ1 =

λ2 = . . . = λn =
1

n
, onda dobijamo običnu sredinu reda k.

I ovde važe slične teoreme kao i kod običnih sredina, pa ćemo ih navesti.

Teorema 6.5.1. Funkcija f(k) = Mk (λ1, λ2, . . . , λn) (x1, x2, . . . , xn), pri ozna-
kama i uslovima iz prethodne definicije, ima sledeća svojstva:

1) f(k) je neprekidna u tački k = 0;

2) min{x1, x2, . . . , xn} ≤ f(k) ≤ max{x1, x2, . . . , xn};

3) lim
k→+∞

f(k) = max{x1, x2, . . . , xn};

4) lim
k→−∞

f(k) = min{x1, x2, . . . , xn}.

Dokaz: Ovo tvrdenje se dokazuje jako slično odgovarajućem tvrdenju za
obične sredine (teorema 3.1.), te dokaz prepuštamo čitaocu. ■

Sledeće tvrdenje je centralno za naš rad i predstavlja oblik Jensenove
nejednakosti koji će se najčešće primenjivati u zadacima koji se razmatraju.

Teorema 6.5.2. (Nejednakosti izmedu težinskih sredina) Neka su
x1, x2, . . . , xn i λ1, λ2, . . . , λn (n ∈ N) pozitivni brojevi za koje važi da je
λ1 + λ2 + . . .+ λn = 1 i neka su a, b ∈ R. Tada važi

a > b ⇒ Ma (λ1, λ2, . . . , λn) (x1, x2, . . . , xn) ≥ Mb (λ1, λ2, . . . , λn) (x1, x2, . . . , xn) .
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Jednakost važi ako i samo ako je x1 = x2 = . . . = xn.

Dokaz: Dokaz je jako sličan dokazu teoreme 3.2. Primenjujemo Jensenovu
nejednakost na težine λ1, λ2, . . . , λn. ■

Primer 6.5.1. Dokazati nejednakosti iz primera 4.1.3. pomoću nejednakosti
izmedu težinskih sredina.

Rešenje: Koristeći težinsku AG nejednakost dobijamo (svi brojevi su, zbog
uslova, manji od jedinice pa su svi eksponenti pozitivni)

x
1−xi+1

i = 1xi+1x
1−xi+1

i ≤ 1 · xi+1 + xi(1− xi+1) = xi + xi+1 − xixi+1.

Nakon ovoga se zadatak završava isto kao i u rešenju primera 4.1.3., sabiramo
sve ove nejednakosti, zanemarimo negativan deo i koristimo uslov o zbiru. ■

Primer 6.5.2. Dati su brojevi a, b, c, d za koje važi a ≥ b ≥ c ≥ d > 0 i
a+ b+ c+ d = 1. Dokazati nejednakost

(a+ 2b+ 3c+ 4d)aabbccdd < 1.

Rešenje: Na osnovu težinske AG važi

aabbccdd ≤ a2 + b2 + c2 + d2,

pa je dovoljno dokazati nejednakost

(a+ 2b+ 3c+ 4d)(a2 + b2 + c2 + d2) < 1.

Ako napǐsemo 1 = (a+ b+ c+d)3 i razvijemo obe strane gornje nejednakosti
dobijamo

(a+ b+ c+ d)3 = (a+ 3b+ 3c+ 3d)(a2 + b2 + c2 + d2)

+ 2(a− b)b2 + 2(a− c)c2 + 2(a− d)d2 + 6(abc+ bcd+ cda+ dab)

> (a+ 2b+ 3c+ 4d)(a2 + b2 + c2 + d2),

što je i trebalo dokazati. ■
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7 Poznate nejednakosti

U ovoj glavi ćemo spomenuti najpoznatije i najkorisnije nejednakosti.

7.1 Nejednakost Koši-Švarc-Bunjakovski

Teorema 7.1.1. (Nejednakost Koši-Švarc-Bunjakovski) Neka su a1,
a2, . . . , an i b1, b2, . . . , bn realni brojevi. Tada važi nejednakost

(a21 + a22 + . . .+ a2n)(b
2
1 + b22 + . . .+ b2n) ≥ (a1b1 + a2b2 + . . .+ anbn)

2.

Jednakost važi ako i samo ako postoji realan broj k takav da je a1 = kb1, a2 =
kb2, . . . , an = kbn.

Dokaz: Dokaz (i opštije tvrdenje) je dokazano u primeru 4.1.5. ■

Nejednakost Koši-Švarc-Bunjakovski je verovatno jedno od najmoćnijih
oružja, uz nejednakosti izmedu sredina i Jensenove nejednakosti. Pogledajmo
par primera gde je možemo primeniti.

Primer 7.1.1. Uraditi zadatak iz primera 6.3.8. pomoću nejednakosti Koši-
Švarc-Bunjakovski.

Rešenje: Primenimo nejednakost Koši-Švarc-Bunjakovski na ovaj način (ovaj
pristup je pogodan jer se izrazi u razlomcima pojednostavljuju, a na desnoj
strani se dobija oblik koji omogućava jednostavnije algebarsko manipulisa-
nje): (∑

cyc

a(9bc+ 1)

)(∑
cyc

a

9bc+ 1

)
≥ (a+ b+ c)2,

pa odavde sledi da je∑
cyc

a

9bc+ 1
≥ (a+ b+ c)2∑

cyc

a(9bc+ 1)
=

(a+ b+ c)2

a+ b+ c+ 27abc
.

Dovoljno je dokazati

(a+ b+ c)2

a+ b+ c+ 27abc
≥ a+ b+ c

1 + (a+ b+ c)2
,
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ali ovo sledi iz AG nejednakosti (isto kao u rešenju primera 6.3.8.).
Jednakost se proverava iz uslova jednakosti u AG (tako je najlakše) i dobija
se da važi ako i samo ako je a = b = c. ■

Primer 7.1.2. Dokazati da za pozitivne brojeve x, y, z važi nejednakost∑
cyc

(x+ y)
√

(z + x)(z + y) ≥ 4(xy + yz + zx).

Kada važi jednakost?

Rešenje: Primenimo nejednakost Koši-Švarc-Bunjakovski na sledeći način,
sa idejom da nestane koren:√

(z + x)(z + y) ≥ z +
√
xy.

Koristeći dve analogne nejednakosti početan izraz ograničavamo ovako∑
cyc

(x+ y)
√

(z + x)(z + y) ≥
∑
cyc

(xz + yz + (x+ y)
√
xy) ≥ 4(xy+yz+zx),

gde smo u poslednjoj nejednakosti iskoristili AG.
Jednakost važi ako i samo ako je x = y = z. ■

Primer 7.1.3. Neka su x, y, z pozitivni brojevi za koje važi xy + yz + zx =
x+ y + z. Dokazati nejednakost

1

x2 + y + 1
+

1

y2 + z + 1
+

1

z2 + x+ 1
≤ 1.

Kada važi jednakost?

Rešenje: Primenimo nejednakost Koši-Švarc-Bunjakovski na sledeći način

(x2 + y + 1)(1 + y + z2) ≥ (x+ y + z)2,

pa je
1

x2 + y + 1
≤ 1 + y + z2

(x+ y + z)2
.

Sabiranjem ove i dve analogne nejednakosti dobijamo

1

x2 + y + 1
+

1

y2 + z + 1
+

1

z2 + x+ 1
≤ x2 + y2 + z2 + x+ y + z + 3

(x+ y + z)2
.
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Ostaje da dokažemo

x2 + y2 + z2 + x+ y + z + 3

(x+ y + z)2
≤ 1,

što je ekvivalentno sa (koristimo uslov)

x+ y + z ≥ 3.

Ovo sledi iz

x+ y + z = xy + yz + zx ≤ (x+ y + z)2

3
,

gde smo iskoristili poznatu nejednakost na poslednjem mestu (ekvivalentna
je sa x2 + y2 + z2 ≥ xy + yz + zx) što završava dokaz.
Jednakost važi ako i samo ako je x = y = z = 1 (to najlakše vidimo iz posled-
nje nejednakosti, ali moramo da proverimo tako da vratimo u početnu). ■

7.2 Helderova nejednakost

Helderova nejednakost se može shvatiti kao uopštenje nejednakosti Koši-
Švarc-Bunjakovski. Ove dve nejednakosti su baš zato i jako slične i imaju
slične primene sa zajedničkim idejama.

Teorema 7.2.1. (Helderova nejednakost) Neka su a1i , a2i , . . . aki konačni
nizovi 4 pozitivnih brojeva iste dužine i λ1, λ2, . . . , λk pozitivni brojevi za koje
je λ1 + λ2 + . . .+ λk = 1. Tada važi nejednakost

(a11 + a12 + . . .+ a1n)
λ1(a21 + a22 + . . .+ a2n)

λ2 . . . (ak1 + ak2 + . . .+ akn)
λk ≥

aλ1
11
aλ2
21
. . . aλk

k1
+ aλ1

12
aλ2
22
. . . aλk

k2
+ . . .+ aλ1

1na
λ2
2n . . . a

λk
kn
.

Jednakost važi ako i samo ako je zadovoljena produžena proporcija

a11 : a12 : . . . : a1n = a21 : a22 : . . . : a2n = . . . = ak1 : ak2 : . . . : akn .

Dokaz: Nejednakost je homogena po svim promenljivama. Neka je zato, bez
gubljenja opštosti,

a11 + a12 + . . .+ a1n = a21 + a22 + . . .+ a2n = . . . = ak1 + ak2 + . . .+ akn = 1.

4Kada se priča o nizovima obično se podrazumeva da je članova niza beskonačno mnogo,
ali ovde ćemo podrazumevati kao da ih je konačno mnogo, te ih i nazivamo ”konačni
nizovi”.
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Nejednakost se tada svodi na

aλ1
11
aλ2
21
. . . aλk

k1
+ aλ1

12
aλ2
22
. . . aλk

k2
+ . . .+ aλ1

1na
λ2
2n . . . a

λk
kn

≤ 1.

Ovo dokazujemo primenjujući nejednakost izmedu težinske aritmetičke i geo-
metrijske sredine

aλ1
11
aλ2
21
. . . aλk

k1
+ aλ1

12
aλ2
22
. . . aλk

k2
+ . . .+ aλ1

1na
λ2
2n . . . a

λk
kn

≤ λ1a11 + λ2a21 + . . . λkak1 + λ1a12 + λ2a22 + . . . λkak2 + . . .+

+ λ1a1n + λ2a2n + . . .+ λkakn
= λ1(a11 + a12 + . . .+ a1n) + λ2(a21 + a22 + . . .+ a2n) + . . .+

+ λk(ak1 + ak2 + . . .+ akn)

= λ1 + λ2 + . . .+ λk = 1,

što je i trebalo dokazati.
Jednakost važi kada su svi i-ti članovi zagrada medusobno jednaki. Pretpo-
stavili smo da su svi zbirovi jednaki, ali generalno ne moraju da budu pa
zato jednakost važi ako i samo ako je a11 : a12 : . . . : a1n = a21 : a22 : . . . :
a2n = . . . = ak1 : ak2 : . . . : akn . ■

Na prvi pogled, ova nejednakost može delovati složeno, ali ona predsta-
vlja logično uopštenje Koši-Švarc-Bunjakovski nejednakosti (zaista, uzima-

jući k = 2 i λ1 = λ2 =
1

2
, nakon kvadriranja se dobija izvorni oblik te

nejednakosti).

Primer 7.2.1. Dokazati nejednakost iz primera 6.3.4. pomoću Helderove
nejednakosti.

Rešenje: Primenimo Helderovu nejednakost na sledeći način(∑
cyc

a√
a2 + 8bc

) 1
3
(∑

cyc

a√
a2 + 8bc

) 1
3
(∑

cyc

a(a2 + 8bc)

) 1
3

≥ a+ b+ c,

odakle sledi da je dovoljno dokazati

(a+ b+ c)3 ≥ a3 + b3 + c3 + 24abc,

ali ovo sledi prostim razvijanjem leve strane i primenom AG.
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Jednakost važi ako i samo ako je a = b = c. ■

Vidimo da ova nejednakost može biti jako moćno oružje za rešavanje ne-
jednakosti (setimo se da je rešenje Jensenovom nejednakošću komplikovanije
i duže). Ovde je ideja bila da se imenioci izgube, a u trećoj zagradi smo
izraze pomnožili sa a jer onda na desnoj strani dobijamo lep zbir, ovako bi

eksponent bio
2

3
.

7.3 Nejednakost Minkovskog

Nejednakost Minkovskog bi trebalo da asocira na nejednakost trougla, te
se tako može i lako zapamtiti.

Teorema 7.3.1. (Nejednakost Minkovskog) Neka su a1i , a2i , . . . aki ko-
načni nizovi pozitivnih brojeva iste dužine i p > 1. Tada važi nejednakost

p

√√√√ n∑
i=1

ap1i +
p

√√√√ n∑
i=1

ap2i + . . .+ p

√√√√ n∑
i=1

apki ≥
p

√√√√ n∑
i=1

(a1i + a2i + . . .+ aki)
p.

Za p < 1 važi suprotna nejednakost.
Jednakost važi ako i samo ako je p = 1 ili

a11 : a12 : . . . : a1n = a21 : a22 : . . . : a2n = . . . = ak1 : ak2 : . . . : akn .

Dokaz: Dokažimo da nejednakost važi za 2 niza. Imamo

n∑
i=1

(xi + yi)
p =

n∑
i=1

xi(xi + yi)
p−1 +

n∑
i=1

yi(xi + yi)
p−1.

Kada primenimo Helderovu nejednakost na oba sabirka sa desne strane do-
bijamo

n∑
i=1

(xi + yi)
p ≤

(
n∑

i=1

xp
i

) 1
p
(

n∑
i=1

(xi + yi)
p

) p−1
p

+

(
n∑

i=1

ypi

) 1
p
(

n∑
i=1

(xi + yi)
p

) p−1
p

.
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Deljenjem sa

(
n∑

i=1

(xi + yi)
p

) p−1
p

dobijamo traženu nejednakost. Generalna

nejednakost se dokazuje lako indukcijom - samo koristimo ovu dokazanu ne-
jednakost na po 2 sabirka. ■

Primer 7.3.1. Dokazati da za realne brojeve a1, a2, . . . an važi nejednakost√
a21 + (1− a2)2 +

√
a22 + (1− a3)2 + . . .+

√
a2n + (1− a1)2 ≥

n
√
2

2
.

Rešenje: Koristimo nejednakost Minkovskog na pozitivne brojeve |a1|, |a2|,
. . . , |an| i na brojeve |1− a2|, |1− a3|, . . . , |1− a1|, a zatim koristimo nejed-
nakost izmedu aritmetičke i kvadratne sredine√

a21 + (1− a2)2 +
√

a22 + (1− a3)2 + . . .+
√

a2n + (1− a1)2

≥
√

(|a1|+ |a2|+ . . .+ |an|)2 + (|1− a2|+ |1− a3|+ . . .+ |1− a1|)2

≥ |a1|+ |a2|+ . . .+ |an|+ |1− a2|+ |1− a3|+ . . .+ |1− a1|√
2

≥ n√
2
=

n
√
2

2
.

U poslednjoj nejednakosti smo iskoristili nejednakost trougla. Ovime je dokaz
završen. ■

Primer 7.3.2. Dokazati da za pozitivne brojeve a, b, c za koje je a+b+c = 3
važi nejednakost

a2 + b2 + 1√
c2 + 2ab

+
b2 + c2 + 1√
a2 + 2bc

+
c2 + a2 + 1√

b2 + 2ca
≥ 3

√
3.

Kada važi jednakost?

Rešenje: Na osnovu nejednakosti Koši-Švarc-Bunjakovski je(∑
cyc

a2 + b2 + 1√
c2 + 2ab

)(∑
cyc

√
c2 + 2ab

)
≥

(∑
cyc

√
a2 + b2 + 1

)2

.
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Iz nejednakosti izmedu aritmetičke i kvadratne sredine imamo

∑
cyc

√
c2 + 2ab ≤ 3

√
(a+ b+ c)2

3
= 3

√
3.

Iz nejednakosti Minkovskog je∑
cyc

√
a2 + b2 + 1 ≥

√
2(a+ b+ c)2 + 9 = 3

√
3.

Iz ove tri nejednakosti sledi tražena.
Jednakost važi ako i samo ako je a = b = c = 1. ■

7.4 Lema o permutacijama. Čebǐsevljeva nejednakost

Teorema 7.4.1. (Lema o permutacijama5) Neka su x1, x2, . . . , xn i y1, y2,
. . . , yn realni brojevi za koje važi x1 ≥ x2 ≥ . . . ≥ xn i y1 ≥ y2 ≥ . . . ≥ yn i
neka je σ proizvoljna permutacija skupa {1, 2, . . . , n}. Tada važe nejednakosti

n∑
i=1

xiyi ≥
n∑

i=1

xiyσ(i) ≥
n∑

i=1

xiyn+1−i.

Ako je x1 > x2 > . . . > xn jednakost važi ako i samo ako je yn+1−i = yσ(i)
za desnu nejednakost, odnosno yi = yσ(i) za desnu nejednakost, za svako i =
1, 2, . . . , n. Ako to ne važi onda jednakost važi u slučaju x1 = x2 = . . . = xn.

Dokaz:Neka je S(σ) =
n∑

i=1

xiyσ(i), za neku permutaciju σ skupa {1, 2, . . . , n}.

Pošto je permutacija bilo kog konačnog skupa konačno mnogo onda postoji
neka permutacija π za koju je ona suma najveća moguća. Dokazaćemo da je
to permutacija π(i) = i, za svako i = 1, 2, . . . , n.

Pretpostavimo suprotno, da π(i) = i ne važi za svako i = 1, 2, . . . , n. Posma-
trajmo najmanje a takvo da je π(a) ̸= a. Pošto je to najmanji takav broj važi
π(i) = i, za svako i = 1, 2, . . . , a − 1. Neka je π(a) = b. Tada je b > a zbog
navedenog i osobina permutacija (permutacije su bijekcije). Takode, postoji
jedinstven broj c za koji je π(c) = a. Za takav broj c očigledno važi c > a.

5Negde u literaturi je poznata kao i nejednakost reanžiranja.
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Posmatrajmo sada permutaciju ω istog skupa za koju važi ω(i) = π(i) za
svako i = 1, 2, . . . , a − 1, a + 1, . . . , c − 1, c + 1, . . . , n i ω(a) = a, ω(c) = b.
Sada bi važilo

0 ≤ S(π)− S(ω) = xayb + xcya − xaya − xcyb = (xa − xc)(yb − ya) < 0,

jer je xc > xa i yb > ya, ali ovo je kontradikcija.

Ako primenimo ovo dokazano na brojeve xi i yi, za i = 1, 2, . . . , n, dobijamo
drugu nejednakost. Ovime je dokaz završen. ■

Primer 7.4.1. Dokazati da za pozitivne brojeve a, b, c važi nejednakost

a

b+ c
+

b

c+ a
+

c

a+ b
≥ 3

2
.

Kada važi jednakost?

Rešenje: Bez gubljenja opštosti možemo pretpostaviti a ≥ b ≥ c. Tada
očigledno važi

1

b+ c
≥ 1

c+ a
≥ 1

a+ b
.

Po lemi o permutacijama važi

a

b+ c
+

b

c+ a
+

c

a+ b
≥ b

b+ c
+

c

c+ a
+

a

a+ b

kao i
a

b+ c
+

b

c+ a
+

c

a+ b
≥ c

b+ c
+

a

c+ a
+

b

a+ b
.

Nakon sabiranja ovih nejednakosti dobijamo traženu.
Jednakost važi ako i samo ako je a = b = c. ■

Izmedu onih dveju krajnih vrednosti u lemi o permutacijama, osim bilo
koje permutacije, možemo ograničiti još jedan zgodan izraz. To nam tvrdi
sledeća teorema.

Teorema 7.4.2. (Čebǐsevljeva nejednakost) Neka su x1, x2, . . . , xn i y1,
y2, . . . , yn realni brojevi za koje važi x1 ≥ x2 ≥ . . . ≥ xn i y1 ≥ y2 ≥ . . . ≥ yn.
Tada važe nejednakosti

n∑
i=1

xiyi ≥
1

n
(x1 + x2 + . . .+ xn)(y1 + y2 + . . .+ yn) ≥

n∑
i=1

xiyn+1−i.
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Jednakosti važi ako i samo ako je x1 = x2 = . . . = xn ili y1 = y2 = . . . = yn.

Rešenje: Iz leme o permutacijama imamo

n∑
i=1

xiyi = x1y1 + x2y2 + . . .+ xnyn

n∑
i=1

xiyi ≥ x1y2 + x2y3 + . . .+ xny1

...
n∑

i=1

xiyi ≥ x1yn + x2y1 + . . .+ xnyn−1.

Sabiranjem ovih nejednakosti dobijamo traženu.
Uslov za jednakost se lako sredi i dobija se da jednakost važi ako i samo ako
je x1 = x2 = . . . = xn ili y1 = y2 = . . . = yn. ■

Primer 7.4.2. Dokazati nejednakost iz primera 6.3.8. pomoću Čebǐsevljeve
nejednakosti.

Rešenje: Bez gubljenja opštosti možemo da pretpostavimo a ≥ b ≥ c. Tada
je

1

9bc+ 1
≥ 1

9ca+ 1
≥ 1

9ab+ 1
.

Po Čebǐsevljevoj nejednakosti je

a

9bc+ 1
+

b

9ca+ 1
+

c

9ab+ 1
≥ 1

3
(a+ b+ c)

(
1

9ab+ 1
+

1

9bc+ 1
+

1

9ca+ 1

)
.

Po nejednakosti izmedu aritmetičke i harmonijske sredine je

1

9ab+ 1
+

1

9bc+ 1
+

1

9ca+ 1
≥ 3

3(ab+ bc+ ca) + 1
.

Koristeći ove dve nejednakosti dobijamo

a

9bc+ 1
+

b

9ca+ 1
+

c

9ab+ 1
≥ a+ b+ c

3(ab+ bc+ ca) + 1
,
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pa je dovoljno dokazati

a+ b+ c

3(ab+ bc+ ca) + 1
≥ a+ b+ c

1 + (a+ b+ c)2
.

Ovo je ekvivalentno sa (a+b+c)2 ≥ 3(ab+bc+ca), odnosno sa a2+b2+c2 ≥
ab+ bc+ ca, koja važi.
Jednakost važi ako i samo ako je a = b = c. ■

7.5 Šurova i Mjurhedova nejednakost

Šurova i Mjurhedova nejednakost zahtevaju nove definicije i pojmove,
tako da ćemo prvo morati da njih uvedemo.

Definicija 7.5.1. Neka su a = (a1, a2, . . . , an) i b = (b1, b2, . . . , bn) dva ko-
načna niza realnih brojeva. Niz a majorira niz b (u oznaci a ≻ b ili b ≺ a)
ako i samo ako možemo preimenovati članove nizova tako da važe sledeća tri
uslova:

1) a1 + a2 + . . .+ an = b1 + b2 + . . .+ bn;

2) a1 ≥ a2 ≥ . . . ≥ an i b1 ≥ b2 ≥ . . . ≥ bn;

3) a1 + a2 + . . .+ ai ≥ b1 + b2 + . . .+ bi, za svako i = 1, 2, . . . , n− 1.

Na primer, ako imamo nizove a = (1, 5, 3) i b = (6, 1, 2) možemo da
preimenujemo (poredamo) članove na sledeći način a = (5, 3, 1) i b = (6, 2, 1)
i odavde možemo da vidimo da je b ≻ a jer im je zbir isti i jednak 9, važi
i drugi uslov i vidimo lako da važi i treći uslov. Ako imamo sada nizove
a = (1, 4) i b = (5, 2) njih ne možemo da uporedimo u smislu operacije ≻ jer
im zbirovi nisu isti. Takode, očigledno je da svaki niz majorira samog sebe.

Definicija 7.5.2. Zbir n! sabiraka oblika xa1
i1
xa2
i2
. . . xan

in
(xi ≥ 0, ai ≥ 0, za i =

1, 2, . . . , n), za svaku moguću permutaciju i1, i2, . . . , in skupa {1, 2, . . . , n},
označavamo sa T [a1, a2, . . . , an](x1, x2, . . . , xn).

U zadacima ćemo koristiti kao oznaku samo T [a1, a2, . . . , an] jer ćemo
znati o kom nizu je reč. Kako bi se stekao osećaj za ovu novu definiciju
navodimo par primera.
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T [2, 1] = x2y1 + x1y2 = x2y + xy2

T [1, 0, 0] = x1y0z0 + x0y1z0 + x0y0z1 + x1y0z0 + x0y1z0 + x0y0z1 = x+ y + z

T [1, 1, 1] = x1y1z1 + x1y1z1 + x1y1z1 + x1y1z1 + x1y1z1 + x1y1z1 = 6xyz

Imajmo na umu da za niz od n elemenata moramo da imamo n! sabiraka
(to je broj permutacija skupa sa n elemenata), tako da za niz sa dva elementa
imamo dva sabirka, za niz sa tri elementa imamo 6 sabiraka itd.

Teorema 7.5.1. (Šurova nejednakost) Neka su a, b > 0. Tada važi nejed-
nakost

T [a+ 2b, 0, 0] + T [a, b, b] ≥ 2T [a+ b, b, 0].

Jednakost važi ako i samo ako su svi elementi niza jednaki.

Dokaz: Neka su x, y, z pozitivni brojevi koji čine niz za koji dokazujemo
nejednakost. Bez gubljenja opštosti možemo pretpostaviti da je x ≥ y ≥ z.
Tada je

T [a+ 2b, 0, 0] + T [a, b, b]− 2T [a+ b, b, 0]

= 2(xa(xb − yb)(xb − zb) + ya(yb − zb)(yb − xb) + za(zb − xb)(zb − yb))

Dovoljno je dokazati xa(xb − yb)(xb − zb) + ya(yb − zb)(yb − xb) ≥ 0. Ovo je
ekvivalentno sa xa+b − ya+b − zb(xa − ya) ≥ 0. Ovo dokazujemo ovako:

xa+b − ya+b − zb(xa − ya) ≥ xa+b − ya+b − yb(xa − ya) = xa(xb − yb) ≥ 0.

Jednakost važi ako i samo ako je x = y = z, što se očigledno vidi. ■

Sada ćemo prikazati primenu Šurove nejednakosti. Posebno je važno na-
glasiti sledeću nejednakost:

T [a+ 2b+ c, c, c] + T [a+ c, b+ c, b+ c] ≥ 2T [a+ b+ c, b+ c, c],

koja se dobija direktnom primenom Šurove nejednakosti i množenjem rezul-
tujuće nejednakosti sa (xyz)c. Iako se ne pojavljuju uvek slučajevi sa nulama
u eksponentima, ovaj oblik ostaje značajan za primenu u takmičarskim za-
dacima.

Primer 7.5.1. Dokazati da za pozitivne brojeve a, b, c važi nejednakost

a3+b3+c3+3abc+ab+bc+ca ≥ a2b+ab2+b2c+bc2+c2a+ca2+a2+b2+c2.
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Kada važi jednakost?

Rešenje: Ako primenimo Šurovu nejednakost u obliku T [3, 0, 0]+T [1, 1, 1] ≥
2T [2, 1, 0] dobijamo

x3 + y3 + z3 + 3xyz ≥ x2y + xy2 + y2z + yz2 + z2x+ zx2,

što liči na nejednakost koju treba da dokažemo. Zato, uvedimo smenu x =
a− 1, y = b− 1, z = c− 1. Kada to ubacimo u gornju nejednakost dobijamo
nejednakost iz zadatka.
Jednakost važi za a = b = c. ■

Uz Šurovu nejednakost se jako često nade i Mjurhedova. Ove dve ne-
jednakosti zajedno čine jedno jako moćno oružje za rešavanje homogenih
nejednakosti ili nejednakosti kod kojih možemo iskoristiti uslov kako bismo
je homogenizovali. Navedimo, dakle, Mjurhedovu nejednakost.

Teorema 7.5.2. (Mjurhedova nejednakost) Neka su a i b nizovi pozitiv-
nih brojeva. Ako je a ≻ b, onda važi nejednakost

T [a] ≥ T [b].

Jednakost važi ako i samo ako su nizovi a i b isti ili kada su svi elementi tih
nizova medusobno jednaki. ■

Jako je bitno napomenuti da se nejednakosti mogu dokazati ovom tehni-
kom samo ukoliko su homogene. Ako nejednakost nije homogena, ona se ne
može ovako (u potpunosti) uraditi.

Primer 7.5.2. Dokazati nejednakost izmedu aritmetičke i geometrijske sre-
dine.

Rešenje: Po Mjurhedovoj nejednakosti važi

T [1, 0, . . . , 0] ≥ T

[
1

n
,
1

n
, . . . ,

1

n

]
,

odnosno
(n− 1)!(x1 + x2 + . . .+ xn) ≥ n! n

√
x1x2 . . . xn,
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odakle sledi AG nejednakost. ■

Primer 7.5.3. Dokazati da za pozitivne brojeve a, b, c važi nejednakost

1

a
+

1

b
+

1

c
≤ a8 + b8 + c8

a3b3c3
.

Kada važi jednakost?

Rešenje: Nejednakost je homogena (stepen leve i desne strane je -1), pa
možemo da probamo Mjurheda ili Šura. Nakon množenja obe strane nejed-
nakosti sa a3b3c3 dobijamo

a2b3c3 + a3b2c3 + a3b3c2 ≤ a8 + b8 + c8,

odnosno
1

2
T [3, 3, 2] ≤ 1

2
T [8, 0, 0],

što važi na osnovu Mjurhedove nejednakosti jer je (8, 0, 0) ≻ (3, 3, 2).
Jednakost važi ako i samo ako je a = b = c. ■

Uslovi o zbiru ili proizvodu umeju da budu jako korisni pri homogenizaciji
(nisu to jedini uslovi koji mogu da budu korisni, ali su oni najjednostavniji).

Primer 7.5.4. Neka su a, b, c pozitivni brojevi za koje je a + b + c = 1.
Dokazati nejednakost

ab+ bc+ ca ≥ 4(a2b2 + b2c2 + c2a2) + 5abc.

Kada važi jednakost?

Rešenje: Koristeći uslov ćemo nejednakost iz zadatka napraviti homogenom
na sledeći način

(ab+ bc+ ca)(a+ b+ c)2 ≥ 4(a2b2 + b2c2 + c2a2) + 5abc(a+ b+ c),

što se nakon sredivanja svodi na

T [3, 1, 0] ≥ T [2, 2, 0],

što važi na osnovu Mjurhedove nejednakosti.
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Jednakost važi ako i samo ako je a = b = c =
1

3
. ■

Primer 7.5.5. Neka su a, b, c pozitivni brojevi za koje je abc = 1. Dokazati
nejednakost

1

a+ b+ 1
+

1

b+ c+ 1
+

1

c+ a+ 1
≤ 1.

Kada važi jednakost?

Rešenje: Opet koristimo uslov i to na sledeći način

1

a+ b+ 1
=

1

a+ b+ (abc)
1
3

.

Tada je leva strana stepena -1 (kada zapǐsemo dve analogne jednakosti), pa
da bi i desna strana bila istog tog stepena treba da zapǐsemo

1 =
1

(abc)
1
3

.

Nakon množenja cele nejednakosti sa

(abc)
1
3 (a+ b+ (abc)

1
3 )(b+ c+ (abc)

1
3 )(c+ a+ (abc)

1
3 )

dobija se (nakon sredivanja i potiranja)

T [2, 1, 0] ≥ T

[
5

3
,
2

3
,
2

3

]
,

što važi na osnovu Mjurhedove nejednakosti.
Jednakost važi ako i samo ako je a = b = c = 1. ■

Primer 7.5.6. Dokazati da za pozitivne brojeve a, b, c važi nejednakost

(ab+ bc+ ca)

(
1

(a+ b)2
+

1

(b+ c)2
+

1

(c+ a)2

)
≥ 9

4
.

Kada važi jednakost?

Rešenje: Nejednakost je homogena. Nakon množenja cele nejednakosti sa
(a+ b)2(b+ c)2(c+ a)2 i sredivanja se dobija

4T [5, 1, 0]− T [4, 2, 0] + T [4, 1, 1]− 3T [3, 3, 0]− 2T [3, 2, 1] + T [2, 2, 2] ≥ 0.
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Ovde se ne može iskoristiti samo Mjurhedova nejednakost jer izraz T [2, 2, 2]
nije veći ni od jednog drugog. Zbog toga ćemo iskoristiti Šurovu nejednakost
na taj i na još neki izraz. Pogledajmo Šurovu nejednakost u obliku koji
smo naveli nakon same teoreme T [a + 2b + c, c, c] + T [a + c, b + c, b + c] ≥
2T [a+ b+ c, b+ c, c]. Da bismo na levoj strani dobili T [2, 2, 2] jedino možemo
uzeti a = b = c = 1. Tada, po Šurovoj nejednakosti, važi

T [4, 1, 1] + T [2, 2, 2] ≥ 2T [3, 2, 1].

Dovoljno je sada, zbog ovoga, dokazati nejednakost

4T [5, 1, 0]− T [4, 2, 0]− 3T [3, 3, 0] ≥ 0.

Medutim, ovo direktno sledi iz Mjurhedove nejednakosti.
Jednakost važi ako i samo ako je a = b = c. ■

Za kraj napomenimo da svaka nejednakost koja je posledica Mjurhedove
može da se dokaže veštom primenom AG nejednakosti, a neke se ni ne mogu
dokazati Mjurhedovom. Na primer, nejednakost x3+y3+z3 ≥ x2y+y2z+z2x
ne sledi iz Mjurhedove (Mjurhedova nejednakost radi samo na simetričnim
izrazima, a ovaj ovde nije simetričan već samo cikličan). U tim situacijama i

dalje moramo iskoristiti AG:
x3

3
+

x3

3
+

y3

3
≥ 3

3

√
x3

3

x3

3

y3

3
= x2y itd.

7.6 Karamatina nejednakost

Sledeće dve nejednakosti vezane su za srpske matematičare. Prva je Ka-
ramatina nejednakost, nazvana po Jovanu Karamati.

Teorema 7.6.1. (Karamatina nejednakost) Neka su a = (a1, a2, . . . , an)
i b = (b1, b2, . . . , bn) konačni nizovi realnih brojeva iz nekog intervala (α, β).
Ako je f : (α, β) −→ R konveksna funkcija i a ≻ b, tada važi nejednakost

f(a1) + f(a2) + . . .+ f(an) ≥ f(b1) + f(b2) + . . .+ f(bn).

Za konkavne funkcije važi suprotna nejednakost.
Jednakost važi (za strogo konveksnu funkciju) ako i samo ako su nizovi a i b
isti. ■
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Primer 7.6.1. Dokazati da za pozitivne brojeve a1, a2, . . . , an važi nejedna-
kost

a31
a2

+
a32
a3

+ . . .+
a3n
a1

≥ a21 + a22 + . . .+ a2n.

Kada važi jednakost?

Rešenje: Posmatrajmo strogo konveksnu funkciju f(x) = ex. Bez umanjenja
opštosti možemo pretpostaviti a1 ≥ a2 ≥ . . . ≥ an. Uvedimo smenu xi =
ln ai, za i = 1, 2, . . . , n. Tada važi x1 ≥ x2 ≥ . . . ≥ xn. Lako se dokazuje da
važi

(3x1 − x2, 3x2 − x3, . . . , 3xn − x1) ≻ (2x1, 2x2, . . . , 2xn).

Po Karamatinoj nejednakosti je

f(3x1−x2)+f(3x2−x3)+ . . .+f(3xn−x1) ≥ f(2x1)+f(2x2)+ . . .+f(2xn).

Nakon što vratimo smenu dobijamo traženu nejednakost.
Jednakost važi ako i samo ako je a1 = a2 = . . . = an. ■

Čitaocu se preporučuje da pokuša dokazati nejednakost iz prethodnog
primera primenom Koši-Švarc-Bunjakovski nejednakosti.

Primer 7.6.2. Dokazati da za pozitivne brojeve a, b, c važi nejednakost

2
√
a2 + b2 + c2+

√
ab+ bc+ ca ≥

√
a2 + ab+ b2+

√
b2 + bc+ c2+

√
c2 + ca+ a2.

Kada važi jednakost?

Rešenje: Bez umanjenja opštosti možemo pretpostaviti a ≥ b ≥ c. Posma-
trajmo strogo konkavnu funkciju f(x) =

√
x, za x > 0. Primetimo da je

dovoljno da dokažemo

(a2+ab+b2, c2+ca+a2, b2+bc+c2) ≻ (a2+b2+c2, a2+b2+c2, ab+bc+ca),

jer bi tada tvrdenje direktno sledilo iz Karamatine nejednakosti. Lako se
dokazuje da su nizovi opadajući (koristimo a ≥ b ≥ c). Dalje, vidimo da su
zbirovi ova dva niza jednaki i to jednaki po 2a2 + 2b2 + 2c2 + ab + bc + ca.
Nejednakosti

a2 + ab+ b2 ≥ a2 + b2 + c2
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i
a2 + ab+ b2 + c2 + ca+ a2 ≥ 2(a2 + b2 + c2)

se trivijalno dokazuju.
Jednakost važi ako i samo ako je (nakon sredivanja uslova jednakosti prva dva
člana oba niza) c2 = ab i b2 = ca. Odavde se (množenjem) dobija i a2 = bc,
pa je abc = a3 = b3 = c3, odnosno a = b = c. ■

7.7 Petrovićeva nejednakost

Još jedna značajna nejednakost koja se vezuje za konveksne funkcije je
Petrovićeva nejednakost, nazvana po srpskom matematičaru Mihajlu Petro-
viću (Alasu).

Teorema 7.7.1. (Petrovićeva nejednakost) Neka je f : R+
0 −→ R kon-

veksna funkcija i neka su x1, x2, . . . xn nenegativni brojevi. Tada važi nejed-
nakost

f(x1) + f(x2) + . . .+ f(xn) ≤ f(x1 + x2 + . . .+ xn) + (n− 1)f(0).

Za konkavne funkcije važi suprotna nejednakost.
Jednakost važi ako i samo ako su nekih n − 1 brojeva medu brojevima
x1, x2, . . . , xn jednaki nuli.

Dokaz: Neka je s = x1 + x2 + . . . + xn i neka je λi =
xi

s
, za i = 1, 2, . . . , n.

Tada je λ1 + λ2 + . . . + λn = 1 i xi = (1 − λi) · 0 + λis, za i = 1, 2, . . . , n.
Pošto je f konveksna imamo da je

f(xi) ≤ (1− λi)f(0) + λif(s),

za i = 1, 2, . . . , n. Kada saberemo ove nejednakosti dobijamo traženu.
Jednakost važi (za strogo konveksne funkcije) ako i samo ako je λi = 0 ili
λi = 1 ili s = 0. Svakako, to se svodi na uslov iz teoreme. ■

Petrovićeva nejednakost se može dokazati i preko Karamatine.

Dokaz preko Karamatine nejednakosti: Primetimo da je

(x1 + x2 + . . .+ xn, 0, . . . , 0) ≻ (x1, x2, . . . , xn),
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pa važi nejednakost

f(x1 + x2 + . . .+ xn) + (n− 1)f(0) ≥ f(x1) + f(x2) + . . .+ f(xn),

što je i trebalo dokazati. ■

8 Praktična primena i zaključak

Nejednakosti su široko primenljive u situacijama sa različitim ograničenjima,
što ih čini korisnim i u složenijim problemima. Cilj ove glave je da prikaže
primenu nejednakosti na što jednostavniji način. U tom kontekstu, predsta-
vićemo dva primera iz praktične primene.

Prvo ćemo navesti problem minimalne površine. Zamislite da posedujete
firmu koja prodaje hranu ili pića u konzervama (oblika valjka jer je utvrdeno
da je taj oblik najbolji6). Kako biste sačuvali na materijalu želite da vidite
kakav treba biti odnos poluprečnika i visine valjka da biste imali što manju
površinu, što znači da ćete potrošiti manje materijala. Znači, želimo da za
zadatu zapreminu odredimo kakav valjak je najbolji što se tiče smanjenja
troškova.

Neka je r poluprečnik valjka, h njegova visina, P njegova površina i V
njegova zapremina. Imamo

V = r2πh = const,

i želimo da izraz
P = 2r2π + 2rπh

ima najmanju moguću vrednost. Iz prve veze je h =
V

r2π
. Ubacivanjem ovoga

u izraz za površinu imamo

P = 2r2π +
2V

r
.

Želimo da se oslobodimo članova koji sadrže r da bismo dobili ograničenje,
pa zato koristimo AG nejednakost na sledeći način

P = 2r2π +
2V

r
= 2r2π +

V

r
+

V

r
≥ 3

3
√
2V 2π.

6Oblik valjka je izdržljiv pod većim pritiskom.
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Jednakost se dostiže za 2r2π =
V

r
= rπh, pa je odavde 2r = h. Dakle, traženi

odnos je h = 2r. Znači, da bismo bili najefikasniji u proizvodnji, potrebno
je da nam visina valjka bude jednaka prečniku. Napomenućemo samo da se
ovaj rezultat može lako dobiti primenom diferencijabilnog računa.

U praksi, limenke i konzerve retko imaju upravo ovaj odnos, jer se oblik
bira i prema ergonomskim kriterijumima, odnosno lakoći držanja i upotre-
be. Zbog toga se u industrijskoj proizvodnji visina i prečnik prilagodavaju
praktičnim potrebama, dok minimalizacija površine nije jedini kriterijum.

Razmatramo sada problem iz fizike koji nije striktno matematički.
Ista količina istog dvoatomskog gasa se nalazi na tri mesta u tri stanja

na adijabati. Ako znamo da je zbir pritisaka gasova u ova tri stanja uvek
konstantan, želimo da zbir temperatura u ova tri stanja ograničimo sa gornje
strane.

Neka su parametri stanja u stanju i jednaki pi, Vi i Ti, i = 1, 2, 3. Isko-
ristićemo Jensenovu nejednakost na konveksnu funkciju f(x) = xγ, gde je

γ =
7

5
Poasonov broj. Imamo

p1
p1 + p2 + p3

V γ
1 +

p2
p1 + p2 + p3

V γ
2 +

p3
p1 + p2 + p3

V γ
3 ≥

(
p1V1 + p2V2 + p3V3

p1 + p2 + p3

)γ

.

Množeći obe strane sa (p1+p2+p3)
γ = const i koristeći formulu pV = nmRT

dobijamo

(p1 + p2 + p3)
γ−1(p1V

γ
1 + p2V

γ
2 + p3V

γ
3 ) ≥ (nmR)γ(T1 + T2 + T3)

γ.

Odavde dobijamo traženo ograničenje

T1 + T2 + T3 ≤
1

nmR
γ
√

(p1 + p2 + p3)γ−1(p1V
γ
1 + p2V

γ
2 + p3V

γ
3 ).

Izraz sa desne strane je konstantan zbog uslova zadatka i osobine adijabate
(pV γ = const).

Lako proveravamo da se traženi maksimum dostiže kada su sva tri stanja
ista.

Nejednakosti predstavljaju značajnu oblast matematike, sa primenom u
različitim disciplinama, uključujući fiziku, dinamiku, statistiku i naprednu
matematiku. Kao ilustracija važnosti ograničenja u rešavanju problema, može
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se pomenuti hipoteza o prostim blizancima: Yitang Zhang je uspeo da ogra-
niči razmak izmedu susednih prostih brojeva na najvǐse 7 · 107, dok je nak-
nadnim unapredenjima ta granica smanjena na 246. Ovaj primer pokazuje da
ograničenja igraju ključnu ulogu čak i u rešavanju velikih i složenih problema.
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[6] Dorde Baralić, 300 Pripremnih Zadataka za Juniorske Matematičke
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