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Sazetak

U radu se razmatraju elementarne i naprednije nejednakosti sa
posebnim naglaskom na metode njihovog reSavanja u takmicarskom
kontekstu. Resenja su prikazana uz obrazlozenje motivacije za primenu
odgovarajué¢ih nejednakosti u konkretnim zadacima. Na kraju rada
ukratko su navedene neke primene nejednakosti.

1 Uvod

Nejednakosti predstavljaju znacajnu oblast matematike, sa Sirokom pri-
menom kako unutar same discipline, tako i u srodnim oblastima poput fizike
i racunarskih nauka. Pored svoje prakti¢ne vaznosti, one zauzimaju posebno
mesto u matematici zbog raznovrsnosti pristupa i elegantnosti metoda koji
se koriste pri njihovom resavanju.

Karakteristicno je da su reSenja zadataka sa nejednakostima cesto izu-
zetno kratka, dok sam proces dolazenja do istih zahteva visok stepen uvida,
kreativnosti i iskustva. Upravo ovaj raskorak izmedu formalne jednostavnosti
i misaone slozenosti ¢ini nejednakosti pogodnim poljem za analizu strategija
resavanja.

U radu su ideje ilustrovane prvenstveno kroz pazljivo odabrane primere.
Dokazi pojedinih teorema nisu ukljuceni, jer prevazilaze okvir rada i nisu
neophodni za razumevanje razmatranih metoda.

Poseban akcenat je stavljen na objasnjenje motivacije i misaonog procesa
koji vodi ka resenju. Za razliku od standardizovanih prikaza resenja, koja
su predstavljena kao gotovi formalni postupci, cilj ovog rada je da osvetli
razloge izbora odredenih tehnika i nejednakosti u konkretnim problemima.
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2 Elementarne algebarske nejednakosti

Elementarne algebarske nejednakosti su one koje se dokazuju elementar-
nim algebarskim transformacijama i primenom osnovnih nejednakosti (npr.
22> 0,zax €R).

2.1 Transformacije i jednostavne nejednakosti

Primer 2.1.1. Dokazati da za svaki pozitivan broj x vazi nejednakost

T+ - > 2.

X

Resenje: Mnozenjem obe strane nejednakosti sa z (Sto je dozvoljeno jer
je > 0) i pojednostavljivanjem izraza dobijamo ekvivalentnu nejednakost

(z—17>0.1
Primer 2.1.2. Dokazati da za sve pozitivne brojeve x,y, z vazi nejednakost

r+y+z> 2(\/3cy+\/y —\/zx).
Resenje: Nejednakost je ekvivalentna otiglednoj (v + v/z — \/y)z >0.1

Nejednakosti koje pominju samo jednu promenljivu ili koje pominju iz-
raz koji nije simetri¢an, niti ciklican po promenljivama, ¢esto se mogu resiti
preuredivanjem izraza. Ovi primeri su bili relativno jednostavni; posmatraj-
mo sada jedan slozeniji primer.

Primer 2.1.3. Dokazati da za sve prirodne brojeve z,y (z > y) vazi nejed-
nakost
22y + 2% +y? > ay® + 22y + 3y.

Kada vazi jednakost?

Resenje: Primetimo da je uslov specifican - brojevi x i y su prirodni i vazi
x > y. Zbog drugog uslova mozemo razmisljati o rastavljanju izraza tako da
se u jednoj zagradi nalazi nenegativan izraz x — y — 1. Zbog ¢lanova 22y i
x7y? prirodno je podesiti drugu zagradu tako da je zy u njoj. Dodatno, zbog
izraza x> moramo dodati i x. Na ovaj nac¢in dobijamo neZeljeni ¢lan —z, pa
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kako bismo kompenzovali dodajemo i jedinicu u drugu zagradu. Matematicki
ispisano to izgleda ovako:

(z—y—1D(zy+a+1) =2y + 2> —azy* — 20y —y — 1.

Primetimo da jedino nedostaje izraz y> —2y+1 = (y — 1)2, pa je nejednakost
sa pocetka ekvivalentna sa

(z—y—1(zy+a+1)+@y—1)7°>>0,

sto je ocigledno tacno. Jednakost vazi za x —y —1 =01y —1 =0, tj. za
r=2iy=11

Mnoge nejednakosti mogu se resiti ovim jednostavnim metodama. U slo-
zenijim problemima kljucan korak ¢esto predstavlja upravo transformacija
izraza i primena osnovnih nejednakosti, pa su ove metode od izricitog znacaja
za uspesno resavanje zadatka.

2.2 Elementarna ogranicenja proizvoda i zbirova

U narednim primerima primenjuju se elementarne metode pri analizi
ogranicenja proizvoda i zbirova.

Primer 2.2.1. Dokazati nejednakost

135 99 1

2467100 ~ 107

Resenje: Oznacimo izraz sa leve strane nejednakosti sa A i neka je B =

246 100
3E7 Tol Ocigledno je A < B, jer je svaki razlomak koji se javlja kao

¢inilac u broju B veéi od svakog razlomka u broju A, redom. Zbog toga je

A? < AB = % < Tz’ odakle korenovanjem sledi tvrdenje. B

Primer 2.2.2. Dokazati da za svaki prirodan broj n vaze nejednakosti

)1+1+1+ +1<5-
& 2 T 32 2 3

11 1 5
b 1 _ _ — < =
) tE Tt tE g
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Resenje:

a) Vazi slededi niz nejednakosti i jednakosti

1 1 L .
K2 k-1 (k—1(k+1) 2\k—-1 k+1)°

Ove nejednakosti koristimo za k£ > 3 i dobijamo

11 1
Ittt t—
P SN A N S S SR NS B 1
472\2 43 5 4 6 n—1 n+l1

sto je i trebalo dokazati (izraz se redukuje putem masovnog ponistavanja
¢lanova, $to se naziva konceptom teleskopske sume).

b) Radi primene slicne metode kao u delu pod a) posmatramo sledeéi niz
nejednakosti i jednakosti

1 1 1 1 1 1
E5<M—k‘kk—nuk+m_§(w—1m_kw+n)‘

Sabiranjem ovih nejednakosti dobija se trazena nejednakost. ll

3 Nejednakosti izmedu sredina

Najpoznatije sredine brojeva jesu harmonijska, geometrijska, aritmeticka,
kvadratna i kubna. Medu svim sredinama su ove navedene najkorisnije, a
medu navedenim se najcescée koristi nejednakost izmedu aritmeticke i geome-
trijske (AG nejednakost).

Sredinu reda k definiSemo na slede¢i nacin.

Definicija 3.1. Neka su xy, 23, ..., x, (n € N) pozitivni realni brojevi i neka
je k € R. Tada je sredina reda k brojeva x1, xs, ..., x, definisana sa
YT1To . .. T, k=20
Mk<ZL’1,x2,...,In): Sk +ak+ 42k
’\@/ 1 + 2 + + n’ k ?é 0
n
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Specijalno, harmonijska, geometrijska, aritmeticka, kvadratna i kubna sre-
dina imaju oznake M_q, My, My, My i M3, redom. Cesto se koriste i oznake
H, G, Ai K za harmonijsku, geometrijsku, aritmeticku i kvadratnu sredinu.

Bitne osobine ovih sredina navedene su u slede¢oj teoremi.

Teorema 3.1. Funkcija f(k) = My (1,2, ..., x,), pri oznakama i uslovima
iz prethodne definicije, ima sledeca svojstva:

1) f(k) je neprekidna u tacki k = 0;
2) min{xy, xa, ..., 2.} < f(k) < max{zy,xs,...,2,};

3) lim f(k) =maz{xy,xe,...,x0};

k——+o0
4) lim f(k) = min{zy,zq,...,2,}.
k——o0
Dokaz:
. - & 1, ehrebt top .
1) Mozemo zapisati f(k) = efF) = exn n , k # 0. Neka je g(k) =
ko ok k
In 41 Tt T Sada je f(k) = ¢ Primenom Lopitalovog pravi-
n
1] na sledeéi nacin
/
lim _g(k) — lim 2% (k)
k=0 k k=0 1

¥ nzy + 25 In y +...+:1:§1nxn

= lim n

k—0 e U S

n
. 2z +abna+ ... +2Fng,
= lim ko ok k
k—0 ri+ Tyt ...+
Iz +hnze+...+1Inz,

n
Inxizy...2,

n

=1In Vx1259 ... T

U stranoj, a na pojedinim mestima i u nagoj literaturi, uobi¢ajen je naziv L'Hopital-
ovo pravilo, pri ¢emu se izbegava transkripcija.
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Dobija se

a(k) lim 9¢£)

lim f(k) = lime & = ek F =t VFo2-In — o/ x, = £(0),

k—0 k—0

Sto je i trebalo dokazati.

2) a) Neka je, bez gubljenja opstosti, 1 = min{zy, xs, . .., z,}. Nejednakost
se svodi na ekvivalentnu

k | ok k

ri+xs+... .+

x1<</1 2 n
n

k

n’

<~ nxfﬁxf—kxé%—...—i—x

pri cemu je poslednja nejednakost ocigledna, jer je xy najmanji.
b) Neka je sada, bez gubljenja opstosti, x; = max{zy, xs, ..., x,}. Nejed-

nakost se svodi na ekvivalentnu

K ok k

h b+t

:c1></1 2 n
n

& naf >af+ak+. 4+ a2k

pri cemu je poslednja nejednakost ocigledna, jer je x; najvedi.

3) Neka je, bez gubljenja opstosti, 1 > x9 > ... > x,. Prema prethodnom
delu i primenom prostih algebarskih transformacijama dobija se da vazi
nejednakost

x1

v

Posto je lim n =1, to je, po teoremi o dva policajca,
k—+o00

r1 > f(k) >

lim f(k) = Ty,

k——+o0

sto je i trebalo dokazati.

4) Iskoristi¢emo prethodni deo ove teoreme. Neka opet vazi, bez gubljenja
opstosti, z1 > x5 > ... > x,. Tvrdenje sledi iz

1 1
lim f(k)[x1, o, ..., 2, = =4 =1,
k——o00 . 1 1 1 =
lim f(k) {—,—,...,—] n
k—+o00 T1 T2 Tn

Sto je i trebalo dokazati. U uglastim zagradama se nalaze brojevi na koje
se odnosi f. R
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Slede¢a teorema prikazuje jos jedno vazno svojstvo sredina, a radi se o
teoremi o nejednakostima izmedu brojevnih sredina.

Teorema 3.2. (Nejednakosti izmedu sredina) Neka su z,zs,..., 2,
pozitivni brojevi i neka su a,b € R. Tada vazi

a>b= M, (x1,x2,...,2,) > My(x1,20,...,2,).

Jednakost vazi ako i samo ako jex; =2, =...=1z,. R E]

Ovo tvrdenje o nejednakostima izmedu sredina prikazano je na pocetku
kao specijalni slucaj jer ima znacajnu primenu. Dokaz ¢e biti dat u 5. pogla-
vlju, nakon razmatranja Jensenove nejednakosti.

Primena nejednakosti izmedu sredina ilustruje se kroz sledeée primere.

Primer 3.1. Dokazati da za sve pozitivne brojeve a, b, ¢ vazi nejednakost
1
a+b+c+— >4.
abce
Kada vazi jednakost?

Resenje: Primenimo AG nejednakost na brojeve a,b,c i —, sa ciljem da

jedino ostane konstanta. Zbog ovoga se generalno i koristi nejednakost AG,
kako bi (preko proizvoda) doslo do skraéivanja promenljivih. Dakle, prime-
nom nejednakosti AG na prethodno opisani nac¢in se dobija:

1 1
a+b+c+— 24\4/abc— =4,
abc abc

Sto je i trebalo dokazati.
Jednakost vazi kad je ispunjena i jednakost u AG nejednakosti, tj. kada je

a=b=c= The Resavanjem dobijamo da jednakost vazi ako i samo ako je
abc
a=b=c=1.1

Primer 3.2. Odrediti minimalnu vrednost izraza

2Dokaz je dat u primeru 6.3.1.
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gde su z,y, z pozitivni realni brojevi.

Pomoé: Razmisljati kao u primeru 3.1. - iskoristiti AG na nacin da se sve
promenljive poniste.

Resenje: Zelimo da pametno namestimo sabirke da se sve promenljive skrate
2 322

nakon primene AG. Kada bismo odmah primenili AG na brojeve z, 0%’ 390
T Y

2
i — vidimo da bi nam se izgubila promenljiva z, ali ostale dve ne bi. Iz tog

raéloga sabirke koji sadrze promenljivu x ostavljamo, a preostala dva sabirka
¢emo adekvatno namestiti kako bismo izgubili i promenljive vy i z. Posto
imamo y? od drugog sabirka onda éemo treéi sabirak zapisati kao zbir dva
sabrika, da bismo nakon mnoZenja dobili 4* u imeniocu. Posledica ovoga jeste
da u brojiocu imamo z*, pa zato poslednji sabirak zapisujemo kao zbir ¢etiri
jednaka sabirka. Dakle, ovo bi sada izgledalo ovako

y? 322 2 y? 322 3P 1 1 1 1

I+9_J]+%+Z:x+9_x+@+@+£+§+g+ﬂ

2 9,2 9,2
Sgef 33 L1 L1,
9x 64y 64y 22 22 22 22
Zadatak jos nije zavrsen, dokazali smo da je izraz sigurno vedi ili jednak od
dvojke, ali to ne mora da znaci da mu je to i minimum. Moramo dokazati

da se ova vrednost moze dosti¢i. Odgovarajuce vrednosti za z,y, z dobijamo

reSavanjem sistema kada vazi jednakost u AG i tu dobijamo da jednakost

. 1
vaZiza x = —,y =
479

Y

z = 2. Dakle, minimum je zaista broj 2 i dostize se za
vy, 2.

&M'H

navedene vrednosti

Sledeca tri primera na prvi pogled deluju kao zadaci nevezani za nejed-
nakosti, ali u stvarnosti nejednakosti se mogu primeniti na razlic¢ite tipove
problema, ne samo na klasi¢ne zadatke iz nejednakosti.

Primer 3.3. Brojevi 1,2,3,4,4,5,9, 16,25 upisani su u tablicu 3x3, nekim
redom. Oznac¢imo sa P; proizvod brojeva u i-toj vrsti tablice, i = 1,2, 3.
Odrediti najmanju mogu¢u vrednost zbira P, + P, + Ps.

Resenje: Ukoliko opet posmatramo proizvod, dobijamo broj P, P,Ps sto
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predstavlja proizvod svih brojeva u tablici. Ova vrednost je jako pogodna
jer je direktno mozemo izracunati. Dakle, po AG nejednakosti, vazi

P1+P2+P3233P1P2P3:360.

Primetimo da ne mogu sva tri proizvoda biti jednaka. Zaista, tada bi svaki
proizvod bio jednak po 120, ali u jednom od tih proizvoda se nalazi broj 9,
Sto je nemoguce jer 9 ne deli 120. Dakle, vazi P, + P, + P35 > 361.

Za ovaj slucaj moze se konstruisati primer tako da su proizvodi priblizno
jednaki, jer se malo odstupilo od jednakosti. Primer se moze jednostavno
konstruisati na slede¢i nacin:

5125
16
419

Ovime je dokazano da je trazeni minimum 361. Il

Primer 3.4. U skupu pozitivnih brojeva resiti jednacinu

(x+4)(y + 2)(z + 2y) = 32xy.

Resenje: Uslov o pozitivnosti brojeva bi mogao biti motivacija za koriS¢enje
nejednakosti. Nije ocigledno koji se drugi metod moze koristiti. Probajmo,
dakle, preko AG nejednakosti. Cilj je da se pokaze da je leva strana veca
ili manja od desne strane. Sa malo isprobavanja se moze naslutiti da je leva
strana ”skoro uvek” vec¢a. Primenimo AG na svaku zagradu. To izgleda ovako

(x4 4)(y + 2)(z + 2y) > 2V4x - 21/2y - 2¢/22y = 32zy,

Sto smo bas i zeleli. Jednakost ovde vazi ako i samo ako su svi brojevi jednaki
na koje je koris¢ena AG, a to daje jedino resenje polazne jednacine (z,y) =
(4,2). 1

Primer 3.5. Nadi sve trojke (z,y, z) realnih brojeva za koje vazi

2 2 2

E.
2 (2x)2 _2'

2$

(2%)

2Y

(2%)

5+
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Resenje: Ideja je slicna kao i u prethodnom primeru. Eksponencijalna funk-
cija je uvek pozitivna pa ¢emo primeniti AG na sledeéi nacin
P A ES 5
+ + > 3\/2m2+y2+z2—2m—2y—2z >
(20)> © (29 (29 — -
Poslednja nejednakost se dobija iz 22 + 9% + 22 — 2z — 2y — 22 > —3, koja je
ocigledna (zbir tri kvadrata binoma oblika (¢t — 1)?). Jednakost vazi samo za
xr =1y =2z=1, te je to i jedino resenje polazne jednacine. B

NNV

Sledeéi primer ilustruje jedan vazan i zanimljiv koncept.

Primer 3.6. Neka su a, b, ¢ pozitivni brojevi za koje vazi a + b + ¢ = 3.
Dokazati nejednakost

a n b N C
b2+1 241 a?2+1

3
> —.
-2
Kada vazi jednakost?

Resenje: Primenom AG na ova tri razlomka direktno se nista postize. Sa
druge strane, ukoliko primenimo AG na imenioce dobijamo suprotan smer od
potrebnog. Ciljamo da taj smer promenimo. Oduzmimo od svakog razlomka
a, b, c, redom, pa na kraju dodajmo a + b + c¢. Dobijamo:

PO T @
02+1_b+b:b_czbj—21 2)
2
AT A ®
Sada, po AG, zakljucujemo —% > —a2—bb2 = —%b. Sabiranjem (1), (2), (3)

i koris¢éenjem dve analogne nejednakosti dobija se

S b T +b+ ab2+b02+ca2 >31(b+b+ )
=a c— ——(a c+ca).
2+1 2+1 a2+1 b2 +1 241 a?+1) — 2
b 2
Dovoljno je dokazati da vazi ab+bc+ca < 3, medutim, ovo sledi iz u >

ab + be + ca, §to je posledica poznate i o¢igledne nejednakosti a? + b + ¢ >
ab+bc+ca. B
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Nejednakosti izmedu sredina, najcéesée AG, omogucavaju reSavanje pro-
blema i predstavljaju znacajno i efikasno sredstvo u teoriji nejednakosti. Sle-
dedi primeri ilustruju primenu drugih sredina, ne samo AG, iako je AG sre-
dina u praksi najc¢esée primenjivana.

Primer 3.7. Dokazati da za sve pozitivne brojeve ay,as, ..., a,, za koje je
ai; + as + ...+ a, = 1, vazi nejednakost

> arn <y
1<07an @ T G
Kada vazi jednakost?
a;a;
a; + aj

monijske sredina brojeva a; i a;. Za i # j primenjujemo nejednakost izmedu
aritmeticke i harmonijske sredine, dok za ¢ = j izraze ostavljamo. Po AH je

Resenje: Glavna stvar je primetiti da je svaki izraz polovina har-

2 1ai+aj_ai—|—aj

2 2 4

. ., - . . . . . g G4
Primeni¢emo ovo kao $to je gore rec¢eno (izrazi za i = j su oblika 5) Imamo

a;a; < a1—|—a2q;...—|—an +(n_1)a1—|—a2—;...—|—an :%
1§z‘,j§nai + CLj
sto je i trebalo dokazati.
1
Jednakost vazi kada jea; =ay=...=a, =—. 1
n

Primer 3.8. Dokazati da za svako x > 1 vazi nejednakost

{”/x—l—%—i— i/x—%<2{”/5.

Resenje: Uslov x > 1 je dat zbog definisanosti drugog korena. Takode, bitan
je zbog nejednakosti koje ¢emo koristiti u resenju.
Ponekad u ovakvim zadacima sa korenima nije loSe uvesti smene, makar bilo

samo zbog preglednosti. Dakle, neka je a = {/x + Yz ib= {/x — /x. Izraz

a + b treba ograniciti sa gornje strane. Mozemo primetiti da je a® + b* =
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2x. Sada mozemo primeniti nejednakost izmedu aritmeticke sredine (ona je
sredina reda 1) i sredine reda z > 1. Dobijamo

a+b< . az—l—bm:
2 = 2

sto je i trebalo dokazati.
Nejednakost je stroga jer brojevi a i b nikada ne mogu da budu jednaki za
r>1. 1

Na kraju ove glave prikazuje se primer koji ilustruje da sposobnost resavanja
zadatka u velikoj meri zavisi od kreativnosti reSavaoca, a ne samo od alata.
Primer takode ilustruje kako ovaj jednostavan alat moze biti primenjen za
resavanje zahtevnog problema.

Primer 3.9. Dokazati da za sve pozitivne brojeve a, b, ¢, za koje je a+b+c =
1, vazi nejednakost

avV1l4+b—c+byVl+c—a+cvVli+a—b<1.

Kada vazi jednakost?

Resenje: Trec¢i koren bi trebalo da asocira na ili kubnu ili geometrijsku
sredinu, medutim, posto se trazi nejednakost manje-jednako pokusajmo da
se usredsredimo na ideju geometrijske sredine.

Za geometrijsku sredinu je potreban proizvod, te je ideja da pod treci koren
ubacimo neka dva broja. Lako se moze proveriti da jednakost vazi kada su
svi brojevi jednaki, pa tada mora da vazi i u AG nejednakosti ako ¢emo je
koristiti, te ne bi bilo pametno da stavimo ispod korena bilo koji broj osim
jedinice. Zbog treceg korena stavljamo dve jedinice. To izgleda ovako

avVl+b—c+b/l+c—a+cevVli+a—0b
=ay/1-1-(1+b—c)+b/1-1-(14+c—a)+c/1-1-(1+a—b)
1+414+1+b—-c 1+41+1+c—a 1+41+1+a—0
<a +b +c
3 3 3
ab — ac+ bc — ba + ca — ¢b

=a+b+c+ 5 =a+b+c=1,

sto je i trebalo dokazati.
.n

Jednakost vazi ako i samo ako jea=b=c=

W
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4 Matematicka indukcija u nejednakostima

Nije iznenadujuce da se metod matematicke indukcije nade u bilo kojoj
oblasti. Poznato je da je matematicka indukcija jedan veoma jak alat, tako
da ¢emo se u ovoj glavi upoznati sa njenom primenom u oblasti nejednakosti.

4.1 Prosta indukcija

Pod prostom indukcijom podrazumevamo indukciju gde, ako pretposta-
vimo da tvrdenje vazi za neko n € N, dokazujemo da tada tvrdenje vazi i za
n+ 1.

Slede¢i primer je primer onoga Sto je mozda neformalno poznato kao
”funkcija koja brze raste”. U pitanju je, na primer, eksponencijalna i stepena
funkcija. Pogledajmo primer.

Primer 4.1.1. Dokazati da za sve prirodne brojeve n vazi nejednakost
5" > n?.
Resenje: Radimo indukcijom po n.

e Baza indukcije: Direktnom proverom utvrdujemo da tvrdenje vazi za
n=1in=2.

e Indukcijska hipoteza: Neka tvrdenje vazi za neko n € N.

e Indukcijski korak: Dokazimo da vazi i za n + 1. Vazi

5 =5.5">5n% > (n+1)%

Poslednja nejednakost vazi jer je ekvivalentna sa n?(n—3)+3n(n?—1)+1 > 0,
sto je ocigledno tacno za n > 3. W

Naves¢emo jednu poznatu nejednakost ¢iji se dokaz izvodi matematickom
indukcijom u osnovnom slucaju kada je eksponent prirodan broj. U pitanju
je Bernulijeva nejednakost.

Teorema 4.1.1. (Bernulijeva nejednakost) Ako je x > —1, tada vazi

(14+2)">1+nx
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za sve realne brojeve n € (—o0, 0] U [1, +o0], odnosno
(14+2)"<1+nx
zan € (0,1). Jednakost vazi ako i samo akojen=0 V n=1 V z=0.

Dokaz: Dokaz izvodimo samo za prirodne brojeve n. Radimo indukcijom po
n.

e Baza indukcije: Za n = 1 tvrdenje vazi, tada vazi jednakost.
e Indukcijska hipoteza: Neka tvrdenje vazi za neko n € N.

e Indukcijski korak: Dokazimo da vazi i za n 4+ 1. Imamo

(1+2)" = 1+2)"(1+2)> 1 +nx)(l+x)=nz*+nzx+z+1
> nr+zrx+1=14+(n+1)z,

Sto zavrsava dokaz. B
Slede¢a dva primera ilustruju primenu Bernulijeve nejednakosti.

Primer 4.1.2. Dokazati da za sve n,m € N vazi nejednakost

1 N 1 >
Vn+1 Ym+1

Kada vazi jednakost?

Resenje: Posmatrajmo imenilac prvog sabirka na levoj strani i primenimo
Bernulijevu nejednakost

VnFi=(l4n)m<14L-_2EM

m m

n-+m

Analogno se dobijai vm +1 <1+ m_ . Koriste¢i ove dve nejedna-
n

kosti se dobija

1 1 m n
+ > + =1
Yn+1l Ym+1 " n+m n+m

Y
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Sto je i trebalo dokazati.
Jednakost vazi ako i samo ako je eksponent jednak jednici, tj. ako i samo ako
jen=m=1.1

Primer 4.1.3. Neka jen € N, n > 11ineka su xy, 2o, ..., x, pozitivni brojevi
za koje vazi uslov 1 + x5 + ... + x,, = 1. Dokazati nejednakost

1- 1- -
o by B ol <2,

ResSenje: Sabiranjem nejednakosti (bitno je napomenuti da je svaki ekspo-
nent izmedu nule i jedinice zbog uslova o zbiru)

.flf.l_xi-"l = (]_ + (l’l - 1))1_$i+1 S 1+ (.flfl — 1)(]_ — $i+1) =x; + Tit1 — LjTi+1,

zat=1,2,...,n, dobijamo
Ty my B T < 2wy Faot AT, ) — (120 Toxst. A T2) < 2,
Sto je i trebalo dokazati. B

Slede¢i primer ilustruje primenu matematicke indukcije na nejednakosti,
gde direktno resavanje zadatka deluje otezano, ali odgovarajuca preformula-
cija omogucava dobijanje reSenja pomocu indukcije.

Primer 4.1.4. Dokazati da nejednakost

LRI
2 122723 7T on

vazi za sve prirodne brojeve n.

ResSenje: Direktna primena indukcije nece resiti zadatak. Zbog toga je ge-

neralno ideja kod zadataka ovog tipa da se dokaze opstija nejednakost. Cilj
1 1 1 1

je dokazati 1 + 5 + 2 + %] +...+ on < 2 — f(n), gde je f(n) zgodno na-

mestena funkcija od n. U ovom slucaju bismo zeleli da ona bude opadajuca

i to "brzo opadajuc¢a”, jer nakon samo par ¢lanova izraz sa leve strane je

1
jako blizu broju 2. Prirodno je probati f(n) = on Dokazimo nejednakost
ety L L e kel
—+=4+=4+...+ = — —in ijom.
2 T2 9 gn = £ gn MCHENO
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3 1 3

e Baza indukcije: Zan=1je - =1+ = <2 — - = —, §to je tacno.
2 2 2 2

e Indukcijska hipoteza: Neka tvrdenje vazi za neko n € N.

e Indukcijski korak: Dokazimo da vazi i za n 4+ 1. Vazi

1 1 1 1 1 <9 1 1 _ 9 1
+§+§+§+...+2n+1_ —2—n+2n+1— —W,

Sto je i trebalo dokazati. B

Dokazimo sada jednu od najkorisnijih nejednakosti o kojoj ¢e svakako biti
reci kasnije.

Primer 4.1.5. Dokazati nejednakost Kosi-Svarc-Bunjakovski (videti teore-
mu 7.1.1.).

ResSenje: Dokazimo indukcijom identitet
n n n 2 n
() (3] - (oon) = 3 wn
i=1 i=1 i=1 ij=1,i<j
iz kog direktno sledi trazena nejednakost.
e Baza indukcije: Za n=2 treba dokazati
(CL% + a%)(bf + bg) - (a1b1 + a2b2)2 = (albg — a261)2,
sto je ekvivalentno sa
aib+aiby+asbi+asby—aibi—2a1byasby —asby = aibs—2a;biagby+asbi,
a ovo ocigledno vazi.

e Indukcijska hipoteza: Neka tvrdenje vazi za neko n € N, pri ¢emu ¢emo
levu stranu oznaciti sa L,, a desnu sa D,,. Dakle, hipoteza je da vazi
L, = D,.
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e Indukcijski korak: Dokazimo da tada vazi i za n + 1. Imamo

n

L1 = L + aiHZ b? + bi+1z a? - 2an+1bn+lz a;b;,
i=1

=1 i=1

a za desnu stranu je

D,y1 = Dp+ (a1bps1 — an+lbl)2 + (agbp41 — an+1b2)2
+... .+ (anbn+1 — an+1bn)2.

Nakon elementarnog izra¢unavanja leve i desne strane (i zbog indukeij-
ske hipoteze) vidimo da je L,y1 = Dyyq.

Dokaz je ovime zavrsen. Bl

Jos jedan primer primene indukcije mozemo videti u delu 5.3 pri dokazi-
vanju Jensenove nejednakosti.

4.2 Drugi tipovi indukcije

Sada ¢emo dokazati nejednakost izmedu aritmeticke i geometrijske sredine
proizvoljno mnogo brojeva, ali zasto? Iako je to tvrdenje direktna posledica
teoreme 3.2, ,,elementarni‘ﬂ dokaz ovog tvrdenja (pomocu indukcije) je nesto
Sto smatramo jako bitnim i kreativnim, te bi bilo nezahvalno izostaviti taj
dokaz. Posto je ovo, kao sto smo rekli, samo posledica jaceg tvrdenja koje
smo dokazali, ovo navodimo kao primer.

Primer 4.2.1. Dokazati nejednakost izmedu aritmeticke i geometrijske sredi-
ne, tj. dokazati da za sve prirodne brojeve n i pozitivne brojeve xy, xo, ..., x,
vazi nejednakost
I1+Q?2++l’n
n

> Yx1To ... Ty

Dokazati da jednakost vazi ako i samo ako je 11 =z = ... = x,,.

Resenje: Dokazimo prvo da tvrdenje vazi za sve stepene dvojke. Ako je
n =2 k € N, tvrdenje dokazujemo indukcijom po k.

3Pod ”elementarnim” dokazom smatramo dokaze koji ne zahtevaju napredno matema-
ticko znanje, ovde bi to znanje bili izvodi neophodni za koriS¢enje Jensenove nejednakosti
(pri proveri konveksnosti). MoZzemo i Jensenovu nejednakost samu po sebi smatrati "nee-
lementarnom” metodom.

95



a+b

e Baza indukcije: Za k = 1 je n = 2 pa dokazujemo nejednakost >

2
Vab. Ova nejednakost je ekvivalentna ociglednoj <\/_ — \/T)) > 0.
Ovde vidimo da jednakost vazi ako i samo ako je a = b.

e Indukcijska hipoteza: Pretpostavimo da tvrdenje vazi za neko k € N.

e Indukcijski korak: Dokazimo da onda tvrdenje vazi i za k + 1. Ovo je
isto kao da prelazimo sa n na 2n. Imamo

2n 2
\/x1+x2+...—|—xnxn+1—|—xn+2—|—...+x2n

T+ T+ .. 29, 1 (xl—i—xg—i—...—i—:cn+xn+1+xn+2—|—...+x2n)
n n

n n

> \/{‘/371562 Xy YT 1Tng2 - - Top

= X/1129...Top.

Na mestu prve nejednakosti smo koristili ono sto je dokazano u bazi indukci-
je, a na mestu druge nejednakosti smo koristili indukcijsku hipotezu. Dakle,
dokazali smo da AG nejednakost vazi za svakih n brojeva, gde je n stepen
dvojke. Dokazujemo sada, regresivnom indukcijom po n, da tvrdenje vazi za

svaki prirodan broj n. Pretpostavimo da nejednakost vazi za neko n. Izabe-
. rT1+ 2o+ ...+ T .
rimo x, = ] . Sada imamo
n J—

R A R v 1+ 2o+ ..+ Ty
Z T1T2 ...Tp—1
n n—1

—

x1+x2+...+xn_1>dxx . I 2
n—1 - 1h2e el n—1

n—1

1 +To+ ... +xy n
n—1

{E1+J}2+...+$n_1

<~ > "VrTo .. Tpy_1.

n—1

> Yr1xo ... Tp_q

Dakle, tvrdenje je dokazano. Jednakost vazi ako i samo ako je z; = xy =
.=z, 1
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Drugi tipovi indukcije su redi, ali itekako postoje. U ovom radu se ne¢emo
baviti njima jer smatramo da nisu od nuznog znacaja za samu oblast nejed-
nakosti koliko su za oblast indukcije.

5 Geometrijske nejednakosti

U geometrijskim nejednakostima mogu se izdvojiti dve vrste zadataka.
Prva obuhvata nejednakosti koje vaze izmedu elemenata trougla, kao sto su
stranice ili poluprecnici upisanih i opisanih krugova. Druga se odnosi na ne-
jednakosti u konkretnim geometrijskim konfiguracijama. Obi¢no druga vrsta
zadataka zahteva pretezno geometrijsko znanje; stoga se u ovom radu fo-
kusiramo iskljucivo na prvi tip. Cilj je analizirati aspekt nejednakosti, a ne
geometrijske konstrukcije ili druge oblasti.

Radi izbegavanja konfuzije, uvode se oznake u proizvoljnom trouglu ABC,
koje su uobicajene u literaturi, ali ovde ih precizno definiSemo.

® a,b, c - duzine stranica naspram temena A, B, C', redom,;
e o, 3,7 - mere uglova kod temena A, B, C, redom;

o t, 1y, t. - duzine tezisnih duzi iz temena A, B, C, redom;
® hg, hy, h. - duzine visina iz temena A, B, C', redom;

e [, 1y, .- duzine odsecaka bisektrisa unutrasnjih uglova iz temena A, B, C,
redom;

e R r - poluprecnici opisane i upisane kruznice, redom:;

e P, s - povrsina i poluobim, redom.

Nadalje (u ovoj glavi) se podrazumevaju ove oznake (ako negde vidimo
a, b, ¢ to su stranice trougla i sli¢no).

Verovatno najjednostavnija geometrijska nejednakost jeste nejednakost
trougla, koja nam govori da su pozitivni brojevi a, b, ¢ duzine stranica nekog
trougla ako i samo ako vaze nejednakostia +b>c¢, b+c>a, c+a > b.

Primer 5.1. Dokazati nejednakost

3

Z(a+b+c) <tyst+ttp+t.<a+b+ec
Resenje:
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a) Neka je tacka T teziste trougla ABC.
Primenom nejednakosti trougla u trou-

glovima BTC,CTA, AT B dobijamo
2t + 2t >

5 5l a, ¢ 2
3°" 3

2t+2t >b
36 3(1 b

2t +2t >
5 la o C,
33"

sto, kada saberemo, dobijamo X

(]

to +1y +1t.> Z(a +b+c). Slika 1: Resenje primera 5.1

b) Neka je D srediste BC, i neka je tacka A’
simetri¢na tacki A u odnosu na D. Tada
je ABA'C paralelogram. Primenom ne-
jednakosti trougla u trouglu ABA’ dobi-
jamo b+ ¢ > 2t,. Analogno se dobijaju
i nejednakosti c+a > 2ty i a + b > 2t..
Sabiranjem dobijamo

ty +ty+t.<a+b+c,

Sto zavrsava dokaz. l

Primer 5.2. Dokazati nejednakost

Kada vazi jednakost?

Resenje: Po nejednakosti izmedu harmonijske i aritmeticke sredine vazi

3 (s—a)+(s—b)+(s—c)
1 1 T = 3 )
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a odatle je

1 1 1 9 9
s—a s—-b s—c (s—a)+(s—=b)+(s—c) s

4
+
\Y

|
|

sto je i trebalo dokazati.
Jednakost vazi ako i samo ako je s —a =s—b=s—c, tj. ako i samo ako je
a = b = ¢ (samo kada je trougao jednakostranicni). Bl

Teorema 5.1. (Ptolomejeva nejednakost) Neka su A, B, C, D ¢etiri tacke
prostora. Tada vazi nejednakost

AB-CD+ AD-BC > AC - BD.

Jednakost vazi ako i samo ako su tacke A, B, C, D na istom krugu, pri ¢emu
su AC' i BD dijagonale tog ¢etvorougla ili su tacke A, B, C, D kolinearne, pri
¢emu tacno jedna od tacaka B, D lezi izmedu tacaka A, C. B

Ovu teoremu navodimo bez dokaza, jer u dokazu preovladava znanje geo-
metrije. Jedan zanimljiv dokaz je pomocu inverzije u jednom od temena, pa
primenom nejednakosti trougla.

Primer 5.3. Dokazati da je povrsina konveksnog cetvorougla ABC'D ne veca
od

1

§(AB -CD+ BC - DA).
U kojim ¢etvorouglovima vazi jednakost?
Resenje: Na osnovu Ptolomejeve nejednakosti je

AB-CD+ AD -BC > AC - BD.

1
Sa druge strane je Papop = §AC~BD~sin 6, gde je 6 ugao izmedu dijagonala.

Na osnovu ovoga je

1
5

AB-CD + BC-DA)> JAC-BD = PABCQD > Papen,
S1n

Sto je i trebalo dokazati. U prvoj nejednakosti jednakost vazi za tetivne
cetvorouglove, a u drugoj za one cetvorouglove sa medusobno normalnim
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dijagonalama, pa jednakost vazi za tetivne ¢etvorouglove sa medusobno nor-
malnim dijagonalama. B

Motivacija prethodnog primera zasniva se na Ptolomejevoj nejednakosti,
buduéi da se u zadatku pojavljuje izraz identican onom u Ptolomejevoj nejed-
nakosti. Proizvod dijagonala zatim je povezan sa povrSinom pomocu poznate
trigonometrijske formule.

Teorema 5.2. (Nejednakost paralelograma) Neka su A, B,C, D cetiri
tacke prostora. Tada vazi nejednakost

AB? + BC* + CD* + DA* > AC* + BD”.
Jednakost vazi ako i samo ako su A, B, C, D temena paralelograma.

Neke nejednakosti u geometriji mogu se dokazivati prelaskom sa stranica
trougla (a, b, ¢) na pozitivne realne brojeve (x,y, z). Ovakav pristup je pone-
kad pogodan, jer eliminiSe potrebu za eksplicitnim koriS¢enjem uslova da su
a, b, c stranice trougla, budu¢i da su brojevi z, y, 2 bez dodatnih ogranicenja,
osim uslova pozitivnosti.

Neka upisan krug trougla ABC
dodiruje stranice BC,C'A,AB u
tackama D, F, F', redom. Iz jednako-
sti tangentnih duzi je AF = AE =
x, BF=BD=yiCE=CD = z.

Zato imamo da za stranice ovog
trougla vazi

a=y+z;
b=2z+u;
c=x+Yy;
x,y,z > 0.

Slika 2: Trougao ABC sa upisanim Ocigledno vazi i obratno, da ako
krugom vazi gornja veza za brojeve a, b, ¢ da

su onda oni duzine stranica nekog trougla.
Primetimo jo§ i da vazi s =z 4+ y + 2.
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Primer 5.4. Dokazati nejednakost
(a+b—c)b+c—a)(c+a—10b) <abe.
Kada vazi jednakost?

ResSenje: Koriste¢i smenu a = y + 2z, b = 2z + x, ¢ = = + y nejednakost se
svodi na
(= +y)(y + 2)(z + x) = Bryz,

koja sledi direktno iz nejednakosti izmedu aritmeticke i geometrijske sredine
primenjenu na svaku od tri zagrade.
Jednakost vazi ako i samo akojez =y =2z2,tj.a=b=c. 1

Teorema 5.3. (Uopstena nejednakost trougla) Neka je n € N, neka su
U1, Us, . . ., U, geometrijski vektori i neka su x1,xs, ..., x, pozitivni brojevi.
Tada vazi nejednakost

|IL‘1171 + .172172 + . —|— ZEn’Un| S |ZL’1171| —|— |$2172| —f- Ce —|— |ZL‘nUn’

Jednakost vazi ako i samo ako su svi pomenuti vektori kolinearni i istog
smera. Wl

Primer 5.5. Dokazati nejednakost
R > 2r.
Kada vazi jednakost?
Resenje: Po poznatoj Ojlerovoj formuli je
OI* = R(R — 2r),
odakle tvrdenje direktno sledi.
Jednakost vazi ako i samo ako je OI = 0, tj. ako i samo ako je trougao

jednakostranican (tacke O, I su centri opisanog i upisanog kruga, redom). B

Ojlerova formula predstavlja znacajnu ¢injenicu, ali je u ovom radu njen
dokaz izostavljen, buduéi da je u potpunosti geometrijske prirode.
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U nastavku se navode formule koje su korisne pri radu sa geometrij-
skim nejednakostima. Ove formule se izvode primenom geometrijskih me-
toda, najcesce kori¢enjem trigonometrije (sinusne i kosinusne teoreme) ili
Stjuartove teoreme, Ciji se dokaz takode zasniva na kosinusnoj teoremi.

Dakle, formule koje mogu biti od znacaja su:

t2:b2+02_a_2 t2:02+a2_f 2:a2+b2_é
o 2 47 2 47 e 2 4’
2 bc(b—l—c)2 - a2, 2 _ Ca(c—l—a)2 - b2, 2 ab(a+b)2 - CQ’
(b+c)? (c+a)? (a+0b)?
4dabc
P e p—t
7 rs
Primer 5.6. Dokazati nejednakost
2 2 2 > 3 b b
to+t +t > Z(a + be + ca).

Kada vazi jednakost?

Resenje: Koristec¢i formule za tezisne duzi dobijamo

3 3
ﬁ+ﬁ+ﬁ:ﬂf+ﬁ+&zzwﬁw+wx

gde smo koristili poznatu nejednakost u poslednjoj nejednakosti (AG na svaka
dva ¢lana).
Jednakost vazi ako i samo ako jea=b=c. &

Primer 5.7. Dokazati nejednakosti

\/§<\/s—a+\/s—b+\/s—c§\/3_s.

Kada u drugoj nejednakosti vazi jednakost?

Resenje:

a) Dokazimo prvo nejednakost /s < v/s —a+ /s — b+ /s — c. Obe strane
su pozitivne, pa kada kvadriramo nejednakost dobijamo ekvivalentnu

s<s—a+s—b+ts—c+2(vs—avs—b+vVs—bys—ctvs—cVs—a),
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a ova je ekvivalentna sa
0<2(vVs—aVs—b+Vs—by/s—c++/s—c\Vs—a),

koja je ocigledno tacna.

b) Primeni¢emo nejednakost izmedu aritmeticke i kvadratne sredine

_ b+ s—
\/s—a+\/s—b+\/s—c§3\/s a—|—53 ki = V35,

sto je i trebalo dokazati.

Jednakost vazi ako i samo ako je trougao jednakostrani¢an (ovo dobijamo
sredivanjem uslova v/s —a=+vs—b=+/s —¢). i

Slede¢i primer na prvi pogled predstavlja standardan geometrijski zada-
tak, ali se njegovo resavanje zasniva na primeni nejednakosti. Slican fenomen
javlja se i u oblasti nejednakosti izmedu sredina, gde se pojedini problemi,
iako naizgled nevezani za nejednakosti, reSavaju upravo njihovom primenom.
U nastavku se razmatra jedan takav primer.

3
Primer 5.8. Poluprecnik kruga upisanog u trougao je R a obim tog trougla

je 6. Odrediti uglove tog trougla.

Resenje: Povrsinu trougla mozemo izracunati pomocu formule P = rs =
63
23
V/s(s —a)(s — b)(s — ¢). Primeni¢emo nejednakost izmedu aritmeticke i geo-
metrijske sredine (Clan s se izostavlja jer se tako dobija jac¢a nejednakost -
da smo uzeli i s onda jednakost ne bi mogla da se dostigne pa bi nejednakost
bila grublja)

= /3. Takode, po Heronovom obrascu, imamo da je povrsina P =

s—a+s—b+s—c_s

V(s —a)(s —b)(s —c) < 3

3

Sada je (s —a)(s —b)(s —¢) < ;—7, pa je

P=+/s(s—a)(s—Db)(s—c) < s o =
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= /3, tj. jednakost mora da vazi. Ovo je za

2
3
Vidimodaje\/gngsg;/_

s—a=s—b=s—c, tj. a=b=c, pasu uglovi svi jednaki po 60°. &

6 Konveksnost. Jensenova nejednakost

Za izucavanje Jensenove nejednakosti neophodno je poznavati pojam kon-
veksnih, odnosno konkavnih funkcija, kao i metode ispitivanja konveksnosti
funkcije. O tome ¢e biti reci u nastavku.

6.1 Konveksne i konkavne funkcije

Ako je (a, ) interval (na skupu R) i f : (o, ) — R funkcija onda znamo
da je grafik funkcije f skup {(z,y) € R? | z € (a, B) Ay = f(z)}. Intuitivno
bi onda bilo da njen nadgrafik definiSemo kao isti taj skup, samo da drugi
uslov promenimo u y > f(z). Dakle, definisimo nadgrafik.

Definicija 6.1.1. Nadgrafik funkcije f : (a, ) — R jeste skup

{(z,y) eR* [z € (a, ) Ny > f(2)}-

Sada ¢emo definisati konveksnost funkcije.

Definicija 6.1.2. Funkcija f : (o, 5) — R je konveksna ako je konveksan
deo njenog nadgrafika nad poizvoljnim segmentom [a, b] C (o, 3).

Definicija 6.1.3. Za funkciju f : (a, ) — R kazemo da je konveksna ako
za svake dve tacke x1,z9 € (a, ) i svaka dva nenegativna broja A, Ay za
koje je Ay + Ay = 1 vazi

f()\1$1 -+ )\21’2) S )\1f($1) + )\Qf(.fg)

Funkcija f je konkavna ako je funkcija — f konveksna, tj. ako vazi

f<)\1x1 -+ )\21’2) Z )\1f($1) + )\Qf(.fg)

Ako za x1 # xo jednakost vazi samo za A\ Ay = 0 onda je funkcija f strogo
konveksna (konkavna).

64



Ispitivanje konveksnosti funkcije na osnovu ove definicije jeste moguce, ali
u praksi ¢esto nije efikasno. Kod slozenijih funkcija takav pristup moze biti
vremenski zahtevan, pa se u narednoj glavi razmatra jednostavniji i prak-

6.2 Konveksne (konkavne) i diferencijabilne funkcije

Razmatraju se funkcije koje su istovremeno konveksne (odnosno konkav-
ne) i diferencijabilne. Izmedu pojmova konveksnosti i diferencijabilnosti po-
stoji znacajna veza. U tom cilju navode se dve teoreme koje predstavljaju
efikasan alat za ispitivanje konveksnosti diferencijabilnih funkcija.

Ove teoreme se navode bez dokaza, buduéi da se njihovi dokazi ne zasni-
vaju na nejednakostima, ve¢ na metodama diferencijabilnog racuna, koji ne
predstavlja osnovni fokus ovog rada.

Teorema 6.2.1. Neka je f : (o, f) — R diferencijabilna funkcija. Funkcija
f je konveksna (strogo konveksna) ako i samo ako je funkcija f’ rastuca
(strogo rastuca). Sli¢no, funkcija f je konkavna (strogo konkavna) ako i samo
ako je funkcija f’ opadajuéa (strogo opadajuca). B

Teorema 6.2.2. Neka je f : (a,) — R funkcija koja u svakoj tacki
intervala («, §) ima drugi izvod. Funkcija f je konveksna (konkavna) ako i
samo ako je funkcija f(z) > 0 (f"(x) <0), z € (a, #). Ako su nejednakosti
stroge onda je f strogo konveksna (strogo konkavna). ll

Ove teoreme su od izuzetnog znacaja pri ispitivanju konveksnosti funkci-
je. Zasto nam je konveksnost bitna vide¢emo u slede¢em delu o Jensenovoj
nejednakosti.

6.3 Jensenova nejednakost

Sadrzaj ove glave bio je usmeren ka uvodenju i razumevanju Jensenove
nejednakosti. Jensenova nejednakost predstavlja izuzetno znacajno sredstvo
za opSte procenjivanje izraza i nalazi Siroku primenu i izvan oblasti klasi¢nih
nejednakosti. Zbog svoje opstosti i snage, ona zauzima vazno mesto u teoriji
nejednakosti.

Teorema 6.3.1. (Jensenova nejednakost) Neka je f : (a,5) — R
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konveksna funckija i neka su Aq, Ag, ..., A, nenegativni brojevi za koje vazi
A+ A2+ ...+ A\, = 1. Tada za sve brojeve zy,x9,...,2, € («a,[) vaz
nejednakost

Ako je f strogo konveksna, jednakost vazi ako i samo ako je 11 =z = ... =
x, ili je tacno jedan A; jednak 1, i € {1,2,...,n}. Za konkavne funkcije vazi
analogno tvrdenje (samo je nejednakost suprotna).

Dokaz: Tvrdenje dokazujemo matematickom indukcijom po n.

e Baza indukcije: Za n = 2 se tvrdenje svodi na definiciju konveksne
funkcije, te i vazi (funkcija f je konveksna po pretpostavci).

e Indukcijska hipoteza: Neka tvrdenje vazi za neko n € N.

e Indukcijski korak: Neka su x; proizvoljni brojevi iz intervala («, (),
a A\; nenegativni brojevi zbira 1, ¢ € {1,2,...,n,n+ 1}. Neka je k =
Ao+ A3+ ..+ N\1. Za k = 0 je tvrdenje ocigledno (tada vazi jednakost).

Az A A
Neka je, dakle, k # 0. Tada su brojevi EQ’ ?3’ o T;:l

brojevi ¢iji je zbir jednak 1, pa, po indukcijskoj hipotezi, vazi

nenegativni

Fam + Azo + ..o 4+ A1 Tntr)

A An
= f <)\1£€1 -+ k (?233’2 + ..+ T+1In+1)>

A An
S )\1f<l’1) + kf (?21’2 + ...+ T+1$n+1>

A2

<A f(x)+k (zf(%) +...+ )\zrlf(xnﬂ))

= A f(z1) + X f(22) + .o+ A f(Tng1)-

Tvrdenje je dokazano matematickom indukcijom.

Jednakost vazi (za strogo konveksne funkcije) ako i samo ako je 1 = xo =
... =x, ili je tacno jedan \; jednak 1,7 € {1,2,...,n}. Za konkavne funkcije
se tvrdenje dokazuje analogno.
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Primer 6.3.1. Dokazati teoremu 3.2.

Dokaz: Dokazimo da je funkcija My, (21, x9, . .., x,) rastuca po k. Fiksirajmo
X1,%a,...,2T,. Neka je a > b > 0, tada je % > 1, pa je funkcija f(z) = @
strogo konveksna na x > 0, jer joj je drugi izvod f”(x) = %(% —1Dat72 > 0.

Primenjujemo Jensenovu nejednakost
1 b 1 b 1 b
- - e >
nf(x1)+nf(x2)+ +nf(:z;n)_f<

e R (xl{—i—xg—i—...—i—xfl)b

4ab+. .+l
n

>

n n

b b b
i/a:‘f#—xg—l—...#—xfl S i/xl—i—xQ—l—...—i—xn.
n o n
Jednakost vazi, po Jensenovoj nejednakosti, ako i samo ako je x1 = xy =

... = Xp, Sto zavrsava dokaz. B

Primer 6.3.2. Neka su aq, as, .. ., a, pozitivni realni brojevi za koje je a; +
as + ...+ a, = 1. Dokazati nejednakost

n
a; n

;1+a1+a2+'“+ai1+ai+1+--.+an —om—-1

Kada vazi jednakost?

Resenje: Sumu sa leve strane mozemo pojednostaviti koristeci uslov o zbiru

n n
Q; Q;

izl1—|—a1+a2+...+a,~_1—|—az~+1+...+an —ZZIQ_GZ

Ovde je Jensenova nejednakost zgodna iz par razloga. Prvi razlog je to sto
vidimo da svaki sabirak zavisi samo od jedne promenljive, te mozemo posma-
trati funkciju jedne promenljive i direktno primeniti Jensenovu nejednakost.
Drugi razlog je to Sto imamo uslov o zbiru, sto moze da nas motivise da za

tezine uzmemo upravo brojeve ai, as, ..., ay.

1

Posmatrajmo, dakle, funkciju f(z) = 5 za x € (0,1). Ispitajmo sada
-

konveksnost koristeci teoremu 6.2.2.:

f'(@) = (f @) = (%) -Gy 20

(2—x
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Sto znaci da je funkcija f konveksna na intervalu (0,1). Koristeéi Jenseno-

vu nejednakost na funkciju f i sa tezinama aq,as, ..., a, dobijamo slede¢u
nejednakost.
arf(ar) + axf(az) + ... +anflan) 2 flai + a3 +.. . +ay) (%)

Primetimo da je funkcija f rastuca, tj. vazi z >y = f(z) > f(y). Zelimo da
ograni¢imo izraz a3+a3+. . .+a? odozdo, §to radimo pomoé¢u AK nejednakosti

\/a%+a§+...—|—ai S @tat.. . ta, 1
n - n n’
a odavde dobijamo
2, 2 2 o 1
Koriste¢i ovo, ¢injenicu da je f rastuca i (x) dobijamo
SN 1 1 n
> fla*ras+ ... +ad)> f(-) = =
;2_% > flal+az+... +ap) > f(-) = 501 = 53—
sto je i trebalo dokazati.
1
Jednakost vazi ako i samo ako jea; =a,=...=a,=—. R
n

Napomena. Prosli primer smo mogli i da resimo posmatrajuéi funkeiju f(x) =

5 i Jensenovu nejednakost sa tezinama \; = Ay = ... = A\, = —. Sli¢ne
_r n
napomene vaze za joS neke navedene primere koji slede.

Slede¢i primer ukazuje na to da moze biti bitno ako uoc¢imo da je nejed-
nakost homogena i Sta mozemo sa tim raditi. U dosta sluc¢ajeva nam to moze

pomodi u resavanju.

Primer 6.3.3. Dokazati da za pozitivne brojeve x,y, z vazi nejednakost

LS R SN S P
—\r Z).
Vytz Vetaxr o Jrfty o V2 4

Kada vazi jednakost?
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Resenje: Da bismo resili ovaj zadatak koristicemo osobine homogenih ne-
jednakosti. Ova nejednakost je homogena jer su stepeni obe strane jednaki (i

to su jednaki po =). Ovo znaci da mozemo nametnuti uslov sa ciljem da na

olaksa resavanje zadatka. Ovde konkretno se moze uzeti da je x +y + z = 1.
Ovo je opravdano, jer skaliranjem nejednakost za k (z — zk, y — yk,
2z — zk), vidimo da ¢e se broj k skratiti (upravo jer je nejednakost homoge-
na), te se zaista ne gubi na opstosti kada pretpostavimo da je z +y + 2z = 1.
Tada se nejednakost moze zapisati u obliku

T + Y n z >\/§
Vi—z VJ1-y Vi—z V2

Zbog nametnutog uslova o zbiru prirodno je posmatrati funkciju f(t) =

1
———,zat € (0,1). Racun izvoda nam daje f"(r) = ———— > 0,
V1—t (0,1) (@) 4/(1 —t)°
pa je f konveksna. Primenjujemo Jensenovu nejednakost na funkciju f sa
tezinama x, vy, 2:

x Y z

\/1—m+\/1—y+\/1—z

= of(x) +yf(y) +2f(z) > f(&® +y° + 2°)

> f(%)z \/g

Sto je i trebalo dokazati. U poslednjoj nejednakosti smo opet koristili, sli¢no
kao u proslom primeru, nejednakost izmedu aritmeticke i kvadratne sredine.
Jednakost vazi ako i samo akojez =y =2.

Primer 6.3.4. Dokazati da za pozitivne brojeve a, b, ¢ vazi nejednakost

a b c
+ + > 1
Va2 +8bc Vb2 +8ca 2+ 8ab

Kada vazi jednakost?

Resenje: Nejednakost je homogena pa pretpostavljamo da je a +b+ ¢ =
1. Ovo radimo sa ciljem da nam brojevi a,b, ¢ budu tezine. Posmatrajmo

1
funkciju f(z) = —,
NG

za koju se brzo proveri da je konveksna (f”(x) =
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4\37) > 0). Primenom Jensenove nejednakosti na ovu funkciju i tezine a, b, ¢
x

dobijamo

a b c
+ +
Va2 +8be Vb2 +8ca V2 + 8ca
= af(a® + 8bc) + bf (b* + 8ca) + cf(c* + 8ab)
1
a3 + b3 + 3 + 24abe

> f(a® +b* + & + 24abe) =
> ! =
“(a+b+c)P

Y

sto je i trebalo dokazati. Poslednja nejednakost se dobija prostim razvijanjem
i koris¢enjem AG na sledeé¢i nacin
(a+b+c)P = a®+b+ &+ 6abe+ 3(ab + ab® + b*c + b + Pa + ca?)
> a® + b+ A + 24abe.
Jednakost vazi ako i samo ako je a = b = ¢, to lako proveravamo izjed-

nacavanjem u AG (uslov jednakosti u Jensenovoj nejednakosti je ovde malo
nezgodan). l

Primer 6.3.5. Dokazati nejednakost iz primera 3.9. Jensenovnom nejedna-
koscéu.

Resenje: Vec¢ je dat uslov a + b+ ¢ = 1, te namesStamo da su nam to tezine.
Posmatrajmo funkciju f(z) = /z, koja je konkavna na x > 0. Po Jensenovoj
nejednakosti je

avVl+b—c+bVl+c—a+cVl+a—0b
=af(l+b—c)+bf(1+c—a)+cf(l1+a—10)
< fla+b+ec)=1,
Sto je i trebalo dokazati.
.l

W

Jednakost vazi kada je 1 +b—c=14c—a=1+a—Db,tj.zaa=b=c=

Primer 6.3.6. Dokazati da za pozitivne brojeve a, b, ¢ vazi nejednakost

a+b b+c c+a
+ + > 24/3(a+ b+ c).
Ve T g 2RV )
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Kada vazi jednakost?

Resenje: Nejednakost je homogena pa ¢emo pretpostaviti da je a+b+c = 1.
Dovoljno je, dakle, dokazati nejednakost

l1—a 1—-b 1-c¢
+ + > 24/3.
va o Vb o We T

1—
Posmatrajmo funkciju f(z) = \/_I za x € (0,1). Racun drugog izvoda
T
43

nam dokazuje da je funkcija f konveksna (f”(z) = e > 0). Po Jensenovoj
nejednakosti je

1—a+1—b+1—c_
va o Vb e

Sto je i trebalo dokazati.

Jednakost vazi ako i samo ako jea=b=—c. &

3

Fla) 4 FB)+(e) = 3f (*—“)

Primer 6.3.7. Neka su a,b, ¢ pozitivni brojevi za koje je a + b+ ¢ = 3.
Dokazati nejednakost
a? b? c?

1—|—bc+1+ca+1—|—ab

3
> —.
-2

Resenje: Svaki sabirak se podesava tako da predstavlja funkciju jedne pro-
menljive. Postupak je sledeci
a? b? c? a? b c3
1+bc+ 1+ca+ 1+ab a+abc+ b+abc+ ¢+ abc’

3

i sada posmatramo funkciju f(z) = za x € (0,3). Racunanjem dru-

x + abc
gog izvoda dobijamo da je f konveksna (f"(x) = 2’”(3“217;%263‘;?,“”2) > 0). Po

Jensenovoj nejednakosti je

o a ¢ a+b+c
1+bc+1+ca+1+ab = f(a>+f(b>+f(c)23f<T>:3f(1)
3
" 1+abe
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Dovoljno je, dakle, dokazati nejednakost

3
1+ abe

3
> —.
-2

b : b+c\’
Primenom AG dobijamo % > Vabc, tj. abc < (%) =1, sto
dokazuje gornju nejednakost i zavrsava dokaz.

Jednakost vazi ako i samo akojea=b=c=-. 1

W

Primer 6.3.8. Dokazati da za pozitivne brojeve a, b, ¢ vazi nejednakost

a b c a+b+c
+ + > .
9%c+1 9ca+1 9ab+1~ 14 (a+b+c)?

Kada vazi jednakost?

. . . . .. a
Resenje: Slicno kao u proslom primeru, pomnozimo razlomke sa —, b odno-
a
2

SNo sa E, redom, i posmatrajmo funkciju f(z) = _r za x > 0. Funkcija
c 529612602+ x
162a°b
f je konveksna jer je drugi izvod f”(z) = m > 0, za a,b,c,z > 0.
Po Jensenovoj nejednakost je
<a +b+ c> 2
a+b+c 3 (a+b+c)?

b >3f|——— ) =3 = .

fayrib)rile) = f( 3 ) a+b+c a+tb+tect2Tabe
9abc + —

(a+ b+ c)? S a+b+c

a+b+c+27abc — 14 (a+b+c)?
§to se, nakon unakrsnog mnozZenje, svodi na (a + b+ ¢)® > 27abe, §to sledi iz

obicne AG.
Jednakost vazi ako i samo ako jea=0=c. R

Dovoljno je, dakle, dokazati nejednakost

6.4 Jensen-konveksne funkcije

Jedna forma Jensenove nejednakosti moze se primeniti na funkcije koje
nisu konveksne, ve¢ zadovoljavaju slabiji uslov poznat kao Jensenova konvek-
snost. Ovaj slabiji uslov definisan je na slede¢i nacin.
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Definicija 6.4.1. Funkcija f : (o, 5) — R je Jensen-konveksna na intervalu
(e, B) ako za svake dve tacke 1, x5 € (o, B) vazi

[ (@) + [ (22) > ¢ (551 +932> ‘
2 - 2
Funkcija f je strogo Jensen-konveksna ako vazi stroga nejednakost. Analogna
definicija vazi za Jensen-konkavne funkcije.
Za Jensen-konveksne (Jensen-konkavne) funkcije vazi odredeni oblik Jen-
senove nejednakosti koji je naveden slede¢om teoremom.

Teorema 6.4.1. Ako je funkcija f : («, ) — R je Jensen-konveksna, onda

za sve T'1, T, ..., T, € (a, ) vazi nejednakost
f($1)+f(l’2)+...+f(l’n) >f<x1+x2+...+$n>
n = n :

Ako je f strogo Jensen-konveksna, jednakost vazi ako i samo ako je x; =
Tog = ... = Tp.

Dokaz: Dokaz je slican dokazu obi¢ne Jensenove nejednakosti, pomocu in-
dukcije. B

U nekim slucajevima lakse je dokazati da je funkcija Jensen-konveksna,
jer tada navedeni oblik Jensenove nejednakosti omogucava direktno resavanje
problema. Generalno, oblik Jensenove nejednakosti iz Teoreme 6.4.1. se cesto
koristi, te je cesto praktic¢nije dokazati slabiji uslov Jensen-konveksnosti nego
punu konveksnost funkcije. Postoje funkcije koje su Jensen-konveksne, ali
nisu konveksne; za takve funkcije jedini na¢in primene Jensenove nejednakosti
jeste kroz ovaj slabiji uslov. Ovaj oblik moze se zapamtiti kao specijalni slucaj
opste Jensenove nejednakosti, kada su sve tezine jednake, tj. Ay = Ay = ... =

A, = —. Naravno, zbog toga, ovaj oblik Jensenove nejednakosti se moze

koristit?i kada dokazemo da je funkcija konveksna, jer je ona tad i Jensen-
konveksna.

Stavise, jedina stvar koja razlikuje konveksne i Jensen-konveksne funkcije
jeste neprekidnost. Dakle, ukoliko je neka funkcija Jensen-konveksna (strogo
Jensen-konveksna) i neprekidna, onda je ona konveksna (strogo konveksna).
Naravno, vazi isto tvrdenje i za konkavne (strogo konkavne) funkcije. Ovo
izlazemo kao ¢injenicu, bez dokaza, jer se u takmicarskim zadacima retko
koristi, ali je korisno za precizno razumevanje pojmova..
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6.5 Nejednakosti izmedu tezinskih sredina

Tezniske sredine se mogu shvatiti kao uopstenje obi¢nih sredina.
Tezinsku sredinu reda k definiSemo na sledec¢i nacin.

Definicija 6.5.1. Neka su z1,x9,...,2, 1 Ai, \y,..., A\, (n € N) pozitivni
brojevi za koje vazi da je Ay + Ao + ...+ A\, = 11 neka je £ € R. Tada
je tezinska sredina reda k brojeva i, Ts,...,x, sa tezinama A, Ao, ..., A\,

definisana sa
A1 A2 A _
[ A A k=0

ek + Xoxk . N2k, k#£0

M (A, Aoy ooy \) (21, T2y oy 2) = {

Primetimo da je ovo zaista uopstenje obi¢nih sredina - ako uzmemo \; =

1
Ao =...= )\, = —, onda dobijamo obi¢nu sredinu reda k.

I ovde vaze sli¢ne teoreme kao i kod obi¢nih sredina, pa ¢emo ih navesti.

Teorema 6.5.1. Funkcija f(k) = My (A1, Ao, ..., A\n) (21, 22, ..., x,), pri ozna-
kama i uslovima iz prethodne definicije, ima slede¢a svojstva:

1) f(k) je neprekidna u tacki k = 0;
2) min{xy, za, ..., 2.} < f(k) < max{zy, xs,...,2,};
3) lim f(k)=max{xy,xe,...,2,};

k—-+o0

4) lim f(k) = min{zy,zq,...,2,}.

k——o0

Dokaz: Ovo tvrdenje se dokazuje jako slicno odgovarajuéem tvrdenju za
obicne sredine (teorema 3.1.), te dokaz prepustamo ¢itaocu. W

Sledeé¢e tvrdenje je centralno za nas rad i predstavlja oblik Jensenove
nejednakosti koji ¢e se najéesce primenjivati u zadacima koji se razmatraju.

Teorema 6.5.2. (Nejednakosti izmedu tezinskih sredina) Neka su
T1,%2, ..., Tp 1 A, Ae, ..., A, (n € N) pozitivni brojevi za koje vazi da je

M+ A+...+ A, =1inekasua,be R. Tada vazi

(I>b:>Ma()\l,)\g,...,An)(1‘1,232,...,I'n) ZMb()\l,)\Q,...,)\n)([L’l,l‘g,...,l’n).

74



Jednakost vazi ako i samo ako je 11 = x5 = ... = x,.

Dokaz: Dokaz je jako slican dokazu teoreme 3.2. Primenjujemo Jensenovu
nejednakost na tezine Ay, Ag, ..., A,. B

Primer 6.5.1. Dokazati nejednakosti iz primera 4.1.3. pomoc¢u nejednakosti
izmedu tezinskih sredina.

Resenje: Koristedi tezinsku AG nejednakost dobijamo (svi brojevi su, zbog
uslova, manji od jedinice pa su svi eksponenti pozitivni)

1—zi4q

1 Tit1 1T _
i =1 ’+1l’i B Tiy1 + SCZ(1 — $i+1) =i+ Tijr1 — TiTig1.

Nakon ovoga se zadatak zavrsava isto kao i u resenju primera 4.1.3., sabiramo
sve ove nejednakosti, zanemarimo negativan deo i koristimo uslov o zbiru. B

Primer 6.5.2. Dati su brojevi a,b,c,d za koje vazia > b >c>d > 01
a+ b+ c+ d=1. Dokazati nejednakost

(a+ 2b+ 3¢+ 4d)abced? < 1.
Resenje: Na osnovu tezinske AG vazi
a®’ctd? < a? + b+ A + &,
pa je dovoljno dokazati nejednakost
(a+2b+3c+4d)(a®> +b* + 2 +d*) < 1.

Ako napisemo 1 = (a+b+ c+d)? i razvijemo obe strane gornje nejednakosti
dobijamo

(a+b+c+d)?=(a+3b+3c+3d)(a® + b+ + d°)
+2(a — b)b* + 2(a — ¢)c® + 2(a — d)d* + 6(abc + bed + cda + dab)
> (a + 2b + 3c + 4d)(a® + b* + & + d?),

sto je i trebalo dokazati. B
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7 Poznate nejednakosti

U ovoj glavi ¢emo spomenuti najpoznatije i najkorisnije nejednakosti.

7.1 Nejednakost Kosi-Svarc-Bunjakovski

Teorema 7.1.1. (Nejednakost Kosi-Svarc-Bunjakovski) Neka su a;,
ag, ..., ap 1 by, b9, ..., b, realni brojevi. Tada vazi nejednakost

(a2 4+a3+...+a®) (b2 +b3+...+02) > (a1by + aghy + ...+ apby,)’.

Jednakost vazi ako i samo ako postoji realan broj k takav da je a1 = kb, as =

k’bg, e, Qp = k’bn
Dokaz: Dokaz (i opstije tvrdenje) je dokazano u primeru 4.1.5. B

Nejednakost Kogi-Svarc-Bunjakovski je verovatno jedno od najmoénijih
oruzja, uz nejednakosti izmedu sredina i Jensenove nejednakosti. Pogledajmo
par primera gde je mozemo primeniti.

Primer 7.1.1. Uraditi zadatak iz primera 6.3.8. pomoc¢u nejednakosti Kosi-
Svarc-Bunjakovski.

Resenje: Primenimo nejednakost Kosi-Svarc-Bunjakovski na ovaj nacin (ovaj
pristup je pogodan jer se izrazi u razlomcima pojednostavljuju, a na desnoj
strani se dobija oblik koji omoguc¢ava jednostavnije algebarsko manipulisa-

nje):
(Z a(9be + 1)) (Z 9bca~|— 1) > (a+0b+c)?,

cyc cyc

pa odavde sledi da je

Z “ (a+b+c¢)?  (a+b+c)?
9bc+1_Za(gbc+1>_a+b+c+27abc'

cyc

cyc

Dovoljno je dokazati

(a+b+c)? . _ atbte
a+b+c+27abc — 1+ (a+b+c)?
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ali ovo sledi iz AG nejednakosti (isto kao u resenju primera 6.3.8.).
Jednakost se proverava iz uslova jednakosti u AG (tako je najlakse) i dobija
se da vazi ako i samo ako jea=b=c. &

Primer 7.1.2. Dokazati da za pozitivne brojeve x,y, z vazi nejednakost

Y @+ )V +a)(z+y) > Aoy +yz + 2x).

cyc

Kada vazi jednakost?

Resenje: Primenimo nejednakost Kosi-Svarc-Bunjakovski na slede¢i nacin,
sa idejom da nestane koren:

\/(z~|—x)(z+y)22+\/@.

Koristec¢i dve analogne nejednakosti pocetan izraz ogranicavamo ovako

Z(m + )V (z+2)(z +y) > Z(:cz +yz+ (x +y)Jry) > d(ry+yz+z22),

cyc cyc

gde smo u poslednjoj nejednakosti iskoristili AG.
Jednakost vazi ako i samo ako jez =y = 2.

Primer 7.1.3. Neka su x, y, z pozitivni brojevi za koje vazi xy + yz 4+ zo =
x +y + z. Dokazati nejednakost

1 1 1
<1
x2+y+1+y2+z+1+22+x+1 -

Kada vazi jednakost?

Resenje: Primenimo nejednakost Kosi-Svarc-Bunjakovski na sledeéi nacin
(+y+ DA +y+2°) > (@ +y+2)°,

pa je
1 1+y+ 22
2+y+1" (z+y+2)?2
Sabiranjem ove i dve analogne nejednakosti dobijamo

1 N 1 N 1 <x2+y2+z2+x+y+z+3
24+y+1 2 4+z+1 24+2+17 (x+y+2)? '
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Ostaje da dokazemo

2?4y + 22 +:L‘+y—|—z+3

(x 4y + 2)? =1,
sto je ekvivalentno sa (koristimo uslov)
r+y+z2>3.
Ovo sledi iz )
r+tytz=zytyz+zx< W,

gde smo iskoristili poznatu nejednakost na poslednjem mestu (ekvivalentna
je sa x? +y* + 22 > zy + yz + zx) Sto zavrSava dokaz.

Jednakost vazi ako i samo ako je r = y = z = 1 (to najlakse vidimo iz posled-
nje nejednakosti, ali moramo da proverimo tako da vratimo u pocetnu). H

7.2 Helderova nejednakost

Helderova nejednakost se moze shvatiti kao uopstenje nejednakosti Kosi-
Svarc-Bunjakovski. Ove dve nejednakosti su bas zato i jako sli¢ne i imaju
slicne primene sa zajednickim idejama.

Teorema 7.2.1. (Helderova nejednakost) Neka su ay,, as,, . . . ax, konaéni
nizoviﬁpozitivnih brojeva iste duzine i Ay, g, . .., A\x pozitivni brojevi za koje
je A1+ Ao+ ...+ A\p = 1. Tada vazi nejednakost

A A A
(a11+a12+ Aap) M ag, Fag, + .. +ag,)? (A Fag, + .. Fag,) >
A1 A2 Ak Ak
ay, as; - ak1 + a12a22 coeQp) T+ al a2 N
Jednakost vazi ako i samo ako je zadovoljena produzena proporcija

A1, TQ1y ...y, = Aoy Ay ... iAo, = .. = Ay C Ay (..t O

1 n

Dokaz: Nejednakost je homogena po svim promenljivama. Neka je zato, bez
gubljenja opstosti,

a11+a12—|—...+a1nICL21+CL22+...—|—CL2nI...ICLkl—l—CLkQ—i—...—Fakn:1.

4Kada se pri¢a o nizovima obi¢no se podrazumeva da je élanova niza beskonaéno mnogo,
ali ovde ¢emo podrazumevati kao da ih je kona¢no mnogo, te ih i nazivamo ”konacni
nizovi”
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Nejednakost se tada svodi na

)\1 )\2 >\k )\k
ay; as; . +a12a22 coeap +a1 a2 capt < 1

Ovo dokazujemo primenjujuéi nejednakost izmedu tezinske aritmeticke i geo-
metrijske sredine

A1 A2 Ak A1l /\2 Ak
ap, ay; .- +a12a22. A, + ..o Fay ag; . ag
S )\16L11 + )\Qagl Ce /\kakl + )\1&12 + )\2@22 e )\kakz + ...+

+ \aq, + Aeag, + ... + Agay,

=M(ay, +ay, +...4+a,)+ N(ag, +ag, +...+as,)+...+
+ Me(ag, + ag, + ...+ ay,)

=M+ X+ .+ =1,

Sto je i trebalo dokazati.

Jednakost vazi kada su svi ¢-ti ¢lanovi zagrada medusobno jednaki. Pretpo-
stavili smo da su svi zbirovi jednaki, ali generalno ne moraju da budu pa
zato jednakost vazi ako i samo ako je a1, 1@y, ... a1, = a9, ‘Gz, ;...
Ay, = ... =0, A, * ... a,. W

n n

Na prvi pogled, ova nejednakost moze delovati slozeno, ali ona predsta-
vlja logi¢no uopstenje Kosi-Svarc-Bunjakovski nejednakosti (zaista, uzima-

juti k = 21 M\ = A = 3 nakon kvadriranja se dobija izvorni oblik te

nejednakosti).

Primer 7.2.1. Dokazati nejednakost iz primera 6.3.4. pomoc¢u Helderove
nejednakosti.

Resenje: Primenimo Helderovu nejednakost na sledec¢i nacin

3 a 3 ) 3
_— a(a” + 8bc >a+b+ec,
(Z va? + 8bc> <; Va2 + 8bc> (; ( )) -

cyc

odakle sledi da je dovoljno dokazati
(a+b+c)*>a®+ b+ 4 24abe,

ali ovo sledi prostim razvijanjem leve strane i primenom AG.
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Jednakost vazi ako i samo ako jea=b=—c. &

Vidimo da ova nejednakost moze biti jako moc¢no oruzje za resavanje ne-
jednakosti (setimo se da je resenje Jensenovom nejednakoséu komplikovanije
i duze). Ovde je ideja bila da se imenioci izgube, a u treéoj zagradi smo
izraze pomnozili sa a jer onda na desnoj strani dobijamo lep zbir, ovako bi

eksponent bio 3

7.3 Nejednakost Minkovskog

Nejednakost Minkovskog bi trebalo da asocira na nejednakost trougla, te
se tako moze i lako zapamtiti.

Teorema 7.3.1. (Nejednakost Minkovskog) Neka su ay,,as., ... ay, ko-
nacni nizovi pozitivnih brojeva iste duzine i p > 1. Tada vazi nejednakost

n n

? Zai%— 4 iagi—l—...—k P iaﬁi > r Z(ali—i—agi—i—...—l—aki)p.
i=1 i=1

i=1 =1

Za p < 1 vazi suprotna nejednakost.
Jednakost vazi ako i samo ako je p =1 ili

A1, Quy P ... 1A, = A2, (A2t ... 1Ay, = .= kg Oyt Qg

Dokaz: Dokazimo da nejednakost vazi za 2 niza. Imamo

n

Z(xz + i)’ = Xn: zi(z; + yi)P T+ Z”: yi(zi + )Pt

i=1 i=1 i=1
Kada primenimo Helderovu nejednakost na oba sabirka sa desne strane do-
bijamo

1 p=1
Z(xi +y) < <Z 1’?) <Z($z + yz’)p>
i=1

i=1 =1
p—1

(&) (Beewr)
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p—1
n P

Deljenjem sa Z(mZ +ui)? dobijamo trazenu nejednakost. Generalna
i=1

nejednakost se dokazuje lako indukcijom - samo koristimo ovu dokazanu ne-

jednakost na po 2 sabirka. l

Primer 7.3.1. Dokazati da za realne brojeve aq, as, . .. a, vazi nejednakost

\/a%+(1—a2)2+\/a3+(1—a3)2+ A+ +(1—al)2>M

Resenje: Koristimo nejednakost Minkovskog na pozitivne brojeve |a;], |az|,
, |an| 1 na brojeve |1 — as|, |1 — asl,...,|1 — a;|, a zatim koristimo nejed-
nakost izmedu aritmeticke i kvadratne sredine

\/ + (1 — ag)? +\/a2 +(1—az)?+...++v/a2+(1—ay)?

2\/(!a1|+!a2|+---+\an\) + (11— az| + |1 —as| + ...+ |1 — a])?
S lat| + Jas| + ... 4 |an| + |1 —ao] + |1 —ag| + ... + |1 — a4

V2

n n\/§
> ==
V2 o2
U poslednjoj nejednakosti smo iskoristili nejednakost trougla. Ovime je dokaz

zavrsen. W

Primer 7.3.2. Dokazati da za pozitivne brojeve a, b, ¢ za koje je a+b+c =3
vazi nejednakost

a2+ +1 P+ +1 A+4+a?2+1
+ + > 3/3.
vV 2+ 2ab va? + 2be Vb2 + 2ca

Kada vazi jednakost?

Resenje: Na osnovu nejednakosti Kogi-Svarc-Bunjakovski je

(Z —QQ—;E}:;;> (Z \/02+2ab) > (Z \/a2—|—b2—|—1>

cyc cyc cyc
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Iz nejednakosti izmedu aritmeticke i kvadratne sredine imamo

b 2
S Ve T 2ab <3 w_s\/ﬁ.

cyc

Iz nejednakosti Minkovskog je

Y Va1 +1>2(a+b+0)?+9=3V3

cyc

Iz ove tri nejednakosti sledi trazena.
Jednakost vazi ako i samo akojea=0=c=1. 1

7.4 Lema o permutacijama. Cebisevljeva nejednakost

Teorema 7.4.1. (Lema o permutacijamaﬂ) Neka su x1,xo, ..., 25 1 Y1, Yo,
.., Yp realni brojevi za koje vazi x4 > 20 > ... > X, iy > Y > ... > Yy
neka je o proizvoljna permutacija skupa {1, 2, ..., n}. Tada vaze nejednakosti

n n n

Zwiyi > inya(i) > Z%ynﬂﬂ'-

i=1 i=1 i=1
Ako je x1 > x5 > ... > 1, jednakost vazi ako i samo ako je yni1-i = Yo()
za desnu nejednakost, odnosno y; = y,(;) za desnu nejednakost, za svako 1 =
1,2,...,n. Ako to ne vazi onda jednakost vazi u sluéaju r1 =z, = ... = x,,.

n
Dokaz: Neka je S(0) = Z T;Yo(i), za neku permutaciju o skupa {1,2,...,n}.
i=1
Posto je permutacija bilo kog konac¢nog skupa kona¢no mnogo onda postoji
neka permutacija 7 za koju je ona suma najvec¢a moguca. Dokazacemo da je
to permutacija 7 (i) =i, za svako i = 1,2,...,n.

Pretpostavimo suprotno, da (i) = i ne vazi za svako ¢ = 1,2,...,n. Posma-
trajmo najmanje a takvo da je m(a) # a. Posto je to najmanji takav broj vazi
7(i) =i, za svako i = 1,2,...,a — 1. Neka je 7(a) = b. Tada je b > a zbog
navedenog i osobina permutacija (permutacije su bijekcije). Takode, postoji
jedinstven broj ¢ za koji je m(c) = a. Za takav broj ¢ ocigledno vazi ¢ > a.

®Negde u literaturi je poznata kao i nejednakost reanziranja.
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Posmatrajmo sada permutaciju w istog skupa za koju vazi w(i) = 7(i) za
svakoi = 1,2,...,a—l,a+1,....,c—1l,c+1,...,niw(a) = a, w(c) = b
Sada bi vazilo

0 < S(m) = S(W) = TaYp + TeYa — TalYa — TeYp = (Ta — Te) (Yo — Ya) < 0,
jer je x. > x4 1 yp > Ya, ali ovo je kontradikcija.

Ako primenimo ovo dokazano na brojeve z; i y;, za i = 1,2,...,n, dobijamo
drugu nejednakost. Ovime je dokaz zavrsen. B

Primer 7.4.1. Dokazati da za pozitivne brojeve a, b, ¢ vazi nejednakost

a n b n c >3
b+c c4+a a+b 2

Kada vazi jednakost?

Resenje: Bez gubljenja opstosti mozemo pretpostaviti a > b > c¢. Tada
oc¢igledno vazi
1 1 1
> > .
b+c c+a a+b
Po lemi o permutacijama vazi

a b c b c a
+ - > - +
b+c c¢c+a a+b " b+c c+a a+d

kao i
a b c c a b

+ + > + + .
b+c c+a a+b b+c c+a a+d
Nakon sabiranja ovih nejednakosti dobijamo trazenu.
Jednakost vazi ako i samo ako jea=b=c. &

Izmedu onih dveju krajnih vrednosti u lemi o permutacijama, osim bilo
koje permutacije, mozemo ograniciti jos jedan zgodan izraz. To nam tvrdi
sledec¢a teorema.

Teorema 7.4.2. (Cebiéevljeva nejednakost) Neka su x1, 2z, ..., 2, 1 Y1,

Yo, - - ., Yp realni brojevi za koje vazi xy > a9 > ... > Xy iy > Yo > ... > Yp.
Tada vaze nejednakosti

n 1 n
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Jednakosti vazi ako i samo ako je zy =20 = ... =2, iliy1 =y = ... = y,.

Resenje: Iz leme o permutacijama imamo

Z Tl = T1Y1 + ToYo + ... + Tpln
i=1

Z Tl = T1Y2 + Tays + ...+ TRl
i=1

Z Tili = T1Yn + T2y + ...+ TplYp—1.
i=1

Sabiranjem ovih nejednakosti dobijamo trazenu.
Uslov za jednakost se lako sredi i dobija se da jednakost vazi ako i samo ako
jeri=x0=...=x, iy =yp=...=y,. 1

Primer 7.4.2. Dokazati nejednakost iz primera 6.3.8. pomo¢u Cebisevljeve
nejednakosti.

Resenje: Bez gubljenja opstosti mozemo da pretpostavimo a > b > ¢. Tada

je
1 1 1

> > .
9%c+1 ~ 9ca+1 ~ 9ab+1

Po Cebisevljevoj nejednakosti je

R S S A TR
9c+1 9ca+1l 9ab+1- 3" D\0ab+1  9be+1 ! 9cat1l)

Po nejednakosti izmedu aritmeticke i harmonijske sredine je

1 1 1 3
> .
9ab + 1 +9bc+1 +90a+1 ~ 3(ab+bc+ca) +1

Koristeéi ove dve nejednakosti dobijamo

a b c a+b+c
+ + > ,
9%c+1 9ca+1 9ab+1 = 3(ab+bc+ca) +1
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pa je dovoljno dokazati

a+b+c S a+b+c
3ab+bc+ca)+1 ~ 1+ (a+b+c)?

Ovo je ekvivalentno sa (a+b+c)? > 3(ab+bc+ ca), odnosno sa a® +b*+c* >
ab + bc + ca, koja vazi.
Jednakost vazi ako i samo ako jea=b=c. &

7.5 Surova i Mjurhedova nejednakost

Surova i Mjurhedova nejednakost zahtevaju nove definicije i pojmove,
tako da ¢emo prvo morati da njih uvedemo.

Definicija 7.5.1. Neka su a = (ay,az,...,a,) 1 b = (by,by,...,b,) dva ko-
nacna niza realnih brojeva. Niz ¢ majorira niz b (u oznaci a > b ili b < a)
ako i samo ako mozemo preimenovati ¢lanove nizova tako da vaze sledeca tri
uslova:

1) ag+as+...+a,=by +by+ ...+ by;
2) a12a222an1b12b222bn,

3) a1+a2+...—|—aizbl+b2—|—...+bi,zasvakoz':1,2,...,n—1.

Na primer, ako imamo nizove a = (1,5,3) i b = (6,1,2) mozemo da
preimenujemo (poredamo) ¢lanove na sledeéi nac¢in a = (5,3,1)1b = (6,2,1)
i odavde mozemo da vidimo da je b > a jer im je zbir isti i jednak 9, vazi
i drugi uslov i vidimo lako da vazi i tre¢i uslov. Ako imamo sada nizove
a=(1,4) i b = (5,2) njih ne mozemo da uporedimo u smislu operacije > jer
im zbirovi nisu isti. Takode, ocigledno je da svaki niz majorira samog sebe.
Definicija 7.5.2. Zbir n! sabiraka oblika xfll xf; coexit (x> 0,0, > 0,280 =

in

1,2,...,n), za svaku mogucéu permutaciju iy, 1is,...,4, skupa {1,2,... n},
oznacavamo sa T'[ay, ag, . .., ay)(T1, T2y . .., Ty).
U zadacima ¢emo koristiti kao oznaku samo T'ay,as, ..., a,| jer éemo

znati o kom nizu je re¢. Kako bi se stekao ose¢aj za ovu novu definiciju
navodimo par primera.
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T[2, 1] — 513'2?/1 +5E1y2 — $2y+$y2

T[1,0,0] = 2920 + 2% 20 + 2% 2" + 2920 + 2% 20 + 2% 2 =z +y + 2
T[1,1,1] = o'yt 2t + 2lyt2t + alylzt 2ty + alylzt + 2ty 2! = 6ayz

Imajmo na umu da za niz od n elemenata moramo da imamo n! sabiraka
(to je broj permutacija skupa sa n elemenata), tako da za niz sa dva elementa
imamo dva sabirka, za niz sa tri elementa imamo 6 sabiraka itd.

Teorema 7.5.1. (Surova nejednakost) Neka su a,b > 0. Tada vazi nejed-
nakost

Tla+ 2b,0,0] + T[a,b,b] > 2T'[a + b, b, 0].
Jednakost vazi ako i samo ako su svi elementi niza jednaki.
Dokaz: Neka su z,y, 2z pozitivni brojevi koji ¢ine niz za koji dokazujemo

nejednakost. Bez gubljenja opstosti mozemo pretpostaviti da je x > y > z.
Tada je

T[a+ 2b,0,0] 4+ Ta,b,b] — 2T [a + b, b, 0]
=2(z(a" — ") (2" = 2") + y*(y° — )Y’ — 2%) + 2 (2" — ") (2" — o))

Dovoljno je dokazati x%(x® — y®)(z® — 2°) + y*(y® — 2°)(y* — 2) > 0. Ovo je
ekvivalentno sa 2™ — yo*° — 2b(z* — y*) > 0. Ovo dokazujemo ovako:

l‘a+b _ ya—l—b _ Zb(l‘a _ ya) > xa—l—b _ ya—l—b _ yb(x“ _ ya> — Ia(Ib o yb) > ().

Jednakost vazi ako i samo ako je x =y = z, Sto se ocigledno vidi. B

Sada ¢emo prikazati primenu Surove nejednakosti. Posebno je vazno na-
glasiti slede¢u nejednakost:

Tla+2b+c,c,c]+Tla+c,b+c,b+¢] >2T[a+b+¢,b+ ¢, (]

koja se dobija direktnom primenom Surove nejednakosti i mnozenjem rezul-
tujuce nejednakosti sa (zyz)°. lako se ne pojavljuju uvek slucajevi sa nulama
u eksponentima, ovaj oblik ostaje znacajan za primenu u takmicarskim za-
dacima.

Primer 7.5.1. Dokazati da za pozitivne brojeve a, b, ¢ vazi nejednakost

a®+ b3+ 4 3abe+ab+be+ca > a’b+ab® + e+ b+ a+ca® +a’ + b2 + 2.
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Kada vazi jednakost?

Resenje: Ako primenimo Surovu nejednakost u obliku 73,0, 0] +77[1,1,1] >
2T2,1,0] dobijamo

o3 4y 28 3wy > 2y 4wyt yPe oyt 4 2P+ 2a?

sto li¢i na nejednakost koju treba da dokazemo. Zato, uvedimo smenu z =
a—1,y=0—1,2z=c— 1. Kada to ubacimo u gornju nejednakost dobijamo
nejednakost iz zadatka.

Jednakost vazi zaa=b=c.

Uz Surovu nejednakost se jako ¢esto nade i Mjurhedova. Ove dve ne-
jednakosti zajedno ¢ine jedno jako moéno oruzje za resavanje homogenih
nejednakosti ili nejednakosti kod kojih mozemo iskoristiti uslov kako bismo
je homogenizovali. Navedimo, dakle, Mjurhedovu nejednakost.

Teorema 7.5.2. (Mjurhedova nejednakost) Neka su a i b nizovi pozitiv-
nih brojeva. Ako je a = b, onda vazi nejednakost

Tla] > Tb).

Jednakost vazi ako 1 samo ako su nizovi a 1 b isti ili kada su svi elementi tih
nizova medusobno jednaki. ll

Jako je bitno napomenuti da se nejednakosti mogu dokazati ovom tehni-
kom samo ukoliko su homogene. Ako nejednakost nije homogena, ona se ne

moze ovako (u potpunosti) uraditi.

Primer 7.5.2. Dokazati nejednakost izmedu aritmeticke i geometrijske sre-
dine.

Resenje: Po Mjurhedovoj nejednakosti vazi

odnosno

(n—DNzy+ 20+ ... +x,) > nlaim9 . 1y,
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odakle sledi AG nejednakost. l

Primer 7.5.3. Dokazati da za pozitivne brojeve a, b, ¢ vazi nejednakost

1+1+1<a8+bg+08
a b ¢~ ad3b3cd

Kada vazi jednakost?

ResSenje: Nejednakost je homogena (stepen leve i desne strane je -1), pa
mozemo da probamo Mjurheda ili Sura. Nakon mnozenja obe strane nejed-
nakosti sa a®b3c® dobijamo

a?b*E + PV + a3 < ad + b8+ &,

odnosno ] ]
§T[3,3, 2] < §T[8,0, 0],

sto vazi na osnovu Mjurhedove nejednakosti jer je (8,0,0) > (3,3,2).
Jednakost vazi ako i samo ako jea=0=c. R

Uslovi o zbiru ili proizvodu umeju da budu jako korisni pri homogenizaciji
(nisu to jedini uslovi koji mogu da budu korisni, ali su oni najjednostavniji).

Primer 7.5.4. Neka su a, b, ¢ pozitivni brojevi za koje je a + b+ ¢ = 1.
Dokazati nejednakost

ab + be + ca > 4(a’b? + b*c? + 2a?) + babe.

Kada vazi jednakost?

Resenje: Koristedi uslov ¢emo nejednakost iz zadatka napraviti homogenom
na slede¢i nacin

(ab+ bc+ ca)(a+ b+ c)® > 4(a*b* + b°c* + c*a®) + Sabe(a + b + ¢),
Sto se nakon sredivanja svodi na
T(3,1,0] > T[2,2,0],

Sto vazi na osnovu Mjurhedove nejednakosti.
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Jednakost vazi ako i samo akojea=b=c=—-. 1

W

Primer 7.5.5. Neka su a, b, ¢ pozitivni brojevi za koje je abc = 1. Dokazati

nejednakost
1 1 1

<
a+b+1 +b+c+1 +c+a+1 -
Kada vazi jednakost?

Resenje: Opet koristimo uslov i to na slede¢i nacin

1 1
a+b+1 _a—i-b—i—(abc)%.

Tada je leva strana stepena -1 (kada zapisemo dve analogne jednakosti), pa
da bi i desna strana bila istog tog stepena treba da zapisemo

1
(abc)s

Nakon mnozenja cele nejednakosti sa

=

(abe)? (a+ b+ (abe)3)(b+ ¢+ (abe)?)(c + a+ (abe)?)

dobija se (nakon sredivanja i potiranja)

5 2 2

T2,1,0] >T |-, =, =

21027553,
Sto vazi na osnovu Mjurhedove nejednakosti.

Jednakost vazi ako i samo akojea=0=c=1. 1

Primer 7.5.6. Dokazati da za pozitivne brojeve a, b, ¢ vazi nejednakost

1 1 1 9
(ab+ be + ca) ((a+b)2 + b+ + (c+a)2> > 7

Kada vazi jednakost?

Resenje: Nejednakost je homogena. Nakon mnozenja cele nejednakosti sa
(a+b)%(b+ c)*(c+ a)? i sredivanja se dobija

AT[5,1,0] — T[4,2,0] + T[4,1,1] — 3T[3,3,0] — 2T7[3,2,1] + T[2,2,2] > 0.
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Ovde se ne moze iskoristiti samo Mjurhedova nejednakost jer izraz T'[2, 2, 2]
nije veéi ni od jednog drugog. Zbog toga ¢emo iskoristiti Surovu nejednakost
na taj i na jos neki izraz. Pogledajmo Surovu nejednakost u obliku koji
smo naveli nakon same teoreme T'[a + 2b + c,c,c] + Tla+ ¢,b+ ¢, b+ ] >
2T[a+ b+ ¢, b+ c,c]. Da bismo na levoj strani dobili T'[2, 2, 2] jedino mozemo
uzeti a = b = ¢ = 1. Tada, po Surovoj nejednakosti, vazi

T4,1,11 4+ T[2,2,2] > 273, 2, 1].
Dovoljno je sada, zbog ovoga, dokazati nejednakost
4T'[5,1,0] — T'[4,2,0] — 377[3, 3,0] > 0.

Medutim, ovo direktno sledi iz Mjurhedove nejednakosti.
Jednakost vazi ako i samo ako jea=0=c. R

Za kraj napomenimo da svaka nejednakost koja je posledica Mjurhedove
moze da se dokaze veStom primenom AG nejednakosti, a neke se ni ne mogu
dokazati Mjurhedovom. Na primer, nejednakost a2+ + 23 > 2%y +y%2+ 2%
ne sledi iz Mjurhedove (Mjurhedova nejednakost radi samo na simetri¢nim

izrazima, a ovaj ovde nije simetrican veé samo ciklican). U tim situacijama i

3 38 NEEREIE
dalje moramo iskoristiti AG: — 4+ — + = > 31/ —— < = 22y itd.
) 3 737 3=V333 " "Y

7.6 Karamatina nejednakost

Sledeé¢e dve nejednakosti vezane su za srpske matematicare. Prva je Ka-
ramatina nejednakost, nazvana po Jovanu Karamati.

Teorema 7.6.1. (Karamatina nejednakost) Neka su a = (a1, as, ..., a,)
i b= (by,bs,...,b,) konacni nizovi realnih brojeva iz nekog intervala (a, ).
Ako je f: (a, ) — R konveksna funkcija i a > b, tada vazi nejednakost

flar) + fla2) + ...+ f(an) = f(b) + f(b2) + ...+ f(bn).

Za konkavne funkcije vazi suprotna nejednakost.
Jednakost vazi (za strogo konveksnu funkciju) ako i samo ako su nizovi a i b
isti. W
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Primer 7.6.1. Dokazati da za pozitivne brojeve aq, ao, ..., a, vazi nejedna-

kost 5 X 5
a a a
L 2 2 >atai .t dl
a2 a3 1

Kada vazi jednakost?

Resenje: Posmatrajmo strogo konveksnu funkciju f(x) = e”. Bez umanjenja

opstosti mozemo pretpostaviti a; > ay > ... > a,. Uvedimo smenu z; =
Ina;, zai=1,2,...,n. Tada vazi x1 > x9 > ... > x,. Lako se dokazuje da
vazl

(3z1 — x9,3x9 — 3, ..., 3%, — 1) = (201,279, ..., 2T,).

Po Karamatinoj nejednakosti je
fBxi—z)+ fBra—x3)+...+ f(Bxy—x1) > f(221) + f(2x2) +. ..+ f(2x,).

Nakon sto vratimo smenu dobijamo trazenu nejednakost.
Jednakost vazi ako i samo ako jea; =ay=...=a,. B

Citaocu se preporucuje da pokusa dokazati nejednakost iz prethodnog
primera primenom Kosi-Svarc-Bunjakovski nejednakosti.

Primer 7.6.2. Dokazati da za pozitivne brojeve a, b, ¢ vazi nejednakost

2V a2 + b2 + 2+vab + be + ca > Va2 + ab + B24+Vb2 + be + 2+ 2 + ca + a?.

Kada vazi jednakost?

Resenje: Bez umanjenja opStosti mozemo pretpostaviti a > b > c¢. Posma-
trajmo strogo konkavnu funkciju f(z) = /z, za x > 0. Primetimo da je
dovoljno da dokazemo

(a®4+ab+b* ¢ +cata®, b +be+c?) = (a> +b*+c*, a* +b* 4+, ab+be+ca),

jer bi tada tvrdenje direktno sledilo iz Karamatine nejednakosti. Lako se
dokazuje da su nizovi opadajuéi (koristimo a > b > ¢). Dalje, vidimo da su
zbirovi ova dva niza jednaki i to jednaki po 2a® + 2b* + 2¢? + ab + bc + ca.
Nejednakosti

a*+ab+b* > a® + b* + ¢
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a2+ab+62+c2+ca+a222(a2+62—|—02)

se trivijalno dokazuju.

Jednakost vazi ako i samo ako je (nakon sredivanja uslova jednakosti prva dva
¢lana oba niza) ¢* = ab i b* = ca. Odavde se (mnozenjem) dobija i a* = bc,
paje abc = a® =0® = c®, odnosnoa=b=c. &

7.7 Petroviceva nejednakost

Jos jedna znacajna nejednakost koja se vezuje za konveksne funkcije je
Petrovi¢eva nejednakost, nazvana po srpskom matematicaru Mihajlu Petro-
vicu (Alasu).

Teorema 7.7.1. (Petrovi¢eva nejednakost) Neka je f : Rf — R kon-
veksna funkcija i neka su x1, xo, ...z, nenegativni brojevi. Tada vazi nejed-
nakost

flx) + flzo) +. o 4 flzn) < flon+ a2+ .+ 2,) + (n— 1) £(0).

Za konkavne funkcije vazi suprotna nejednakost.
Jednakost vazi ako i samo ako su nekih n — 1 brojeva medu brojevima
1, To, ..., T, jednaki nuli.

T )
Dokaz: Nekaje s =21+ 2o+ ...+ x,inekaje \; = —, zai=1,2,... n.
s

Tadaje Ay + Ao+ ...+ A, =1lix; =1 —=XN) -0+ Ns,zai=1,2,....n
Posto je f konveksna imamo da je

flai) < (L =X)f(0) + Aif(s),
zai1=1,2,...,n. Kada saberemo ove nejednakosti dobijamo trazenu.
Jednakost vazi (za strogo konveksne funkcije) ako i samo ako je A; = 0 ili
A; = 1ili s = 0. Svakako, to se svodi na uslov iz teoreme. B
Petrovi¢eva nejednakost se moze dokazati i preko Karamatine.
Dokaz preko Karamatine nejednakosti: Primetimo da je

(x1+ x4+ ... +2,,0,...,0) = (z1,T2,...,T,),
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pa vazi nejednakost

flrr+xe+ ...+ x,)+(n—=1)f(0) > f(z1) + fz2) + ... + f(xy),

sto je i trebalo dokazati. B

8 Prakti¢cna primena i zakljucak

Nejednakosti su Siroko primenljive u situacijama sa razli¢itim ogranic¢enjima,
Sto ih ¢ini korisnim i u slozenijim problemima. Cilj ove glave je da prikaze
primenu nejednakosti na sto jednostavniji nac¢in. U tom kontekstu, predsta-
vicemo dva primera iz prakticne primene.

Prvo ¢emo navesti problem minimalne povrsine. Zamislite da posedujete
firmu koja prodaje hranu ili pi¢a u konzervama (oblika valjka jer je utvrdeno
da je taj oblik najboljiﬁ). Kako biste sacuvali na materijalu zelite da vidite
kakav treba biti odnos poluprecnika i visine valjka da biste imali Sto manju
povrsinu, Sto znaci da ¢ete potrositi manje materijala. Znaci, zelimo da za
zadatu zapreminu odredimo kakav valjak je najbolji sto se tice smanjenja
troskova.

Neka je r poluprecnik valjka, h njegova visina, P njegova povrSina i V
njegova zapremina. Imamo

V = r’th = const,

1 zelimo da izraz
P = 2r%1 + 2rmh

. . . : V L

ima najmanju moguc¢u vrednost. Iz prve veze je h = ——. Ubacivanjem ovoga
r2mw

u izraz za povrsinu imamo

2
P =2 + —V
r

Zelimo da se oslobodimo ¢lanova koji sadrze r da bismo dobili ograni¢enje,
pa zato koristimo AG nejednakost na slede¢i nacin

2V vV Vv
P =2+ " =21 + — + — > 3V2V2r.
r r T

60blik valjka je izdrzljiv pod veéim pritiskom.
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v
Jednakost se dostize za 2r?m = — = rrh, pa je odavde 2r = h. Dakle, trazeni

odnos je h = 2r. Znaci, da bismo bili najefikasniji u proizvodnji, potrebno
je da nam visina valjka bude jednaka precniku. Napomenuéemo samo da se
ovaj rezultat moze lako dobiti primenom diferencijabilnog rac¢una.

U praksi, limenke i konzerve retko imaju upravo ovaj odnos, jer se oblik
bira i prema ergonomskim kriterijumima, odnosno lako¢i drzanja i upotre-
be. Zbog toga se u industrijskoj proizvodnji visina i prec¢nik prilagodavaju
prakti¢nim potrebama, dok minimalizacija povrsine nije jedini kriterijum.

Razmatramo sada problem iz fizike koji nije striktno matematicki.

Ista koli¢ina istog dvoatomskog gasa se nalazi na tri mesta u tri stanja
na adijabati. Ako znamo da je zbir pritisaka gasova u ova tri stanja uvek
konstantan, zelimo da zbir temperatura u ova tri stanja ograni¢imo sa gornje
strane.

Neka su parametri stanja u stanju ¢ jednaki p;, V; i T, i = 1,2, 3. Isko-
risticemo Jensenovu nejednakost na konveksnu funkciju f(z) = 27, gde je

7
v = R Poasonov broj. Imamo

Vi+paVa+psVa’
b1 ‘/vl'y+ D2 V;—i— b3 V;] > <p1 1T P2Va T P3 3> '
Pp1+ P2 + Ps3 p1+ P2 + Ps3 P1+ P2 + Ps3 p1+ P2 + P3

Mnozedi obe strane sa (p; +ps +p3)? = const i koristeéi formulu pV' = n,, RT
dobijamo

(p1+p2 4+ p3) P Vy + 02V + p3Vy) > (nnR)(Th + To + T3).

Odavde dobijamo trazeno ogranic¢enje

1
Nh+T+ T3 < — V(pr+p2 +p3) (VI + p2Vy + p3Vy).
m
Izraz sa desne strane je konstantan zbog uslova zadatka i osobine adijabate
(pV7 = const).
Lako proveravamo da se trazeni maksimum dostize kada su sva tri stanja
ista.

Nejednakosti predstavljaju znacajnu oblast matematike, sa primenom u

razlicitim disciplinama, ukljucujuéi fiziku, dinamiku, statistiku i naprednu
matematiku. Kao ilustracija vaznosti ograni¢enja u reSavanju problema, moze
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se pomenuti hipoteza o prostim blizancima: Yitang Zhang je uspeo da ogra-
ni¢i razmak izmedu susednih prostih brojeva na najvise 7 - 107, dok je nak-
nadnim unapredenjima ta granica smanjena na 246. Ovaj primer pokazuje da
ogranicenja igraju kljuénu ulogu cak i u resavanju velikih i slozenih problema.
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