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Summary

Differential equations are mainly used to describe the change of quantities or behav-
ior of certain systems in applications. When linear differential equations are used,
there exist several methods, such as Laplace transform method, that can be used
to solve the equation analytically. If the equation is nonlinear it is, in general, not
possible to write the solution using formulas. In that case, the numerical approxi-
mation approach is the only way to find the solution. However, in most applications
in biology, chemistry and physics, one is not interested in the analytic form of the
solution, but is more interested in so-called qualitative properties of the solution,
such as periodicity, stability, oscillation, asymptotic behavior of nonoscillatory solu-
tions and so on. If these questions can be answered without solving the differential
equation, especially when analytical solutions are unavailable, we can still get a
very good understanding of the system, which is in fact the main objective of qua-
litative analysis of differential equations. The foundations of the qualitative theory
of differential equations were laid at the end of the 19th century by H. Poincaré and
A.M. Lyapunov. Anyway, intensive development of this discipline began only in
the last forty years. During that time, the new methods were developed and many
important results were obtained.

The equation of the form z”(t) + q(t)|z(t)|*sgnz(t) = 0,\ # 1 is probably
the most studied nonlinear second order differential equation. It is also known
as the Emden-Fowler, or Thomas-Fermi equation, depending on the sign of the
coefficient ¢(t). The equation of this form has attracted the attention of R. Emden
at the end of nineteenth century in the early theories of the dynamics of gases in
astrophysics, while E. Fermi and L.H.Tomas used it in their works on the study of
the distribution of electrons in heavy atoms, during the thirties of the last century.
The classical Thomas-Fermi atomic model is described by the following nonlinear
singular boundary value problem

1
= — 22 z(0) =1, x(c0) =0,
7 (0) (c0)
(see Thomas [69] and Fermi [12]). The equation of this type also appears in the
study of fluid mechanics, relativistic mechanics, nuclear physics, as well as in the

study of chemical reactions of systems.



Summary

The equations

(E1) (p()|2' " 2'(1)" + a0 x(t) = 0,
(E2) (p(O)p(la’ (1)) sgn ' () + q(t)(x(t) =0,
(E) (pOl" @) 2" ()" + a2 ()" a(t) = 0

are considered to be a natural generalization of Emden-Fowler equation.

The properties of solutions of (E;), such as existence, uniqueness, continuability
and oscillatory and nonoscillatory properties of solutions have been investigated in
detail (see monographs [9], [28], [57], [58] and [3-8,24,25,29,59-62,68,70-72]). Un-
like the equation (E;), the more general equation (E3) has been far less investigated
under certain assumptions on nonlinear functions ¢, 1. Oscillation criteria, as well
as the classification and existence of the nonoscillatory solutions have been treated
in [11,41,42]. Studying oscillation and asymptotic behavior of nonoscillatory so-
lutions for the fourth order nonlinear equation (E) was initiated by Wu [73] and
Kamo and Usami [23] in 2002. and afterwards developed in [26,38,43,46,63,64,74].

A study of the asymptotic behavior of solutions of nonlinear differential equa-
tions is accomplished by introducing an appropriate classification of solutions. More
precisely all continuable solutions are divided in several disjoint subsets, whereby it
is desirable to fully characterize these subsets by means of necessary and sufficient
integral conditions which involve only coefficients of equation. For some subsets
this problem is solvable with relative ease, but there are always some ”difficult”
solutions for which only either necessary or sufficient conditions have been already
established. But even if it is possible to establish necessary and sufficient conditions
for the existence of these solutions, determining their precise asymptotic behavior
is a notoriously difficult problem, under assumption that coefficients are continuous
functions.

The recent development of asymptotic analysis of differential equations by the
means of regular variation (initiated by the monograph of Marié¢ [47]), suggested to
investigate the problem in the framework of regularly varying functions (also known
as Karamata functions). Since the precise asymptotic behavior of solutions is still
an open problem for a wide class of nonlinear high-order differential equations, its
study in the framework of regular variation became the subject of the research in
this dissertation, whereby equations (E;), (E2) and (E) are under consideration. It
is shown that assuming that coefficients are regularly varying, not only necessary
and sufficient conditions for the existence of all possible types of regularly varying
solutions can be established, but also that the precise information can be acquired
about the asymptotic behavior at infinity of these solutions. All the results of this
dissertation generalize, extend or improve analogous ones that exist in the literature.
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The notion of regular variation was introduced by a Serbian mathematician
Jovan Karamata (1902-1967) in 1930 (see [27]). The theory of regular variation
which is basically a chapter of mathematical analysis, found it’s application in
many different mathematical fields such as analytic number theory, complex analy-
sis, probability theory, game theory and differential equations. So, further develop-
ment of regular variation theory was carried out by the so-called Karamata’s school
(Avakumovié, Aljanci¢, Basajski, Bojani¢, Tomi¢, Mari¢, Adamovi¢, Arandjelovié),
as well as Bingham, Goldie, Teugels, Seneta, Geluk, de Haan and many others.
Even today, Karamata is one of the most frequently cited Serbian mathematicians.

The first paper connecting regular variation and the differential equations is the
one of V.G. Avakumovi¢ [1] in 1947. However, his paper did not attract much
attention — regularly varying functions were totally distant from the theory of dif-
ferential equations at that time, until about thirty years later, when Mari¢ and
Tomi¢ further extended and developed the study of asymptotic of solutions of dif-
ferential equations via regular variation [48-52]. After the monograph of Marié¢ [47]
appeared, numerous papers in that spirit have been published, dealing also with
some more general differential equations of the second order, the ones of higher
orders and some systems, functional differential equations, difference and dynamic
ones and also some partial differential ones. Many recent interesting contributions,
devoted in particular to the study of Emden-Fowler type equations

(4) (1) £q(O)z(t)) =0 and 2"(t) £ q(O)p(x(t) = 0

in the framework of regular variation are due to Jaros, Kusano, Manojlovi¢, Mari¢,
Tanigawa (see for instance [30,31,35,40,45] and the references therein). Further,
asymptotic behavior of positive solutions of the fourth order nonlinear differential
equations

(B) @) £q®e(t) =0 and (j2"(1)]* 2 (1)" £ q(0)]2 (D)) 2(t) = 0

in the framework of regular variation has been investigated in [32,33,39]. Other im-
portant works related to systems and high-order differential equations were carried
out by Jaros, Kusano, Manojlovi¢, Matucci and Rehdk [16-20, 34,53, 65].

That the class of classical Karamata functions is well suited for the study of the
linear differential equation

2"(t) + q(t)z(t) =0

has been shown by Mari¢, Tomié¢ [51] and Howard, Mari¢ [14]. However, the class
of classical Karamata functions is not sufficient to properly describe the asymptotic
behavior of positive solutions of the self-adjoint differential equation

(p(t)' (1)) + q(t)x(t) = 0.
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For this reason, Jaros and Kusano introduced in [15] the class of generalized Kara-
mata functions. Considering equations (E;) and (E) as generalizations of equations
(A) and (B), it is natural to expect that the class of the generalized regularly vary-
ing functions (or generalized Karamata functions) is an appropriate framework for
asymptotic analysis, in order to make the dependence of solutions on the coefficient
p(t) clear. Therefore, the study of asymptotic behavior of solutions of equations
(E1) and (E) in the framework of generalized Karamata functions has been imposed
as one of the main tasks of this dissertation.

The dissertation consists of four chapters. In the first chapter, some basic def-
initions and theorems are introduced, as well as the overview of regular variation
theory.

In the second chapter Emden-Fowler second order differential equation (E;) un-
der two different integral conditions is studied. Papers [11,41,42] deal with a clas-
sification of nonoscillatory solutions, based on suitable integral criteria. Positive
solutions are classified according to asymptotic behavior at infinity as dominant,
intermediate and subdominant solutions and the necessary and sufficient conditions
for the existence of dominant and subdominant solutions were obtained. As regards
the existence of intermediate solutions for (E;), although sufficient conditions can
be obtained with relative ease, the problem of establishing necessary and sufficient
conditions turns out to be extremely difficult to solve and thus, has been an open
problem for a long time. Nevertheless, the problem has recently been solved by
Kamo, Usami [25] and Naito [60]. The asymptotic behavior of dominant and sub-
dominant solutions is obvious because they are asymptotic to a positive constant
or to a positive constant multiplied by an appropriate function, while this is not
the case of the so-called intermediate solutions. Therefore, the precise asymptotic
formulas for all possible types of intermediate solutions, under the assumption that
coefficients are generalized regularly varying functions, are given in this chapter.
Because of the presence of general p(t) # 1 in the differential operator of equa-
tion (E;) and motivated by papers [15,22] on second order linear and half-linear
differential equations, we decided to choose the class of generalized regularly vary-
ing functions as the basic framework for our asymptotic analysis. Such a choice
proves to be appropriate in the sense that complete analysis can be conducted for
all possible generalized regularly varying solutions of equation (E) if p(¢) and ¢()
are assumed to be generalized regularly varying functions. The results in Section
2.2 are original results published in [36]. The results in Section 2.4 are achieved
n [21]. As a direct consequence of results from these two sections, in Section 2.5,
under the assumption that coefficients are regularly varying functions in the sense
of Karamata, overall structure of regularly varying solutions of (E;) is established.
Finally, Section 2.6 contains some illustrative examples.

Regularly varying functions can be understood as a (nontrivial) extension of
functions asymptotically equivalent to power ones. Therefore, when considering

4
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the second order quasilinear differential equation (Es) in the framework of regular
variation it is natural to assume that nonlinearities ¢ and v are itself regular varying
function. Thus, the third chapter is devoted to the study of positive solutions of
(E2) under two different integral conditions. If the coefficients are regularly varying
functions, the asymptotic behavior of intermediate regularly varying solutions is
determined and necessary and sufficient conditions for existence are established.
All results presented in this chapter are original, and are published in [54] and [56].

Finally, the fourth chapter deals with the fourth order quasilinear differential
equation (E). Under the certain integral conditions the existence of minimal and
maximal solutions was considered in [73]. An additional condition gives two more
solutions (see [64]), which are called, along with the previous two, the primitive
solutions. The existence of these solutions was also established in [64]. However,
neither the existence nor asymptotic behavior of intermediate solutions have not
yet been studied in the existent literature and they are presented in this chapter.
In Section 4.1 the detailed classification is done, and two more types of intermediate
solutions are obtained. In Sections 4.2 and 4.4 the existence of intermediate solu-
tions is determined, under the assumption that coefficients are positive continuous
functions. Assuming that coefficients are generalized regularly varying functions,
the precise asymptotic formulas of intermediate generalized regularly varying solu-
tions are determined in Sections 4.3 and 4.5. All of the results in Chapter 4 are
original and are published in [37] and [55].

At the end, I would like to express my sincere gratitude to my mentor Professor
Jelena Manojlovi¢ for a great commitment during our joint research and writing of
PhD thesis. I also want to thank my family for all their love and encouragement.






Rezime

Diferencijalne jednacine se u praksi najc¢esc¢e upotrebljavaju za modeliranje ponasa-
nja pojedinih sistema. U sluc¢aju da se za to koriste linearne diferencijalne jednacine,
one mogu biti analiticki reSene primenom nekog od postoje¢ih metoda, kao Sto je,
na primer, metod Laplasovih transformacija. Ako je jednac¢ina nelinearna, u opstem
slu¢aju nije moguce dobiti analiticki oblik njenog resenja. Tada jedino numericki
pristup omogucava pronalazenje reSenja. Ipak, u najveé¢em broju primena u bio-
logiji, hemiji i fizici, analiticko reSenje nije od primarnog interesa. NajceSce su
mnogo bitnija tzv. kvalitativna svojstva reSenja, kao Sto su periodic¢nost, stabil-
nost, oscilatornost, asimptotsko ponasanje neoscilatornih resenja, itd. Ukoliko se
ova svojstva mogu odrediti bez resavanja jednacine, posebno kada sama resenja
i nije moguce analiticki odrediti, onda se modelirani sistemi mogu veoma dobro
razumeti i opisati. Stoga je ispitivanje ovakvih svojstava jedan od osnovnih za-
dataka kvalitativne analize diferencijalnih jednacina. Osnove ove teorije postavili
su, jos u XIX veku, H. Poincaré i A. M. Lyapunov. I pored toga, intenzivni razvoj
ove matematicke discipline je zapoceo tek u poslednjih cetrdesetak godina. U tom
vremenskom periodu su razvijeni novi metodi i dobijeni mnogi vazni rezultati.

Jednacina oblika z”(t) + q(t)|z(t)|*sgnz(t) = 0, A # 1 je, verovatno, najprouca-
vanija nelinearna diferencijalna jednacina drugog reda. Poznata je i kao jednacina
Emden—Fowler—a, odnosno Thomas—Fermi-a, u zavisnosti od znaka koeficijenta ¢(t).
Jednacina ovog oblika je privukla paznju R. Emdena krajem devetanestog veka
tokom rane faze razvoja teorije dinamike gasova u astrofizici, dok su je E. Fermi
i L.H. Tomas koristili u svojim proucavanjima distribucije elektrona u teskim ato-
mima tokom tridesetih godina proslog veka. Klasican Thomas—Fermi model atoma
je opisan slede¢om nelinearnom singularnom jednac¢inom

1
a’ = %2 z(0) =1, x(o0) =0,

Vit

(videti Thomas [69] i Fermi [12]). Jednacina ovog tipa se takodje pojavljuje u
proucavanju mehanike fluida, relativistickoj mehanici, nuklearnoj fizici, kao i u
proucavanju razlic¢itih hemijskih reakcija sistema.

7



Rezime

Jednacine
(E1) (P2’ ()| 2 (1) + q(t)|x(t)[P x(t) = 0,
(E2) (p(H)p(|2'(t)]) sena’ (1)) + q(t)i(x(t) = 0,
(E) ()" (@) 2" (1) + a(t)|lx()P 2 (t) = 0

se smatraju prirodnim generalizacijama jednac¢ine Emden-Fowler.

Neka od svojstava resenja jednacine (Eq), kao $to su egzistencija, jedinstvenost,
neprekidnost, oscilatornost i svojstva neoscilatornih resenja, su detaljno proucena
(videti monografije [9], [28], [57], [58], kao i [3-8, 24, 25,29, 59-62, 68,70-72]). Za
razliku od jednacine (E;), opstija jednacina (E2) je mnogo manje izucavana pod
specificnim pretpostavkama za nelinearne funkcije ¢ i 1. Kriterijumi oscilatornosti,
kao i klasifikacija i postojanje neoscilatornih resenja su izucavani u [11, 41, 42].
Proucavanje oscilatornosti i asimptotskog ponasanja neoscilatornih resenja neline-
arne diferencijalne jednacine ¢etvrtog reda su inicirali Wu [73] 1 Kamo i Usami [23]
2002. godine, a kasnije je razvijeno u [26,38,43,46,63,64, 74].

Osnovni zadatak u proucavanju asimptotskog ponasanja resenja nelinearnih di-
ferencijalnih jednacina je klasifikacija tih reSenja. Preciznije, sva produziva resenja
se dele u disjunktne skupove, koje je pozeljno okarakterisati potrebnim i dovoljnim
integralnim uslovima koji zavise od koeficijenata jednacine. Za neke od ovih skupova
reSenje problema je relativno jednostavno, ali postoje i "teski” slucajevi za koje su
poznati ili samo potrebni ili samo dovoljni uslovi. Medjutim, cak i kada je moguce
odrediti potrebne i dovoljne uslove za postojanje ovih resenja, odredjivanje nji-
hovog asimptotskog ponasanja je ekstremno tezak problem, pod pretpostavkom da
su koeficijenti neprekidne funkcije.

Nedavni razvoj asimptotske analize diferencijalnih jednacina koris¢enjem pra-
vilno promenljivih funkcija (iniciran monografijom Marié¢a, videti [47]), sugeriSe
proucavanje problema u okviru pravilno promenljivih funkcija (poznatih i kao Kara-
matine funkcije). Kako je odredjivanje asismptotskog ponasanja resenja jos uvek
otvoren problem za Siroku klasu nelinearnih diferencijalnih jednacina viseg reda,
proucavanje ovog problema u klasi pravilno promenljivih funkcija je postalo predmet
izucavanja ove disertacije. Posmatrajudi jednacine (E;), (Ez) i(E) pokazujemo da se,
pod pretpostavkom da su koeficijenti pravilno promenljive funkcije, mogu odrediti
ne samo potrebni i dovoljni uslovi za postojanje pravilno promenljivih reSenja, veé se
moze precizno utvrditi i njihovo asimptotsko ponasanje u beskonacnosti. Rezultati
dati u ovoj disertaciji generalizuju, prosiruju i poboljsavaju odgovarajuce, do sada
poznate, rezultate.



Rezime

Pojam pravilno promenljive funkcije je 1930. godine uveo srpski matematicar
Jovan Karamata (1902-1967) (videti [27]). Ova teorija, koja je u sustini deo mate-
maticke analize, je nasla primenu u mnogim oblastima matematike, kao Sto su
teorija brojeva, kompleksna analiza, teorija verovatnoce, teorija igara i teorija dife-
rencijalnih jednacina. Dalji razvoj teorije pravilno promenljivih funkcija nastavili su
pripadnici tzv. Karamatine skole (Avakumovié¢, Aljancié¢, Basajski, Bojani¢, Tomié,
Mari¢, Adamovié¢, Arandjelovi¢), kao i Bingham, Goldie, Teugels, Seneta, Geluk,
de Haan i mnogi drugi. Cak i danas, Karamata je jedan od najcitiranijih srpskih
matematicara.

Prvi rad koji povezuje pravilno promenljive funkcije i diferencijalne jednacine
je delo V.G. Avakumoviéa [1] iz 1947. godine. Taj rad, medjutim, nije privukao
previse paznje — u to vreme teorija pravilno promenljivih funkcija nije primenji-
vana u teoriji diferencijalnih jednac¢ina — sve do nekih trideset godina kasnije, kada
su Marié¢ i Tomi¢ u svojim radovima [48-52] nastavili i dalje razvili istrazivanje
diferencijalnih jednacina koriste¢i pravilno promenljive funkcije. Posle pojavljiva-
nja Maric¢eve monografije [47], objavljen je veliki broj radova u kojima je koris¢en
slican pristup i koji su se bavili opstijim diferencijalnim jedna¢inama drugog reda,
jednac¢inama viseg reda i sistemima, funkcionalnim diferencijalnim jednac¢inama,
diferencnim i parcijalnim diferencijalnim jednac¢inama. Za neke od skorijih intere-
santnih rezultata, posvecenih jednacinama Emden—Fowler tipa

(4) (1) £q(O)z(t) =0 and 2"(t) £ q)p(x(t) = 0

koris¢enjem pravilno promenljivih funkcija, treba pogledati radove autora Jaros,
Kusano, Manojlovié¢, Mari¢, Tanigawa (videti [30,31,35,40,45] i reference u njima).
Dalje, asimptotsko ponasanje pozitivnih resenja nelinearnih diferencijalnih jednacina
cetvrtog reda

(B)  a W) £q()z(t) =0 and (Ja"(6)]* " 2"(1)" £ q(O)](t) " (t) = 0

koriséenjem pravilno promenljivih funkcija je ispitivano u [32,33,39]. Jaros, Kusano,
Manojlovié, Matucci and Rehék su dogli do rezultata vezanih za sisteme diferenci-
jalnih jednacina i za diferencijalne jednacine viseg reda u [16-20,34,53,65].

Mari¢ i Tomi¢ u [51], kao i Howard i Mari¢ u [14], su pokazali da je klasa klasi¢nih
Karamatinih funkcija pogodna za proucavanje linearne diferencijalne jednacine

z"(t) + q(t)z(t) = 0.

Ipak, ova klasa funkcija nije pogodna za odgovarajuce opisivanje asimptotskog
ponasanja pozitivnih resenja samoadjungovane diferencijalne jednacine

(p(t)' (1)) + q(t)x(t) = 0.
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Zbog toga su Jaros i Kusano u [15] uveli klasu generalisanih Karamatinih funk-
cija. Ako se jednacine (E;) i (E)posmatraju kao generalizacije jednacina (A) i
(B), prirodno je ocekivati da ¢e klasa generalisanih pravilno promenljivih funkcija
(generalsane Karamatine funkcije) biti pogodna za asimptotsku analizu, u cilju
odredjivanja zavisnosti prirode resenja od koeficijenta p(t). Zato je to izucavanje
postalo jedan od glavnih zadataka koji treba resiti u ovoj disertaciji.

Disertacija se sastoji od cetiri poglavlja. U prvom poglavlju date su osnovne
definicije i teoreme koje se koriste kao alati u istrazivanju, kao i pregled teorije
pravilno promenljivih funkcija.

U drugom poglavlju je istrazivana Emden—Fowler diferencijalna jednacina dru-
gog reda (E;) pod dva razlicita integralna uslova. Radovi [11,41,42] se bave klasi-
fikacijom neoscilatornih resenja, pod odgovaraju¢im integralnim kriterijumom. Po-
zitivna reSenja su klasifikovana u odnosu na asimptotsko ponasanje u beskonacnosti
kao domnantna, ukljeStena i subdominantna resenja i dati su potrebni i dovoljni
uslovi za postojanje dominantnih i subdominantnih resenja. Sto se ti¢e postojanja
ukljestenih resenja za (E;), iako se dovoljni uslovi mogu dobiti relativno jedno-
stavno, problem utvrdjivanja potrebnih i dovoljnih uslova je ekstremno tezak i dugo
je predstavljao otvoren problem. Problem su nedavno resili Kamo, Usami [25]
i Naito [60]. Asimptotsko ponaSanje dominantnih i subdominantnih resenja je
oc¢igledno jer se ona asimptotsko ponasaju kao konstantna funkcija ili kao konstan-
tna funkcija pomnozena odgovaraju¢om funkcijom. Ovo, medjutim, nije slucaj sa
ukljestenim resenjima. Zato u ovom poglavlju dajemo asimptotske formule za sve
moguce tipove ukljestenih resenja, pod pretpostavkom da su koeficijenti generali-
sane pravilno promenljive funkcije. Zbog pojave opste funkcije p(t) # 1 u diferen-
cijalnom operatoru jednacine (E;), a motivisano radovima [15,22] koji su vezani za
linearne i polulinearne diferencijalne jednacine drugog reda, odlucili smo da za ovu
analizu koristimo klasu generalisanih pravilno promenljivih funkcija. Ispostavlja se
da je ovakav izbor odgovarajué¢i u smislu da je moguce izvesti kompletnu analizu
svih mogudéih generalisanih pravilno promenljivih resenja jednacine (E;), ako pret-
postavimo da su p(t) i ¢(t) generalisane pravilno promenljive funkcije. Rezultati
iz Sekcije 2.2 su originalni rezultati objavljeni u [36]. Rezultati iz Sekcije 2.4 su
objavljeni u [21]. Kao direktna posledica rezultata iz ove dve sekcije, u Sekciji 2.5
je, pod pretpostavkom da su koeficijenti pravilno promenljive funkcije u Karamati-
nom smislu, opisana je kompletna struktura pravilno promenljivih resenja jednacine
(E1). Konaéno, Sekcija 2.6 sadrzi neke ilustrativne primere.

Pravilno promenljive funkcije se mogu shvatiti kao (netrivijalno) uopstenje funk-
cija koje su asimptotski ekvivalentne stepenim funkcijama. Zbog toga, kada govo-
rimo o kvazilinearnog diferencijalnoj jednacini drugog reda (E,) u okviru teorije
pravilno promenljivih funkcija, prirodno je pretpostaviti da su funkcije ¢ i 9 i
same pravilno promenljive funkcije. Tre¢e poglavlje je posveteno izucavanju pozi-
tivnih resenja jednacine (Es) pod dva integralna uslova. Ako su koeficijenti pravilno

10
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promenljive funkcije, precizno je utvrdjeno asimptotsko ponasanje ukljestenih pra-
vilno promenljivih resenja, kao i potrebni i dovoljni uslovi za njihovo postojanje.
Svi rezultati u ovom poglavlju su originalni i objavijeni u [54] i [56].

Na kraju, cetvrto poglavlje se bavi kvazilinearnom diferencijalnom jednacinom
cetvrtog reda (E). Pod odredjenim integralnim uslovima, postojanje minimalnih i
maksimalnih reSenja je posmatrano [73]. Dodatni uslov daje jos dva tipa resenja
(videti [64]), koja su nazvana, zajedno sa prethodna dva, primitivna resenja. Posto-
janje ovih resenja je takodje utvrdjeno u [64]. Medjutim, ni postojanje ni asimp-
totsko ponasanje ukljestenih resenja jos uvek nisu razmatrani. U Sekciji 4.1 je data
detaljna klasifikacija i dobijena su jos dva tipa ukljestenih resenja. U Sekcijama 4.2
i 4.4 je utvrdjeno postojanje ukljestenih resenja, pod pretpostavkom da su koefici-
jenti pozitivne neprekidne funkcije. Pod pretpostavkom da su koeficijenti general-
isane pravilno promenljive funkcije, u sekcijama 4.3 i 4.5 su odredjene asimptotske
formule generalisanih pravilno promenljivih resenja ove jednacine. Svi rezultati u
Poglavlju 4 su originalni i objavijeni su u [37] i [55].
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Chapter 1

Introduction

1.1 Basic concepts and theorems
First, we define some relations that are used later in the dissertation.

Definition 1.1.1 For positive functions f(t) and g(t) we define the asymptotic
equivalence relation ~ as

ft) ~gt), t—o00 <= lim-—"%=1

Definition 1.1.2 For positive functions f(t) and g(t) we define the asymptotic
similarity relation ~ as

g9(t)

f(t) ~g(t), t 00 <= lim == = const > 0.

t=oo f(t)

Definition 1.1.3 For positive functions f(t) and g(t) we define the dominance
relation < as

) <g(t), t—o00 <= lim 2= =

Since we are interested in asymptotic behavior of nonoscillatory solutions of second
and fourth order nonlinear differential equations, we give the definition of these
solutions as well as of the positive and negative solutions.

Definition 1.1.4 A solution z(t) of (E) is said to be nonoscillatory if there exists
to € R so that x(t) # 0 when t > ty. Otherwise the solution is oscillatory.

Definition 1.1.5 A solution x(t) of (E1) is positive (negative) if z(t) > 0 (x(t) <
0) for a sufficiently large t.

13



1. Introduction

Note that the solution is nonoscillatory if it is either positive or negative. If z(t) is
a solution of differential equations which are the subject of our research, then —z(t)
is also a solution. Therefore, we can, without loss of generality, restrict our study
of nonoscillatory solutions to positive solutions.

Next, we give some basic definitions.

Definition 1.1.6 Let X be a normed vector space. A subset E C X is said to be
convex if for any v,y € E and t € [0,1] we have tx + (1 —t)y € E.

Definition 1.1.7 Let X be a Banach space. A set E C X 1is said to be compact if
every sequence in E has a subsequence that converges to a limit that is also in E.
Set E is relatively compact (or precompact) if its closure is compact.

Definition 1.1.8 Let X and Y be two metric spaces, and F a family of functions
from X toY. The family F is equicontinuous at a point xq € X if for every e > 0,
there exists 6 > 0 such that d(f(zo), f(x)) < e for all f € F and all x such that
d(xzg,x) < 0. The family is equicontinuous on X if it is equicontinuous at each
point of X.

The family F is uniformly equicontinuous if for every e > 0, there exists § > 0
such that d(f(x1), f(x2)) < e for all f € F and all x1,x9 € F such that d(xq,x2) <
J.

Definition 1.1.9 The family F of functions from C([a, b], R) is uniformly bounded
on [a,b] if there exists a positive real number K so that |f(t)| < K for all t € |a, b
and all f € F.

In the theory of differential equations we usually use fixed point technique to de-
termine the existence of the solutions. In our case we use the Schauder - Tychonoff
fixed point theorem.

Theorem 1.1.1 (SCHAUDER - TYCHONOFF FIXED POINT THEOREM) Let E be
closed, convex, nonempty subset of a locally convex topological vector space X. Let
T be continuous mapping from E to itself, such that T'E s relatively compact. Then
T has a fixed point.

In the process of proving that operator T' from the previous theorem is continu-
ous, one of the steps requires the usage of the Lebesgue’s Dominated Convergence
Theorem.

Theorem 1.1.2 (LEBESGUE’S DOMINATED CONVERGENCE THEOREM) Let (f,)
be a sequence of real-valued measurable functions on a measurable set E, such that
tlim falz) = f(x), almost everywhere on E and for every n € N. Also, let g(x) be
—00

an integrable on E, such that |f,(x)| < g(z) almost everywhere on E. Then

lim Efn(x)dx:/Ef(x)dx

n—oo

14
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On the other hand, in order to use Schauder - Tychonoff fixed point theorem, we
need to prove that the image of operator is relatively compact. For that the Arzela-
Ascoli Theorem turns out to be a useful tool.

Theorem 1.1.3 (THE ARZELA-ASCOLI THEOREM) The set E of continuous func-
tions from C([a, b], R) is relatively compact if and only if it is uniformly bounded and
equicontinuous on [a,b].

It should be noticed that the previous theorem cannot be used directly for
problems that are defined on infinite interval [a, c0) (and this is the case in majority
of problems solved in this dissertation). To overcome this, we use the result from [44]
that enables us to use the theorem in our research.

After the construction of intermediate solutions with the help of the Schauder-
Tychonoff fixed point theorem, to finish the proof of the ”if” part of our main
results we prove the regularity of those solutions using the generalized L’Hospital
rule (see [13]):

Lemma 1.1.1 Let f,g € C*[T,00). Let

(1.1.1) Jim g(t) =00 and ¢'(t) >0 for all large t.
— 00
Then / /
lim inf ') < lim inf & < lim sup & < lim sup ')

oo g/(t) T ot g(t) T tmee g(t) T e (E)
If we replace (1.1.1) with condition

lim f(t) = tlgilo gt)=0 ¢'(t) <0 for all large t,

t—o00

then the same conclusion holds.

1.2 Theory of regularly varying functions

In this section we recall the definition and some basic properties of regularly varying
functions introduced by J. Karamata in [27].

Definition 1.2.1 A measurable function f : [a,00) — (0,00), a > 0 is regularly
varying at infinity of index p € R (in the sense of Karamata) if

(1.2.1) lim S =\ forall A > 0.

tooe f(t)

15



1. Introduction

Definition 1.2.2 A measurable function f : (0,a) — (0,00), a > 0 is reqularly
varying at zero of index p € R if

(1.2.2) lim S =\ forall\ > 0.

t—0+ f (t)
The set of regularly varying functions of index p at infinity (zero) is denoted by
RV(p) (RV(p)). If, in particular, p = 0, then the function f is called slowly varying
at infinity (zero) and is denoted by SV (SV). It is clear that if the function f(¢)
is regularly varying at zero of index p then the function f(1/t) is regularly varying
at infinity of index —p. When we say only regularly or slowly varying function, we
mean that function is regularly or slowly varying at infinity.
It follows from Definition 1.2.1 that any function f(t) € RV(p) is written as

(1.2.3) F(&) =t g(t), g(t) € SV.

If, in particular, the function g(¢) converges to a positive constant as ¢t — oo, it is
called a trivial slowly varying function, denoted by ¢(t) € tr — SV, and the function
f(t) is called a trivial regularly varying of index p, denoted by f(t) € tr — RV(p).
Otherwise, the function ¢(t) is called a nontrivial slowly varying, denoted by
g(t) € ntr — SV, and the function f(t) is called a nontrivial regularly varying of
index p, denoted by f(t) € ntr — RV(p). Similar terminology is used for the set
RV.

Example 1.2.1 From (1.2.3) we see that the class of slowly varying functions is
of fundamental importance in the theory of regular variation. Trivial examples of
slowly varying functions are (positive, measurable) functions tending to positive
constant as t — oo, or in particular positive constants. The simplest non-trivial
example is logt or log, t or

N
H(lognt)ak, ar €R, ke{l,...,N},

k=1

where log,, ¢ denotes the n-th iteration of the logarithm. Non-logarithmic examples
are given by

exp {H(lognt)ﬂk} , B €(0,1), ke {l,...,N}.

k=1
The function

'2

is an example of slowly varying functions which are oscillating in the sense that

L(t) = exp {(logt)0 cos(logt)e} , fe <O 1) ,

litm inf L(t) =0, limsup L(t) = oo.
—00

t—o00
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1.2 Theory of regularly varying functions

For a comprehensive treatise on regular variation the reader is referred to N.H.
Bingham et al. [2]. See also E. Seneta [67].

Next three theorems are the most important in the theory of regular variation.
Uniform Convergence Theorem was given by Karamata in 1930 in the continuous
case, and by Korevaar in 1949 in the measurable case.

Theorem 1.2.1 (UNIFORM CONVERGENCE THEOREM) The relation (1.2.1) in
the definition 1.2.1 holds uniformly on each compact A\—set in (0, 00).

The next theorem answers the question about the functions that can satisfy (1.2.1).

Theorem 1.2.2 (REPRESENTATION THEOREM) f(t) € RV(p) if and only if f(t)
s represented in the form

F(8) = clt) exp (/tt @ ds) >t

for some to > 0 and for some measurable functions c(t) and §(t) such that

lim ¢(t) = ¢p € (0,00) and tlim i(t) = p.
—00

t—o0

The famous Karamata’s Integration Theorem gives information about the asymp-
totic behavior of the integral of regularly varying functions, and it is of prime
importance to our research.

Proposition 1.2.1 ( KARAMATA’S INTEGRATION THEOREM) Let L(t) € SV.

Then,
i) If a>—1,
! T L(t
/ s*L(s) ds ~ —(>, t — o0;
a a+1
(i) If o< —1,
* tet Lt
/ s* L(s) dsw——(), t — oo;
‘ a+1
(ili) If o = —1, the integral [ s *L(s)ds may or may not be convergent.

The integral my(t) = fj sV L(s) ds is a new slowly varying function and
L(t)/mi(t) = 0,t — co. In the case [~ s 'L(s)ds < oo, again ms(t) =
[ 571 L(s) ds € SV and L(t)/ms(t) — 0, t — oo.

The following results concern the basic operations with functions that preserves
regular variation.
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Proposition 1.2.2 Let g1(t) € RV(01), g2(t) € RV(02), g5(t) € RV(o3). Then,
(i) (g1(t))™ € RV(aoy) for any a € R;

(i

) 91(t) + g2(t) € RV(0), o = max(0y,09);
(iii) g1(t)g2(t) € RV(oy + 02);
)

(
(iV 91(92@)) € RV(UNQ); if gz(t) — 00, as t — 00; 93(92(75)) S RV(<73<72)7 if
g2(t) = 0, as t — oo.

A slowly varying function L(t) may or may not be bounded, but as ¢ — oo it can
neither grow to infinity too fast, nor decay to zero too fast, as we see from following
proposition.

Proposition 1.2.3 For any ¢ > 0 and L(t) € SV one has
t°L(t) — oo, t°L(t) — 0, t— o0.

Proposition 1.2.4 If f(t) ~ t*l(t) as t — oo with I(t) € SV, then f(t) is a
reqularly varying function of index « i.e. f(t) = t*I*(t), I*(t) € SV, where in
general I*(t) # 1(t), but I*(t) ~ I(t) as t — oc.

In some cases (for instance, the measuring of scales of growth or asymptotic behav-
ior) slowly varying functions are of interest only to within asymptotic equivalence.
Since regularly varying functions are not monotone functions in general, the next
result shows that any regularly varying function with non-zero index is asymptotic
to a monotone function.

Proposition 1.2.5 A positive measurable function I(t) belongs to SV if and only
if for every a > 0 there exist a non-decreasing function ¥ and a non-increasing
function 1 with

1) ~ T(t)  and £0U(t) ~ D), t— oo.

Since regularly varying functions have no inverse function in general, the next result
give the existence of an asymptotic inverse of regularly varying functions of positive
index.

Proposition 1.2.6 For the function f(t) € RV(a),a > 0, there exists g(t) €
RV(1/«) such that

flg(t) ~g(f(t)) ~t as t— o0

Here g is an asymptotic inverse of f(and it is determined uniquely to within asymp-
totic equivalence).
Note, that the same result holds for ¢ — 0 i.e. when f(t) € RV(«a),a > 0.

18
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Proposition 1.2.7 For the function f(t) € RV(a),a > 0, there exists g(t) €
RV(1/«) such that

flg@®) ~g(f(t)) ~t as t—0.

Proof. Since f(t) € RV(«), we have f(1/t) € RV(—«) and 1/f(1/t) € RV(a). We
can apply the Proposition 1.2.6 to the function f(¢) = 1/f(1/t). Then, there exists
g € RV(1/a) such that

f(ﬁ(t))“’f}(f(t))wt as t— 00.

Then, it is easy to show that the function g(t) = 1/g(1/t) € RV(1/«) is an asymp-
totic inverse of f.[J

In Chapter 2 and 4 we treat the asymptotic behavior of positive solutions of
differential equations under consideration in the framework of generalized regularly
varying functions. These functions were introduced in [15] by Jaros and Kusano.

Definition 1.2.3 Let R(t) : [0,00) — (0,00) be continuously differential function
such that

(1.2.4) R'(t)>0, t>0, and Jim R(t) = .
— 00

A measurable function f :[0,00) — (0,00) is said to be reqularly varying of index
p € R with respect to R(t) if fo R~ is defined for all large t and is reqularly
varying function of index p in the sense of Karamata, where R~ denotes the inverse
function of R.

The symbol RV g(p) is used to denote the totality of regularly varying functions of
index p € R with respect to R(t). The symbol SV is often used for RVg(0). It is
easy to see that if f(t) € RVg(p), then f(t) = R(t)? g(t), g(t) € SVg. If

lim S = lim g(t) = const > 0

t—oo R t)ﬂ t—o0

then f(t) is said to be a trivial regularly varying function of index p with respect
to R(t) and it is denoted by f(t) € tr — RVg(p). Otherwise, f(t) is said to be a
nontrivial reqularly varying function of index p with respect to R(t) and it is denoted
by f(t) € ntr — RVg(p). Also, from Definition 1.2.3 it follows that f € RVg(p) if
and only if it can be written in the form f(t) = g(R(t)), g(t) € RV(p). It is clear
that RV(p) = RV(p).
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Example 1.2.2 We emphasize that there exists a function which is regularly vary-
ing in generalized sense, but is not regularly varying in the sense of Karamata, so
that, roughly speaking, the class of generalized Karamata functions is larger than
that of classical Karamata functions. In fact, using the notation

exp,t =1t, exp,t=exp(exp, ;t),
logyt =t, log(log, ,t), n=1,2,...,
we define the functions ¢, (t) and f,(t) for n € Z by
On(t) = exp,t, ¢_n(t) =log,t, n=01,2...,

and
fot) =2 +sing,(t), n=0,+1,£2,....

Since ¢, (t) = ¢_n(t) and ¢, 0 P (t) = Gpan(t) for any m,n € Z, we have
foo ' = faom(t)
for any n,m € Z, from which, by taking into account the facts that
fu(t) €SV for n< -2 and f,(t) ¢ SV for n= -1,
we conclude that
fu(t) ¢ SV and f,(t) € SVy, if n=—-1 and m=2n+2.

Example 1.2.3 (i) Let R € RV(m), m > 0. Then, R™' € RV(2) and hence

1
FERV(p) = feRvR(%).

(ii) Let R(t) = e'. Then, R7(t) = log .
(a) Consider f(t) = exp(t*), a > 0:
o If « <1, then f € SVg;
o If =1, then f € RVg(1);
o If > 1, then f is rapidly varying, so that f ¢ RV = U,crRVr(p).

(b) If f € RV(p), then f € SVg

(iii) Let R(t) = logt. Since R™!(t) = €', we see that
(a) if f(t) = (log?)”, then f € RVR(B);
(b) if f(t) = (loglogt)”, then f € SVp.

The similar properties of regularly varying functions given in Proposition 1.2.2 are
true in the case of generalized regularly varying functions.
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Proposition 1.2.8 Let g;(t) € RVg(0;), i = 1,2. Then,
(i) (g1(t))™ € RVg(aoy), for any a € R;
(i) ¢1(t) + g2(t) € RVg(0o), 0 = max(oy,09);
(iii) ¢1(t)g2(t) € RVR(o1 + 09);
)

(iv) g1(g2(t)) € RVg(o109) if g2(t) — o0 as t — oo.
Proposition 1.2.9 IfI(t) € SVg, then for any e > 0,

lim R(FI() = 0o,  lim R(H)“5I(t) = 0.

t—o00 t—o00

Also it is possible to generalized the Karamata’s Integration Theorem.

Proposition 1.2.10 (GENERALIZED KARAMATA’S INTEGRATION THEOREM) Let
R be a positive function which is continuously differential on [0,00) and satisfies

(1.2.4). Then, for any f(t) € SVg:
(i) If a > —1, then

o o R(t)** (1) ,
/a R'(s)R(s)“f(s) ds ~ —arl t — 00;
(i) If a < —1, then [ R'(t) R(t)™ f(t) dt < oo, and
= o R(t)* f() ,
/t R'(s) R(s)* f(s) ds ~ T arl t — o0;

(iii) If a« = —1, then
/ R'(s)R(s)"' f(s) ds € SVy and /too R'(s)R(s)™" f(s) ds € SV.

Next result is proved in [10] and we use it very often in our proofs. It help us
in dealing with the asymptotic relations.

Proposition 1.2.11 Let F' : [a,00) — (0,00) be a measurable function and xq,xs
positive functions defined on [a,c0) such that x;(t) — oo, t — o0, i = 1,2. Then:

FeRV(p), p£0 iff x1(t) = xa(t), t = 0o = F(x1(t)) = F(x2(t)), t = 0.
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Chapter 2

Asymptotic behavior of positive
solutions of Emden-Fowler second
order differential equation

In this chapter we study Emden-Fowler second order differential equation
(E) (@) @) (1) +q@)]e@))" 2(t) =0, t>a>0, a>F>0

under two different integral conditions:

(Cy) / at < 00,

< dt
) o g

In both cases, the study of nonoscillatory solutions of the equation (E;) consists of
three basic tasks:

Task 1. Determine the three types of positive solutions of (E;) according to their
behavior at infinity. Under both conditions (C;) and (Cs) three types of so-
lutions are obtained, and they are usually referred as dominant, intermediate
and subdominant solutions.

Task 2. Establish the necessary and sufficient conditions for the existence of such
solutions.

Task 3. Determine the precise asymptotic formulas for the intermediate solutions of
(E1) only, because the asymptotic behavior at infinity of both dominant and
subdominant solutions is obvious.
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2. Asymptotic behavior of positive solutions of Emden-Fowler second order DE

Assuming that the coefficients of (E;) are positive, continuous functions, the first
two tasks have been already completely resolved (see [11,41,60]). To accomplish
the most difficult Task 3, we consider the equation (E;) in the framework of regular
variation, assuming that coefficients are generalized regularly varying functions.

The results related to the asymptotic behavior of the solution of the equation
(E;) under the condition (C;), presented in Section 2.2, represent original results,
given in the paper [36], and the results related to the equation (E;) under the
condition (Cs), which are presented in Section 2.4, are given in the paper [21].

2.1 Classification and existence of positive
solutions of (E;) under the condition (C;)

In this section, we assume that p, q : [a,00) — (0,00) are continuous functions and
that (C;) holds. The condition (C;) enables us to define the decreasing function

7(t) as _
W(t):/ s s

Definition 2.1.1 A solution of (E1) is a function x(t) : [T, 00) — R, T' > a, which
is continuously differentiable together with p(t)|2'(t)|*"*2'(t) on [T,00) and
satisfies the equation (E1) at every point of [T, 00).

Since we are interested in the existence and asymptotic behavior at infinity of
positive solutions of (E;), we begin by classifying the set of all possible positive
solutions of (E;) according to their asymptotic behavior at infinity.

Let x(t) be a positive solution of the equation (E;) on [tg, 00). It is easy to verify
that any nonoscillatory solution of (E;) is eventually monotone, since (C;) holds.
Thus p(t)|2'(t)|* 2/ (t) is either positive or negative, and since it is decreasing, the
following three cases are possible:

(a) tlgglo p(t)z'(t)* = const > 0,
(b) tli)rglop(t)(—x’(t))a = const > 0,
©  lmp(t)(~a'(0)" = .

Let case (a) occur. Then, 0 < p(t)z'(t)* < C* or 0 < 2/(t) < Cp(t)~"/* on
[to, 00) for some constant C' > 0. Integration of the last inequality on [to,t] shows
that x(t) < z(to) + Cft'; p(s)™Y*ds < x(ty) + Cr(ty), and so z(t) increases to a
finite constant ¢y > 0 as t — oo.
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2.1 Classification and existence of positive solutions of (E;) under (Cy)

Let case (b) occur. Since xz(t) is positive and decreasing, it follows that ()
tends to a nonnegative constant ¢y as t — oo. If ¢g > 0, then x(t) ~ ¢, t — 00. On
the other hand, if ¢g = 0, we have p(t)(—2'(¢))* ~ ¢1, t = o0, from which it follows

—2/(t) ~ (%) : Lt oo,

Integrating the above relation on [t, 00) we get x(t) ~ cléw(t) as t — 0o.
Let case (c) occur. Integration (E;) on [to, t], using the fact that z(¢) tends to a
nonnegative constant cy as t — 0o, gives
t

p(t) (—2 ()" = 1 + / as)2(5)Pds, > t0, (e = plto)(—a'(Fo))* > 0),

to

which implies that ftzo q(s) z(s)? ds = co. Integrating the above from ¢ to oo, we

find that 1
z(t) = co + /too (]% <01 + /t:q(r)a:(r)ﬁ dr))a ds, t>t,.

If ¢g > 0, then x(t) ~ ¢y, t — 00, and if ¢y = 0, using the L'Hospital’s rule, we
. .ox(t
easily see that lim —= = oo
t—o0 7'['(
The above observation leads to the following conventional classification of posi-
tive solutions of (E;) according to their asymptotic behavior at infinity:

(2.1.1) tlirn x(t) = const > 0;
—00
t
(2.1.2) lim (t) = 0, tim “8) —
t—o0 t—o00 7T(t)
t
(2.1.3) lim 2(t) = const > 0.
t—00 7T(t)

Positive solutions of type (2.1.1), (2.1.2), and (2.1.3) are usually called, respec-
tively, dominant, intermediate and subdominant solutions, although solutions of
type (2.1.2) are referred by some authors as slowly decaying. Indeed, if z(t), y(t),
z(t) are positive solutions of (E;), respectively, of type (2.1.3), (2.1.2), (2.1.1), we
have
z(t) < y(t) < z(t) for large t.

It should be noticed that the existence of each of the above types of solutions for the
equation (E;) with continuous coefficients p(t), ¢(t) can be completely characterized
by the convergence (or divergence) of integrals

Z, - / h (Z% / ") ds)i g, W, = / g 7 (D)7 dt.
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2. Asymptotic behavior of positive solutions of Emden-Fowler second order DE

In fact, the sharp conditions for the existence of positive solutions of (E;) as well
as dominant and subdominant positive solutions have long been known (see [41]).
As regards the existence of intermediate solutions for (E;), although sufficient con-
ditions can be obtained with relative ease (see [41]), the problem of establishing
necessary and sufficient conditions turns out to be extremely difficult to solve and
thus, has been an open problem for a long time. Nevertheless, the problem has
recently been solved by Kamo, Usami [25, Theorem 1.2].

Theorem 2.1.1 Let p(t),q(t) € Cla,00) and (Cy) holds.
(a) Equation (E1) has a positive solution if and only if Z, < 0o;
(b) Equation (E1) has a positive solution of type (2.1.1) if and only of Z, < 0o;

(¢) Equation (E;) has a positive solution of type (2.1.2) if and only of Z, < oo
and Wy = oo;

(d) Equation (Ey) has a positive solution of type (2.1.3) if and only of W5 < 0.

Once the existence of solutions of (E) has been established, the next task is to
acquire as detailed information as possible about the qualitative properties of its
solutions. Of particular importance is to investigate the possibility of deriving the
precise asymptotic formula of intermediate positive solutions of (E). There seems
to be only a few of such information in the existing literature. Recently, Kamo
and Usami in [25, Theorem 1.4] determined the asymptotic forms of intermediate
solutions of (E) assuming that p(t), ¢(t) behave like power functions, and afterwards
Naito [60, Theorems 4.3, 4.4] generalized their results.(see Remark 2.2.1)

2.2 Asymptotic behavior of intermediate solutions
of (E;) under the condition (C;)

Our goal in this section is to show that the class of generalized regularly varying
functions with respect to 1/m(t) is a well suited framework for the asymptotic
analysis of intermediate solutions of (E;) under the condition (C;) in the sense that
thorough information can be acquired about the existence and asymptotic behavior
of RVy/, — solutions of (E;) provided the coefficients p(t) and ¢(t) are RV, —
functions.

We assume that p(t) and ¢(t) are generalized regularly varying functions of
indices 1 and o with respect to 1/7(t) and are expressed in the form

(22.1) p(t) = 7(t)" L,(t), L(t) € SVyr and q(t) = 7(t)~ I, (1), l,(t) € SV1/x,
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2.2 Asymptotic behavior of intermediate solutions of (E;) under (Cy)

and search for the intermediate solutions x(t) € RVy/.(p) of (E;), which are repre-
sented as

(2.2.2) x(t) = 7(t) P L,(t), 1,(t) € SVijr.
We denote P(t) = w(t)~! and rewrite (2.2.1) in the form
(2.2.3) g(O)p(t)* = P62 U(t), 1(t) € SViym,

1

where p =0+ 1 —2, [(t) =,(t)= l,(t). Moreover, since p(t)~*/* = P'(t) P(t)~*,
from (2.2.3) we have

(2.2.4) q(t) = P'(t) P(t)*I(t), I(t) € SVir.

Let us interpret the necessary and sufficient condition for the existence of inter-
mediate solutions of (E;) in the language of regular variation. Since

/ () w07 dt = / TP P I dt,

a

it is easy to see that
Wg=o00 <= (i) p—p>-1, or
(i) p—B=—1 and /oo P/ P8 1() dE = oo,
or equivalently
Wsg=00 <= (i) J>B—g+1, or

(i) o=p— g +1 and /OO P'(t) P(t)" 1(t) dt = o.

Moreover, assuming that o > -2 +1 ie. p > —1 > —1, application of
Generalized Karamata’s integration theorem gives

/ o(s)ds — / P'(S)P@)ﬂz(s)dsfwLlp(t)ﬂ“z(t), I = o0,

o+

from which it follows that

[ G /:Q<T>dr>;ds o POPEE e e



2. Asymptotic behavior of positive solutions of Emden-Fowler second order DE

For condition Z, < oo to hold it is necessary that

1

' —-2< -1
(@) — , or
1 o0
(11) P2 9 1 and / P(t)P(t)™* I(t)= dt < oo,
Q a
or equivalently
(7) O’<Oé—ﬁ+1, or
«

(1) o=a— g +1 and / P'(t)P(t)™! l(t)é dt < oo.

The above observation, with the statement (c) of Theorem 2.1.1, suggests to carry
out the study of intermediate solutions of (E;) by distinguishing the three cases:

(2.2.5) c=a--2L4+1 and Zy < 00,
a
(2.2.6) G-Ti1<o<a-" 11,
a a
(2.2.7) OZB—Q—I—l and Wp = oo.
a

Suppose that (E;) has an intermediate solution x(t) on [tp,00). Since
tlim z(t) = 0 and tlim p(t)|2'(t)|* 2’ (t) = oo, integrating (E;) first from #y to t
—00 —00

and then on [¢,00), we have

[e.9] 1 S i
(2.2.8) x(t) = / (— (p(to)(—x'(to))o‘ —|—/ q(r)z(r)? dr)) ds, t>t.

t p(‘S) to
It follows therefore that x(t) satisfies the integral asymptotic relation
o0 1 S 1
(2.2.9) x(t) ~ / (— / q(r)x(r)? dr) ds, t— o0,
t p(s) Ji,

which is regarded as an "approximation” of (2.2.8) at infinity. A common way
of determining the desired intermediate solution of (E;) would be by solving the
integral equation (2.2.8) with the help of fixed point technique. For that purpose
Schauder-Tychonoff fixed point theorem should be applied to the integral operator

(2.2.10) Fﬂo:[m(i—/ZMﬂWMOiw,tzm

p(s) Ji
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2.2 Asymptotic behavior of intermediate solutions of (E;) under (Cy)

acting on some closed convex subset X of C[ty, 00), which should be chosen in such
a way that F is a continuous self-map on X and sent it into a relatively compact
subset of C[ty,00). However, to establish the existence of intermediate solutions
with precise asymptotic behavior, the set with required properties for application
Schauder-Tychonoff fixed point theorem will be found by the means of generalized
regularly varying functions satisfying the integral asymptotic relation (2.2.9). In
fact, to show the existence of solution z(t) such that z(t) ~ X(¢), t — oo, we
first construct such solutions as a fixed point of the integral operator F defined as
(2.2.10) on the set

X = {a(t) € Clto, 00) : mX () < x(t) < MX (1), t > to}.

With the help of generalized L’Hospital rule prove that such solutions must be
generalized regularly varying satisfying desired asymptotic formula. Note that gen-
eralized regularly varying function X (¢) will be determined in terms of generalized
regularly varying coefficients p(t) and ¢(t) and parameters «, 8. For that purpose,
we prove the next three Lemmas.

Lemma 2.2.1 Suppose that (2.2.5) holds. The function

e mes (a;ﬁ | (G5 /;CI(T)dr)é ds>”a5

satisfies the asymptotic relation (2.2.9).

Proof. Let (2.2.5) hold. Then, y = o — 1. Using (2.2.4) and Generalized Kara-
mata’s integration theorem (Proposition 1.2.10-(i)) we have

(/:q(s) ds) ' = (/t P'(5) P(s)* '1(s) ds) S P(t()lﬂ t = o0,

implying that
o [T( /S o) dr)i s~ /% s
L / P/(s)P(s)"Mi(s)% ds,

Due to the Proposition 1.2.10—(111), this shows that Yj(¢) € ntr — SVp. Another
application of Generalized Karamata’s integration theorem gives

<ﬁ /atq“m(s)ﬁds)i - (z% / ' P/(s) P(s)* U(s) () ds);

1

Q.

(2.2.13)
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2. Asymptotic behavior of positive solutions of Emden-Fowler second order DE

Integrating (2.2.13) on [t,00), and using both (2.2.11) and (2.2.12), we obtain

[m(£5ffﬂﬂﬂwfm)é%
N

:G%EYQAWC%%%éy%@NK@,Fﬂn

This completes the proof of Lemma 2.2.1.[]

8
i)
—~
=
N—
o~~~
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N—
Q=
U
=
N~
i
™|
IS
®»

Lemma 2.2.2 Suppose that (2.2.6) holds and let p be defined as

_ _1_|_ll
(2.2.15) p=2"2 a

The function

(2216 Yalt) = (w(twl p() (0 >

satisfies the asymptotic relation (2.2.9).

Proof. We denote A = oo (—p)® (p+1). Using (2.2.3), Ya(t) € RV (p) is exprresed
in the form

Ya(t) = A58 P(t)? I(t)+7,

so that by application of Generalized Karamata’s integration theorem we have

(- [ tq(sm(s)ﬂds)i

B 1 ¢ , st =23 ¢
(2.2.17) ~ N\ aleB) m i P'(s) P(s)"°F [(s) d8>
P'(t)

(u+pB+1)w

|

__B _
~ )\ ala—p)

Since p+ B p+1=a(p+1), we integrate (2.2.17) on [¢t,00) and use Generalized
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2.2 Asymptotic behavior of intermediate solutions of (E;) under (Cy)

Karamata’s integration theorem once more to get

/too (1% /:q(r)YZ(T)'B dr>é ds

1 o0 1
NP . — / P'(s) P(s)°~" I(5) 7 ds
(alp+ 1)) Je
1
1
(a(=p)*(p+1))e
This completes the proof of Lemma 2.2.2. [

Lemma 2.2.3 Suppose that (2.2.7) holds. The function

~ AR P(t)? ()75 = Ya(t), t— oo.

(2.2.18) o) =) (=2 [ a(o)wtsy ds)‘*lﬁ

@ a
satisfies the asymptotic relation (2.2.9).
Proof. Let (2.2.7) holds. Then, p =  — 1, and by using (2.2.4) we have
qit)w(t)? = P'(t) P(t)"11(t), I(t) € SVp, implying, due to Proposition (1.2.10)-
(iif), that
¢
(2.2.19) / q(s)7(s)’ds € SVp.

Using (2.2.18) and (2.2.19) we conclude that Y3(¢) € ntr — RVp(—1). On the other
hand, by a simple calculation, we obtain
i

/atQ(s)Yé(S)Bds — (a_ﬁ)aﬂﬁ /:q(s>7r<s)ﬁ (/:Q(T)W(r)ﬂdr)w .

a
(2.2.20) - (O‘ - b /tq(s)w(s)ﬂ ds)aﬁ .
From (2.2.19) and (2.2.20) we get

(2.2.21) /tq(s)Yg(S)’B ds € SVp.

Multiplying (2.2.21) with p(f)~= and integrating on [f,00), by application of
Proposition 1.2.10 as ¢ — oo we have

/too <$ /:Q(r)ié('r’)ﬂdr)ids ~ /too P'(s)P(s)? </:q(7“)Y3(7“)”8dr)id3

~ro ([ tq(sm(sws) ~ o (0] tq(s)w(sws) R

(07

Q=
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2. Asymptotic behavior of positive solutions of Emden-Fowler second order DE

where we use (2.2.20) in the last step. This completes the proof of Lemma 2.2.3. [J

Since ¢y7(t) < x(t) < ¢q, for some positive constants ¢; and ¢, and all large
t, the regularity index p of z(¢) must satisfy —1 < p < 0, while the slowly varying
part of x(t) satisfies

(1)

lw(t)zﬁﬁoo ast — oo or l,(t)=x(t) >0 ast — oo,

T

according as p = —1 or p = 0. Therefore, the class of intermediate regularly varying
solutions with respect to 1/7(t) is divided into three types of subclasses

(2.2.22)  ntr —RVy/:(=1), or RV(p) with pe (=1,0), or ntr —SVy.

We will show that if (E;) has intermediate regularly varying solutions with respect
to 1/7(t) then all of them are members of only one of the subclasses in (2.2.22) and
have one and the same asymptotic behavior at infinity.

Theorem 2.2.1 Let p(t) € RVy/x(n), q(t) € RVi/x(0) and (Cy) hold. Equation
(E1) has intermediate solutions x(t) € ntr —SVy/; if and only if (2.2.5) holds.
The asymptotic behavior of any such solution x(t) is governed by the unique formula
x(t) ~ Yi(t), t — oo, where Yi(t) is given by (2.2.11).

Theorem 2.2.2 Let p(t) € RVy/x(n), q(t) € RVy/z(0) and (Ci) hold. Equation
(E1) has intermediate solutions x(t) € RVi/x(p) with p € (=1,0) if and only if
(2.2.6) holds, in which case p is given by (2.2.15) and the asymptotic behavior of

any such solution x(t) is governed by the unique formula x(t) ~ Ya(t), t — oo,
where Yo(t) is given by (2.2.16).

Theorem 2.2.3 Let p(t) € RVy/:(n), q(t) € RVy/z(0) and (Cy) hold. Equation
(E1) has intermediate solutions x(t) € ntr — RVy/-(—=1) if and only if (2.2.7)
holds. The asymptotic behavior of any such solution x(t) is governed by the unique
formula x(t) ~ Y3(t), t — oo, where Y3(t) is given by (2.2.18).

Proof of the ”only if’ part of Theorems 2.2.1, 2.2.2, 2.2.3: Suppose that
equation (E;) has an intermediate solution x(t) € RVy/x(p), p € [~1,0] defined on
[to, 00) . Integrating equation (E;) from ¢, to ¢ using (2.2.2) and (2.2.4) we have

2223) 50 (<00 ~ [ a6l ds = [ P PO U L) ds

to to

as t — oo. Since tlim p(t)(—2'(t))* = oo, the divergence of the last integral in
— 00
(2.2.23) implies that it must be pu+ pfs > —1. We distinguish two cases:

(@) p+pb=-1, (b) p+pB>-L
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2.2 Asymptotic behavior of intermediate solutions of (E;) under (Cy)

Assume that (@) holds. Then, by Proposition 1.2.10-(iii)

(2.2.24) ( / )z (s)’ ds); _ < / " Ps) P(s)H I(s)1 (5)? ds)i € SVp.

to to

Thus, multiplying (2.2.24) with p(t)*é = P'(t) P(t)~% and integrating from ¢ to oo,
by the Generalized Karamata’s integration theorem we have

() ~ /t " P(s) P(s)? ( / P ) PO ) L () dr) s

to

(2.2.25) ~ P(t)! (/t P'(s) P(s)7 1(s) 1. (s)" ds) ’ € RVy/-(-1), t— oo.

to

Assume that (b) holds. Then, by an application of Proposition 1.2.10-(i), (2.2.23)
implies

(2.2.26) /1t o(s) 2(s)? ds ~ ﬁ P51 () L1, — oo,
so that

v (2 [ ety ds )~ POPOTE U0 L)
221) =o'~ (o1 [ ats)etey’as) e e

as t — oo. Since tlim x(t) = 0, the last function in (2.2.27) is integrable on [ty, 00),
—00

so it must be “J“”TBH < 1, and we must distinguish the two possibilities:
1 1
(b.1) ptpBtl _ 1, (b.2) ptpef+l
! «

If (b.1) holds, integration of (2.2.27) from ¢ to oo, by an application of Generalized
Karamata’s integral theorem implies

P HpTﬂ-H*l é g 1 —
(2:2.28)  (t) ~ itgﬂ 10z L0 T € RVi/x (M L a) ’
— (B 1) (utpp D). a

as t — 00. On the other hand, if (b.2) holds, integration of (2.2.27) from ¢ to oo
gives

(2220)  a(t) ~a- / P/(s) P(s) " 1()% Lu(s)% ds € SVyjmy £ — o,
t
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2. Asymptotic behavior of positive solutions of Emden-Fowler second order DE

Suppose that equation (E;) has an intermediate solution z(t) that belong to
ntr — RVy/-(—1) on [tg, 00). From the above observation this is possible only when
the case (a) holds. In that case p= —1, p = —1ie o=~ 2141 and z(t) must
satisfy the asymptotic behavior (2.2.25). Since z(t) = P(t)™' 1,(t), l.(t) € SVp,
from (2.2.25) we have

(2.2.30) l(t) ~ (/ P'(s) P(s)71(s) I.(s)" ds> ’ = y(t)i, t — o0.

to

Now, we get the differential asymptotic relation for v(¢) :
(2.2.31) (t)"% V() ~ q(t) P(t) P, t = oo.

Integrating (2.2.31) on [t,t] we have

_ t ap
(2.2.32) v(t) ~ (O‘ b / q(s) m(s)”? ds) b — o0,

(8% to
From (2.2.30), since lim; ., ,(t) = oo, we have lim; o, v(t) = oo which implies
W3 = oo. Combining (2.2.32) with (2.2.25) gives us x(t) ~ Y3(t), t — oo, where
Y3(t) is given by (2.2.18). This completes the ”only if” part of the proof of Theorem
2.2.3.

Next, we assume that equation (E;) has an intermediate solution x(t) € RVy,.(p)

with p € (—1,0) on [tg, 00). For such z(t) only case (b.1) is possible and x(t) must
satisfy the asymptotic relation (2.2.28), which shows that

ptpBtl—a
p= (0]

Y

implying that the regularity of z(¢) is given by (2.2.15). Thus, hypothesis p €
(—1,0) determines the range of 0 as S — 21 +1<o <a— 2+ 1. Using (2.2.3) we
rewrite (2.2.28) in the form

(P(t)=" p(t)= q(t))™ w(t)«
(—=p) (ap+ 1))V ’

which leads us to the asymptotic formula z(¢) ~ Y5(t), t — oo, where Y5(t) is given
by (2.2.16). This completes the ”only if” part of the proof of Theorem 2.2.2.

Finally, if we assume that equation (E;) has an intermediate solution x(t) €
SVi/x, the case (b.2) is the only possibility for x(t), which means that p = 0,
p=a—1lie o=a—"+1and z(t) satisfies (2.2.29). Letting

Qlm

x(t) ~

t — o0,

awz—vlwﬁ@ﬂwrW@iuﬁ&w

o«
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2.2 Asymptotic behavior of intermediate solutions of (E;) under (Cy)

we transform (2.2.29) into the differential asymptotic relation:

) ~ PO 05 ¢ .

(2.2.33) ()"

Since

(L) /atQ(S) ds)‘lx N Llp(t)p(t)—é I(£)%, t — oo,

p(t Qo
integration of (2.2.33) from ¢ to co combined with the fact that {(t) ~ x(t) — 0,
t — oo, shows that Z, < oo and that the asymptotic expression for z(t) is

x(t)~<a;5 /tm(]% /:q(r)dr>; ds)fﬂ}fl(t), £ = o0

This completes the ”"only if” part of the proof of Theorem 2.2.1. [J

Proof of the ”if” part of Theorems 2.2.1, 2.2.2, 2.2.3: Suppose that (2.2.5)
or (2.2.6) or (2.2.7) holds. From Lemmas 2.2.1, 2.2.2 and 2.2.3 it is known that
Yi(t), i = 1,2,3, defined by (2.2.11), (2.2.16) and (2.2.18) satisfy the asymptotic
relation (2.2.9). We perform the simultaneous proof for Y;(t), i = 1,2,3 so the
subscripts i = 1,2,3 will be deleted in the rest of the proof. By (2.2.9) there exists
Ty > a such that

(2.2.34) @ < /too (L /Sq(r)Y(r)ﬁ dr); ds < 2Y (1), t > Tp.

p(s) Jr,
Let such a T} be fixed. Choose positive constants m € (0,1) and M > 1 such that

B B
a «

(2.2.35) m'"a <= and M'"a > 2

| —

Let us define the set
(2.2.36) X = {z(t) € C[Tp,00) : mY (t) < z(t) < MY (t), t > Tp}.

It is clear that X is a closed, convex subset of the locally convex space C[T}, 00)
equipped with the topology of uniform convergence on compact subintervals of
[Ty, 00). We define the integral operator

(2.2.37) Fa(t) = /t N (1% /T :q(r)x(r)ﬂ dr)i ds, 1> T,

and let it act on set X defined above. We show that F is a continuous self-map on
X such that F(&X) is relatively compact in C[Tj, 00).
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2. Asymptotic behavior of positive solutions of Emden-Fowler second order DE

(i) F(X) C X. Let z(t) € X. Using (2.2.34), (2.2.35) and (2.2.36) we get

Fr(t) < M« /too (zﬁ /qu(r)Y(r)ﬁ dr) : ds <2MaY(t) < MY(t), t>T,

and

Fa(t) = mh /too (Zﬁ /qu(r)Y(r)’B dr) " ds > m? Yét) S mY(t), t> T

This shows that Fx(t) € X, that is, F maps X into itself.
(i) F is continuous on X . Let {x,(t)} be a sequence in X converging to z(t) € X

uniformly on compact subintervals of [T, c0). Let T} > Ty be arbitrary fixed. Then,
by (2.2.37) we have

(2.2.38) |Fa,(t) — Fa(t)] < /OO F,(s)ds, te€ [Ty, T1],

( /Tt a(s) n(s)" ds) - ( /T t q(s) x(s)” ds) ' ,

By the Lebesgue dominated convergence theorem we have lim, ., F,(t) = 0 for
each t € [Ty, T1]. In addition, using this fact and

where

FN<t) =

|Fu(t)] < 2M5 (/Tl q(s) Y (s)? ds)a : t € [Ty, 1],

To

an application of the Lebesgue dominated convergence theorem gives

. <1
lim .
n—oo [, p(S)E

F.(s)ds=0.

Therefore, |Fz,(t) — Fz(t)| = 0, n — oo uniformly on [Ty, T3] C [1p, 00), which
proves the continuity of F on X.

(iii) F(X) is relatively compact. The inclusion F(X) C X ensures that F(X)
is locally uniformly bounded on [T}, c0). Differentiation of (2.2.37) gives

_pjg)ai (

which implies that F(&X') is locally equicontinuous on [Ty, 00). Therefore, by the
Arzela-Ascoli theorem, we conclude that F(X') is a relatively compact subset of
C[Tg, OO)

/ q(s) Y (s)? ds) ) < (Fz) (t) <0, t € [Ty,00), x(t) € X,

To
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2.2 Asymptotic behavior of intermediate solutions of (E;) under (Cy)

Thus, all the conditions of the Schauder-Tychonoff fixed point theorem are ful-
filled and so there exists a fixed point z(t) € X of F, which satisfies integral
equation

(2.2.39) () = /t h (]ﬁ /T :q(r)x(mﬁ dr>i ds, 1> T,

Differentiating the above twice shows that x(¢) is a solution of (E1) on [Tj, 0c0). It
is clear from (2.2.36) that z(¢) is an intermediate solution of (E;).

Finally, we show that intermediate solutions constructed above are indeed a
regularly varying function with respect to 1/7(¢). Denote

J(t) = /t h (]% /T :q(r)Y(r)fB dr); ds.

Due to (2.2.36) we get

Lzt x(t)
— K -7
0< hggf vi) = hrtriigp Y () < 0.

Applying Lemma 1.1.1 and using that Y (t) ~ J(t), t — oo, we obtain
(1)

1
t a
o ([ atsa(s)” as)
L =limsup —= < limsup = lim sup To

too (1) oo () oo < /t ()Y (s)? ds);

To

R Ji a@)2(s)? ds\ "/ d(B)z(t)?\ =
B (hrtiigp Jz, a(s)Y (s)? ds) : (h?iil.fp q(t)Y(t)ﬁ)

B
[eY

= (i) = (i) =2

Since 0 < g < 1 and 0 < L < oo, the above fact implies 0 < L < 1. In
the same manner we can prove that [ = liminf, ,,, x(t)/J(f) satisfies 1 < [ <
o0o. Then, in view of the trivial inequality | < L, we obtain [ = L = 1. This
means x(t) ~ J(t), t — oo, which in view of J(t) ~ Y (t), t — oo, shows that
x(t) ~ Y(t), t = oo. Therefore, z(t) is a regularly varying function with respect
to 1/m(t) whose regularity index p is =1 or (0 —a —1+2)/(a — ) or 0 according
as the regularity index o of the coefficient ¢(t) is respectively, 0 = 8 — 2 41 or
cc(B-24+1,a—2+1)oro=a—241 Thus, the if part of Theorems 2.2.1,
2.2.2 and 2.2.3 has been proved. []
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2. Asymptotic behavior of positive solutions of Emden-Fowler second order DE

Our main results (Theorems 2.2.1, 2.2.2, 2.2.3) combined with Theorem 2.1.1
enable us to describe in full details the simple and clear structure of RV, ;. —solutions
of equation (E;) with RV, —coeflicients under the condition (C;). We denote by
Ri/~ the class of all regularly varying solutions with respect to 1/m(t) of equation

(E1) under the condition (C;) and introduce the following symbols for subclasses
of Ri/x:
Rl/ﬂ(p) =R/ N va/ﬂ(p),

tr — Ri/x(p) = Rz N tr — RV (p), ntr — Ri/x(p) = Riyz N ntr — RVy /2 (p).
Corollary 2.2.1 Let p € RVy/:(n), ¢ € RVy/z(0) and (Cy) holds.
(i) Ifoc <B—=21+1, then Ryjr = tr — Ryyn(—1) Utr — Ry/x(0);
(ii) Ifo =B —2+1 and W5 < 00, then Rijx = tr — Ry/x(—1) Utr — Ry/x(0);
(iii) Ifo =B — 241 and Wy = oo, then Ry/r = ntr — Ry/-(—1) Utr — Ry/-(0);

(iv) If =2 +1<o<a—2+41, then Riyx = Rix (%) Utr — Ri/x(0);

a a—f
(v) Ifo=a—2+1 and Z, < oo, then Rijr = ntr — Ry/x(0) U tr — Ry/-(0);
(vi) Ifo =a—2+1 and Z, = oo, then Ry/r = 0;

(vii) If o > a— 21 +1, then Ry/r = 0.

Remark 2.2.1 As mentioned in the Section 2.1, in some recent papers ( [25] and
[60]) the asymptotic forms of intermediate solutions of (E;) have been obtained. So,
we end this paper by comparing our main results with earlier ones, wanting to point
out that our results are an improvement over existing results in several directions.
Naito [60, Theorems 4.3,4.4] determined asymptotic forms of intermediate solutions
of (E) assuming that

i 7(t) Fwo(m(t)), t— o0
p(t)V/e ’ ’

where £ is a positive constant, w(t) is a positive continuously differentiable function
on an interval (0, 7], 0 < 70 < 1 and either

(2.2.40) g(t) ~

sup(s)
(2.2.41) fri<p<a+l and  lim =55 =0,
or
1 /
(2.2.42) p=pF0+1 and lim 5| log 5| w(s) 0.

504 wo(s)
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2.3 Classification and existence of positive solutions of (E;) under (Cs)

It has been proved that equation (E;) has a slowly decaying solution and moreover,
every slowly decaying solution z(t) of (E;) satisfies

1
1

(2.2.43) o(#) ~ <L)Va) ) ()T, b o0,

a(l —v
where v = (a — p+ 1) /(e — ), or

1
(2.2.44) x(t) ~ <@> o 7(t)(|log m(t)| wo(w(t)))o‘%ﬁ, t— 00
according to whether (2.2.41) or (2.2.42) holds, respectively. The assumption on
wo(t) in (2.2.41) and (2.2.42) shows that wy(t) is slowly varying at zero, so that
wo(1/t) is slowly varying at infinity. This implies that the condition (2.2.40) means
that p(t)/*q(t) is in fact regularly varying at infinity with respect to 1/7(t) of in-
dex p and that an intermediate positive solution satisfying (2.2.43) or (2.2.44) is
regularly varying at infinity with respect to 1/7(¢) of index —v or —1, respectively.
Thus results presented in [60] is essentially concerned with the existence of gen-
eralized regularly varying solutions of a particular equation of the form (E;) with
generalized regularly varying coefficients p(t) and ¢(t). It should be notice that this
results are covered by our results because asymptotic formulas (2.2.43) and (2.2.44)
follow from Theorem 2.2.2 and Theorem 2.2.3, respectively, applied to the special
case under consideration. However, the use of theory of regular variation allows us
to reduce the assumption on function wy(t) in (2.2.40) from continuous differentia-
bility to only continuity. Finally, we emphasize that our main results provide sharp
criteria for equation (E;) to possess three possible types of intermediate regularly
varying solutions with respect to 1/7(t), listed in (2.2.22), while in [60] only suffi-
cient conditions for the existence of intermediate solutions are given, and neither
the existence nor the asymptotic behavior for x(t) € SV;/, has been investigated.

2.3 Classification and existence of positive
solutions of (E;) under the condition (Cs)

We assume that p, g : [a,00) — (0, 00) are continuous functions and that (Cs) holds.
The condition (Cy) enables us to define the increasing function II(¢) as

(2.3.1) I1(t) :/t p(is)é . t>a

It is easily seen (Elbert and Kusano [11]) that if z(¢) is an eventually positive
solution of (E;), then there are positive constants ¢; and ¢y such that

(2.3.2) o1 <a(t) < ell(t), for all large t.
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2. Asymptotic behavior of positive solutions of Emden-Fowler second order DE

More precisely, the asymptotic behavior of any positive solution z(t) of (E;) falls
into one of the following three types:

(t)

(2.3.3) tllglo ) = const > 0.
. B ()
(2.3.4) tlgilo z(t) =00 and tlgglo T 0;
(2.3.5) tlim x(t) = const > 0;
—00

Solutions of type (2.3.3), (2.3.4), (2.3.5) are often called, respectively, dominant,
intermediate and subdominant solutions. It should be noticed (see [11], [41] and [60])
that oscillation of all solutions, as well as the existence of the positive solutions of
each of the above types for the equation (E;) with continuous coefficients p(t), q(t)
can be completely characterized by the convergence (or divergence) of integrals:

[Bz/aooq(t)ﬂ(t)’gdt, Ja:/:O(I%/tooq(s)ds)idt.

Theorem 2.3.1 Let p(t),q(t) € Cla,o0) and (Cy) holds.
(a) All solutions of (Ey) are oscillatory if and only if 1z = oo;
(b) Equation (E1) has a positive solution of type (2.3.3) if and only if Iz < co;

(¢) Equation (E1) has a positive solution of type (2.3.4) if and only if J, = o0
and Iz < oo;

(d) Equation (Ey) has a positive solution of type (2.3.5) if and only if J, < oo,

2.4 Asymptotic behavior of intermediate solutions
of (E;) under the condition (Cs)

We assume that (Cy) holds and that the functions p(¢) and ¢(t) are generalized
regularly varying functions of indices n and o with respect to I1(¢), which is defined
with (2.3.1), and search for the intermediate solutions z(t) € RV (p) of (E;). Since
(2.3.2) holds, the regularity index p of x(t) satisfies p € [0, 1], while for the slowly
varying part [,(t) of x(t) it is true that either [,(t) — oo or I,(t) — 0 as t — oo
according as p = 0 or p = 1. Therefore, it is natural to divide the totality of
intermediate RVy-solutions of (E;) into the following three disjoint subclasses:

ntr-RV (0), RVnu(p) with p € (0,1), ntr-RVy(1) .
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2.4 Asymptotic behavior of intermediate solutions of (E;) under (Cy)

Our main results formulated below characterize completely the membership of each
of the three subclasses of solutions and show that all members of each subclass
enjoy one and the same asymptotic behavior as ¢ — co.

Theorem 2.4.1 Let p(t) € RVu(n), q(t) € RVu(o) and (Cq) hold. Equation (E;)
has intermediate solutions x(t) € ntr — RV (1) if and only if

(2.4.1) a:—ﬁ—ﬁ—l and Ig < o0,
a

in which case the asymptotic behavior of any such solution x(t) is governed by the
unique formula

1

(2.4.2) 2(t) ~ II(t) <O‘ =5 /t h H(s)ﬁq(s)ds) S

«

Theorem 2.4.2 Let p(t) € RVnu(n), q(t) € RVu(o) and (Cg) hold. Equation (E;)
has intermediate solutions x(t) € RVn(p), p € (0,1), if and only if

(2.4.3) D a—t<o<-T g1
(6] [0

in which case p is defined by

ltota+l
a—03 7

and the asymptotic behavior of any such solution x(t) is governed by the unique
formula

(2.4.5) 2(t) ~ (H(IZZ f’%;ﬂ”) BN,

(2.4.4) p=

Theorem 2.4.3 Let p(t) € RVu(n), q(t) € RVi(o) and (Cs) hold. Equation (E;)
has intermediate solutions x(t) € ntr — SVyy if and only if

(2.4.6) o=—1_a—-1 and Jo = 00
a

in which case the asymptotic behavior of any such solution x(t) is governed by the
unique formula

(2.4.7) () ~ (O‘;ﬁ /at (p(ls) /:O q(r)dr)ids)aa_ﬁ, I 0o,
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2. Asymptotic behavior of positive solutions of Emden-Fowler second order DE

Main results (Theorems 2.4.1, 2.4.2, 2.4.3) combined with Theorem 2.3.1 enable us
to describe in full details the simple and clear structure of RVy-solutions of equation
(E1) under the condition (Cy) with RVy-coefficients. We denote by Ry the class
of all regularly varying solutions with respect to II(¢) of equation (E;) under the
condition (Cg) and introduce the following symbols for some important subclasses
of Ru:

Rn(p) = RH N RVH(p), tr — Rn(p) = RH N tr-RVH(p),

ntr — Ru(p) = R N ntr-RVp(p).

Corollary 2.4.1 Let p € RV(n), ¢ € RVi(o) and (Cy) holds .
(i) Ifo <=1 —a—1, then Ry = tr— Rp(1) U tr— Ru(0).
(ii) Ifo = -2 —a—1 and J, < 0o, then Ry = tr — Rp(1) U tr — Ru(0).
(iii) Ifo = -2 —a—1 and J, = 0o, then Ry = tr— Ru(1) U ntr — Ru(0).

() If =2 —a—1<o<-2=F—1, then Ry = tr— R(1) URy (252,

a—f
(v) Ifo = =2 = —1 and Ig < oo, then Ry = tr — Ru(1) U ntr — Ru(1).
(vi) If o = =2 =3 —1 and Iz = oo, then Ry = ().

(vii) Ifo > =2 — B —1, then Ry = 0.

2.5 Asymptotic behavior of intermediate
regularly varying solutions of (E;) in the sense
of Karamata

As mentioned before, the class of classical Karamata functions is the subset of the
class of generalized Karamata functions, so in case the coefficients p(t) and ¢(t) of
equation (E;) are reqularly varying the detailed information can be acquired about
the existence and asymptotic behavior of regularly varying solutions x(t) of (E).

We suppose that p(t) € RV(n), ¢(t) € RV (o) and search for solutions z(t) of
(E1) belonging to the class RV (p). We require first that p(t) satisfies condition (Cy),
which implies 17 > «. Our attention is focused on the case where 7 > «a , since not
all functions p(t) with n = a satisfy (C;). As is easily seen, if n > «, then

w(t)eRv(O‘;”>,P(t):ieRv(”_o‘) andP-l(t)eRv( a )

m(t) a n—a«a
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2.5 Intermediate regularly varying solutions of (E;) in the sense of Karamata

where P~! denotes inverse of P. It follows that p(¢), ¢(¢) and x(t) can be considered
as generalized regularly varying functions with respect to 1/7(t). More precisely,

p(t)ERVl/W< Sl ) q(t)GRVl/W( i ) x(t)eR\/l/W( ap >

n—a n—a« n—a

The above observation makes it possible to apply our main results to the present
situation, giving rise to new results on the asymptotic analysis of equation (E)
under the condition (C;) which are formulated in terms of generalized Karamata
functions. Translating the obtained results into the language of classical Karamata
functions then provides the accurate information about all possible regularly varying
solutions for the equation (E;) under the condition (C;) with regularly varying
coefficients p(t) and ¢(t).

Corollary 2.5.1 Let p(t) € RV(n), q(t) € RV(c) and (Cy) holds. Equation (E;)

has intermediate nontrivial slowly varying solutions x(t) if and only if
c=—1—a+n and Z, < cc.

Any such solution x(t) enjoys one and the same asymptotic behavior x(t) ~ Y(t),
t — oo, where Yi(t) is given by (2.2.11).

Corollary 2.5.2 Let p(t) € RV(n), ¢(t) € RV(o) and (Cy) holds. Equation (E;)
has intermediate solutions x(t) € RV(p) with p € (1 — 2,0) if and only if

—1—5+ﬁ77<0<—1—a+77,
(0%

in which case p is given by
_l+a+to—n
= -

and the asymptotic behavior of any such solution x(t) is governed by the unique

formula
(e e\ .
#{t) ((—p>a<a<p—1>+n>) St

Corollary 2.5.3 Let p(t) € RV(n), ¢(t) € RV(o) and (Cy) holds. Equation (E,)
has intermediate solutions x(t) € ntr — RV(1 — 1) if and only if

p

U——1—5+§77 and Wz = oo.

Any such solution z(t) enjoys one and the same asymptotic behavior z(t) ~ Y3(t),
t — oo, where Y3(t) is given by (2.2.18).
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2. Asymptotic behavior of positive solutions of Emden-Fowler second order DE

Now, we suppose that p(t) € RV(n) and ¢(t) € RV(o) and (Cs) holds. Note
that condition (Cq) is satisfied if n < a. In what follows, we assume that n < a,
excluding the case 1 = a because of computational difficulty. Then, it is easy to

see that
a R

H(t)eRV( 77) and H*(t)eRv( - )

o a—mn

so that
p(t) € R\/H< an ) q(t) € RVH( i ) and  z(t) € RVH< ap )
a a—n a—n
Having the above observation in mind, we easily see that our theory of generalized

regularly varying solutions can be applied to the present situation, giving birth to
the following results as corollaries to Theorems 2.4.1-2.4.3.

Corollary 2.5.4 Let p(t) € RV(n) and q(t) € RV(o) and (Cy) holds. Equation
(E1) has intermediate solutions x(t) € ntr — RV (1 — L) if and only if

azén—ﬂ—l and Iz < oo,
Q

in which case any such solution x(t) enjoys one and the same asymptotic behavior
(2.4.2).

Corollary 2.5.5 Let p(t) € RV(n) and q(t) € RV(o) and (Cs) holds. Equation
(E1) has intermediate solutions x(t) € RV(p), p € (0,1 — 1), if and only if

n—a—1<a<én—ﬁ—1,
«
in which case p is given by
_ —n+to+ta+l
= - ,
and any such solution x(t) enjoys one and the same asymptotic behavior
() Lg(t) \ 7P
x(t)w( p()q()) VN
((1=p)a—n)p~

Corollary 2.5.6 Let p(t) € RV(n) and q(t) € RV(o) and (Cs) holds. Equation
(E1) has intermediate solutions x(t) € ntr — SV if and only if

c=n—a—1 and J, =00,

in which case any such solution x(t) enjoys one and the same asymptotic behavior
(2.4.7).
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2.6 Examples

2.6 Examples

Now, we present four examples that illustrate results presented in previous sections.
First example illustrates Theorems 2.2.1-2.2.3.

Example 2.6.1 Consider the equation
(2.6.1) (et || ) gtz le =0, t>2, a>p>0.

Here p(t) = e** satisfies (C;) and P(t) = 1/7(t) = €', i.e. p(t) € RV.e(a), so that
n=a.
(i) Suppose that

(2.6.2) q(t) ~ 243 BVt o0,

where r(t) is continuous function on (2,00), such that tlim r(t) = 1. Then, q(t) €
—00

RV (a),ie. n=0=a,sothat 0 =a — 241 and we see that

1 1 1
00 1 /s > o aa o0 B (/s . (Ba) F ) a
— qgir)dr | ds~— e * r-ze®” VT dr ds
/t (P(S) 2 ( ) 2 J; 2

B—a
1 [®ea Vid o
~ = < PR eﬂT‘/i—>O, t — o0,
2 J, NG a—p
implying Z, < oo. Therefore, by Theorem 2.2.1 there exist nontrivial SV-solutions
with respect to e of (2.6.1) and any such solution z(¢) has asymptotic behavior

B 00 s 1 \a>
0ty ~ (220 [T (/ T‘gea”wwmdr) ds
20 a Jy 2

0B o s g\
~ ( g eﬁa‘/z> Ne_‘/z, t — 0.
a a—p

If in (2.6.2) instead of 7 ~ ” one has ” = ” and in particular r(t) = 1 — ﬁ - 5,

then (2.6.1) possesses an exact solution x(t) = e~ V.

(i) Suppose that
a+p t
2

(2.6.3) q(t) ~ —— > P

ST r(t), t— oo,

where r(t) is continuous function on (2,00) such that tlim r(t) = 1. It is clear that
—00

q(t) is regularly varying with respect to e’ of index

a+p
2

g =

e(ﬁ—g+1,a—g+1>:(ﬁ,a)
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2. Asymptotic behavior of positive solutions of Emden-Fowler second order DE

and that
c—a+l1+2 1

P= a—f 2
By Theorem 2.2.2 there exist regularly varying solutions of index p with respect to
e' of (2.6.1) and any such solution z(¢) has asymptotic behavior

1
1

2(t) ~ (QZH () p(t)= q(t))aﬁ ~teTz, t— oo

Observe that if in (2.6.3) instead ” ~ 7 one has 7 =" and r(t) = (1 — %)a_l, then

2(t) = te 2 is an exact solution of (2.6.1).
(iii) Suppose that

(2.6.4) q(t) ~ at P eBlrt), t — oo,

where r(t) is continuous function on (2,00) such that tlim r(t) = 1. Here, ¢(t) €
— 00
RV (B). Therefore, 0 =3 -2 +1 and

¢ ¢
/ q(s)m(s)’ ds ~ a/ @Bl gs v L pab 0o, t— oo,
2 2 a—pf

implying W3 = co. By Theorem 2.2.3 there exist solutions z(t) € ntr — RV.+(—1)
of (2.6.1) and any such solution x () has asymptotic behavior

o — o o=p
O ta—ﬁ) ~te l t— 0.
a a—p

x(t) ~ et (

If in (2.6.4) instead of 7 ~ 7 one has 7 =7 and in particular r(t) = (1 — l)afl,
then (2.6.1) has an exact solution z(t) = te™".

In the following example we consider equation with regularly varying function in
the sense of Karamata, applying Corollaries 2.5.1-2.5.3.

Example 2.6.2 Consider the equation

2 Iogt\*” '
(2.6.5) (t%‘ (H—Og1> |2/|* ! x’) +q)|x)te =0, t>e, a>pB>0.
ogt —

Here p(t) = 2 (2—Vlogt>a € RV(2a), 7(t) ~ 5+/logt € RV(—1), t — oo and p(t)

logt—1
satisfies the condition (Cy).
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2.6 Examples

(i) Suppose that
(2.6.6) q(t) ~ at* *(log t)§’2°‘ r(t), t— o0

where r(t) is a positive continuous function on (e, 00) such that 1tlim r(t) = 1. The
—00

regularity index of ¢(t) is ¢ =a —1, and thus 0 = -1 —a+n and
1
*© /1 /s >a l/oologs—l B-5a o f-a
— q(r)dr | ds~ = —— (logs) 2o ds ~ logt) 2o~ — 0,
| (o [ [ o) 2 (og

as t — oo, implying Z, < oo. Therefore, by Corollary 2.5.1 there exist nontrivial
SV-solutions of (2.6.5) and any such solution z(¢) has asymptotic behavior

2(t) ~ (O‘;B afﬁ (1ogt)"z‘:“)” ~ (logt)"%, t — oo.

If in (2.6.6) instead ” ~” one has ” =7 and in particular

1 1 —a—1
logt  log*t logt

then (2.6.5) has an exact nontrivial SV-solution z(t) = (logt) 2.
(ii) Suppose that

N|=

(2.6.7) g(t) ~ =t (logt) "2, t— oo.

It is clear that now ¢(t) is regularly varying function of index

a:f%;B—1€<—1—ﬁ+§n,—1—a+n>:(ﬁ—La—1)

and that
_l+a+o-n 1
P= a— 3 2
By Corollary 2.5.2 there exist nontrivial regularly varying solutions of index p of
(2.6.5) and any such solution z(t) has asymptotic behavior

PARE £)\ =7 logt
dﬂN( ﬁmq“> A 2t oo
a p(t) t

Observe that if in (2.6.7) instead ” ~ 7 one has 7 =7, then z(t) = 4/ lngt is an exact
solution of (2.6.5).
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2. Asymptotic behavior of positive solutions of Emden-Fowler second order DE

(iii) Suppose that
(2.6.8) qt) ~a227 P logt)2 Pl ¢ — oo

Here, ¢(t) € RV (8 — 1), so that 0 = —1—(+ gn and

a—=f

t t 1 -1 o
/ o(s) 7(s) ds ~ o 251 / %ds ~ S log) F s s,

as t — oo, implying Wg = oo. By Corollary 2.5.3 there exist nontrivial solutions
x(t) € RV(1 — 2) = RV(—1) of (2.6.5) and any such solution z(t) has asymptotic
behavior

Vlogt — aps\oB  logt
x(t) ~ ogt (a=f_« 20— (logt)Tﬁ ~ ﬁ, t — o0.
2t a a—p t
Observe that if in (2.6.8) instead ” ~ " one has ” =7, then x(t) = & is an exact

solution of (2.6.5).

In the following two examples we illustrate results of Theorems 2.4.1-2.4.3 and its
Corollaries 2.5.4-2.5.6.

Example 2.6.3 Consider the equation
(2.6.9) (e 2/ |* M) + q(t)|z|te =0, a>pB>0.

Here p(t) = e~ satisfies (Cy). Since II(t) ~ €', t = oo, p € RVp(—a), ie., n = —a.
(i) Suppose that

(t) ~ (o — B) e~ Bt=(a=B?Vlogt 4 o

2t+/logt

It is clear that ¢ € RV (—f), i.e., 0 = —f3, and so we see that 0 = =2 — 3 —1 and
that

00 e—(a—,@)2\/log s

| e ~ aa-p | TV e

= A o-(a=p?Vlogt _, 0, t— oo,
a—p
which implies that Iz < 0o. Therefore, from Theorem 2.4.1 it follows that equa-
tion (2.6.9) has intermediate solutions in RVp(1) all of which enjoy the unique
asymptotic behavior

x(t) ~ ete=AViost 4
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(i) Suppose that
q(t) ~ o~ 225 40 cos t97 t— 00,

where 0 € (O, %) Here ¢ € RVy(0) with o = —@. Since o satisfies

Tl —a<o<—fo-T_g_1,
« (0]

by Theorem 2.4.2 the equation (2.6.9) has intermediate solutions in RVy(p) with p
given by (2.4.4), i.e.,
ltot+ta+l 1

a—pf 3

and moreover all such solutions x € RVy;(1/3) enjoy the unique asymptotic behavior

3a+1 ﬁ te cos te
x(t)~<2a) e3T Bt — 0.

p:

Wl
+

(iii) Suppose that

(0% _
~ _¢ atJra\/E,
29t 2

t — o0.

q(t)

It is clear that ¢ € RVp(—a), ie., 0 = —a = —1 —a — 1. Then, we have

and

t/ 1 /oo ); t oVs i
S q(r)dr | ds ~ ds ~ eVt
[ G [ . 25

as t — 0o. Consequently, J, = oo and thus Theorem 2.4.3 ensures that (2.6.9) has
intermediate solutions in SVy all of which obey the asymptotic formula

_B\aF .
x(t)w(a B) enF Yl t oo

Q@

Example 2.6.4 Consider the equation

(2.6.10) (2 (logt)*[2/|*7 ') + q(t)|z|* o =0, a>B>0.
Here

p@):t%O%ﬁYIGRV(%>, 11(t) ~ 2 e RV
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2. Asymptotic behavior of positive solutions of Emden-Fowler second order DE

so that n = % and p(t) satisfies (Cs).
(i) Suppose that

1

~ PRYE - E t — o0.
28tz (log t)1=#(loglog t)*~ @

q(t)

The regularity index of ¢(t) is 0 = —1 — g

s alyds ~ [
/t ¢ slogs(loglog s)?~«

a o
= loglogt) =« — 0, t—
Q_B(%og) , 00,
implying that I3 < oo. Hence, from Corollary 2.5.4 it follows that (2.6.10) has
intermediate solutions in RV(%) all of which obey the unique asymptotic formula

2Vt

x(t) ~ -, t— o0,
logt(log log t) o

zgn—ﬁ—l,and

(ii) Suppose that
Q(t) ~ t*%ﬂ-ﬁ-‘le(logt)'? cos (10gt)97 £ 5 oo,

—%M which satisfies

where 6 € (O, %) The regularity index of ¢(t) is 0 =
s p

[0
—a—-1l=—-———1l<o<--—-1=Sp—3—1.
n—a« 5 o 5 e B

Therefore, applying Corollary 2.5.5 we conclude that equation (2.6.10) has inter-
mediate solutions in RV(%) all of which obey the unique asymptotic formula

4o+l Tig L e(log t)? cos (logt)?
)~ ()"
a (logt)«

(iii) Suppose that

o logt \*7”
g(t) ~ 251 98 Lt oo
2 loglogt

a—B
, T — o0.

A simple computation shows that

1 1-8
1 > E 1 logt E
—/ q(s)ds | ~ °8 , t— 00,
p(t) J, tlogt \ loglogt
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implying that

t 1 0 é logt —g log ¢ l—g
/ (—/ q(r)d'r) ds ~ / u T~ @ ( 08 ) , t — 00.
exp(e) p(S) s e (log U)l_a a — B log log t

Consequently, by Corollary 2.5.6 equation (2.6.10) has slowly varying intermediate
solutions x(t) whose asymptotic behavior is governed by the unique formula

logt

x(t)

~ loglogt’
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Chapter 3

Asymptotic behavior of positive
solutions of quasilinear second
order differential equation

The aim of this chapter is to establish the existence and asymptotic behavior of
positive solutions at infinity of quasilinear second order equation

(E2) (p() (|2’ (®)]) sen (1) + q()y(x(t)) =0, t>a>0,

under two different conditions

(C1) /OO e (p(t) 1) dt < oo,

(C) / o)) dt = oo,

assuming that the coefficients p(t) and ¢(t) are regularly varying in the sense of
Karamata. Therefore, the results presented in this chapter are generalization of
results given in Section 2.5. Unlike the equation (E;), in the case of the equation
(E2) with positive continuous coefficients, the necessary condition for the existence
of intermediate solutions is still an open problem. If the coefficients of the equation,
as well as the functions ¢ and 1, are regularly varying functions it turns out that
it is possible not only to determine the necessary and sufficient conditions for the
existence of intermediate regularly varying solutions of this equation, but also the
precise information about the asymptotic behavior at infinity of these solutions can
be acquired.
The whole chapter is based on the original results contained in [54] and [56].
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3. Asymptotic behavior of positive solutions of quasilinear second order DE

3.1 Classification and existence of positive
decreasing solutions of (E;)under the condi-
tion (Cy)

In this section we classify the set of positive decreasing solutions of (Ey) according
to their asymptotic behavior at infinity under the assumptions that the functions
p,q : la,00) = (0,00) and 1 : (0,00) — (0,00) are continuous, ¢ is increasing
and that (C;) holds. The condition (C;) enables us to define the decreasing function
m(t) as

(1) :/ o p(s) D ds, t>a.
t
Definition 3.1.1 By a solution of (Eg) we mean a function x(t) : [T,00) — R,

T > a, which is continuously differentiable together with p(t)e(|2'(t)]) on [T, 00)
and satisfies the equation (E) at every point of [T,00).

It is easily seen (see [42]) that if x(t) is a positive decreasing solution of (E,),
then there are positive constants ¢; and co, such that for all large ¢

(3.1.1) om(t) < z(t) < co.

More precisely, the asymptotic behavior of any positive decreasing solution x(t) of
(E2) falls into one of the following three types:

(3.1.2) lim a(t) = const > 0;
t—00 7T(t>
. . . A _
(3.1.3) lim z(t) =0, lim p(t)p(—=2'(t)) = oo;
(3.1.4) lim z(t) = const > 0

Solutions of type (3.1.2), (3.1.3), (3.1.4) are often called, respectively, subdominant,
intermediate and dominant solutions.

It is known (see [42]) that the existence of positive solutions of subdominant and
dominant type for the equation (E2) with continuous coefficients p(t), ¢(t), ¢(s) and
¥ (s) can be completely characterized by the convergence or divergence of integrals

W= [Cawuona, 2= "o (o | tq(s)ds) dt.

Theorem 3.1.1 Let p(t),q(t) € Cla,0), ¢(s),9(s) € C[0,00) and (Cy) holds.

(a) Equation (E) has a positive solution of type (3.1.2) if and only if W < oo.
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3.2 Asymptotic behavior of intermediate solutions of (Es)under (C;)

(b) Equation (E) has a positive solution of type (3.1.4) if and only if Z < oc.
(¢) Equation (E) has a positive solution of type (3.1.3) if W = 0o and Z < cc.

Note that only the sufficient condition for the existence of intermediate solutions of
(Eq) is given in Theorem 3.1.1(c).

3.2 Asymptotic behavior of intermediate solutions
of (E;) under the condition (C,)

This section is devoted to the study of the existence and asymptotic behavior of
intermediate regularly varying solutions of the equation (E) with assumptions that
(Cy) holds, ¢ is increasing and

o(s) € RV(a), a>0; ¥(s) e RV(B), a>p>0;
(3.2.1)
p(t) € RV(n), n>«q; q(t) e RV(c), o €R.

Using (1.2.3), we can express ¢(s), ¥(s), p(t) and ¢(t) as

(3.2.2) @(s) =sLi(s), Li(s) € SV; (s) = sLa(s), La(s) € SV;
(3.2.3) p(t) =t",(t), 1,(t) € SV;  q(t) =t71,(t), [, (t) € SV.

Since ¢(s) is an increasing function, then ¢(s) has the inverse function, denoted by
0~ 1(s) and from (3.2.2) we conclude that

(3.2.4) e l(s) €ERV(1/a) = ¢ l(s)=s""L(s), L(s)<cSV.
We also need two additional requirements for the slowly varying parts of ¢ and :

(3.2.5) L(tu(t)) ~ L(t), t—0, Yu(t)eSYnNC'(R);

(3.2.6) Ly(tu(t)) ~ La(t), t—0, Vu(t)eSYNCHR).

It is easy to check that this is satisfied by e.g.

N

N
Lo(t) = [ (08, ), ax € R, but not by Lo(t) = exp [Jlog, ), i € (0,1),
k=1 k=1

where log, t = loglog,_,t, k=1,2,....
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3. Asymptotic behavior of positive solutions of quasilinear second order DE

Remark 3.2.1 The condition (3.2.5) implies an useful property of the function
o~ For u(t) € SVNCHR) and A\ € R™, applying Proposition 1.2.2-(iv), we have
u(ty) € SV N CHR). Using the substitution t* = s (s — 0 as ¢ — 00) and (3.2.5)
we obtain

L(t*u(t)) = L(s u(s%)) ~ L(s) = L(t"), t — 00, YA€ R, Vu(t) € SVNCHR),
from which it follows that

(3.2.7) @ (tut)) ~ o (tu(t)s, t—o00, YAER, Vu(t) € SVNCYR).
Similarly, the condition (3.2.6) implies an useful property of the function v:
(3.2.8)  Y(t*u(t)) ~ v(tMut)?, t— oo, VAERT, Vu(t) € SVNCHR).
We seek such solutions x(t) of (Eg) that can be expressed in the form

(3.2.9) x(t) =Pl (t), [.(t) € SV.

First, we express the function 7 (t) in the framework of regular variation. Using
(3.2.3), (3.2.7) and (3.2.4) we have as t — o0

r(t) = /t o (s () )ds ~ /t o s ()R ds ~ /t TR L(s ML (s) "R ds.

Applying Karamata’s integration theorem (Proposition 1.2.1) to the last integral in
the above relation we obtain

«

n—o

n

oo L) L)@, t— oo,

Q=

(3.2.10) m(t) ~

Clearly, 7(t) € RV(1 — ).

Our main tool in establishing necessary and sufficient condition for the exis-
tence and precise asymptotic forms of intermediate positive solutions of (Es) will be
Schauder-Tychonoff fixed point theorem combined with theory of regular variation.
To that end, the closed convex subset X of C|[tg, 00), which should be chosen in
such a way that F is a continuous self-map on X and send it into a relatively com-
pact subset of Cltg, 00), will be now found by means of regularly varying functions
satisfying the integral asymptotic relation

(3.2.11) x(t)w/too ! (p(s)_l/SQ(r)w(x(r))dr) ds, t— oo.

to

Thus, the proof of the ”if” part of our main results is performed in three steps:
(i) the analysis of the integral asymptotic relation (3.2.11),
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3.2 Asymptotic behavior of intermediate solutions of (Es)under (C;)

(ii) the construction of intermediate solutions by means of the fixed point tech-
nique, and

(iii) the verification of the regularity of those solutions with the help of the
generalized L’Hospital rule (see [13]).

To simplify the ”if” part of proof of our main results we now take the frst
step and prove the next three Lemmas verifying that regularly varying functions

X;(t), 1 =1,2,3 defined, respectively by

(3.2.12) Xi(t) =m(t) (a ; B / q(s) ¥(m(s)) ds) o’ 7
! s ) )
2. Xy(t) =0t . a(p—1) -1 1)
(3.2.13) (t) (a B oD mE? (P~ p(t) "= q(t) )

(3.2.14) Xs5(t) =0t (/too ! (p(S)_1 /:q(r) dr) ds)

satisfy the integral asymptotic relation (3.2.11)

Lemma 3.2.1 Suppose that

(3.2.15) o= gn “B-1 and /Oo o(t) ¥ (x(1)) dt = oo,

holds. The function X,(t) € ntr —RV(1 — 1) satisfies the asymptotic relation
(3.2.11).

Proof. Let (3.2.15) hold. Since o = gn—ﬁ—l, using (3.2.10), (3.2.2) and (3.2.3), by

Proposition 1.2.2 we obtain that ¢(t)i(m(t)) € RV(—1) so that fti q(s)Y(m(s))ds €
SV by Proposition 1.2.1-(iii). In view of (3.2.10) and (3.2.12), we conclude that
X1(t) € ntr — RV(1 — Z). Using (3.2.10), we get

(3.2.16) / t q(s) (e (s)) ds ~ / t PG g(s) (st a) m(s)P ds, t — oco.

to to

This, combined with (3.2.12), gives the following expression for X (¢) :

(3.2.17)  Xy(t) ~m(t) (a =5 /t PGV g(s) (st ) m(s)? ds) o , t — o0.

«
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3. Asymptotic behavior of positive solutions of quasilinear second order DE

Next, we integrate q(t)y(X1(t)) on [to,t]. Since X (t) = t'"aly(t), L(t) € SV, due
o (3.2.8), we obtain

(3.2.18) / g(s)(X1(s)) ds ~ / o(5) (s Iy (5)7 ds

to to

¢
~ / sPGTD g(s) (st ) Xq(s)P ds, t — oo.

to
Changing (3.2.17) in the last integral in (3.2.18), by a simple calculation we have

(3.2.19) /tQ(SW(Xl(s))ds N (a - ﬁ)aﬁs

to a

< P () (s ) () ([ vt Baerar)” o

_ (“‘ﬁ/ BED g(s) (5" H) ()%fﬁ
N (O‘;ﬁ i q(s)@b(w(s))ds)aaﬁi,tﬁoo,

where we use (3.2.16) in the last step. Since ft s)U(X1(s))ds € SV, (3.2.3),
(3.2.4) and (3.2.7) gives

o (o | tq<s>w<X1<s>>ds) = ot (e | tq(5>w(X1(S))d8>

to to

@

(3:2.20) ~ o ([ ecaenas)

to

[ atsrvixics) ) "

to

= L (

as t — oo. Integrating (3.2.20) on [t,00), we conclude via Proposition 1.2.1 that

/too o (p(S)l /t:fJ(v")w(Xl(r))dr> ds

(6] 11 1 t
~ t‘aLt‘”lt‘a(/
oty (f

which, combined with (3.2.10) and (3.2.19), shows that X (¢) atlsﬁes the asymp-
totic relation (3.2.11). This completes the proof of Lemma 3.2.1
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3.2 Asymptotic behavior of intermediate solutions of (Es)under (C;)

Lemma 3.2.2 Suppose that

(3.2.21) én—ﬁ—1<a<77—oz—1
o
holds and let p be defined by
c+a+1—-n
3.2.22 _otatt-n
( ) P a—g

The function Xo(t) € RV(p) given by (3.2.13) satisfies the asymptotic relation
(3.2.11).

Proof. Let (3.2.21) hold. Using (3.2.3), (3.2.4) and (3.2.31) by Proposition 1.2.2,
we conclude that X, (t) € RV(p), with p given by (3.2.22). Thus, X5(t) is expressed
as Xso(t) = tPly(t), lo(t) € SV. Then, we get

(3.2.23) / 4(5)b(Xa(s))ds = / q(s)%)@(s)“ds

to to

~ (—p)lalp— 1) + 1] / 4(s)so 1L (520 D)0 ()1, (5)71 X (5) s

= (—p)"lalp — 1) + 1] / sl (520" 0) =0 (5) Iy (5) ds, t — oo,

to

Applying Proposition 1.2.1 on the last integral in (3.2.23) and then multiplying the
result with p(¢)~! we obtain

v [ a(s)E(Xa(s)) ds ~ (—p) 20D L(E=D) 0 L1, ¢ oo,

to

from which, applying Proposition 1.2.11, it readily follows that

o (p@)-l / q<s>w<X2<s>>ds)
() (DY L) Ly (1) = (—p) 0 1o(t), > o0,

where we use (3.2.4) and (3.2.7) in two last steps. Integration of the above relation
on [t,00) with application of Proposition 1.2.1 yields

[et (e [t as
t to
~ (=p) / sP7 1y (s) ds ~ tP 1y(t) = Xo(t), t — oo.
t
This completes the proof of Lemma 3.2.2. [
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3. Asymptotic behavior of positive solutions of quasilinear second order DE

Lemma 3.2.3 Suppose that

(3.2.24) oc=n—a—1 and /aoo ! (p(t)—1 /at q(s) ds) dt < oo,

holds. The function Xs(t) € ntr — SV given by (3.2.14) satisfies the asymptotic
relation (3.2.11).

Proof. Let (3.2.24) hold. Using first (3.2.3) and Proposition 1.2.1 (which is possible
since o > —1) and then (3.2.7) and (3.2.4) we get

o (vt /t:q<s>ds> GO / 145 ds)

(3.2.25) ~ o (o 4+ 1)L (07 (1)
1 3

1 o+1n

~ (o) et L n)zp(t) (D)7, t — .
Integration of (3.2.25) on [t,00) and application of Proposition 1.2.1-(iii) since
oc=n—a—1 gives

(3.2.26) / (p(s) 1/ q(r)d >ds

i/oo s L(s ) L(s) "% 1, (s) ds € SV, ¢ — oo,

From (3.2.14) and (3.2.26), by Proposition 1.2.2-(iv), we find that X5(¢) € ntr — SV
and ¥(X3(t)) € ntr — SV. Integrate q(t) ¢¥(Xs(t)) on [to,t], applying Proposition
1.2.1 and using (3.2.3) we obtain

/tq(s)w(Xg(s))ds = /ts”lq(s)¢(X3(s))ds
(ot fm—a

] 1,(OY(X5(t) = - ~ly(D)P(Xs(), t = o0,

~Y

from which using Proposition 1.2.11, (3.2.7) and (3.2.4) follows that

o (p<t>-1 / q(sw(Xg(s))ds) o (= ) L) (X (1))

to

(3.2.27) ~ (= a)TE L) () T ()7 (X (t))
~ <p<t>-1 / q(s)ds) BXa()*, 1 oo.

to
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3.2 Asymptotic behavior of intermediate solutions of (Es)under (C;)

On the other hand, we rewrite (3.2.14) as

(3.2.28) U(X3(t)) = /too 0! <p(8)_1 /t:q(r)dr) ds.

X3(t) v
B(Xa(1)) = / o

differentiation of (3.2.28) gives

Since

(3:2.20) x50 =~ (0™ | tq(s)ds) PX(0)

to

Integrating (3.2.29) on [¢,00) and combine with (3.2.27) we have

xa ~ [Tt (e [ atyetayar) as, 1 o

to

This completes the proof of Lemma 3.2.3.0]

To state our main results, we will need the function

(3.2.30) U(y) = /Oy w(d:)i’ y >0,

which is clearly increasing on (0,00). From (3.2.2), (3.2.30) and Proposition 1.2.1
we get

(3.2.31) U(y) = /Oy ’U_gLQ('U)_E dv
a oy
a—By(y)e’

implying ¥(y) € RV(“T_L?) and U~1(y) € RV(;%5) with O‘%ﬁ > 0.

In view of (3.1.1), the regularity index p of z(t) must satisfy 1 — 2 < p < 0.
Therefore, the class of intermediate regularly varying solutions of (Ej)is divided
into three types of subclasses:

Yy — 00,

(3.2.32) ntr — RV (1 - ﬁ) . RV(p), pe (1 _ 0) . ntr — SV,
o o
Our main results formulated below characterize completely the membership of each
of the three subclasses of solutions (3.2.32) and show that all members of each

subclass enjoy one and the same asymptotic behavior as ¢t — oo.
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3. Asymptotic behavior of positive solutions of quasilinear second order DE

Theorem 3.2.1 Suppose that (3.2.1), (3.2.7), (3.2.8) and (Cy) hold. Equation
(E2) has intermediate solutions x(t) € ntr — RV(1—1) if and only if (3.2.15) holds,
in which case any such solution x(t) has the asymptotic behavior xz(t) ~ Xi(t),
t — oo, where X1 (t) is given by (3.2.12).

Theorem 3.2.2 Suppose that (3.2.1), (3.2.7), (3.2.8) and (Cy)hold. Equation
(E2) has intermediate solutions x(t) € RV(p) with p € (1 — 2,0) if and only if
(3.2.21) holds, in which case p is given by (3.2.22) and any such solution x(t) has
the asymptotic behavior x(t) ~ Xs(t), t — oo, where xo(t) is given by (3.2.13).

Theorem 3.2.3 Suppose that (3.2.1), (3.2.7), (3.2.8) and (Cy) hold. Equation
(Eg) has intermediate solutions z(t) € ntr — SV if and only if (3.2.24) holds, in
which case any such solution x(t) has the asymptotic behavior x(t) ~ X3(t), t — oo,
where X3(t) is given by (3.2.14).

Proof of the ”only if” part of Theorems 3.2.1, 3.2.2, 3.2.3: Suppose that
the equation (Ey)has an intermediate solution z(t) € RV(p) with p € [1 — Z,0]
defined on [ty, 00). Integration of equation (Es)from ty to ¢ using (3.2.2), (3.2.3)
and (3.2.9) gives

t

3233 e ()~ [ a© vl ds = [ L) Lalels) ds

to to
as t — oo, implying the divergence of the last integral in (3.2.33) i.e. implying that
o+ Bp > —1. We distinguish the two cases:
(@) o+pp=-1, (b) o+pBp>—L

Assume that (a) holds. Multiplying (3.2.33) with p(t)~! we get

(3.2.34) p(=a'(t)) ~ p(t) " £(t), t— oo, f(t)Z/ s7y(5) La(5)" La(a(5)) ds.

to

Clearly, £(t) € SV and lim; o, £(t) = oo. From (3.2.34), using (3.2.3) and (3.2.7)
we have

(3.2.35) —/(t) ~ 7" (p(H) (1)
= E L)) ~ e ET) () ()=, t— oo

Integrating (3.2.35) from ¢ to oo, using (3.2.4) we find via Karamata’s integration
theorem that

£F L) L(H) % €()% € RV (1 - ﬁ) oo

«

(3.236)  a(t) ~

n—a
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3.2 Asymptotic behavior of intermediate solutions of (Es)under (C;)

Using (3.2.10) we rewrite (3.2.36) in the form

O [~

(3.2.37) x(t) ~m(t)E(t)=, t— oo.

Assume that (b) holds. Applying Proposition 1.2.1 to the last integral in (3.2.33)
we have
tUJrﬁPJrl

1,(t) I (t)° Ly(x(t)), t— oo.

(3.2.38) p(t)p(=2'(t)) ~ ot Bpr1e

Multiplying (3.2.38) with p(¢)~! and then using Proposition 1.2.11, (3.2.3), (3.2.7)
and (3.2.4) we have

(3.2:39) —a'(t) ~ ! (7P (0 4 Bp+ 1) T ()7 (1) (1) La(2(1)))

1 o+Bptl—n

~ (o4 Bp )Tt LTI L () 1 (1) L (8« Lo(a (1)),

as t — oo. Integration of (3.2.39) on [t, 00) leads to
(3.2.40) z(t) ~ (0 + Bp+1)"=
« / TS ot Bt ion (=R ()AL (5)E Lo (a(s)) ds, ¢ — oo
t

Since the above integral tends to zero as ¢ — oo(note that z(t) — 0,t — 00), we
consider the following two cases separately:

1 1
b1y ZEPPELTN gy oEPe LN
(6] (6]

Assume that (b.1) holds. Applying Proposition 1.2.1 to the integral in (3.2.40),
we get

- L otBptl-nta
o

t) ~ — 1)t
z(t) a+ﬁp+1—n+a(a+ﬁp+ )

K LT ()7 () 1p(8) s Lo(2(t)w, ¢ — o0,

so that z(t) € RV (W%)
Assume that (b.2) holds. Then, (3.2.40) shows that z(¢) € SV, that is p = 0,
and hence 0 =n —a — 1. Since 0 4+ Bp+ 1 = n — «, (3.2.40) reduced to

1 8

(3.241) z(t) ~ (n—a) = /:o sTUL(s™) 1y(s) " y(s) o lu(s) @ Lo(2(s))= ds € SV,
as t — oo.
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3. Asymptotic behavior of positive solutions of quasilinear second order DE

Let us now suppose that z(t) is an intermediate solution of (E,) belonging to
ntr —RV(1 — Z). Then, the case (a) is the only possibility for x(t), which means
that p=1—12, 0= 21— —1 and (3.2.37) is satisfied by x(t). Differentiation of
&(t), defined in (3.2.34), using (3.2.2), (3.2.3) and (3.2.9) leads to

g'(t) =t 14(1) 1o (t)” La(x(t)) ~ q(t) Y ((t)), t = o0.

Noting that z(t) ~ 7(£)&(t)s, t — oo and using (3.2.8), one can transform the
above relation into

&) ~ q(t) ()R >) ~ g(B)(m (1)), t — oc.

So, we get the differential asymptotic relation for £(t) :

(3.2.42) E(t)™ €(t) ~ q(t) Y(x(1)), t = o.
Integration of (3.2.42) on [ty,t] yields
(3.2.43) aww(agﬁulm@¢w@»@)%ﬂt—ﬂn

Since limy o £(t) = 00, from (3.2.43) we have j;zo q(t) Y (n(t)) dt = oco. Thus, the
condition (3.2.15) is satisfied. Combining (3.2.43) with (3.2.37) gives z(t) ~ X; (%),
t — 0o, where X(t) is given by (3.2.12). This proves the "only if” part of Theorem
3.2.1.

Next, suppose that z(t) is an intermediate solution of (Eq) belonging to RV (p),
p € (1—-2,0). This is possible only when (b.1) holds, in which case () must satisfy
the asymptotic relation (4.3.30). Therefore,

o+Bp+1—n+a« c+a+1—n

p Q p a—f

which justifies (3.2.22). An elementary calculation shows that
n B

l-—<p<0 == —mn—-0F-l<o<n—a-—1,
a a

which determines the range (3.2.21) of 0. Since 0+ fp+1—n+a = ap and
o+ Bp+1=alp—1)+n, (4.3.30) reduced to

2(t) ~ LY ()75 1 () L(t) s La(z
(1) oDt} (D) (1) 7% Lg(8) 2 Lo(t) = La(2(t))

QI+~




3.2 Asymptotic behavior of intermediate solutions of (Es)under (C;)

where we use (3.2.2), (3.2.3), (3.2.4) and (3.2.9) in the last step. From (3.2.44)
using (3.2.31) we get

a z(t) « 2ty 1

~ T T -1 to‘(Pfl) )= gt ’
a—B pt):  a=B (—palp—Dt+n)z " ( )p(t)"= q(t)

as t — 0o. Thus, we conclude that z(t) enjoys the asymptotic formula x(t) ~ Xs(t),
t — oo, where Xs(t) is given by (3.2.13). This proves the "only if” part of the
Theorem 3.2.2.

Finally, suppose that x(f) is an intermediate solution of (Ej)belonging to
ntr — SV. From the above observation this is possible only when the case (b.2)
holds, in which case p =0, 0 =n— a — 1 and z(t) = [,(t) must satisfy the asymp-
totic behavior (3.2.41). Denote the right-hand side of (3.2.41) by u(t). Then,
wu(t) — 0, t — oo and satisfies

Q-

W(z(t))

Q=

W) = —(n—a) &t L) ()% ()<L (t) < Lo(x(t))

= —(n—a) @t T L) ()7 L ()3 P(a(t))e, t— oo,

where we use (3.2.2) in the last step. Since (3.2.41) is equivalent to x(t) ~ wu(t),
t — oo, from the above using (3.2.25) we obtain

ﬁ ~ =7 (19(15)1 /t:q(S)d8> , t = 00.

An integration of the last relation over [¢,00) gives

[ v~ [ (o [ o) as 1

oft) ~ )~ 0 (77 (o) [ d(r)ir) ds) - o

Since limy o p(t) = 0, from the above relation we have convergence of integral
[Z et <p(t)_1 f;q(s)dfs) dt, so the condition (3.2.24) is satisfied. Thus, it has

been shown that z(t) ~ X3(t), t — oo, where X;3(¢) is given by (3.2.14). This
completes the "only if” part of the proof of Theorem 3.2.3. [

Q-

or

Proof of the ”if” part of Theorems 3.2.1, 3.2.2, 3.2.3: Suppose that (3.2.15),
(3.2.21) or (3.2.24) holds. From Lemmas 3.2.1, 3.2.2 and 3.2.3 it is known that
X;(t), © = 1,2,3 defined by (3.2.12),(3.2.13) and (3.2.14) satisfy the asymptotic
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3. Asymptotic behavior of positive solutions of quasilinear second order DE

relation (3.2.11). We preform the simultaneous proof for X;(t), i = 1,2,3 so the
subscript ¢ = 1,2,3 will be deleted in the rest of proof. By (3.2.11) there exists
Ty > a such that

X(t o 1 ®

(3.2.45) X®) < / ! <—/ q(r) (X (r)) d?") ds <2X(t), t > Tp.
2 t p(S) To

Applying Proposition 1.2.5 to the function ¥ (s) € RV(S), 8 > 0 we see that there

exists a constant A > 1 such that

(3.2.46) W(s1) < AY(sy) foreach 0<s; <s9<a.

Now we choose positive constants m and M such that

1
2.4 =S
(3.2.47) m = 4(2A)1/

—5 > 4(24)Ve.

In addition, since X (t) — 0 as t — oo, from (1.2.2), for A > 0 we have
(3.2.43) AU (1) < X (1) < 220X (1),
for all sufficiently large ¢. Also, since Q(t) = p(t)_lﬁi q(s)¥(X(s))ds — 0 as

t — oo, from (1.2.2), for A > 0 we have

/\1/01

(3.2.49) 5

P HQ) < ¢ AQ()) < 24 HQ(1),

for all sufficiently large ¢. Define the integral operator F by

Fa) = [ (i / Sq<r>¢<x<r>>dr) ds. t> 1),

p(s) To

and let it act on the set
(3.2.50) X = {x(t) € C[Ty,00) : mX(t) < x(t) < MX(t), t > Tp}.

It is clear that X is a closed convex subset of the locally convex space C[T}, 00)
equipped with the topology of uniform convergence on compact subintervals of
[To, OO)

Let x(t) € X. Using first (3.2.46) and (3.2.50) , and then (3.2.48) we get

Fal) < [To (05 [ awonxe) ar) as

To

< [ mw—l(“Mﬁ [ awceey ar) as, o=,

p(s) To
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3.2 Asymptotic behavior of intermediate solutions of (Es)under (C;)

from which, using (3.2.49), (3.2.45) and (3.2.47), follows that

searye [Cot (o [ o) i) ds

< AQAMAOYYX(t) < MX(t), t>Tp.

Fx(t)

IN

On the other hand, using (3.2.50), (3.2.46) and (3.2.48) we obtain

mal) = [Co (o | :q<r>w<mx<r>>dr) ds

o} mﬁ s
> gp_l(—/qerr dr)ds, t>1T.
| e (g [ amwexe)
From the above using (3.2.49) and (3.2.47) we conclude

Falt) > %(?—j) [ (] )0 dr ) d

BY @
> i(gl—A) X(t) 2 mX(t), t=T.
This shows that Fx(t) € &, that is, F maps & into itself.
Furthermore it can be verified that F is a continuous map and that F(X) is
relatively compact in C[Ty, 00).
Thus, all the hypotheses of the Schauder-Tychonoff fixed point theorem are
fulfilled and so there exists a fixed point z(t) € X of F, which satisfies integral

equation
q o) = [ (}% / :q<r>w<w<r>> dr) ds, > T,

Differentiating the above twice shows that z(t) is a solution of (Es)on [Ty, 00). It
is clear from (3.2.50) that z(t) is an intermediate solution of (E,).

Therefore, the existence of three types of intermediate solutions of (E,) has been
established. The proof of our main results will be completed with the verification
that the intermediate solutions of (Ey)constructed above are actually regularly
varying functions.

We defined the function

s = [ (pi [ atmucxon dr) ds, t> T

(S> To
and put
l= liminfﬂ, L = lim sup &
t=oo J(1) ——l
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3. Asymptotic behavior of positive solutions of quasilinear second order DE

Since x € X, it is clear that

Loea(t) z(t)
0< hgglfm < h{iigpm < 00.

By Lemmas 3.2.1, 3.2.2 and 3.2.3 we have
(3.2.51) J(t) ~ X(t), t— 0.

If we denote with

1 [t 1 [t
=1 / als)el)ds and o) = o / )X (3) s
using (3.2.4) and Lemma 1.1.1 we see that
i EO e () F(EL()
b s gy = BRSOt = M o T L)

(3.2.52) < limsup (@> limsupﬂ.

tsoo \G(t) ) imee  L(g(t))

B
Using (3.2.48) and (3.2.46) we obtain m; = ZL_A ol
by Uniform convergence theorem ( [2],Theorem 1.2.1) t

L (%g(t))

(3.2.53) L) Ll < supsepmy,an

In the view of (3.2.53), from (3.2.52) it follows

im su 0 é— im su f;‘OQ<5)¢(I(3))dS :
25 L<tmew (1) —<l msup f}oq(s)w(X(«S))dS) |

Similarly, using (3.2.2) and Lemma 1.1.1 we have

(3.2.55) limsup ffo a(s) vlw(s)) ds < limsup L&)

t—00 fToq(s)¢(X(s))ds t—oo Y(X(2))

L) (e L (3EY0)
= S S L (X (1)) = RSP (m) fim sup —7 -

68



3.3 Classification and existence of positive increasing solutions of (Es) under (Cs)

z(t)
X(t)

Since m < < M, t > Tpy, using Uniform convergence theorem we conclude

Ly (AX (%))
O S“pAEWMJ‘ Lo(X (1))

—1‘—>0, t — 0.

In the view of (3.2.56), from (3.2.51) and (3.2.55) it follows
(3.2.57)

im su f;oq(s)w(x(s))ds im su o) B— im su o{t) B— g
: t—>oopf;;0 q(s)¥(X(s))ds = (1 t—>oopX(t)) B (1 t—>00p J(t)) -

From (3.2.54) and (3.2.57), it follows that L < L%, implying that 0 < L < 1
because a > [. If we argue similarly by taking the inferior limits instead of the

superior limits, we are led to the inequality [ > lg, which implies that [ > 1.
Thus we conclude that | = L = 1, i.e. limy o x(t)/J(t) = 1. This combined with
(3.2.51) shows that z(t) ~ X(t), t — oo, which yields that x(¢) is a regularly varying
function whose regularity index p is 1—2, ”g—fé_”, or 0 according as 0 = gn— b6—1,
gn —pf—-1<o<n—a—1oroc=n—a—1. Thus, the if part of Theorems 3.2.1,

3.2.2, 3.2.3 has been proved. [

3.3 Classification and existence of positive
increasing solutions of (E;)under the condi-
tion (Cs)

In this section, we assume that p,q : [a,00) — (0,00) and ¢, : (0,00) — (0, 00)

are continuous functions, ¢ is increasing and that (Cq) holds. We use the function

P(t) defined as

(3.3.1) P(t) :/ o Hp(s)™Hds, t>a.

We begin by classification the set of increasing positive solutions of (E,) accord-
ing to their asymptotic behavior at infinity. It is easily seen (see [11]) that if x(¢) is
an increasing positive solution of (E;), then we have the following classification of
increasing positive solutions of (Es)into three types according to their asymptotic
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3. Asymptotic behavior of positive solutions of quasilinear second order DE

behavior at infinity:

(3.3.2) tlggo z(t) = const > 0,

(3:3.3) gggo 2(t) = o0, lim p(0(/(1)) = 0,
o 2 _

(3.3.4) t_m P{) = const > 0.

Solutions of type (3.3.2), (3.3.3), (3.3.4) are often called, respectively, subdominant,
intermediate and dominant solutions.

It is well known (see [11], [41]) that the existence of subdominant and dominant
solutions for the equation (Es) with continuous coefficients p(t), ¢(t), ¢(s) and 1 (s)
can be completely characterized by the convergence of the integrals

1= [Cawura. - [T (w0 [T awas) a

Theorem 3.3.1 Let p(t),q(t) € Cla,00), ¢(s),¥(s) € C[0,00) and (Cy) hold.

(a) Equation (Es) has an increasing positive solution of type (3.3.2) if and only if
J < o0.

(b) Equation (Eg2) has an increasing positive solution of type (3.3.4) if and only if
I < o0.

(c) Equation (Ey) has an increasing positive solution of type (3.3.3) if J = oo and
I < 0.

For the existence of intermediate solutions for (E;), sufficient conditions can be
obtained with relative ease. But the problem of establishing necessary and sufficient
conditions turns out to be extremely difficult to solve and thus, has been an open
problem for a long time.

3.4 Asymptotic behavior of intermediate solutions
of (Ey) under the condition (C,)

We assume that (Cz) hold, ¢ is increasing and

o(s) € RV(a), «a>0; ¥(s) € RV(f), a>p>0;
(3.4.1)
p(t) € RV(n), n € (0,a); q(t) e RV(s), o €R.
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3.4 Asymptotic behavior of intermediate solutions of (E2) under (Cy)

Using the notation (1.2.3), we can express ¢(s), ¥(s), p(t) and ¢(t) as

(3.4.2) @(s) =s"Li(s), Li(s) € SV; 9(s) =s"La(s), La(s) €SV;
(3.4.3)  p(t) =t"L(t), (1) €SV;  qt) =171,(t), l4(t) € SV.

Since ¢(s) is an increasing function, so ¢(s) has the inverse function, denoted by
0~ 1(s) and from (3.4.2) we conclude that

(3.4.4) e l(s) €ERV(1/a) = ¢ Y(s)=s""L(s), L(s)cSV.
We also need the additional requirements for the slowly varying parts of ¢ and :

(3.4.5) L(tu(t)) ~ L(t), t—0, Yu(t)eSYnNC(R);

(3.4.6) Lo(tu(t)) ~ Ly(t), t— o0, Yu(t) € SVNCHR).

Analogous to the Remark 3.2.1 we obtain

(3.4.7) @ (Pu(t)) ~ o ' (u(t)s, t— o0, YAER™, Vu(t) € SVNCYR),
and

(3.4.8)  (tru(t)) ~Pp(tMut)’, t =00, VAERT, Vu(t) € SVNCY(R).
We seek such solutions x(t) of (Eg) that can be expressed in the form

(3.4.9) x(t) =tPl,(t), [.(t) € SV.

Since > 0, applying Proposition 1.2.3, we have tlim p(t) = oo. Then, applying
— 00

Proposition 1.2.2-(iv), we get ¢~ (p(t)™') € RV (—2) so that the assumption
n < « ensures that we may apply Karamata’s integration theorem (Proposition
1.2.1) to the integral in (3.3.1). Using (3.4.3), (3.4.7), (3.4.4) and Proposition 1.2.1
we obtain

PO = [ o) s [ () ds

(8] n 1
o LM ()", t—
T TRLEL0 7 e,

(3.4.10) = /t s’gll(s’")lp(s)’é ds ~

implying that P(t) € RV(1 — Z). Since n < a by Proposition 1.2.3 we have
tlim P(t) = oc.
—00
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3. Asymptotic behavior of positive solutions of quasilinear second order DE

We emphasize that we exclude the case n = « because of computational difficulty
and the fact that integral

/at e (p(s)™") ds = /atle(s")lp(s)fi ds

might be either convergent or divergent.
Let z(t) be an intermediate solution of (Es) defined on [ty,00). Integrating of
equation (Ep) first on (tg,00) and then on [to, t] gives

(B411) () = a(te) + / o (p(s>—1 / ooq(r)w(x(r))dr) ds, 1>t

to

It follows therefore that x(t) satisfies the integral asymptotic relation

(3.412) x@~l%*@@*[fmwmmm)@,r+w

for any b > a, which is regarded as an "approximation” of (3.4.11) at infinity. A
common way of determining the desired intermediate solution of (Ey)would be by
solving the integral equation (3.4.11) with the help of fixed point technique. For this
purpose Schauder-Tychonoft fixed point theorem should be applied to the integral
operator

t o]
Fel)=a+ [ o7 () [Tatwe)ar) ds ez wer
to S

acting on some closed convex subsets X of Cltg,00), which should be chosen in
such a way that F is a continuous self-map on X and send it into a relatively
compact subset of C[ty,00). That such choices of X’ are feasible is guaranteed by
the existence of three types of regularly varying functions that determine exactly
the asymptotic behavior of all possible solutions of (3.4.12). We begin by proving
three results verifying that regularly varying functions X;(t), ¢ = 1,2,3 defined,
respectively by

(3.4.13) X\ (t) = 0! ( / = (p(s)_l / ) dr) ds) |

1
a 2Pt

@ =B pla(l—p) —nl=

(3.4.14) Xy(t) =0t (

— a—F
(3.4.15) X;(t) = <O‘ b ds)
satisfy the integral asymptotic relation (3 4.12).
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3.4 Asymptotic behavior of intermediate solutions of (E2) under (Cy)

Lemma 3.4.1 Suppose that

(3.4.16) c—n—a—1 and /:o = <p(t)_1 /:O o(s) ds) it = oo,

holds. The function X,(t) € ntr — SV given by (3.4.13) satisfies the asymptotic
relation (3.4.12).

Proof. Let (3.4.16) hold. Since n < «, from (3.4.16) we have 0 < —1, so we can
apply Proposition 1.2.1 to the integral

/too q(s)ds = /too s71,(8)ds ~ (—(o + 1)) "7, (1), t— oo

Using the above relation, (3.4.3), (3.4.7) and (3.4.4) we get

(3417) ! (p@)l / °°q<s>ds) _ (t" WO [ ds)

~ (= (o + 1)) (TN () T ()
= (o + 1) H T LA (04 (0% oo

Since 0 = n — a — 1 we can rewrite (3.4.17) in the form

Q=

(3.4.18) ¢! <p(t)1 /t N q(s)ds) ~ (=) T L)L) w (D)5, t— .

Application of Proposition 1.2.1-(iii) to (3.4.18) gives

(3.4.19) /t: 0! (p(s)1 /:O q(r)dr) ds € SV.

From (3.4.13) and (3.4.19), by Proposition 1.2.2-(iv), we find that X;(¢) € ntr — SV
and (X, (t)) € ntr — SV. We integrate ¢(t) ¢ (X;(t)) on [t,00). Applying Proposi-
tion 1.2.1 (which is possible since 0 < —1) and using (3.4.3) we obtain

/t T a()9 (X (s))ds = / Tl ()Xo (s))ds

to’-‘rl th—e

~ToxD L(OY(Xa(t) = — ;

L(OY(Xi (1), ¢ — o0,

from which it readily follows that

—Q

p(t)! / ") 9 (5)) ds ~ ——— 1) (DX (E), £ ox.

a—1
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3. Asymptotic behavior of positive solutions of quasilinear second order DE

From the above relation, using Proposition 1.2.11, (3.4.7) and (3.4.4) we conclude

o (p(?f)_1 /too q(s) Y(X1(s)) dS) ~ o (=) () 7 (U (Xa (1))

(3.4.20) ~ (=) m e () ()7 L) 5 (X ()
= (=) = L) () L) =Y (X0(b)

In view of (3.4.18), integrating (3.4.20) from ¢, to t, we get
t 00
(3.421) [t (s [T amucxinar) as
to s
t 00
~ et (e [T atmar) vy ds. o
to S
On the other hand, we rewrite (3.4.13) as

(3.4.22) WX () = / o (p(s)—l / Ooq(r)dr) ds. t> 1o,

to

X1(t) v
Y (1)) = / do_

differentiation of (3.4.22) gives

Since

(3.4.23) X{(1) = ¢! (p@)l / °°q<5>ds) BG)E, 1> ho

Integrating (3.4.23) on [ty,t] and combining with (3.4.21) we obtain

t t o]
X0~ [ Xisds~ [ o (p<s>-1 | at) e dr) s, t —+ oo,
to to s

This completes the proof of Lemma 3.4.1.[]

Lemma 3.4.2 Suppose that
s

(3.4.24) n—a—l<o<—-n—pg-1
«

holds and let p be defined by (3.2.22). The function Xs(t) € RV(p) given by (3.4.14)
satisfies the asymptotic relation (3.4.12).
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3.4 Asymptotic behavior of intermediate solutions of (E2) under (Cy)

Proof. Let (3.4.24) hold. Using (3.4.3) and (3.4.4) we rewrite (3.4.14) in the form

otatl—n
« Ta 1 1
3.4.25 U(Xy(t) = LY L ()" 1, ()=, t > to,
(3425) W60 = g e LB O 12 0
from which using (3.4.35) follows
X d+a:1—n
(3.4.26) 20 ¢ LY 1 () ()%, - oo

(X)) pla(l—p) —na

Since W > 0, by Proposition 1.2.3, we conclude that the function on the
right-hand side of relation (3.4.25) tends to co as t — oo. From (3.4.25) using the
previous conclusion and U~ € RV(;25) with application of Proposition 1.2.2-(iv),
we obtain X5(t) € RV(p), with p given by (3.2.22). Thus, X5(t) is expressed as
Xo(t) = tPly(t), lo(t) € SV. Then, using (3.4.26) we get

(3.4.27) /t ()Xo (s)) ds = /t T als) % Xo(s)™ ds

~lall=p) =) [ o) L) )l (5) 7 Xals) ds
t
= p*la(l —p) — 7] / s n=L 1 (g2 =Dy =ap (5)15(s)*ds, t — oo.
t
Since 0 + 4+ 1 < gn, we have a(p — 1) + n < 0 implying that we can apply
Proposition 1.2.1 on the last integral in (3.4.27) and then multiplying the result
with p(t)~! we obtain
p(t)_l/ q()(Xa(s)) ds ~ p P~V L{E*=D) " ()", t — oo,
t
from which, applying Proposition 1.2.11, it readily follows as ¢ — oo that

o (W)‘1 /too q(s)1(Xa(s)) dS) ~ po (D) L D) (1) ~ pt? T (1),

where we use (3.4.4) and (3.4.7) in the two last steps. Integration on the above
relation from ¢y to ¢ with application of Proposition 1.2.1(which is possible since

p > 0) then yields
Lo (s [T atmwcxanar) as

¢
~p / sP7 1 y(s) ds ~ 1P 1y(t) = Xo(t), t — oo.

to

This completes the proof of Lemma 3.4.2. [
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3. Asymptotic behavior of positive solutions of quasilinear second order DE

Lemma 3.4.3 Suppose that

(3.4.28) o= gn ~B-1 and /Oo o) B(P(t)) dt < oo,

holds. The function X3(t) € ntr — RV(1 — 1) given by (3.4.15) satisfies the asymp-
totic relation (3.4.12).

Proof. Let (3.4.28) hold. Since 0 = £n— 3 —1, using (3.4.2), (3.4.3) and (3.4.10),
by Proposition 1.2.2 we get ¢(t) ¥ (P(t)) € RV(—1) so that [ q(s)¥(P(s))ds €
SV by Proposition 1.2.1-(iii). In view of (3.4.10) and (3.4.15), we conclude that
X3(t) € ntr — RV(1 — Z). Using (3.4.8) and (3.4.10) we have

(3.4.29) /t h q(s) ¥(P(s))ds ~ /t " g q(s) (s =) P(s)P ds, t — co.

This, combined with (3.4.15), gives the following expression for Xj3(¢) :

(3.4.30)  X3(t) ~ P(t) <O‘ =5 /too s7@D g(s) (st ) P(s)? ds) o , t— 0.

«

Next, we integrate q(t)y(Xs5(t)) on [t,00). Since Xs(t) = t'"als(t), I3(t) € SV, due
to (3.4.8), we obtain

/t " d(s)(Xa(s)) ds = / T ()5 Hla(s)) ds ~ / ) (s E) a(s)? ds

(3.4.31) :/ $PGD g(s) (st %) Xy(s)? ds, t — oo.
t

Changing (3.4.30) in the last integral in (3.4.31), by a simple calculation we have
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3.4 Asymptotic behavior of intermediate solutions of (E2) under (Cy)

where we use (3.4.29) in the last step. Since [ q(s)y(Xs(s))ds € SV, (3.4.3),
(3.4.4) and (3.4.7) give

o (o [Taeweaenas) = ot (i [Taeuxae)as)

(3.4.3) ~ e ([ aeas) '

@

L) () ( [ vt ds) ,

as t — oo. Integrating (3.4.33) from ¢, to ¢, we conclude via Proposition 1.2.1 that

/ a (p“)‘l / "4 (X () dr) s

o ntl_g Lt 1,(8)"= (/too q(s) V(X;5(s)) ds) .t — oo.

This, combined with (3.4.10) and (3.4.32), shows that X3(t) satisfies the asymptotic
relation (3.4.12). This completes the proof of Lemma 3.4.3. O

~

Since there are positive constants ¢; and ¢y such that ¢; < z(t) < ¢ P(t), for all
large ¢, the regularity index p of z(t) must satisfy 0 < p < 1 — 2. Therefore, the
class of intermediate regularly varying solutions of (E,)is divided into three types

of subclasses:

ntr — SV, RV(p), p € (O, 1-— Q) , ntr—RV (1 - ﬁ) :
Q Q
To state our main results, we will need the function
Yo dv
(3.4.34) U(y) = / Ly >0,
0 Y(v)a

which is clearly increasing on (0, 00). From (3.4.2), (3.4.34) and Proposition 1.2.1
we get
(3.4.35)

Y s 1 a 8 1 a Y
\If e aL « d ~N — 1 [ L a —= T — s
(v) /0 v 2(v) vy Y 2(y) a_ﬁw(y)é Yy —

implying ¥(y) € RV(%52) and U~!(y) € RV(5%5) with 22 > 0.

Theorem 3.4.1 Suppose that (3.4.1), (3.4.5), (3.4.6) and (Cy) hold. FEquation
(Eg) possesses intermediate solutions x(t) € ntr — SV if and only if (3.4.16) holds,
in which case any such solution x(t) has the asymptotic behavior x(t) ~ Xi(t),
t — oo, where X1(t) is given by (3.4.13).

7



3. Asymptotic behavior of positive solutions of quasilinear second order DE

Theorem 3.4.2 Suppose that (3.4.1), (3.4.5), (3.4.6) and (Cs) hold. Equation
(E2) possesses intermediate solutions x(t) € RV (p) with p € (0,1~ 1) if and only if
(3.4.24) holds, in which case p is given by (3.2.22) and any such solution x(t) has
the asymptotic behavior z(t) ~ Xs(t), t — oo, where X5(t) is given by (3.4.14).

Theorem 3.4.3 Suppose that (3.4.1), (3.4.5), (3.4.6) and (Cs) hold. Equation
(E2) possesses intermediate solutions x(t) € ntr — RV(1 — 1) if and only if (3.4.28)
holds, in which case any such solution x(t) has the asymptotic behavior x(t) ~ X3(t),
t — oo, where X3(t) is given by (3.4.15).

Proof of the ”only if” part of Theorems 3.4.1, 3.4.2, 3.4.3: Suppose that
the equation (Ez)has an intermediate solution z(t) € RV(p) with p € [0,1 — Z]
defined on [tg, 00). Since lim;_,o p(t)p(2'(t)) = 0, integration of equation (Es)on
(t,00) using (3.4.2), (3.4.3) and (3.4.9) gives

(34.36) p(t)p(e(t)) = / " a(s) d(a(s)) ds = / " 0 1, (5)0u(s)° La(a(s)) ds,

implying the convergence of the last integral in (3.4.36) i.e. implying that
o+ Bp < —1. We distinguish the two cases:

(a) o+Bp=-1, (b) o+ pPp<—1.
Assume that (a) holds. Multiplying (3.4.36) with p(t)~! we get

(3.4.37)  p(2'(t)) = p(t)"1E(t), where &(t) = /too 57, (8) 1(5)? Ly(x(s)) ds.

Clearly, £(t) € SV and lim;,o &(¢) = 0. From (3.4.37), using (3.4.3) and (3.4.7) we

have

(34.38) /(1) = (p(O)E(0) = o (ET L) TEW®) ~ 9T (ET (1) €0

as t — oo. Integrating (3.4.38) from t, to ¢t and using (3.4.4) we get
(3.4.39)
1 1

2(t) ~ /t e (s 1y(s) @ E(s)w ds = /t s7a L(s ") 1y(s) "= £(s)a ds, t — 0.

From (3.4.39) we find via Karamata’s integration theorem that

£F L) L(H) % €()% € RV (1 - ﬂ) oo

(07

4.4 1) ~
3440) ()~
Using (3.4.10) we rewrite (3.4.40) in the form
(3.4.41) z(t) ~ P(t)E(t)s, t — oo
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3.4 Asymptotic behavior of intermediate solutions of (E2) under (Cy)

Assume that (b) holds. Applying Proposition 1.2.1 to the last integral in (3.4.36)
we have

ta—i—ﬁp—i—l

—(c+Bp+1)

(3.4.42) p(t)p(z' (1)) ~ (1) L ()P Lo(z (L)), ¢ — oo

Multiplying (3.4.42) with p(¢)~! and using (3.4.3) we get
to+ﬁp+1—n

—(oc+Bp+1)

P(@'(8)) ~ () () L(1) Lo(2(t)),  t — oc.

Using Proposition 1.2.11, (3.4.7) and (3.4.4) we have
2'(t) ~ o7 (7T (o + Bp + 1) (1) 7 () () La(2(1))

1

(34.43)  ~ @ (TP (— (0 4 Bp + 1)) 7w L(8) % 1 (1) % () Lo(x(t))=

1 o+Bptl-n
[e%

— (~(o+ Bp+ 1)+t

1 8

LT 1(t) % 1) L() > La(a(8)) =,
as t — oo. Integration of (3.4.43) on [to, t] leads to
(3.4.44) x(t) ~ (—(0+ Bp+1)) =

1 B

t
x / s TR (T (5) 7R ()7 L (5) = Lo(a(s)) s, £ — oo,
to
Since the above integral tends to infinity as ¢ — oo (note that z(t) — oo, t — 00),
we consider the following two cases separately:

o+ pBp+1—n o+ pBp+1—n

(b.1) - > -1, (b2) . T

Assume that (b.1) holds. Applying Proposition 1.2.1 to the integral in (3.4.44), we
get as ¢t — o0

(8] 1 o+Bptl-nta
£) ~ - 1)) & ¢TI ot Bt
1) ~ e (o + B+ 1) (7 +90+1-)
1 _
(3.4.45) L(6) 3 ()% 1,(8)5 Lo(2(1))* € RV (" bp *a /i O‘) .

Assume that (b.2) holds. Then, (4.3.29) shows that x(t) € SV, that is p = 0, and
hence 0 =n—a —1. Since 0 + fp+ 1 =n — «, (4.3.29) reduced to

(3.4.46) z(t) ~ (a —7) = / sTVL(s™) 1y(s)"# 1y(s)a Ly(5)a La(x(s))s ds € SV,

to

79



3. Asymptotic behavior of positive solutions of quasilinear second order DE

as t — oo.

Let us now suppose that z(¢) is an intermediate solution of (Es) belonging to
ntr —SV. From the above observation this is possible only when the case (b.2)
holds, in which case p = 0, 0 = n —a — 1 and x(t) = [,(t) must satisfy the
asymptotic behavior (3.4.46). Denote the right-hand side of (3.4.46) by u(t). Then,
w(t) — oo, t — oo and satisfies

1

W) = (a—n) 5 7 LE ) L)% 1)+ 1, (8) La(x(1))

Q=

1 _a 1 1 1
= (a—n) a T L) (1) ()= wlx(t)w,
where we use (3.4.2) in the last step. Since (3.4.46) is equivalent to z(t) ~ u(t),
t — oo, from the above using (3.4.18) we obtain

% ~ ¢! (:/!)(L‘)1 /too Q(S)dS) , t = o0

An integration of the last relation over [ty,t] gives

o(0) ~ utt) ~ 0 / o (e [T atnar)as) oo

Thus, it has been shown that x(t) ~ X (), t — oo, where X (¢) is given by (3.4.13).
Notice that the verification of (3.4.16) is included in the above discussions. This
proves the ”only if” part of Theorem 3.4.1.

Next, suppose that z(t) is an intermediate solution of (Eg) belonging to RV (p),
p € (0,1—12). This is possible only when (b.1) holds, in which case z(t) must satisfy
the asymptotic relation (3.4.45). Therefore,

Q-

or

c+pp+l—n+a c+a+1—n
= = p =,
Q a—f
which justifies (3.2.22). An elementary calculation shows that

n B

O<p<l—— = n—a-l<o<=—m-—p-1,
Q o

which determines the range (3.4.24) of 0. Since 0+ fp+1—n+a = ap and
—(c+Bp+1)=a(l —p)—mn, (3.4.45) reduced to

() ~ i DY L ()8 1 ()% L(8)2 La(w(t))
) ~ e L)L 0 LS L)
(3447) = — T o) () g(0)F b(a(t)E s oo,

pla(l—p) —mn)=



3.4 Asymptotic behavior of intermediate solutions of (E2) under (Cy)

where we use (3.4.2), (3.4.3), (3.4.4) and (3.4.9) in the last step. From (3.4.47)
using (3.4.35) we get

Lo oz o e 1 pa(o—1)y )~ L
=B w) a-Baai—p-mis o PEA0n

as t — 0o. Thus, we conclude that z(t) enjoys the asymptotic formula z(t) ~ Xo(t),
t — oo, where X5(t) is given by (3.4.14). This proves the "only if” part of the
Theorem 3.4.2.

Finally, suppose that x(¢) is an intermediate solution of (Ej)belonging to
ntr — RV(1 — Z). Then, the case (a) is the only possibility for z(t), which means
that p=1—1, 0= gn — f —1 and (3.4.41) is satisfied by z(t). Differentiation of
&(t), defined in (3.4.37), using (3.4.2), (3.4.3) and (3.4.9) leads to

Q=

W (z(t))

€(t) ~ =711y (t) (1) La(2()) ~ —q(t) ¥ (x(t), t — oo.

Rl

Noting that z(t) ~ P(t)&(t)
above relation into

, t — oo and using (3.4.8), one can transform the

€(1) ~ —q(t) W(PLE®)T) ~ —q()b(P1)E(E)7, t — oo,
So, we get the differential asymptotic relation for &(¢) :
(3.4.48) §(0)7% €(1) ~ —a(t) Y(P(1)), t = oo,

Due to fact that o — 5 > 0 and £(t) — 0 as t — oo, the left-hand side of (3.4.48)
can be integrated over (¢,00), assuring the integrability of ¢(t) ¥(P(t)) on (¢, 00),
which implies the convergence of the integral in (3.4.28). Integration of (3.4.48) on
(t,00) yields

a—f

(07

(3.4.49) £(t) ~ (

Combining (4.3.32) with (3.4.41) gives us z(t) ~ X;3(t), t — oo, where Xj(t) is
given by (3.4.15). This completes the "only if” part of the proof of Theorem 3.4.3.
O

Proof of the ”if” part of Theorems 3.4.1, 3.4.2, 3.4.3: Suppose that (3.4.16),
(3.4.24) or (3.4.28) holds. From Lemmas 3.4.1, 3.4.2 and 3.4.3 it is known that each
X;(t), i = 1,2,3, defined by (3.4.13),(3.4.14) and (3.4.15), satisfies the asymptotic
relation (3.4.12) for any b > a. We perform the simultaneous proof for X;(¢),
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3. Asymptotic behavior of positive solutions of quasilinear second order DE

i = 1,2, 3 so the subscript 7 = 1,2, 3 will be deleted in the rest of proof. By (3.4.12)
there exists Ty > a such that

(3.4.50) /T t = <p(8)_1 / ") (X () dr> ds < 2X(1), t> T

Let such a Tj be fixed. We may assume that X (¢) is increasing on [T}, c0). Since
(3.4.12) is satisfied with b = Tp, there exists T' > T} such that

(3.4.51) /Tt o <p(s)—1 /:O q(r)¢(X(r))dr) ds > %X(t), t>T.

Applying Proposition 1.2.5 to the function ¥ (s) € RV(3), f > 0 we see that there
exists a constant A > 1 such that

(3.4.52) P(s1) < AY(sy) for each 0 < s < so.

Now we choose positive constants m and M such that

1
< M
= 4(24)1

joRje

_B
@

(3.4.53) m'~ > 8(2A)Y*, 2mX(T) < MX(Ty).

In addition, since X (t) — oo as t — oo, from (1.2.1), for A > 0 we have

(3.4.54) %ﬂ@b(X(t)) <P(AX (1)) < 2M(X (1)), for all sufficiently large t.

Also, since Q(t) = 1/p(t) [~ q(s)1(X(s))ds — 0 as t — oo, from (1.2.2), for A > 0
we have

(3.4.55)
)\l/a

2

e HQ) < e HAQ(1)) < 2AY%pHQ(t)), for all sufficiently large ¢.

Define the integral operator F by

t

(3.456)  Fa(t) =0+ /

To

o (o [ autat ar) s, 1=
where zq is constant such that
M

and let it act on the set

(3.4.58) X = {z(t) € C[Th,00) : mX(t) < z(t) < MX(t), t > Tp}.
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3.4 Asymptotic behavior of intermediate solutions of (E2) under (Cy)

It is clear that X is a closed convex subset of the locally convex space C[Tj, 00)
equipped with the topology of uniform convergence on compact subintervals of
[To, OO)

Let x(t) € X. Using first (3.4.52) and (3.4.58) and then (3.4.54) and (3.4.57)
we get

Falt) < o+ / f o (Ap(s)—l / T M (MX (1) dr) ds

To

< Pxm+ [ o (20 [T atnexe) ) as, e

2 T
from which, using (3.4.55), (3.4.50) and (3.4.53), it follows that

o (oo [T et ar)

< %X(t) + 4(2AMAYVX (1) < %X(t) + %X(t) = MX(t), t>Tp.

Fa(t) < %X(TO)+2(2AMB)1/“/t

To

On the other hand, using (3.4.57) we have
Frx(t) > xg>mX(T) >mX(t) for To<t<T,
and using (3.4.58),(3.4.52) and (3.4.54) we obtain

/ a <p(2_1 | atnvmxa) dr) s
/t o (% /:O q(TW(X(r))dr) ds, t>T.

To

Fu(t)

v

v

From the above using (3.4.55), (3.4.51) and (3.4.53) we conclude

Falt) > %(?—j) [ (o [T amuixenar) as

B @
> % (%) X(t) > mX(t), t>T.
This shows that Fx(t) € X, that is, F maps & into itself.

Furthermore it can be verified (similarly to the proof of Theorem 3 in [11]) that
F is a continuous mapping and that F(X) is relatively compact in C[Tj, 00).

Thus, all the hypotheses of the Schauder-Tychonoff fixed point theorem are
fulfilled and so there exists a fixed point z(t) € X of F, which satisfies integral
equation

r)=rot [ o (st ["atrpetetrn ar) as. o=

To
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3. Asymptotic behavior of positive solutions of quasilinear second order DE

Differentiating the above twice shows that z(t) is a solution of (Ey)on [Tp, 00). It
is clear from (3.4.58) that z(¢) is an intermediate solution of (E,).

Therefore, the existence of three types of intermediate solutions of (Es) has been
established. The proof of our main results will be completed with the verification
that the intermediate solutions of (Ey)constructed above are actually regularly
varying functions.

We define the function

J@zﬁkl@@lfﬁmwmmm}mtz%,
and put (0 (0

[ =liminf —=, L =limsup —=

t=oo J (1) -l

Since z(t) € X, it is clear that 0 < [ < L < co. By Lemmas 3.4.1, 3.4.2 and 3.4.3
we have

(3.4.59) J(t) ~ X(t), t— 0.
Using Lemma 1.1.1 and (3.4.2) we see that

R va)ds | )
(B460) Mt re S SX () ds B R ®)

WL (e, L (FEx®)
IR N L () < R < m) liminf —7 -

Since m < ;((?) < M, t > Tp, using the uniform convergence theorem ( [2],Theorem

1.2.1) we conclude

L2 <;((?)X(t)>
— 1| < supyepm
Lo(X (1)) = SPAclm.M)

Ly (AX (1))
Ly(X (1))

(3.4.61)

—1‘—>0, t — oo.

From (3.4.60), using (3.4.61) and (3.4.59) we get

imin ftooq(s)z/}(a:(s))ds imin & B— imin ﬂ B— A
(3.462) I Il oo X () ds = (l HoofX(t>) - <l HOOfJ(t)) -

Similarly, we conclude that

(3.4.63) lim sup 177 a(s) ¥(x(s)) ds

B8
P IE  p(X () ds
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We denote z(t 1 [7q (s))ds and X(t) = p(t)~! [ a(s)(X(s))ds
Using Lemma 1 1. 1 and (3.4. 4) we obtam

(@)

/
[ > lim mf 7(t) = lim inf 1 > lim inf
t—oo  J! (t) t—o00 S0,1 (X(t)) t—00

( %(t) ) ' lim inf —L (I((tt))X( >) .
X)) e L(X(1)

From (3.4.62) and (3.4.63) we have that % is bounded. So, we can apply the

Uniform convergence again, identically to (3.4.61), to get

(3.4.64) [ > lim inf (;:(((i))) ° (h{ggf ]ftoo s)Y(x s)))cf;) a

In view of (3.4.62) and (3.4.64) we have [ > s, implying that [ > 1 because o > (5.
If we argue similarly by taking the superior limits instead of the inferior limits, we

are led to the inequality L < Lg, which implies that L < 1. Thus we conclude
that | = L =1, i.e. limy o x(t)/J(t) = 1. This combined with (3.4.59) shows that

x(t) ~ X(t), t — oo, which shows that z(¢) is a regularly varying function whose
regularity index p is 0, Hz—f;_", or 1 — 1 according to whether 0 = n — a — 1,

n—a—1<a<gn—ﬁ—l,orazan—ﬁ—l.D

3.5 Examples

Now, we present two examples that illustrate results presented in previous sections.
First example illustrates Theorems 3.2.1-3.2.3.

Example 3.5.1 Consider the equation

(3.5.1) (p(t) ¢(l7' (D) = a®)e(x(), t=to>e,

where p(t) = t2¢(logt)™% € RV(2a), ¢(s) = s* € RV(a) and 1(s) = s’ logs €
RV(8),

a > > 0. So that n = 2a > « and the functions ¢(s) and 1(s) satisfy the addi-
5’/@)2

tional requirements (3.2.7) and (3.2.8), respectively. Since, ¢~ (p(t)™!) = ( -

3/ (logt)?
t

applying Proposition 1.2.1 we have m(t) ~ , t — o0.

(i) Suppose that

o1 (1) (logt)5—0!
logt ’

(67
3.5.2 t)~—1
(352 o) ~ 5 o

t — 00,
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86

where r(t) is continuous function on [tg, 00) such that lim r(¢) = 1. Here,

t—r00
q(t) € RV(8 — 1). Therefore, 0 = 2y — 8 — 1 and
! a [* o—p_,ds o a—8
/ q(s)(m(s))ds ~ —/ (logs) 3 '— ~ (logt) 3 — 00, t— o0,
to 3 to S a — ﬁ

implying that (3.2.15) holds. Therefore, by Theorem 3.2.1 there exist nontriv-
ial regularly varying solutions of index 1 — 2 of (3.5.1) and any such solution
x(t) has asymptotic behavior

If in (3.5.2) instead of 7 ~ 7 one has ” =" and in particular
I 2
=(1-— 14—
r(t) ( logt> < * logt> ’

then (3.5.1) possesses an exact solution z(t) = ¢,

Suppose that
20 2a4s 4 r(t)

(3.5.3) q(t) ~ — t
o+t (logt)o%ﬂ log { lngt

, t— 00,

where 7(t) is continuous function on [ty, co) such that tlim r(t) = 1. It is clear
—00

that ¢(t) is regularly varying function of index

2
o= ath —1e€e <én—ﬁ—1,n—a—1) =(—-1a-1)
3 «
ct+a+1l—n 1 _
and that p = —— = —3 By Theorem 3.2.2 there exist regularly

varying solutions of index p of (3.5.1) and any such solution z(t) has asymp-
totic behavior

Q B-a a=f 310gt B
W(x(t)) ~ t3a (logt)3sa |1 —_— t .
(z(t)) e (logt) s (Og ; ) , t— 00

In the view of (3.2.31) we have

a—

a— 1 l t “ ]. t _é
x(t)TB(log x(t)) e ~ (\3/ %) <log \3/ %) , t— 00,
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(iii)

implying that

s/logt
x(t) ~ { i, t — oo.
t

Observe that in (3.5.3) instead ” ~” one has 7 =" and

3 2 1\
H=(1- 1— —
r(t) ( 2logt * logzt) ( logt) ’

then x(t) = ¢/ 10% is an exact solution.

Suppose that

8 90
(3.5.4) o) ~ 2L gamt 70) (og D)7 7
3¢ log(log t)~3

t — 00,

t—o00

q(t) € RV(a — 1), so that 0 =n — a — 1 and we see that

* ; e 4 N

[T (st [Catyar)as ~ 5 [ ons) S (logtogs) 3) 2

t to 3 J S
(6]

~

where r(t) is continuous function on [tg, c0) such that lim r(¢) = 1. Then,
(

1,_1
Oé—ﬁ a‘u:logt

as t — oo, implying that (3.2.24) holds. Therefore, by Theorem 3.2.3 there
exist nontrivial slowly varying solutions of (3.5.1), and any such solution x(¢)
has asymptotic behavior

!
a—p

In view of (3.2.31) we have

U(2(t)) ~ (logt) 5 (log(logt)™3) "%, t — 0.

2(t)*% (log(t)) "« ~ (logt)~ 5 (log(logt)™3)™, ¢ — o0

implying that z(t) ~ (log t)*%, t — oo. If in (3.5.4) instead of 7 ~ " one has
7 =" and in particular r(¢) = 1— %, then (3.5.1) possesses an exact solution

z(t) = (logt) 3.

In the following example we illustrate results of Theorems 3.4.1-3.4.3.

Example 3.5.2 Consider the equation

(p(t) ¢(2'(1))) + a(B)e(x(t)) =0, t>e=a,

where p(t) = t2 (logt)* € RV(2), ¢(s) = s* € RV(«a) and ¢(s) = s’ logs € RV(S),
a>f3>0. Sothat n = % € (0,), P(t) ~2vt(logt)~" and the functions ¢~(s)
and v(s) satisfy additional requirements (3.4.5) and (3.4.6), respectively.
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3. Asymptotic behavior of positive solutions of quasilinear second order DE

(i)

(i)

88

Suppose that

a—p
a o r(t) (logt) =

3.5.5 )~

( ) a(t) 201 ’ log \/logt

where 7(t) is continuous function on [a,00) such that tlim r(t) = 1. Then,
—00

q(t) € RV(—~1— §), so that 0 =7 — o — 1 and we see that

/at o (p(S)1 /:O Q(r)dr) ds ~ %/at(log )% <1Og \/@)ﬁ %

~ aﬂ(logt)a?aﬁ(log\/@)i—ﬂma t — 00,

o —

t — o0,

implying that (3.4.16) holds. Therefore, by Theorem 3.4.1 there exist nontriv-
ial slowly varying solutions of (E,) , and any such solution z(¢) has asymptotic
behavior

o
a—pf

In view of (3.4.35) we have

:L’(t)¥(log95(z€))’é ~ (\/logt)%(log \/logt)’é, t— 00

implying that z(t) ~ y/logt, t — oco. If in (3.5.5) instead of ” ~ ” one has
7 =7 and in particular r(t) = 1 — @, then (Ey) possesses an exact increasing

nontrivial SV—solution z(¢) = v/logt on [e, 00).

W(x(t) ~

(logt)%(log \/logt)_é, t — 00.

Suppose that

a a5, 7(t) (logt)?
(3.5.6) alt) ~ o 787 g

logt

t — 00,

where 7(t) is continuous function on [a, c0) such that 1tlim r(t) = 1. It is clear
—00

that ¢(t) is regularly varying function of index

a B s
=———-—=—-lenp—a—-1,—n—-pF-1)=(-1—-a/2,—-1— (/2
1— 1
and that p = Ha—w =3 By Theorem 3.4.2 there exist regularly
a_

varying solutions of index p of (E) and any such solution z(¢) has asymptotic
behavior

(67 a—8 B % @
U(z(t)) ~ t3a (logt)a™" (1 t :
(0 ~ 25 g0 (1o 7)o o



3.5 Examples

(i)

In view of (3.4.35) we have

2(t)*% (log 2(t)) " ~ ( Vi )ﬂ (log Vi ) t — o0,

logt logt

implying that
t) ~ ——, 1 — 00.
Observe that in (3.5.6) instead ” ~” one has ” =" and

6 3 3\
H=(1-—)(14+>)(1-2
) ( 10gt>< +10gt>( 10gt> ’

then (t) = /t(logt)~™" on [e%, 00) is an exact increasing solution.
Suppose that
L r(t) (logt)?P—o-t

(3.5.7) q(t) ~ 5 log IO\g/gt , t— 00,
where 7(t) is continuous function on [a,00) such that tlir?o r(t) = 1. Here,
q(t) € RV(—-1— g) Therefore, 0 = §77 —p—1and

Q log o e
(OU(PID) ~ st logt) B loge) e, b o,

g log? t

from which it follows

| atswpenas ~ 525 [ o

t t
~ QQL—ﬁa i 5(logt)'3’°‘ — 0, t— o0,

implying that (3.4.28) holds. Therefore, by Theorem 3.4.3 there exist non-
trivial regularly varying solutions of index 1 — 2 = £ of (E,)and any such
solution z(t) has asymptotic behavior

2(t) ~ 2v/t(logt) ™" <a ; f 1 _a (log t)5a> o Vi t — oo.

2P o — 3 ~ log?t’

If in (3.5.7) instead of ” ~” one has ” =" and in particular

0= -5%)

then (E;) possesses an exact increasing solution z(t) = v/#(logt)~2 on [e%, 00).

89






Chapter 4

Asymptotic behavior of positive
solutions of fourth order
quasilinear differential equation

The main objective in this chapter is to acquire as detailed information as possible
about the existence and asymptotic behavior of all positive solutions of fourth order
quasilinear differential equation

(E)  (pOl" 01" 2"(1)" +a®)z()" " 2() =0, t=a>0, a>5>0,

under two different conditions:

() /aoo p(zf)clx dr=oo 1 /:O (Zﬁ)a =00 A /aoo p(cgi =

and

(©) /:0 at_

p(t)a

We note that the condition (Cs)implies

(4.0.1) /aoo p(;; dt — oo and /aoo (ﬁ)é dt = .

Oscillation as well as the existence and asymptotic behavior of nonoscillatory
solutions of the equation (E)under both conditions (C;)and (Cs)have been
already discussed in [64] and [73]. Under both conditions (C;)and (Cs)the four
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4. Asymptotic behavior of positive solutions of fourth order quasilinear DE

types of primitive solutions of (E)are obtained and necessary and sufficient condi-
tion for their existence are given. However, we establish here that there exists two
types of intermediate solutions of (E)under both conditions (C;)and (Cy). There-
fore, sufficient condition for the existence of these solutions is obtained assuming
that the coefficients of (E)is positive continuous functions. We further restrict the
coefficients of (E)to generalized regularly varying functions to get not only the
desired necessary and sufficient conditions, but also the asymptotic formulas that
describe the behaviour of these solutions at infinity.

All of the results in this chapter are original and are published in [37] and [55].

4.1 Classification of positive solutions of (E) under
the condition (C;)
We assume that p, q : [a, 00) — (0, 00) are continuous functions and that (C;) holds.

Definition 4.1.1 By a solution of (E) we mean a function z(t) : [T,o0) — R,
T > a, such that x(t) and p(t)|z" (t)|* 2" (t) is twice continuously differentiable on
[T,00) and satisfies the equation (E) at every point of [T,00).

We begin by classifying the set of all possible positive solutions of (E) under the
condition (C;)according to their asymptotic behavior as t — oo. There a crucial
role is played by the following four functions

1

) =1, palt) = | Zwﬁdrds, ealt) =t ¢alt) = [ t | (m)“

which are the particular solutions of the unperturbed differential equation
(p(t)|="(8)[* 2" ()" = 0.

It is to be noted that the functions define above satisfy the dominance relation

(4.1.1) ©1(t) < pa(t) < ps3(t) < @a(t), t— oo.

Let x(t) be a positive solution of (E). It is known (see [73]) that z(t) satisfies
either

(4.1.2) 2'(t) >0, 2"(t) >0, (p)|z"t)|* *2"(t)) >0 for all large t,
or
(4.1.3) 2'(t) >0, 2"(t) <0, (p)|z"@#)|* *2"(t)) >0 for all large t.
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4.1 Classification of positive solutions of (E)under (C;)

Since (E) implies that (p(t)|z”(t)|* *z"(t))" is decreasing and positive, there exists
a finite limit tgrgo(p(t)].m”(t)\O‘_laj”(t))' =w;z > 0.

Solutions satisfying (4.1.2). First let x(t) satisfy (4.1.2) on [ty,00). Since x’'(t)
is positive and increasing, we see that z/(t) > 2/(to), t > to, which by integration
gives z(t) — oo, t — o0.

Suppose that ws > 0. Then, since (p(t) 2" (t)*)" ~ ws, t — o0, integrating this
relation on [to, t], we obtain

1 t a
2" (t) ~ wg (—) , t— o0,
> \p(t)

from which, integrating twice on [to,¢] and using the condition (C;), we find that

0~k [ [ () w10

e, x(t) ~ ué w4(t) as t — oo,

Suppose that ws = 0. Then, since p(t)x”(t)* is positive and increasing, we have
limy o0 p(t)a” (t)* = wy € (0,00]. If wy > 0 is finite, then rewriting the relation
()T (1) ~ wa, t — 00 as 2 (t) ~ (wa/p(t))a, t — oo, and integrating this from
to to t, we conclude with the help of (C;)that z/(¢) tends to a finite limit w; > 0
as t — oo, which clearly implies that xz(t) ~ wyt, ¢ = oco. On the other hand, if
wy = 00, we first integrate (E) on [t,00) and then on [ty, t] to obtain

(4.1.4) 2"(t) = T (cz —l—/ / ’Bdrds) ) .t >t

where ¢y = p(tg)z” (to)* > 0. Integrating the above twice on [tg, t] then yields

(4.15) 2(t) = co+er(t—to) // 1(02—1—// 6dudv)adrd8,
to P O‘

for t > to, where ¢; = 2/(t9) > 0 and ¢y = x(tp) > 0. Since

// (r)Pdrds = O(t), t— oo,

the condition (C;)implies from (4.1.4) that lim, . 2/(t) = oc. Using the L’ Hos-
pital’s rule, we easily see from (4.1.5) that lim; ., x(t)/p4(t ) , or equivalently

p3(t) < z(t) < @4(t) as t — oo.
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4. Asymptotic behavior of positive solutions of fourth order quasilinear DE

It follows from above observation that there are three types of possible asymp-
totic behavior for positive solutions z(t) of (E) satisfying (4.1.2)

z(t) ~ kaps(t), or ws(t) <x(t) <palt), or x(t)~kipa(t), as t— oo,

where ks and k, are some positive constants.
Solutions satisfying (4.1.3). Let z(t) satisfy (4.1.3) on [ty,00). It is necessary
that ws = 0, so that we have

(4.1.6) —(p(t)(—x"(t))a>/ _ /t T a()a(s)ds, > o,

Moreover, since p(t)(—z"(t))* and 2'(t) are positive and decreasing , there exist
finite limits lim; o p(t)(—2"(t))* = wy > 0 and limy_,o 2/(t) = wy > 0. Using this
fact and integrating (4.1.6) twice on [t, 00), we obtain

(4.1.7)  2'(t) =w + /too []%S) (wg + /soo(r — 8)q(r)z(r)? dr)} ds, t>to,

which, integrated on [to, ], gives

(4.1.8) z(t) = co—l—wl(t—to)—l—/t: /:O L% (w2+/roo(u—r)q(u)a:(u)ﬁ du)} idrds,

for t > ty, where ¢y = x(tg) > 0. From (4.1.8) it follows that if w; > 0, then
x(t) ~wit as t — oo, regardless of the values of wy > 0, and that if w; = 0 and
wo > 0, then x(t) ~ wéw(t), t — oo. It may happen that w; = ws = 0, in which
case there are two possibilities: either z(¢) tends to a finite limit or z(¢) grows to
infinity as t — oco. In the latter case it is clear that o1 (t) < x(t) < @a(t) as t — oo.

Thus it follows that the asymptotic behavior of positive solutions z(t) of (E)
satisfying (4.1.3) falls into one of the following four cases:

x(t) ~ k1p1(t), or ¢1(t) < x(t) < @a(t), or x(t) ~ kaps(t), or x(t) ~ ksps(t),

as t — oo, where k;, © = 1,2, 3 are some positive constants.
Positive solutions z(t) of (E) having the asymptotic behavior

r(t) ~ kipi(t),  x(t) ~ kapa(t), () ~ksps(t), x(t) ~kipa(l), as t— oo,

for some positive constants k;, 1 = 1,2, 3,4, are collectively called primitive positive
solutions of equation (E), while the solutions which are not primitive are referred
to as intermediate solutions of equation (E). It is convenient to divide the set of
intermediate solutions into the following two types

(11) p1(t) < z(t) < pat), t— o0,
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4.2 Existence of intermediate solutions of (E)under (Cy)

(L) 0s(t) < 2(t) < @alt), t— oco.

As regards the primitive solutions of equation (E), the existence of four types of
primitive solutions has been completely characterized for both sublinear and super-
linear case of (E) with continuous coefficients p(t) and ¢(t) as the following theorems
proven in [64] and [73] show. In view of relation (4.1.1) primitive solutions of type
x(t) ~ k1p1(t), t — oo and x(t) ~ kaps(t), t — oo are often referred to as minimal
and mazimal solutions of (E), respectively. Sufficient and necessary conditions for
the existence of these solutions were proven under the condition (4.0.1), regardless
of convergence or divergence of the integral faoo 1/ p(t)i dt.

Theorem 4.1.1 Let p(t), q(t) € Cla, ). Equation (E) has a positive solution x(t)
satisfying x(t) ~ kyp1(t), t — oo if and only if

(4.1.9) /:Ot (z%t) /too(s 1) q(s) ds)i dt < 0o,

Theorem 4.1.2 Let p(t),q(t) € Cla,0). Equation (E) has a positive solution x(t)
satisfying x(t) ~ kypa(t), t — oo if and only if

(4.1.10) /Oo q(t) pa(t)? dt < oc.

The other two types of primitive solutions of (E)exists only under additional as-
sumption that the integral [ 1 /p(t)a dt is convergent i.e. under the condition

(C1).
Theorem 4.1.3 Let p(t),q(t) € Cla,o0) and (Cy) holds. Equation (E) has a posi-
tive solution x(t) satisfying x(t) ~ k2g02( ), t = o0 if and only if

oo

(4.1.11) tq(t) Adt < .

Theorem 4.1.4 Let p(t), q(t

) € Cla,o0) and (Cy) holds. Equation (E) has a posi-
tive solution x(t) satisfying x(t)

~ k3ps(t), t = oo if and only if

@112) [ (G drds)idm.

Also, the following sharp oscillation theorem for sub-half-linear equation (E)
was proved in [64].

Theorem 4.1.5 Suppose that « > 1> 3 > 0. Then equation (E) has a nonoscil-
latory solution if and only if (4.1.10) holds.
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4. Asymptotic behavior of positive solutions of fourth order quasilinear DE

4.2 Existence of intermediate solutions of (E) under
the condition (C;)

In this section we prove the existence of solutions of type (I;) and (I) of equation (E)
under assumption that coefficients p(t) and ¢(t) are positive continuous functions
and that (Cy) holds.

Theorem 4.2.1 Let p,q € Cla,o0) and (Cy) holds. If (4.1.11) holds and if

/amt (z% /t‘”(s — 1) q(s) ds)i dt = oo,

then equation (E) has a positive solution x(t) such that 1 < x(t) < pa(t), t — oo.

Proof. Choose ty > a such that @o(t) > 1 for t > ¢y and

(4.2.1) /Ootq(t) o (1) dt < 27°.

to

Define the set

and the operator G : &} — C[ty, 0)

(4.2.3)  Ga(t) = 1+/t:/:o (]% /Too(u—r) q(u)x(u)ﬁdu); drds, 1t > 1o,

It is clear that A is a closed convex subset of the locally convex space C|tg, 00)
equipped with the topology of uniform convergence on compact subintervals of
[to, 00). Using (4.2.1)— (4.2.3), we see that € &) implies

1< Galt) < 1425 /t:/:op(:); </tooouq(u)g0(u)f3du)idrds

t 0 1
< 1+2§2_§// —drds =14 po(t) < 2¢y(t), t>tp.
toJs p(’/’)E

This means that G maps &) into itself. Furthermore, it can be shown that G is
a continuous map such that G(AX)) is relatively compact in C[ty,00). Therefore,
by the Schauder-Tychonoff fixed point theorem there exists a function z; € A}
satisfying the integral equation x1(t) = Gx(t) for ¢ > to. It follows that x1(¢) is a
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4.2 Existence of intermediate solutions of (E)under (Cy)

solution of (E) on [tg, 00). It is easy to see that x1(t) has the following asymptotic
properties:

1
lim (¢ >hm// ( / u—r)q(u)du) drds = oo
t—00 t—00

.Z‘l(t)

1
0 < tlggo ™0 = tliglo (/t (s — 1) q(s) 21(s)? ds)
< 2% <lim/ 5q(s) pa(s)? ds) "= 0,
t—oo [y

which means that z(t) satisfies 1 < x1(f) < pa(t), t — oo, that is, z1(t) is an
intermediate solution of type (I;) of (E). O

and

Theorem 4.2.2 Let p,q € Cla,o0) and (Cy) holds. If (4.1.10) holds and if

[ Gin [ [ i) =

then equation (E) has a positive solution x(t) such that t < x(t) < @4(t), t — 0.

Proof. Choose ty > a such that y4(t) >t for t > t; and

(4.2.4) / h q(t) a(t)? dt < 27°.

to

Define the set
(4.2.5) Xy ={z € Clty,00) : t < z(t) < 2p4(t), t > to},

and the integral operator H : Xy — C|[to, 00)

(4.2.6) —t+// ( // Bdudr)& drds, t> to.
to J to

It is clear that X5 is a closed convex subset of the locally convex space C|[tg, 00)
equipped with the topology of uniform convergence on compact subintervals of
[to, 00). Using (4.2.4)—(4.2.6), we see that z € X5 implies

t <Hz(t) < t+2a// - (// ’Bdu>adrds
toJto P E to Jto
S t+ 2e 2‘1// 1 r—to)Edrds:t+go4(t)§2go4(t),tZtO
toJto P

04
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4. Asymptotic behavior of positive solutions of fourth order quasilinear DE

This means that H maps A5 into itself. Furthermore, it can be shown that H is
a continuous map such that H(X») is relatively compact in Cfty, 00). Therefore,
by the Schauder-Tychonoff fixed point theorem there exists a function xy € A
satisfying the integral equation z5(t) = Hxo(t) for t > ty. It follows that xo(t) is a
solution of (E) on [tg, 00). It is easy to see that xo(t) has the following asymptotic
properties:

limx2—(t) = 1+ lim ( 1 // dudr)ads
t—oo t—o00 p 3
) 1
lim < / / u® du dr) ds = 0o
t—o0 p(s

0 < lim 20 _ (hm JiJS a(r) wa(r)? dr ds) =

t—o0 t
o 1
: B o
(tlggo/t q(s) pa(s) dS) =0,

B drds

< 924 <li S a(r) ea(r) ) _9
t—o0 t

which means that z,(t) satisfies t < x2(t) < @4(t), t — oo, that is, z5(t) is an

intermediate solution of type (I) of (E). O

o [@

4.3 Asymptotic behavior of intermediate solutions
of (E) under the condition (C;)

In this section we assumed that (C;)holds and that functions p(t) and ¢(t) are
generalized regularly varying of index n and o with respect to R(t), which is defined
with

(4.3.1) R(t) = / t (]%8)) : ds,

and expressed with

(4.3.2) p(t) = R(t)" [,(t), 1,(t) € SV and q(t) = R(t)? I,(t), 1,(t) € SV,
and the intermediate solutions z(t) € RVg(p) of (E) are represented as
(4.3.3) z(t) = R(t)” 1,(t), l.(t) € SVg.
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4.3 Asymptotic behavior of intermediate solutions of (E)under (C;)

From (4.3.1) and (4.3.2) we have that

n

(4.3.4) ta = R(t)R(t)% L(t)=.

Q=

Integrating (4.3.4) from a to ¢ and using the generalized Karamata integration
theorem (Proposition 1.2.10) we have

tatl  R(t)at!

implying

a+n
a—+1

(4.3.5) t~ (

From above relations we get

(4.3.6) R'(t) ~ (Zi?) o R(t)i;ﬂlp(t)‘«#l, t — oo.
We can rewrite (4.3.6) in the form

et
(4.3.7) 1~ <31717> R() RO L (D)7, t — oc.

First, express the condition (C;)in the terms of regular variation. Using (4.3.2),
(4.3.5) and (4.3.7) we have

00 %ﬂ & ot
‘ t

and

¢ a1t (o+n)(a—1) a-
/ * _ds ~ <O‘ + 77) / R'(s) R(s) alatD lp(s)a<&+11) ds, t— oo.
For condition (Cy)to hold it is necessary that
a?—n<0 A 20 +an—n>0.
In what follows we limit ourselves to the case where
(4.3.8) a?—n<0 A 22 +an—n>0,
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4. Asymptotic behavior of positive solutions of fourth order quasilinear DE

excluding the other possibilities because of computational difficulty. Note that
(4.3.8) holds for n > o? if & > 1, and for 7 satisfying a? < n < 2a?/(1—a) if a < 1.
We introduce the notation:

2% +an—n
ala+1)

atn

 2a+n+1
a+1’ N ’

(4.3.9) my(a,n) = a+1

) mz(Oéﬂ?) = m3(a’77>
It is clear that 0 < mq(a,n) < ma(a,n) < ms(a,n) = ma(a,n) + 1. In all proofs
constants m;(c,n), i = 1,2, 3 will be abbreviated to m;.

Now, we state a lemma which will be frequently used in our later discussions.
The proof of this lemma follows directly using (4.3.7) and the generalized Karamata

integration theorem.
Lemma 4.3.1 Let f(t) = R(t)* Ls(t), Ls(t) € SVg. Then,
(i) If p+ma(a,n) >0,

MM yusmaton) I (1)1, (6)7, £ oo

(i1) If p+mao(a,n) <0,

1
1

= - ma(a, n)a+t ptma (o) L )
/t f(s)ds ~at ma(a) R()*Hm2 @ Le(t) 1,(8) o+, ¢ — oo;

(111) If 1+ mao(a,n) =0, then

/ f(s) ds ~ ma(a, n)a%rl / R (s)R(s)™! Lf(s)lp(s)a%rl ds € SV,

/t h £(s) ds ~ ma(a, n)ast /t h R'(s)R(s) " Ly(s)l,(s)a7 ds € SV

In order to make an in depth analysis of intermediate solutions of type (I;) and
(Iy) of (E) under the condition (C;), we need a fair knowledge of the structure of
the functions o1 (t), wa(t), w3(t) and p4(t) regarded as generalized regularly varying
functions. It is clear that ¢1(t) € SVg. From (4.3.5) it follows that ¢3(t) €
RVg (ma(a,n)). Using (4.3.2) and applying Lemma 4.3.1 twice, we get

2

(4.3.10)  ~ (0, m)* R(t)™(@m | (¢)a(=5D | £ — o0,

my (e, ) (ma(e,n) —ma(a,n))

pa(t) ~ / t/:o R(r)"& L,(r)"= drds
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4.3 Asymptotic behavior of intermediate solutions of (E)under (C;)

which shows that ¢o(t) € RVg (mi(a,n)). Further, another application of Lemma
4.3.1 yields

¢ S )
(4.3.11)  @at) ~ / R(s)ds ~ — 2O ppymsen (2 ¢ oo,
implying ¢4(t) € RV (ms(a,n)).

4.3.1 Intermediate regularly varying solutions of type (I;)

The first subsection is devoted to the study of the existence and asymptotic behavior
of generalized regularly varying solutions of type (I;) of equation (E) under the
condition (C;)with p(t) and ¢(t) satisfying (4.3.2). We seek such solutions z(t) of
(E) expressed in the form (4.3.3). Since

lim (p(t)|2” (t)|* 2" () = tli)l&p(tﬂx”(tﬂa*lx”(t) = lim 2/(t) = 0, lim z(¢) = oo,

t—o00 t—o00 t—o00

integrating of equation (E) first three times on [t, o0) and then once on [tg, t] gives

(4312)  2(t) = o(to) + /t:/m (ﬁ / (= r)g(u)e(w)’ du)é drds, 1>t

Conversely, if z(t) is a positive continuous function satisfying (4.3.12) and
limy_, o z(t) = 00, then it is a solution of (E) such that ¢ (t) < x(t) < @a(t), t — 0.
Intermediate solutions of type (I;) are constructed by solving the integral equation
(4.3.12) for some constants ¢y > a and z(ty) > 0 using Schauder-Tychonoff fixed
point theorem as our main tool. Denoting by Gz(t) the right-hand side of (4.3.12),
in order to find a fixed point of G it is crucial to choose a closed convex subset
X C Cltyg,00) on which G is a self-map. However, since our goal here is to estab-
lish asymptotic behavior of these solutions, a subset X must be constructed in a
different way compared to the proofs of Theorem 4.2.1 and Theorem 4.2.2, where
the primary objective was the existence of intermediate solutions. It will be shown
that such a choice of X' is possible by solving the integral asymptotic relation

(4313)  2(t) ~ /bt/oo (]% /room— F)a(u)z(u)? du)é drds, - oo,

for some b > t;, which can be considered as an approximation (at infinity) of
(4.3.12) in the sense that it is satisfied by all possible intermediate solutions of (E).
It is a merit of theory of regular variation that ensures the solvability of (4.3.13)
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4. Asymptotic behavior of positive solutions of fourth order quasilinear DE

in the framework of generalized Karamata functions. Thus, we first show that the
generalized regularly varying functions X;(t),7 = 1,2, 3 defined respectively by

(4.3.14) X, (t) = (O‘T_ﬁ /:s (]% /:o(r—s) q(r) dr>; ds>aaﬁ,

(4.3.15)

_((matan) p(t) a(t) RO
XQ(”‘(( o )p"(ml(a,n)—p)(mg(a,n)—p)“(ms(mn)—p)) ’

1
a—p

«

(4.3.16) X(t) = @a(t) (Q —/ /too s q(s) ga(s)” ds) -

satisfy the asymptotic relation (4.3.13).

Lemma 4.3.2 Suppose that

(4.3.17) o=—2a—17 and /ft(i /too(s—t)q(s)ds); dt =

p(t)

holds. The function X;(t) € ntr — SV given by (4.3.14) satisfies the asymptotic
relation (4.3.13) for any b > a.

Proof. First note that 0 = —2a—1 satisfies c+mo = —amg and c+2my = —am;.
We integrate q(t) = R(t)7l,(t) twice on [t,00). Applying Lemma 4.3.1 and using
(4.3.2) and (4.3.5), we obtain

1

oo ma+1 1
| ats)ds ~ s Ry, 0 ),
t

aims

and

2

ma+1 o+2ma 2
t (s —t)q(s)ds = r)drds ~ oﬂmlng(t) Ly(t)a+11,(1),

from which it readily follows that

t (L /too(s —1)q(s) ds> : ~ (ﬁ) . R()R(t) " 1,(t)= 1, (t)=,

p(t) amyms
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4.3 Asymptotic behavior of intermediate solutions of (E)under (C;)

as t — oo. Integration on the last relation from a to ¢ then yields

(4.3.18) /}(}% /Oo(r—s) o(r) dr>i ds

( _ 1 1
(a m1m3) /R Ly(s)e l,(s)= ds, t — o0,

so that

o

Xl(t)~< o /R’ 1 (8)E 1 (s)" d)a, £ = 0.

This shows that X;(t) € SVxz. Next, we integrate ¢(t)X,(t)” twice on [t,c0).
Applying Lemma 4.3.1 as above, we see that

o0 é ma+1 @ o+2my 2 8
([T naoxieras) ~ | Z— | ro™ 0= 408 X0,

as t — oo. Integrating the above relation multiplied by p(t)~= first on [¢,00) and
then on [b,t], for any b > a, we conclude via Lemma 4.3.1 that

[ s femrmeraou (52 ()

<[ RORO L@ O ([ RORO L0 ) 6

@

_ ((a—ﬁ)mf /R’(s)R(s)‘llp(S)ilq(8)3d3> = X1(t), t— 0.

a™*a (mymg) e Ja

Q
| [®
™

QI

This proves that X;(t) satisfies the asymptotic relation (4.3.13) for any b > a. O
Lemma 4.3.3 Suppose that

(4.3.19) =200 — 1 < 0 < —f mi(a,n) — 2 ma(a,1n)

holds and let p be defined by

oc+2a+n
a—p3

The function Xy(t) € RV(p) given by (4.3.15) satisfies the asymptotic relation
(4.3.13) for any b > a.

(4.3.20) p=
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4. Asymptotic behavior of positive solutions of fourth order quasilinear DE

Proof. (The constant A(«,n, p) will be abbreviated as \.)
Note that the function X(t) given by (4.3.15) can be expressed in the form

(4.3.21) Xo(t) ~ AP (%)*‘* R(t)” (L(t) 1,(£) 77 , t — oo,
where

A=p" (m1 = p) (m2 —p)* (m3 —p).
Using (4.3.21) and (4.3.20) and applying Lemma 4.3.1 twice, we find that

B 28 1
A ()5 g 1

2 a(p—ms3) %iﬁ o
Sy ROM GOLO) LOL0

nd
/t h / 7 4r) Xo(r)? drds

5 28 2
Ao () my el 2
~ a R(t)eP=m0) (1 (D)1, (£))=7F 1, (t),(t)*+, t— oo.
S T R (0, (01(0)77 100
We now raise the last relation to the exponent 1/« and integrate it first on [¢, 00)
and then on [b,t] for any b > a. As a result of application of Lemma 4.3.1, we
obtain for t — oo

/t " 4(s) Xa(5)* ds ~

a

1

1 _ 28 2
&0 1 oo a A\ ale—p) (Mm2)ala—p) alatl) ol
[ (o =0 xy? ar) s~ () mg™ g
t s

p(s) my — p)(a?(my — p)(mz — p))=
) R(E)P™ (1,()1,(£)) 3@ 1,(8)3 L,(£) 7@ L (1)~ L,(¢)a,

and

p(ma — p)(a?(my — p)(mz — p))=

XLg(t)= Lp(£) 7T Ly(1) = L(1) 75 = Xa(2).
This completes the proof of Lemma 4.3.3. [J

Lemma 4.3.4 Suppose that
(4.3.22) o=—0Fmi(a,n) —2ma(a,n) and / tq(t) po(t)? dt < oo

holds. The function X3(t) € ntr — RVg(mq(a,n)) given by (4.3.16) satisfies the
asymptotic relation (4.3.13) for any b > a.
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4.3 Asymptotic behavior of intermediate solutions of (E)under (C;)

Proof. Suppose that (4.3.22) holds. Using (4.3.2), (4.3.5), (4.3.7) and (4.3.10) we
see that

Bla=1)+a

R(t)™™ 1,(t) «@t Iy(t), t— oo,

tq(t) pa(t)? ~

so that applying (iii) of Lemma 4.3.1 we have

(ma(mg —my))?

28—a+1

o0 a+1
(4.3.23) / 5q(s) pa(s)’ ds ~ e
¢

(ma(mg —mq))”?

Bla—1)+2a

X / R'(s) R(s) "' 1,(s) e@ [, (s)ds € SVg, t— <.
¢

This, combined with (4.3.16), gives the following expression for Xj;(¢):

o e=Bma  NFE e
X3(t> (a(ml(mg _ ml))a> R<t> lp(t) (et D)

o0 Bla—1)+2a %—6
X (/ R(s)R(s) ' 1,(s) =@ [,(s) ds> € RVg(my), t — oc.
t

Next, we integrate ¢(t) X3(t)” twice on [t,00) and raise the result to the exponent
1/a. Since q(t)X3(t)? € RVR(Bmy + o) = RVp(—2my) (cf.(4.3.22)), repeated
application of Lemma 4.3.1 yields

1 28—a+1 o — ﬁ %,5
o oy BBt D)
(/ / r ds) "2 (a<m1<mz . m1>>ﬁ)

, 1 B(a—1)+2a a=B
X R( JR(s) " 1y(s) =@ [, (s)ds € SVg, t— oo.
¢

Multiplying the above by p(f)~= and integrating it first on [¢,00) and then on [b, ]
for any fixed b > a, we conclude via Lemma 4.3.1 that

I G e S)q(T)XS(T)BdT) - mlmymm(a(ml )

a—1 2 %*6
X R(t)™~™, () a@rD ( / R(s 1 (5) ewi 1, (s) ds)

and

[ G [ o mosor d“)i s ()

a-1 o0 Bla—1)+2a ﬁ
< RO 07 ([T RO RO 6 0 a) T = %0,
t
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4. Asymptotic behavior of positive solutions of fourth order quasilinear DE

as t — o0o. This completes the proof of Lemma 4.3.4. [
Since 1 (t) < x(t) < wa(t), t — 0o, the regularity index p of z(t) must satisfy
0<p<m(a,n).

If p = 0, then since z(t) = [,(t) — oo, t — oo, x(t) is a member of ntr — SV,
while if p = my(a,n), then since z(t )/R( ym () — = Il.(t) = 0, t = o0, z(t) is a
member of ntr — RVg(mi(a,n)). If 0 < p < my(a,n), then z(t) is a member of
RVg(p) and satisfies x(t) — oo and z(¢)/R(t)™ @™ — 0 as t — co. Thus the set
of all generalized regularly varying solutions of type (Ij) is naturally divided into
the three disjoint classes

ntr —SVg or RVg(p) with pe€ (0, mi(a,n)) or ntr—RVg(mi(a,n)).

Our aim is to establish necessary and sufficient conditions for each of the above
classes to have a member and furthermore to show that the asymptotic behavior of
all members of each class is governed by a unique explicit formula describing the
growth order at infinity accurately.

Theorem 4.3.1 Let p(t) € RVg(n), ¢(t) € RVg(o) and (Cy) hold. Equation
(E) has intermediate solutions x(t) € ntr — SV g satisfying (1) if and only if (4.3.17)
holds. The asymptotic behavior of any such solution x(t) is governed by the unique
formula z(t) ~ Xi(t), t — oo, where X1(t) is given by (4.3.14).

Theorem 4.3.2 Let p(t) € RVg(n), ¢(t) € RVg(o) and (Cy) hold. Equation
(E) has intermediate solutions x(t) € RVg(p) with p € (0, myi(a,n)) if and only
if (4.3.19) holds, in which case p is given by (4.3.20) and the asymptotic behavior
of any such solution x(t) is governed by the unique formula x(t) ~ Xs(t), t — oo,
where Xo(t) is given by (4.3.15).

Theorem 4.3.3 Let p(t) € RVg(n), q(t) € RVg(o) and (Cy) hold. Equation
(E) has intermediate solutions x(t) € ntr — RVg (my(a,n)) satisfying (1) if and
only if (4.3.22) holds. The asymptotic behavior of any such solution x(t) is gov-
erned by the unique formula x(t) ~ X3(t), t — oo, where X5(t) is given by (4.3.16).

Proof of the ”only if” part of Theorems 4.3.1, 4.3.2 and 4.3.3: Suppose
that (E) has a type-(I;) intermediate solution z(t) € RVg(p) on [ty, 00). Clearly,
p € [0,my]. Using (4.3.2), (4.3.3) and (4.3.7), we obtain from (E)

(4.3.24) = (p(t)(— ”(t))")'Z/OOQ(S)x(S)BdS

T[RRI (91(5) ds, 1 o,
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4.3 Asymptotic behavior of intermediate solutions of (E)under (C;)

The convergence of the last integral in (4.3.24) means that o + Sp + ms < 0. But
the possibility o + 8p + ms = 0 is precluded, because if this were the case the last
integral in (4.3.24) would be an SV function, which is not integrable on [tg, 00)
by (i) of Lemma 4.3.1. This would contradict the fact that the left-hand side of
(4.3.24) is integrable on [ty, 00). It follows that o + p + my < 0. Then, integration
of (4.3.24) on [t,00) with application of Lemma 4.3.1 gives

1

" « mD‘Jrl > (e mo L
PO ()" ~ s [ R ()7 1 (5) (o) s
t
(4.3.25)
~ / 5)otAotama—1 pEm) B
(0+6p+m2 / R'(s Ly(s)o+1 1,(s)l.(s)" ds, t — o0,

where (4.3.7) has been used in the last step. Noting that the last integral is con-
vergent, we distinguish the two cases:

(@) o+ Pp+2me=0 and (b) o+ Bp+2ms <0.

Assume that (a) holds. From (4.3.25) and (4.3.7) we have

[e3

() ~ O Ry E (1) ( | RORE 6 6 L) ds)

MR (1) R(t)™ ™2, (1) ( /t “R(s) R(s)‘%(s)ffﬂlq(s)lx(s)ﬁds) .

as t — oo. Integrability of z”(t) on [t,00), given that m; — mg < 0, allows us to
integrate the previous relation on [t, c0), implying

1
m a(a+1)

4.3.26 () o 22 p(pymiem2 | (4) D
( ) '(t) p— (t) p(t)

([ RORS oL @) "o

Since the right-hand side of (4.3.26) is not integrable on [tg, 00), due to the fact
that m; < 0 (see Lemma 4.3.1-(i)) and z(t) grows to co as t — oo, integration of
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4. Asymptotic behavior of positive solutions of fourth order quasilinear DE

(4.3.26) on [tg, t] then shows that

(4.327) a(t) ~ —2__ R(ty™ | (t)st0

mq (m2 — ml)

([T RO RO O 61 ds) "~ mE T gt

Q=

([ RO RO O L ) € R, ¢ o0

Assume next that (b) holds. From (4.3.25) we find via the generalized Karamata
integration theorem that

maiﬂ - o+Bp+2mo—n
4.3.28) —a"(t) ~ 2 Rty &
( ) ©) (0 + Bp+mz) (0 + Bp+2me) ®
1
ziﬁ a

(0—|—ﬁp+m2) (O’"‘ﬁp‘i‘ng)

Q@

X R'(1) R(t) =25 ma=1y (yawan | (151, ()5, ¢ — oo.
p q

The integrability of —z”(t) on [to, c0) implies that (o + Sp+2mge —n)/a+mg < 0.
But the equality is not allowed here. In fact, if the equality holds, then by (4.3.8)
n—a’
a+1

o+ Bp+2me=n—amy = > 0,

which contradicts the assumption (b). Therefore, from (4.3.28) integrated over
[t,00) we have

a2 -

:L‘,(t) ~ m2a+l o
(0+Bp+m2)(0+Bp+2me) | —(o+PBp+ (a+2)me—n)
(4.3.29) x R(t) TS (1) a@ T (0 L (D)5, t — oo,

Since 2/(t) is not integrable on [ty, 00) (note that x(t) — oo, t — 00), it follows that

2)msy — + Bp + 20+
o+ Bp+ (a+2)my oy = © Bp + 2a n
(0% (6%

0,
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4.3 Asymptotic behavior of intermediate solutions of (E)under (C;)

and integration of (4.3.29) on [ty, t] leads to

:U(t) N ( m% )a o
(0+Bp+ma) (0+Bp+2ma)) —(o+Bp+ (a+2)ms—n)
(4.3.30) x / R(s) R(s) ™" 1,(s)a 1, (s) % lu(s) = ds, t — oo,
to

where w > —1 because of the divergence of the last integral as ¢ — oo.

We distinguish the two cases:
a+Bp+a+n:_1 and  (b.2) o—+6p+a+n>_
o Q@

Assume that (b.1) holds. Then, (4.3.30) shows that z(t) € SVg, that is, p = 0, and
hence 0 = —2a — 1. Since

(b.1) 1.

o+ Bp+mg=—amg, 0+ Bp+2mg=—amy, 0+ Pp+ (a+2)my —n = ama,
(4.3.30) reduce to

1
mea o t B 1 1 5
(4.3.31)  x(t) ~ (m) /t0 R'(s) R(5) ™ () ly(s) = Lu(s)= ds, ¢ — oo.

Assume that (b.2) holds. Applying Proposition 1.2.10 to the integral in (4.3.30),
we get

x“”“(w+ﬂp+mﬂarum+2ma) ot ot (a1

« o+Bp+2a+4n 1 1 8
(4.3.32) Sy P v R ()~ (1) (), t— oo,

which implies that z(t) € RV p(ZHet2atn),

Let us now suppose that z(¢) is an intermediate solution of type (I;) of (E)
belonging to ntr — SVg. From the above observations this is possible only when
the case (b.1) holds, in which case p =0, 0 = —2a —n and x(t) = [, (f) must satisfy

the asymptotic behavior (4.3.31) as ¢t — oco. Put

1

) =11 [ RO RO e Lo s = ()

Noting that

1 1 B 1

) =HR ) R(t)" (1) lg(t)= L(t)~ ~ HR(t) R(t)™" 1,(t)
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we obtain the differential asymptotic relation
w5 (&) ~ HR'(£) RE) " ,(8)% 1,(t)s, t — oo
Integrating the above from ¢y to ¢, we easily see that

a—pf

«

J= 2
1

H /t: R'(s) R(s)"L1,(s)%1,(s)% ds> RN,

of6) ~ ) ~

which, in view of (4.3.18), is equivalent to

(43.33)  a(t) ~ (# /ats (ﬁ /:O(r— $) q(r) d7~>‘1¥ ds)aaﬁ, £ = 00,

Thus it has been shown that z(t) ~ X;(t), t — oo, where X/ (t) is given by (4.3.14).
Notice that the verification of (4.3.17) is included in the above discussions. This
proves the "only if” part of Theorem 4.3.1.

Next, suppose that x(t) is a solution of (E) belonging to RVg(p),p € (0,mq).
This is possible only when (b.2) holds, in which case x(t) must satisfy the asymptotic
relation (4.3.32). Therefore,

o+ Bp+2a+n N _o+2a+n

Q a—f

Y

which justifies (4.3.20). An elementary calculation shows that
O<p<m = —2a—-n<o<=2a—n+(a—_L)m=-—2my— Pmy,
which determines the range (4.3.19) of 0. Since
o+ Bptmy=alp—mz), o+ PBp+2my=alp—m),

o+ Bp+(a+2)m—n=alp—ma), o+PBp+2a+n=ap,

we conclude from (4.3.32) that x(¢) enjoys the asymptotic behavior x(t) ~ Xs(t),
t — oo, where Xy(t) is given by (4.3.15). This proves the ”only if” part of the
Theorem 4.3.2.

Finally, suppose that x(t) is an intermediate solution of type (I;) of (E) belonging
to ntr — RVg(my). Then, the case (a) is the only possibility for z(¢), which means
that 0 = —fm; — 2my and (4.3.27) is satisfied by x(t). Using x(t) = R(t)"™ [..(t),
(4.3.27) can be expressed as

o

(4.3.34) 1,(t) ~ Klp(t)a&illl) (/too R'(s)R(s)™* lp(s)a%l 1,(5) 1. (5)? ds) , 1 — o0,
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4.3 Asymptotic behavior of intermediate solutions of (E)under (C;)

where K = m§ /my(mg —my). Define v(t) by
)= [ R RE) L ) L) ds

Then, noting that [,(t) ~ Klp(t)a?;l) v(t)a one can transform (4.3.34) into the
following differential asymptotic relation for v(t):

(a—1)B+2a

(4.3.35) —u(t) % V(1) ~ KPRt R(t)™ 1, (t) w0 1,(t), t — oo.

From (4.3.27), since tlim z(t)/p2(t) = 0, we have tlim v(t) = 0, implying that
—00 —00

the left-hand side of (4.3.35) is integrable over [ty, 00), so is the right- hand side.
This, in view of (4.3.23), implies the convergence of the integral f tq(t) s (t)? dt.
Integrating (4.3.35) on [¢,00) and combining the result with (4.3.34), we ﬁnd that

« — a—1 ] ﬁ
x<t>~KwR<t>mlzp<>a<a+l>( R R ) T zq<s>ds) ,

as t — oo, which due to (4.3.23) gives z(t) ~ X3(t), t — oo, where X;3(¢) is given
by (4.3.16). This proves the "only if” part of the proof of Theorem 4.3.3. [

Proof of the ”if” part of Theorems 4.3.1, 4.3.2 and 4.3.3: Suppose that
(4.3.17) or (4.3.19) or (4.3.22) holds. From Lemmas 4.3.2, 4.3.3 and 4.3.4 it is
known that X;(t), i = 1,2, 3, defined by (4.3.14), (4.3.15) and (4.3.16) satisfy the
asymptotic relation (4.3.13) for any b > a. We perform the simultaneous proof for
X;(t), i =1,2,3 so the subscripts ¢ = 1,2, 3 will be deleted in the rest of the proof.
By (4.3.13) there exists Ty > a such that

(4.3.36) /T/ ( / — ) q(u) X (u)? du)é drds < 2X(t), t > Tp.

Let such a Tj be fixed. We may assume that X (¢) is increasing on [T, 00). Since
(4.3.13) holds with b = T, there exists T} > T such that

(4.3.37) /Tt/oo (ﬁ /Too(u ) glu) X () du)é drds > @ L> T

Choose positive constants m and M so that

1
<3 M8 >4, 2m X(T1) < M X(Tp).

Define the integral operator

(4.3.39) Ga(t) =z + /Tt/oo (2% /j@(u — ) q(u) z(u)? du)i drds, t>T,,
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where g is a constant such that
M
(4.3.40) mX(T}) <z < 7X(T0),

and let it act on set
(4.3.41) X ={zeCTy,00):mX(t) <z(t) < MX(t), t >To}.

It is clear that X is a closed, convex subset of the locally convex space C[T}, 00)
equipped with the topology of uniform convergence on compact subintervals of
[To, OO)

It can be shown that G is a continuous self-map on X and that the set G(X) is
relatively compact in C[T, 00).

(i) G(X) C X. Let z(t) € X. Using (4.3.36), (4.3.38), (4.3.40) and (4.3.41) we

get
Gz(t) < % (To) + Ma /TO/S ( / u—r)q(u)X(u)Bdu)adrds
< %X()+2M X()<?X()+%X(t):MX(t), L> T

On the other hand, using (4.3.37), (4.3.38), (4.3.40) and (4.3.41) we have
Ga(t) > vo >2mX(Th) >2mX(t), To <t <Th,

and

Zm

Ga(t) > mb Tt/oo(i)/ (u—r) ()ﬁdu>“drds
X(),

This shows that Gz(t) € X, that is, G maps X into itself.
(i) G(X) is relatively compact. The inclusion G(X) C X ensures that G(X) is
locally uniformly bounded on [T}, 00). From the inequality

0 < (Ga) (1) < M¥ / ) (Z% / - s)q(r)X(rWdr)i ds, t>T),

holding for all z € X it follows that G(X) is locally equicontinuous on [T, 00).
Then, the relative compactness of G(X') follows from the Arzela-Ascoli lemma.
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4.3 Asymptotic behavior of intermediate solutions of (E)under (C;)

(iii) G is continuous on X. Let {x,(t)} be a sequence in X converging to x(t)
in & uniformly on any compact subinterval of [Tj, c0). From (4.3.39) we have

t [e%¢)
Gz(t) — Ga(t)] < [ / LG (r)drds, t=T,
To Js p(r)E

Go(t) = ‘ </t°°<s — 1) q(s) n(s)? ds)i _ </t°°(s 1) q(s) 2(s)? ds> é‘ |

Using the inequality |2 — y*| < |z — y|*, 2,4 € RT holding for A € (0,1), we see
that if > 1, then

[e3

Gut) < ([ 5= 0ulan (o) = o(e)7las )
t
On the other hand, using the mean value theorem, if o < 1 we get

a—1
Gt < (00 [ - 0axas) T [T 0a(olen(s)” — als) s
t t

Thus, using that q(t)!xn(t)ﬁ — z(t)’| — 0 as n — oo at each point t € [Tp, o)
and q(t)|z,(t)% — z(t)°| < MPq(t)X(t)? for t > Ty, while q(t)X (t)? is integrable on
[Ty, 00), the uniform convergence G, (t) — 0 on [Ty, co) follows by the application of
the Lebesgue dominated convergence theorem. We conclude that Gz, (t) — Gx(t)
uniformly on any compact subinterval of [Ty, 00) as n — oo, which proves the
continuity of G.

Thus, all the hypotheses of the Schauder-Tychonoff fixed point theorem are
fulfilled and so there exists a fixed point z(t) € X of G, which satisfies integral
equation

(4.342)  2(t) = o + /Tt/oo (Zﬁ /Too(u 1) qlu) 2(w)? du)i drds, t>T.

Differentiating the above four times shows that x(t) is a solution of (E) on [T}, 00),
which due to (4.3.41) is an intermediate solution of type (I;). Therefore, the proof
of our main results will be completed with the verification that the intermediate
solutions of (E) constructed above are actually regularly varying functions with
respect to R(t). We define the function

J(t) = /Tt/oo (1% [m(u — ) qu) X () du)é drds, t > Ty,
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4. Asymptotic behavior of positive solutions of fourth order quasilinear DE

and put

(1) : z(t)
[ =liminf —%, L = limsup —=%.
e J (1) e J (1)

By Lemmas 4.3.2, 4.3.3 and 4.3.4 we have X(t) ~ J(t), t — oco. Since, z(t) € X,
it is clear that 0 < | < L < oco. We first consider L. Applying Lemma 1.1.1 four
times, we obtain

Q=

e PO () (7 (s = Dals)a(s)” ds)
R e R e T t>q<s>x< )5 35)°
s f°°<s—t)q(s)x(s)ﬁ ds\ 7 q(s)z(s)? ds
B (h?isogpj; t)q(s)X(s)? ds> (h?fofpﬁ ﬁd5>

1 8 8
. q(t)z(t)” ) ¢ ( x(t) )“ ( C6’(15))& s
< |limsup —~—-= = | limsu lim su = L«
- ( e q(DX ()7 e’ X (1) el (D)
where we have used X(t) ~ J(t),t — oo, in the last step. Since [/a < 1, the

inequality L < La implies that L < 1. Similarly, repeated application of Lemma
1.1.1 to [ leads to [ > 1, from which it follows that L =1 = 1, that is,

im 20 1 )~ I ~ X)) oo

Therefore it is concluded that if p(t) € RVg(n) and ¢(t) € RVg(0), then the type-
(I;) solution x(¢) under consideration is a member of RV g(p), where

2 +0+n
a—f

according to whether the pair (7, o) satisfies (4.3.17), (4.3.19) or (4.3.22), respec-
tively. Needless to say, any such solution z(t) in RVg(p) enjoys one and the same
asymptotic behavior (4.3.14), (4.3.15) or (4.3.16) according as p = 0, p € (0,m;)
or p = my. This completes the ”if” parts of Theorems 4.3.1, 4.3.2 and 4.3.3. [J

p=0 or p= € (0,my) or p=my,

4.3.2 Intermediate regularly varying solutions of type ()

Let us turn our attention to the study of intermediate solutions of type (I3) of
equation (E) under the condition (C;), that is, those solutions x(¢) such that
p3(t) < x(t) < @4(t) as t — oco. As in the preceding subsection use is made of
the expressions (4.3.2) and (4.3.3) for the coefficients p(t), ¢(t) and the solutions

x(t).
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4.3 Asymptotic behavior of intermediate solutions of (E)under (C;)

Let z(t) be an intermediate solution of type (I2) of (E) defined on [ty, 00). Inte-
grating (E) first from ¢ to oo and then three times on [to, t], we obtain

(4.3.43) x(t) :cg—l—cl(t—tg)—l—/t (t—s) e (02+/ / dudr>1 ds,

for t > ty, where ¢y = x(to), c1 = 2'(t9) and co = (p(t) 2" (t)*)'|t=t,. From (4.3.43)
we easily see that x(t) satisfies the integral asymptotic relation

(4.3.44) x(t) ~ /b (t —s) ( // Bdudr>i ds, t — o0,

for any b > a. This type of asymptotic relation will play a central role in construct-
ing the intermediate solutions of type (Is) of (E) by solving the integral equation
(4.3.43) for some positive constants ty and ¢;, ¢ = 0,1,2. Therefore, first we show
that the generalized regularly varying functions Y;(t), i = 1,2, 3 defined respectively
by

o

(4.3.45) Yl(t):t<a_ /( B // dudr)l ds>w,

(4.3.46) 1

_((male, )\ p(t) q(t) R(t)* o
= (( =) T o e <m3<a,n>—p>> ’
asan w0 = (20 [Ta0 e as)

satisfies the asymptotic relation (4.3.44) for any b > a.

Lemma 4.3.5 Suppose that

(4.3.48) 0 = —a—(+1) ma(a,n) and/ ( / / drds)i dt = oo.

holds. The function Yi(t) € ntr — RVg(mso(a,n)) given by (4.3.45) satisfies the
asymptotic relation (4.3.44) for any b > a.

Proof. The proof needs the expression for Y;(¢) in terms of R(t), [,(t) and [,(¢).
1
To that end denote by W¥(t) = R'(t) R(t)™! lp(t)afﬂil) lq(t)é. Let b be any constant
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4. Asymptotic behavior of positive solutions of fourth order quasilinear DE

such that b > a. Using (4.3.5) and (4.3.7) and applying Karamata’s integration
theorem, we first compute

0 1—af © 1
/ s7q(s) ds ~ my™ / R/(s)R(s)7tFm2tma—t lp(s)fv%l ly(s)ds
¢ t

1—ap
1-af B+1 Moy B+1

~ /too R/(s)R(s) ™", (s) 21 1y(s) ds ~ R 4(1)~ 14 (8),

«

as t — oo. Integrating the above on [b,¢] with the help of (4.3.7), we obtain

2—af3

Ql~

a(a+1)
( / / drds) " M Ry | (f) S ()
(a2(mg —mq))=
2—af+a
a(e+1) B+1 1
(4.3.49) T ROy 0 (0

(a®(mg —my))e
from which it follows that, for any b > a,

2—af+a

(4.3.50) / < // dudr)i dSN(QQ(:T:LQ:(j;l)); /bt\I!(s)ds,

as t — o0o. Combining (4.3.5) with (4.3.50) then shows that Y;(t) can be expressed
in the form

el nn = Ka 5 ﬁ)a azdffmlﬂ 7 R (/b W (s) dS) -

as t — oo.

To verify the relation (4.3.44) for Y;(t) we have to compute the repeated integral
of q(t)Y1(t)? on the right-hand side of (4.3.44). The computation is similar to that
carried out above to derive (4.3.51) as a result of repeated integration of t°¢(t). In
fact, using (4.3.51) and denoting its constant multiplier by C, we integrate q(t)Y;(t)?
first on [t, 00) and then on [b, ] to obtain

(i [ [ wemicraa)

a+2 o B8
CPmg*t

o M2 R’(t)R(t)—lzp(t)%zq(t)é ( /bt\I/(s)ds)aﬁ

a?(mg — my)

QI

a+2 B

By oF1 t a=p
o[ Cme U(t) (/ U(s) ds> , 1 — o0,
b

a?(my —my)
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4.3 Asymptotic behavior of intermediate solutions of (E)under (C;)

which, integrating further on [b, t], yields

[ G5 [ dudr)l s

_ 8, at1 S =
~ 8 b Com; ) (/ \If(s)ds) , t—o0.
b

« a?(mg — my

Our final step is to integrate the above relation again on [b, ¢]:

/btt—s ( // 5dudr)ids
~ CR(E)™ L(1) 5 (/b W (s) ds) " _Yi(#), £ — oo,

This proves that Y;(t) satisfies the asymptotic relation (4.3.44). O

Lemma 4.3.6 Suppose that
(4.3.52) —a— (B+1)ma(a,n) <o < —Fms(a,n) —ma(a,n)

holds and let p be defined by (4.3.20). The function Y3(t) € RV(p) given by (4.3.46)
satisfies the asymptotic relation (4.3.44) for any b > a.

Proof. Putting A\ = p®(p — mq)(p — ma2)®(ms — p), we express Ya(t) in the form

vl ~ CREPLOZL0™, ¢ = (5 (%)) .

(%

We integrate q(t)Ya(t)? twice: first on [t,00) and then on [b,t], b > a. Since

a(B+1)

L «
dOY(t) ~ Ol ROR() ™7 (0 1,075, 1 o0

we see that
1

> C’Bmgﬁ a(B+1) a

q(8)Ya(s)Pds ~ ——2_R(t)"ms=P)| ($)@-mtatD | (t)a-F
| sy as ~ I Ry (= L )
2

Cﬂmgﬁ af+2a—4 o

~ ——2 _R'(t) R(t)*PmmITL ] (§) @Bt [, (t)a-B
LR (1) RO () L ()75,
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4. Asymptotic behavior of positive solutions of fourth order quasilinear DE

and

(4.3.53) // r)? drds

Cﬁmg _aft+2a—p a
N R(t Ot(p—ml)l t) =@+ [ (t)a=F, t — oo.
a?(mg — p)(p —ma) ) 0 o

Since (4.3.53) implies

(i [ [ aomsoras)

_oat2

C moet . L B
h (a2(ms — p)2(p_ ml))éR/(t) R(t)P~m2 L (1) e=min [ ()55, t — oo,

integrating the last relation twice on [b,t], we conclude that

[o-9(:5 // dudr)ids

~ Cim; R(1)PL (1) 7 1,(1) 57 = Ya(t), t — oo.

(a%(ms = p)(p = m1))= (p — ma)p
This proves that Ya(t) satisfies the asymptotic relation (4.3.44). O

Lemma 4.3.7 Suppose that

(4.3.54) o=—Fmg(a,n) —ma(a,n) and /OO q(t) a(t)? dt < .

holds. The function Y3(t) € ntr — RVg(ms(a,n)) given by (4.3.47) satisfies the
asymptotic relation (4.3.44) for any b > a.

Proof. Suppose that (4.3.54) holds. Using (4.3.7) and (4.3.11) we easily see that

(0.9} Li_:ll (o.9]
(4.3.55) / q(8)pa(s)? ds ~ T / R’(S)R(s)_llp(s)%lq(s) ds, t — o0.
t ms t

To simplify expressions we denote by ¥(t) = R/(t) R(t)™* lp(t)% l,(t). Combining
the above with (4.3.47), we obtain the following asymptotic representation for Y3(#)
in terms of R(t), ,(t) and {,(t):

(4.3.56) Yi(t) ~ (m)iﬁ R(t)™ 1, (t) =+ (/tooqf(s) ds)al_ﬁ, t— 00.

o
ams
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4.3 Asymptotic behavior of intermediate solutions of (E)under (C;)

Using (4.3.56), we compute

/t " 4(s) Ya(s)? ds

a(B+1) B

. B(a+1) 1 oo a—p
N (a—B)m, / R'(s -1 (s )%lq(s) (/ U(r) d?“) ds
am3 S
a(B+1) a—ﬁ Jel
. Blot1) 0o o] a—B
_ [ la=B)m; / U (s) (/ U(r) dr> ds
Oémg t S
511 aB _a
. a+1 ¢} a—p3
= % (/ \If(s)ds) , t — o0.
Qs t

Next we integrate the above relation on [b,t], b > a, multiply it by 1/p(t) and raise
the result to the power 1/a. Then we find that

(4.3.57) ( / / ﬂdrds);

_ == = . ) 0 T
~ (O{ ﬁ)Z,LQ a+1 R( ) 2a lp(t)*m (/ \I](S) dS)
ams t
% ﬁ 1
_ o o0 T—ﬁ
~ % R(t) (/ U(s) ds) .t oo
amyg t

Integrating (4.3.57) twice on [b, t] leads to the desired conclusion that Y3(t) satisfies
the integral asymptotic relation (4.3.44). O

Since @3(t) € RVg(ma(a,n)) and p4(t) € RVr(ms(a,n)) ((4.3.5) and (4.3.11)),
the regularity index p of z(t) must satisfy mq(a,n) < p < mg(a,n). If p =
ma(a,n), then since x(t)/R(t)™2(" = [,(t) — oo, t — oo, x(t) is a member of
ntr — RV g(ma(a,n)), while if p = ms(a,n), then x(t)/R(t)™3(" — 0, t — oo, and
so z(t) is a member of ntr — RVg(ms(a,n)). If mg(a n) < p < ms(a,n), then z(t)
belongs to RV z(p) and clearly satisfies z(t)/R(t)™2(*") — oo and x(t)/R(t)ms(m —
0 as t — oo. Therefore, it is natural to divide the totality of intermediate solutions
of type (I2) of (E) into the following three classes

ntr — RVg(ma(a,n)), RVgr(p), p € (ma(a,n),ms(a,n)), ntr—RVgz(ms(a,n)).

119



4. Asymptotic behavior of positive solutions of fourth order quasilinear DE

Our purpose is to show that, for each of the above classes, necessary and sufficient
conditions for the membership are established and that the asymptotic behavior at
infinity of all members of each class is determined precisely by a unique explicit
formula.

Theorem 4.3.4 Let p(t) € RVg(n), q(t) € RVg(o) and (Cy) holds. Equation
(E) has intermediate solutions x(t) € ntr — RVg (ma(a,n)) satisfying (I2) if and
only if (4.3.48) holds. The asymptotic behavior of any such solution x(t) is governed
by the unique formula x(t) ~ Yi(t),t — oo, where function Y1(t) is given by (4.3.45).

Theorem 4.3.5 Let p(t) € RVg(n), q(t) € RVg(o) and (Cy)holds. Equation
(E) has intermediate solutions x(t) € RVg(p) with p € (ma(a,n) , ms(e,n)) if and
only if (4.3.52) holds, in which case p is given by (4.3.20) and the asymptotic behav-
ior of any such solution x(t) is governed by the unique formula x(t) ~ Y5(t), t — oo,
where function Ya(t) is given by (4.3.46).

Theorem 4.3.6 Let p(t) € RVg(n), ¢q(t) € RVg(o) and (Cy) holds. Equation
(E) has intermediate solutions x(t) € ntr — RVg (ms(a,n)) satisfying (Iz) if and
only if (4.3.54) holds. The asymptotic behavior of any such solution x(t) is governed
by the unique formula z(t) ~ Y3(t), t — oo, where function Ys(t) is given by
(4.3.47).

Proof of the ”only if’ part of Theorems 4.3.4, 4.3.5 and 4.3.6: Suppose
that equation (E) has a type-(I3) intermediate solution z(t) € RVg(p), p € [ma, ms],
defined on [ty,00). We begin by integrating (E) on [t,00). Using (4.3.2), (4.3.3)
and (4.3.7), we have

(1358)  (p(t) 2" (1)) = / " g(s)e(s)%ds

1

~ m;ﬁ / R/(S)R(S)J+ﬁp+m2_1lp(3>ﬁlq(s)lﬂc(s)ﬂ ds, t — oc.
t

To proceed further we distinguish the two cases:
(@) o+ pBp+myg—1=—1 and (b) o+Bp+my—1<—1.

Let case (a) hold. Integration of (4.3.58) on [to, ] yields

1—« o — o
2" (t) ~ mg ™ R(t) e

() ( /t TR () R(s) 1y (5)7 1y (s) Lo (s)? ds)

(4.3.59) ~ mé’“’%”R’(t) (/ R'(s)R(s)™" [p(s)%ﬂ 1,(5) 1 (5)? ds) ’ , t— 0.

t

120



4.3 Asymptotic behavior of intermediate solutions of (E)under (C;)

Integrating (4.3.59) twice over [ty, t], we obtain via Lemma 4.3.1 as t — oo

Q=

20) ~ m RORO™ 07 ([ 76 RO 605 60060 )

and

Ql~

1
(4.3.60) x(t)w e R( £)™s 1 (t) a1 (/ R'(s) R(s) ™" 1,(8) 7T 1,(s) lm(s)ﬁds>
Let case (b) hold. Then, from (4.3.58) it follows that

1
a+1

02O ~ e RO (7 L (1)
(0 +m Bp+ oy ROROTPEm )75 L (L0, ¢ = oo,

which, integrated on [to, ], gives

m‘“rl
4.3.61 t) " (1) i
4360 pOa 0~
¢
X / R'(s) R(s)°TPpt2ma—l lp(s)a%l 1,(s) .(s)P ds, t — .
to

The divergence of the last integral as ¢ — oo implies o + Sp + 2ms > 0, but the
equality should be precluded, because if this would be the case, integrating the
asymptotic expression for 2”(t) following from (4.3.61), we would have

I'/(t ~ m;(a+l)/ R/ 1+mgfllp<8)*m

[e3

(/ R'(r) R(r) ™ 1,(r)a+t lq(r)lz(fr)'gdr> ds, t — oo,

from which, because of the divergence of the last integral as t — oo, it leads to a
contradiction

2
Ui a”—n
0< —— = — <0.
STy ala+1)

Thus it holds o + 8p + 2mgy > 0. Then, noting that (4.3.61) is transformed into

2 a

a+1
(4.3.62) 2"(t) ~ 2

—(0+ Bp+m2) (0 + Bp+2my)
o+Bp+2mo—n

X R(t)TEE L (s) e 0 1 (s) 4 Ly(s)4, ¢ — oo
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4. Asymptotic behavior of positive solutions of fourth order quasilinear DE

To preform further integration of (4.3.62) we consider the following two cases sep-
arately:

2my — 2my —
(1) TP 2T gy SOy
(6] (6]

Suppose that (b.1) holds. Since o+ Sp+my = —a and o+ Bp+2ms = a(me —my),
integrating (4.3.62) twice on [to, t], we have

) RO

2—a

my

(4.3.63) W)“(m

mo —m1)

t
X / R’(S)R(s)_llp(s)MalH) lq(s)é lgc(s)g ds, t = o0,

to

which means that z(t) € RVg(ms) and that its regularly varying part [, () satisfies
the relation

(4.3.64)  L(t) ~ (a?(ﬂflp(t)ail

mo — m1)

t 1 )
x/R@m@%@mwwwwﬂmt%m
to

Suppose that (b.2) holds. Integrating (4.3.62) twice from ¢, to t, we obtain

1
2 P
mytt

—(o+ Bp+ms) (o + Bp+2ms)

(4.3.65)  x(t) ~
R(t) ™ me (15 ] (1) 1, (8)

(o+6p+a2m2777 + m2) (% + 2m2)

, L — o0.

This implies that () € RV (722527221 4 9p,). Tt is easy to see that

2my — 2
m2<0+6p+ mo n+2m2:0+ﬁp+ atn _

(07 «

ms.

Now, let z(t) be an intermediate solution of type (Iy) of (E) belonging to
RV g(msy). Then, from the above observations it is clear that only the case (b.1) is
admissible, so that 0 = —a — (8 + 1)my and z(t) must satisfy (4.3.63). Put

B
«

it = [ RORE) L()T1,(5)% 1(5)7 ds.

to
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4.3 Asymptotic behavior of intermediate solutions of (E)under (C;)

Then, we can convert (4.3.64) to the differential asymptotic relation for p(t)

8
2— 2
my

—> TR RN (1)@ 1 (1), t — oo.
ml)

a?(my —

(43.66) p(t)2 1/(t) ~ (

Since the left-hand side of (4.3.66) is not integrable on [ty, c0) (note that z(t)/t — oo
as t — 0o and so u(t) — oo as t — 00), so is the right-hand side, which in view of

(4.3.50) means that
/ ( // drds)adt:

We now integrate (4.3.66) on [ty, t] to obtain

MQN{Q;B(MéffmﬂyéL?W$M$*M@£m%®ﬁ%}ad

Nt<0‘_ﬁ/( // dudr)éds)(fﬂYl(t), t = o0.

This completes the ”only if” part of the Theorem 4.3.4.

Next, let x(t) be an intermediate solution of (E) belonging to RVg(p) for some
p € (mgy,m3). Clearly, x(¢) falls into the case (b.2) and hence satisfies the asymptotic
relation (4.3.65). This means that

o+ + 2mo — o+ + 20 + 20+n+o0
« « a— [
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4. Asymptotic behavior of positive solutions of fourth order quasilinear DE

verifying that the regularity index p is given by (4.3.20). From the requirement
me < p < mg it follows that —a — (5 + 1)ms < 0 < —fmgs — mg, showing that the
range of o is given by (4.3.52). Since

0+ Bp+2my —n 0+ Bp+2my —n
- +mg = p—my, 5 + 2mgy = p,

—(0+PBp+ms) = a(ms—p), o+ Bp+2my=alp—m)

the relation (4.3.65) can be rewritten as

o [®

Y

. mip(t)q(t) R(t)* .
o (Oé%a(p —ma)(p —ma)*(ms — p)) W

from which it readily follows that x(t) enjoys the asymptotic behavior (4.3.46). This
proves the "only if” part of the Theorem 4.3.5.

Finally, let x(t) is an intermediate solution of type (Iy) of (E) belonging to
RVg(ms3). Since only the case (a) is possible for z(t), it satisfies (4.3.60), which
implies p = m3 and 0 = —ffmg — my. Letting

v(t) = (/too R/ (s) R(s) ™ ()7 1 (s) Lo (s)” dS) é ,

1
and using the relation [, () ~ (ms /mg)lp(t)a%lu(t), we convert (4.3.60) into the
differential asymptotic relation

B
«@
me

m

(4.3.67) —av(t)* P () ~ R’(t)R(t)—llp(t)%lq(t), t — oo.

Since the left-hand side of (4.3.67) is integrable on [ty, 00), so is the right-hand side,
that is,

/WH@MQ%@ﬁ%@ﬁ<m

to

which is equivalent to [ q(t)¢a(t)? dt < oo (see (4.3.55) in the proof of Lemma
4.3.7). Integrating (4.3.67) over [t,c0) then yields

B a—p
v(t) ~ %/t R'(s)R(s)™ lp(s)% ly(s) ds ; T — 00,
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4.3 Asymptotic behavior of intermediate solutions of (E)under (C;)

and this combined with (4.3.60) determines the precise asymptotic behavior of ()
as follows:

1 a—f
o(t) ~ TR0 (=2 m2 / R(s)R(s) 1y(s) F¥H1,(s) ds
3 t
- ap

Thus the ”only if” part of the Theorem 4.3.6 has been proved. [

Proof of the ”if” part of Theorems 4.3.4, 4.3.5 and 4.3.6: Suppose that
(4.3.48) or (4.3.52) or (4.3.54) holds. From Lemmas 4.3.5, 4.3.6 and 4.3.7 it is
known that Y;(t), i = 1,2, 3, defined by (4.3.45), (4.3.46) and (4.3.47) satisfy the
asymptotic relation (4.3.44). We perform the simultaneous proof for Y;(t), i =
1,2,3 so the subscripts ¢ = 1,2,3 will be deleted in the rest of the proof. By
(4.3.44) there exists Ty > a such that

/ (t—s) ( // Bdudr)adsgﬂf(t), t>Tp.
TO TO r

Let such a Tj be fixed. We may assume that Y'(¢) is increasing on [Tp, 00). Since
(4.3.44) holds with b = T, there exists T > T such that

. Y(t
/ (t—s) < // Bdudr) dszj,tZTl.
To TodJr 2

Choose positive constants k and K such that

Q\E

_B
e

<2, K'a >4, 2kY(Ty) < KY(Ty).

1
27

Considering the integral operator

Hy(t):yo+/ (t —s) ( // Bdudr)ads, t > T,
TO TO r

K
where 7 is a constant such that kY (77) < yo < 5 Y (Tp), we may verify that H is

continuous self-map on the set
YV={yeClTo,0) kY (t) <y(t) < KY(t), t > Ty},
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4. Asymptotic behavior of positive solutions of fourth order quasilinear DE

and that H sends ) into relatively compact subset of C[Ty, 00). Thus, H has a fixed
point y(t) € ), which generates a solution of equation (E) of type (I,) satisfying
above inequalities and thus yields that

(t) y(®)

0< h{n inf ) hrtn sup 0 < 00

v = [0 (5 [ a dudr)lds

and using Y (t) ~ L(t), t — oo we get

oyt y(t)
0< hggfm < hl;li)ilpm < 00.

Denoting

Then, proceeding exactly as in the proof of the ”if” part of Theorems 4.3.1-4.3.3,
with application of Lemma 1.1.1, we conclude that y(t) ~ L(t) ~ Y (), t — oc.
Therefore, y(t) is a generalized regularly varying solution of (E) with requested
regularity index and the asymptotic behavior (4.3.45), (4.3.46), (4.3.47) depending
on if q(t) € RVg(0o) satisfies, respectively, (4.3.48) or (4.3.52) or (4.3.54). Thus, the
7if part” of Theorems 4.3.4, 4.3.5 and 4.3.6 has been proved. [J

4.4 Classification of positive solutions of (E) under
the condition (Cs)
We assume that p, g : [a,00) — (0, 00) are continuous functions and that (Cs) holds.

In our asymptotic analysis of positive solutions of (E) a special role is played by
the four functions

vit) =1, Pa(t)=t, ¥ /a/a pradrds Y (t) // ( ) drds,

which are the particular solutions of the unperturbed differential equation
(p(t)|="(#)[*~ 2" ()" = 0.

It is to be noted that the functions define above satisfy the dominance relation

(4.4.1) Ui(t) < Pa(t) < ¥s(t) < alt), t— oo

Let z(t) be a positive solution of (E). It is known (see [73]) that x(t) satisfies
either

(4.4.2) 2'(t) >0, 2"(t) >0, (p)|z"#)|* *2"(t)) >0 for all large t,
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4.4 Classification of positive solutions of (E)under (Cs)

(4.4.3) 2'(t) >0, 2"(t) <0, (p@)|z"@®)|* 2" (t)) >0 for all large t.

Since (E) implies that (p(t)|z”(¢)|* *2"(t))" is decreasing and positive, there exists
a finite limit tlim (p(t)|2" (H)|* 12" (t)) = ws > 0.
—00

Solutions satisfying (4.4.2). First let x(t) satisfy (4.4.2) on [tg, 00). Since 2'(t)
is positive and increasing, we see that z/(t) > 2/(to), t > to, which by integration
gives z(t) — oo, t — 0.

Suppose that ws > 0. Then, since (p(t) 2" (t)*)" ~ ws, t — oo, integrating this
relation on [tg, t], we obtain

1 t a
() ~ wg (—) , t— o0,
p

(t)

from which, integrating twice on [to, t] we find that

it [ [ () e e

ie., z(t) ~ wz% Py(t) as t — oo.

Suppose that ws = 0. Then, since p(t)x”(t)* is positive and increasing, we have
limy oo p(t)2” (1)* = we € (0,00]. If wy is finite, then integrating the relation
2"(t) ~ (wa/p(t))a, t — oo twice on [y, {], we obtain

1 t S 1
o) ~uf [ [
to Jto p<7">a

1
ie., x(t) ~ ws Ps(t), t — co. On the other hand, if wy = 0o, we first integrate (E)
on [t,00) and then on [ty,t] to obtain

(4.4.4) 2"(t) = IE ( 2+/ / drds)i, t > to,

where co = p(tg)z”(to)* > 0. Integrating the above twice on [to, t] then yields

(4.4.5) x(t) = co+ci(t —to) / / 2 (02 —1—/ / ﬁdvdu) ) drds,
to p T o

for t > to, where ¢; = 2/(tg) > 0 and ¢o = z(tg) > 0. Since ft'; [ q(r)z(r)Pdrds =
O(t) as t — oo, the condition (Cy)implies from (4.4.4) that lim; . 2/(t) = oc.

drds, t— oo,
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4. Asymptotic behavior of positive solutions of fourth order quasilinear DE

Using L’ Hospital’s rule, we easily see from (4.4.5) that lim; . z(t)/13(t) = oo and
limy 0 (1) /104(t) = 0, or equivalently ¥5(t) < x(t) < ¥4(t) as t — 0.

It follows from above observation that there are three types of possible asymp-
totic behavior for positive solutions z(t) of (E) satisfying (4.4.2)

l’(t) ~ k’g'[bg(t), or ¢3(t> < CL’(t) < ¢4(t>, or .T(t) ~ k4lp4(t), as t— oo,

where k3 and k4 are some positive constants.
Solutions satisfying (4.4.3). Let z(t) satisfy (4.4.3) on [ty,00). It is necessary
that w3 = 0, so that we have

!/

(4.4.6) ~(p) (")) = /t T a()a(s)ds, 1> 1o,

Moreover, since p(t)(—z"(t))* and 2/(t) are positive and decreasing, there exist

finite limits lim; oo p(¢)(—2"(¢))* = we > 0 and limy_,oo 2/(¢) = w1 > 0. In fact, it
1

must be ws = 0, because otherwise, integration of the relation x”(t) ~ (—wq/p(t))=,

1
t — oo leads to /(t) ~ —ws ftz ds/p(s)é, t — 0o. Thus, we conclude with the help
of (Cy) that lim; . 2'(t) = —oo , an impossibility. Using this fact and integrating
(4.4.6) twice on [t,00), we obtain

(1) :wﬁ/:o(]% /:O(r—s)q(r)x(r)ﬂdr>;ds, .

which, integrated on [to, ], gives

x(t):co+w1(t—to)+/t:/:o (]% /Too(u—T)q(u)x(u)ﬁdu);drds, £ 1,

where ¢g = z(ty) > 0. It follows that if w; > 0, then x(t) ~ wy ¥s(t), t — oo and
that if w; = 0, there are two possibilities: either x(¢) tends to a finite limit or x(¢)
grows to infinity as ¢ — co. In the latter case it is clear that 1 (t) < x(t) < ¥o(t)
as t — oo.

Thus it follows that the asymptotic behavior of positive solutions z(t) of (E)
satisfying (4.4.3) falls into one of the following three cases:

x(t) ~ ki (t), or i(t) < z(t) < a(t), or x(t) ~ katho(t), as t— oo,

where ki and ko are some positive constants.
Positive solutions z(t) of (E) having the asymptotic behavior

x(t) ~ kii(t),  x(t) ~ katha(t), () ~ ksbs(t), a(t) ~katu(t), as t— oo,
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4.5 Existence of positive intermediate solutions of (E)under (Cy)

for some positive constants k;, i = 1,2, 3,4, are collectively called primitive positive
solutions of equation (E), while the solutions which are not primitive are referred
to as intermediate solutions of equation (E). It is convenient to divide the set of
intermediate solutions into the following two types

(I) Di(t) < x(t) < Uo(t), t— oo,
(L) Ua(t) < 2(t) < Pu(t), t— oo

As regards the primitive solutions of equation (E), the existence of four types of
such solutions has been completely characterized for both sublinear and superlin-
ear case of (E) with continuous coefficients p(t) and ¢(t) as the following theorems
proven in [64] and [73] show. For primitive solutions of type x(t) ~ ki1 (t), t — oo
and x(t) ~ kgby(t), t — oo which in view of relation (4.4.1) are minimal and
maximal solutions of (E)respectively, necessary and sufficient condition are given
in Theorem 4.1.1 and Theorem 4.1.2, respectively. The other two types of prim-
itive solutions of (E)exist only under the additional assumption that the integral
[ 1/p(t)= dt is divergent i.e. under the condition (Cy).

Theorem 4.4.1 Let p(t),q(t) € Cla,00) and (Cy) holds. Equation (E) has a posi-
tive solution x(t) satisfying x(t) ~ kotbo(t), t — oo if and only if

(4.4.7) /oo( (1 /OO< — )5 g(s) ds>; dt < oo,

t)
Theorem 4.4.2 Let p(t),q(t) € Cla,o0) and (Cy) holds. Equation (E) has a posi-
tive solution x(t) satisfying x(t) ~ ksis(t), t — oo if and only if

(4.4.8) /ootq(t) y(t)? dt < oo.

4.5 Existence of positive intermediate solutions
of (E)under the condition (C,)

In this section we prove the existence of solutions of type (I3) and (I,) of equation (E)
under assumption that coefficients p(t) and ¢(t) are positive continuous functions
and that (Cy) holds.

Theorem 4.5.1 Let p(t), q(t) € Cla,00) and (Cs) holds. If (4.4.7) holds and if

/:Ot <$/tm(3_t)‘ﬂ8)ds); dt = o0

then equation (E) has a positive solution x(t) such that 1 < x(t) < t, t — 0o.
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4. Asymptotic behavior of positive solutions of fourth order quasilinear DE

Proof. Choose t, > max{1,a} such that

(4.5.1) 22 /t:o (]% /too<s — ) $Pq(s) ds)é dt<1.

Define the set
(4.5.2) X, = {x € Cltg,00) : 1 < x(t) < 2¢, t > to},

and the operator G : X — C|[tg, 00)

(45.3)  Galt) = 1+/t:/:o (]% /Too(u—r) q(u)x(u)ﬁdu); drds, t> 1o

It is clear that &) is a closed convex subset of the locally convex space C|[tg, 00)
equipped with the topology of uniform convergence on compact subintervals of
[to, 00). Using (4.5.1)— (4.5.3), we see that x € X; implies

1428 /t:/: (]% /Too(u—r)q(u)uﬁdu)i dr ds

< 14t<2t, t>t.

1 < Gux(t)

IA

This means that G maps &) into itself. Furthermore, it can be shown that G is
a continuous map such that G(AX)) is relatively compact in C[ty,00). Therefore,
by the Schauder-Tychonoff fixed point theorem there exists a function z; € A}
satisfying the integral equation x;(t) = Gx(t) for ¢ > to. It follows that x1(¢) is a
solution of (E) on [tg, 00). It is easy to see that x1(t) has the following asymptotic
properties:

lim x4 (¢ >hm// < / u—r)q(u)du)adrds:oo
t—oo r

and
t o 1 o o
0< tliglo xlt( ) = tliglo t (m/s (r —s) q(r) z,(r)? d?") ds
s 00 00 o
< 2« lim —/ r—s)q(r rﬁdr) ds =0,
2 G ), o)

which means that z;(t) satisfies 1 < x1(t) < t, t — oo, that is, 21(¢) is an interme-
diate solution of type (I3) of (E). O
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4.5 Existence of positive intermediate solutions of (E)under (Cy)

Theorem 4.5.2 Let p(t), q(t) € Cla,00) and (Cs) holds. If (4.1.10) holds and if

/ b q(t) () dt = o0

then equation (E) has a positive solution x(t) such that 1¥s(t) < x(t) < 4(t),t — 0.

Proof. Choose ty > max{1,a} such that

(4.5.4) 24 /OO q(t) ba()P dt < 1.

to

Define the set
(4.5.5) Xy = {x € Clty,00) : h3(t) < a(t) < 2a1hy(t), t > to},

and the integral operator H : Xy — C|[to, 00)

(4.5.6) Ha(t) = /t:(t—s {—( // 5dudr)rds, t > to.

It is clear that X5 is a closed convex subset of the locally convex space C([tg, 00)
equipped with the topology of uniform convergence on compact subintervals of
[to, 00). Using (4.5.4)—(4.5.6), we see that z € X5 implies

Ys(t) < Ha(t) < /t:(t )[ <1+2a/t0/t0 6dudr>]éds

/t(t — s) (1 + S) ¢ ds < 2%%(15)7 t > to.

p(s)

This means that H maps X, into itself. Furthermore, it can be shown that H is
a continuous map such that H(X») is relatively compact in Cfty, 00). Therefore,
by the Schauder-Tychonoff fixed point theorem there exists a function xy € A
satisfying the integral equation xs(t) = Hao(t) for t > to. It follows that z5(t) is a
solution of (E) on [ty,00). It is easy to see that xo(t) has the following asymptotic

properties:
tlggo P3(t) a th_glo <1 / / o dé’)

lim (// Bdrds);:oo

«

v
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4. Asymptotic behavior of positive solutions of fourth order quasilinear DE

and

w9 (t) <lim 1+ j;ifsoo q(r) zo(r)? dr ds) g

< i 20 _
0 = B ;

= (i [T @) < (28 fin e i) o

which means that z5(t) satisfies ¥3(t) < 22(t) < ¥4(t), t — oo, that is, xo(t) is an
intermediate solution of type (1) of (E). O

4.6 Asymptotic behavior of intermediate solutions
of (E) under the condition (C,)

In this section we assume that functions p(¢) and ¢(t) are generalized regularly
varying of index 7 and o with respect to R(t), which is defined with (4.3.1) and
expressed with (4.3.2) and the intermediate solutions x(t) € RVg(p) of (E) are
represented as (4.3.3)

First, we express the condition (Cs)in the terms of regular variation. Using
(4.3.2), (4.3.5) and (4.3.7) we have

t %H t a+n _
/ 5 ”(am) / R/(s) R(s)" 50 I,(s) @0 ds, ¢ — oo,

p(s)é a+1

For condition (Cy) to hold it is necessary that o* —n > 0. In what follows we limit
ourselves to the case where

(4.6.1) a®—n>0

excluding the possibility a? —n = 0 because of computational difficulty. Under the
condition (Cy)introducing the notation (4.3.9) we have

0 < ma(a,n) <my(a,n) < mg(o,n) =mao(a,n) + 1.

In proofs of our main results constants m;(«a,n), ¢ = 1,2,3 will be abbreviated to
ms;.

In order to make an in depth analysis of intermediate solutions of type (I3) and
(I4) of (E) we need a fair knowledge of the structure of the functions v (t), (1),
3(t) and 14(t) regarded as generalized regularly varying functions. It is clear that
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4.6 Asymptotic behavior of intermediate solutions of (E)under (Cs)

1(t) € SVg. From (4.3.5) it follows that ¢9(t) € RVg (ma(a,n)). Using (4.3.2)
and applying Lemma 4.3.1 twice, we get

/ / Ta ~% drds

mg(a,n)afl () a1
4.6.2 ~ R(t)™ @M [ ($)aterD | ¢ — oo,
(4.6:2) () (ma(en) —matarm) T ()

which shows that ¥3(t) € RVg (mi(a,n)). Further, another application of Lemma
4.3.1 yields

_1
a+1

(4.6.3) w4(t) ~ /t R(S) ds ~ m2<047 7]) R(t>m3(0¢,77) lp(t) a-ll»l t — 00,

mg(a,n)

implying ¢4(t) € RVg (ms(a,n)).

4.6.1 Intermediate regularly varying solutions of type (I3)

The first subsection is devoted to the study of the existence and asymptotic behavior
of generalized regularly varying solutions of type (I3) of equation (E) with p(¢) and
q(t) satisfying (4.3.2).

Let x(t) be a solution of (E) on [tg,00) such that 1 < z(t) < t as t — oc.
Integration of equation (E) first three times on [¢,00) and then once on [ty, t] gives

(4.6.4)  x(t) = z(to) // ( u—r)q(u)m(u)’gdu); drds, t>ty,

and implies the integral asymptotic relation

(465) a(t) ~ /b ZOO (ﬁ / " (= r)g(u)z(w)’ du) ® drds, o0,

for any b > a. This type of asymptotic relation will play a central role in construct-
ing the intermediate solutions of type (I3) of (E)by solving the integral equation
(4.6.4) for some positive constants tq and x(tg). Therefore, first we show that the
generalized regularly varying functions X;(t), i = 1,2, 3 defined respectively by

(4.6.6) X, (t) = (O‘;ﬁ /ats (]% /:O(r—s)q(r)dr)é ds>fﬁ,

(4.6.7)

- ma(a, )
= <( a ) p* (ma(a,n) = p)* (mala,n) = p) (ms(e,n) —
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(4.6.8) Xy(t) =t (O‘T_B /too (ﬁ /:O(r — )P g(r) dr) - ds> a7 ,

satisfy the integral asymptotic relation (4.6.5).
Lemma 4.6.1 Suppose that

(469)  o=-2a-n and /aoot(]% /too(s—t)q(s)d:s); it — oo,

holds. The function Xi(t) € ntr — SVg given by (4.6.6) satisfies the asymptotic
relation (4.6.5) for any b > a.

Proof. The proof is the same as the proof of Lemma 4.3.2 [
Lemma 4.6.2 Suppose that
(4.6.10) —2a—n<o<—a—(B+1)m(a,n)

holds and let p be defined by (4.3.20). The function Xy(t) € RV(p) given by (4.6.7)
satisfies the asymptotic relation (4.6.5) for any b > a.

Proof. The proof is the same as the proof of Lemma 4.3.3. [J
Lemma 4.6.3 Suppose that

(4.6.11) 0 = —a—(B+1)ma(a,n) and /aoo (I%t) /too(s — )57 q(s) ds)i dt < oo

holds. The function X3(t) € ntr — RVg (ma(a,n)) given by (4.6.8) satisfies the
asymptotic relation (4.6.5) for any b > a.

Proof. Let (4.6.11) hold. Using (4.3.2) and (4.3.5) and applying Lemma 4.3.1 we
see that

o —afB o
/ s7q(s) ds ~ mg™"! / R(s)7TAm2 lp(s)a%l ly(s)ds
t t
e = R0 0
—(o+ (B+1)my) b " a P e

from which it follows that
2—af

1 Loy
—1 /OO/OO /8 )& m;(a+1) _ _n —a+B+1 1
r q r d?”ds ~ R t ma—mi—g l t CESY) l t =
(p<t> L) eT——L0 ()55 1,1

2—af+a
a(a+1)

- (042(m21 —my))e R'(t)R(t)™ lp(t)% ()%,

Ql~
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4.6 Asymptotic behavior of intermediate solutions of (E)under (Cs)

as t — 0o, where we use (4.3.7) in the last step. Integrating the above on [t, 00) we
obtain

ao [T (L dudr)ids

2—af+a
a(a+1) 1 L
~ M2 : / R(s)R(s)"M1, () 7571 () ds, ¢ — oo.
(a2(my —mg))a Je

This, combined with (4.3.5) and (4.6.8), gives the following expression for Xj5(t):

o — ﬁ = m%—a aiiﬁ m2 a%—l
X3(t) ~ ( o ) (m) R(t)™ 1,(t)
pr

([T RORO T 6 )T € RVam) . ¢

Next, we integrate q(t) X3(t)? twice on [t,00), multiply by 1/p(t) and raise the
result to the exponent 1/a. Since q(t)X3(t)? € RVg(o + mefB) = RVp(—a — my)
(cf.(4.6.11)), repeated application of Lemma 4.3.1, with the help of (4.3.7), yields

1 R
/ / Bards| ~ (&= A _Ma
a a?(my — moy)

B+1

< R'(t) R(t) 1L (t)stas [, () ( /t TR () B(s) "M 1 ()75 1, (s)F ds> o

B
B

as t — oco. Integrating the above relation first on [t,00) and then on [b, ] for any
fixed b > a, we conclude via Lemma 4.3.1 that

1

u[[mQ%SZ?U_mQWﬁ&WVMO%NBN(a;5>fxa?%?;gg>wﬁ

a
a—p

xR(t)mQZp(t)a%l (/tOOR’(s)R(s)_llp(s)off;ll)lq(s)ids) = X;5(t), t— 0.

This completes the proof of Lemma 4.6.3. [J
Since 1 (t) < x(t) < 1a(t), t — oo, the regularity index p of z(¢) must satisfy
0<p<maa,n).

If p = 0, then since z(t) = [,(t) — oo, t — oo, x(t) is a member of ntr — SV,
while if p = ma(a,n), then since x(t )/R( )7 () — = 1,(t) = 0, t — o0, z(t) is a
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4. Asymptotic behavior of positive solutions of fourth order quasilinear DE

member of ntr — RVg(ma(a,n)). If 0 < p < ma(a,n), then z(t) is a member of
RVz(p) and satisfies z(t) — oo and z(t)/R(t)"*@™ — 0 as t — co. Thus the set
of all generalized regularly varying solutions of type (I3) is naturally divided into
the three disjoint classes

ntr — SVg or RVg(p) with p € (0, ma(a,n)) or ntr—RVg(ma(a,n)).

Theorem 4.6.1 Let p(t) € RVg(n), ¢(t) € RVg(o) and (Cq) hold. Equation
(E) has intermediate solutions x(t) € ntr — SVg satisfying (I3) if and only if
(4.6.9)holds. The asymptotic behavior of any such solution x(t) is governed by the
unique formula z(t) ~ X1(t), t — oo, where the function X, (t) is given by (4.6.6).

Theorem 4.6.2 Let p(t) € RVg(n), q(t) € RVg(o) and (Cq) hold. Equation
(E) has intermediate solutions x(t) € RVg(p) with p € (0, mao(a,n)) if and only
if (4.6.10) holds, in which case p is given by (4.3.20) and the asymptotic behavior
of any such solution x(t) is governed by the unique formula x(t) ~ Xs(t), t — oo,
where the function Xy(t) is given by (4.6.7).

Theorem 4.6.3 Let p(t) € RVg(n), ¢(t) € RVg(o) and (Cs) hold. Equation
(E) has intermediate solutions xz(t) € ntr — RVg (mo(a,n)) satisfying (I3) if and
only if (4.6.11) holds. The asymptotic behavior of any such solution x(t) is gov-
erned by the unique formula z(t) ~ X3(t), t — oo, where the function X3(t) is given
by (4.6.8).

Proof of the ”only if” part of Theorems 4.6.1, 4.6.2 and 4.6.3: Suppose that
(E) has a type-(I3) intermediate solution x(t) € RVg(p) on [ty, 00) with p € [0, ms].
From

(4613)  — (OO = [ ale)als ds~ [ RO s

ast — oo, the convergence of the last integral in (4.6.13) means that o+5p+my < 0.
But the possibility ¢ + Sp + mo = 0 is precluded, because if this were the case
the last integral in (4.6.13) would be an SV g- function, which is not integrable on
[to, 00) by (i) of Lemma 4.3.1. This would contradict the fact that the left-hand
side of (4.6.13) is integrable on [ty,00). It follows that o + Bp + me < 0. Then,
integration of (4.6.13) on [t,00) with application of Lemma 4.3.1 gives

(4.6.14)

p(t)(=2" ()" ~

1
mst!

—(0+ﬁp+m2

) /too R(s)7Frtma lp(s)%ﬂ 1,(s) 1(s)? ds,
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4.6 Asymptotic behavior of intermediate solutions of (E)under (Cs)

as t — oo. Noting that the integral in (4.6.14) is convergent, we conclude that
o+ Bp+ 2my < 0. But the equality is not allowed here. In fact, if the equality
holds, then the right- hand side of (4.6.14) is SV g-function denoted by h(t) so that

h(t)\ = _n 1 1
—x"tw(—) = R(t) al,(t)"ah(t)>, t— oco.
(t) (D) ()" lp(t)"=h(t)
But then, the integrability of z”(t) on [tg,00) implies that my — 1 = a‘zz;’{) <0,

which contradicts the assumption (4.6.1). Thus it holds o+ Sp+2msy < 0. Applying
Lemma 4.3.1 in (4.6.14) first and then multiplying by 1/p(¢) and raising the result
on 1/, using (4.3.7) we obtain

(4.6.15) — 2 (t) ~ mg " :
((o 4 Bp+ ma)(o + Bp + 2ma)) =

o+Bp+2mg—n B

K R(E) TS () 0 (8 (), t — oo

The integrability of z”(t) on [ty,00) implies that % + mg < 0. We distin-
guish the two cases:
o+ Bp+2me — o+ Bp+2mge —
(a) B 270 iy =0 () Bp 2 =1
« a
Assume that (a) holds. Since o+ Bp+mq = —a and o+ Fp+2mg = a(mg—my),
integration of (4.6.15) first on [t, 00), then on [ty, t], with application of Lemma 4.3.1,
shows that

+meo < 0.

2-a s o0 . )
o) ~ (ot ) RO [RE) RO T 607 b
(4.6.16)
a+2 o
ORI (R S /OOR'(S)R(S)—U (s)a@r L, (s) 71, (s)"ds € RV p(ms)
&2(m1 _ mg) . P q x R 2)y
as t — oo.

Assume next that (b) holds. Integrating (4.6.15) on [t,00), then on [ty,t], we
find via Lemma 4.3.1 that

() ~ myt o
(04 Bp+ms)(o+Bp+2ma) | —(0+fp+ (a+2)mz—n)
(4.6.17)

t 2mo —
x / R(s) ™2t may (s)atrn ], (s)% I, (s) % ds, t — oc.

to
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4. Asymptotic behavior of positive solutions of fourth order quasilinear DE

Because of the divergence of the last integral (note that z(t) — oo,t — o0), it

follows that

0+ﬁp+2m2—n+2m2:0+6p+204+7720'
(6% (6%

We distinguish the two cases:

2 2
ot b2t and (ho) ZEPpE2atn
8] v

Assume that (b.1) holds. Then, (4.6.17) shows that x(f) € SVg, that is, p = 0,
and hence 0 = —2a — 1. Since

(b.1) 0.

o+ Bp+my=—ams, 0+ Bp+2my = —amy, 0+ fp+ (a4 2)my —n = —ama,
(4.6.17) reduce to

2—a
1

(4.6.18)  a(t) ~ <m2—) / R(3) R(s) ™ 1,(s)1,(5) Lo(s) " ds € SV,

a?mims to

as t — oo.
Assume that (0.2) holds. Applying Lemma 4.3.1 to the integral in (4.6.17), we
get

x@”“(w+5p+m9@vww+amﬁ) ot Bt (@t Dms =)
(4.6.19)

« o+Bp+2a+n 1
«@

R(t
Xa—i-ﬁp—l—Qoz—i-n (®)

which implies that z(t) € RV p(Ztet2atn),

Let us now suppose that z(t) is an intermediate solution of type (I3) of (E)
belonging to ntr — SVg. From the above observations this is possible only when
the case (b.1) holds, in which case p = 0, 0 = —2a —n and x(t) = [,(f) must satisfy
the asymptotic behavior (4.6.18) as ¢t — oco. Put

joRie

Q.

\‘CIJ

=

I
N
Ql\?
5%
S| °
w
N———

Q|

u(0) = H [ R(R6) L5304 L)

Noting that

=
<
—~
~
SN—
Il
X
—~
~
SN—
=
—~
~
N—
L
o~
=
—
~
SN—
QI+~
S~
[}
—~
~
SN—
o
~
8
Yoy
~
N—
2w
2
X
—
~
N—
X
—
~
SN—
L
o~
<
—~
~
SN—
I
~
=]
—~
~
N—
Q=
=
—~
~
SN—

as t — 0o, we obtain the differential asymptotic relation

1

(4.6.20) p(t) "5 (&) ~ HR'(£) RE) " ,(8)% 1,(t)=, t — oo
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4.6 Asymptotic behavior of intermediate solutions of (E)under (Cs)

Since the left-hand side of (4.6.20) is not integrable on [tg, 00) (note that z(t) — oo
as t — 0o and so u(t) — oo as t — 00), so is the right-hand side, which in view of
(4.3.18), means that

[ o) o

We now integrate (4.6.20) from ¢, to ¢ to obtain

a—pf

«

(&)

H/t:R’(s) R(s) "1, (s)*1,(s)* ds> o oo,

™

of0) ~ o) ~ (

which, in view of (4.3.18), is equivalent to

(&3

2(t) ~ (O‘T_B/:s<$/f<r—s)q(r)dr); ds)w, £ = oo

Thus it has been shown that x(t) ~ X;(t), t — 0o, where X;(t) is given by (4.6.6).
This proves the ”only if” part of Theorem 4.6.1.

Next, suppose that x(t) is a solution of (E) belonging to RVg(p),p € (0, ms).
This is possible only when (b.2) holds, in which case x(t) must satisfy the asymptotic
relation (4.6.19). Therefore,

o+ Bp+2a+n o+2a+n
= P=———F7
Q a—f

which justifies (4.3.20) and combined with p € (0,my) determines that the range of
o1s
—20—n<o<—a—(+1)ms.
Since
o+ Bp+me=alp—mz), o+ PBp+2me=alp—m),

o+ Bp+ (a+2)my —n = a(p—ms), o+ Bp+2a+n=ap,

we conclude from (4.6.19) that z(¢) enjoys the asymptotic behavior z(t) ~ Xs(¢),
t — oo, where X5(t) is given by (4.6.7). This proves the "only if” part of the
Theorem 4.6.2.

Finally, suppose that x(t) is an intermediate solution of type (I3) of (E) belonging
to ntr — RVg(msz). Then, the case (a) is the only possibility for z(¢), which means
that 0 = —a— (S +1)my and (4.6.16) is satisfied by x(t). Using z(t) = R(t)™2 1,(¢),
(4.6.16) can be expressed as

(4.6.21)  I(t) ~ K I(t)a / R(3) R(s)™" 1,(s) 5@ 1,(s)7 Ly(s)* ds, t — oo,
t
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4. Asymptotic behavior of positive solutions of fourth order quasilinear DE

Q [~

where K = (mg_o‘/OzQ(m1 — m2))

V(t) = /t TR () B(s) "M 1 ()70 1 (s)% Lu(s)2 ds.

. Define v(t) by

Then, noting that 1, (t) ~ Klp(t)a%l v(t), t — oo, one can transform (4.6.21) into
the following differential asymptotic relation for v(t):

(4.6.22) —u(t)R V() ~ K5 R R(E) (1) 50 1, ()%, ¢ — oo,

From (4.6.16), since lim;_,, 2(t)/t = 0, we have lim;_,,, v(t) = 0, implying that the
left-hand side of (4.6.22) is integrable over [tg, 00), so is the right-hand side. This,
in view of (4.6.12), implies the convergence of the integral

/aoo <1% /too(s — 1) q(s) d8>é dt.

Integrating (4.6.22) on [t, 00) and combining the result with (4.6.21), we find that
a—f
a

o)~ 1655 R )7 (S22 [T RO RO 0 et as)

as t — oo, which due to (4.6.12) gives x(t) ~ X3(t), t — 0o, where X3(t) is given
by (4.6.8). This proves the ”only if” part of the proof of Theorem 4.6.3. O
Proof of the ”if’ part of Theorems 4.6.1, 4.6.2 and 4.6.3 is the same as the
proof of the ”if” part of Theorems 4.3.1, 4.3.2 and 4.3.3. [

4.6.2 Intermediate regularly varying solutions of type (1)

Let us turn our attention to the study of intermediate solutions of type (I4) of
equation (E), that is, those solutions x(t) such that 13(¢) < x(t) < 14(t) as t — 0.
As in the preceding subsection use is made of the expressions (4.3.2) and (4.3.3) for
the coefficients p(t), ¢(t) and the solutions x(t).

Let z(t) be an intermediate solution of type (I4) of (E) defined on [tg, 00). Inte-
grating (E) first from ¢ to oo and then three times on [tg, t], we obtain

(4623) I(t) =cCo + Cl(t - to)

+/t:(t_8 < (C2+/ / dudr))i ds, t>to,

where co = x(ty), c1 = 2/(to) and co = (p(t) 2" (t)*)'|1=¢,- From (4.6.23) we easily
see that x(t) satisfies the integral asymptotic relation

(4.6.24) y(t) ~ /b (t — s) ( // ﬁdudr>i ds, t — o0,
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4.6 Asymptotic behavior of intermediate solutions of (E)under (Cs)

for any b > a. We first prove that generalized regularly varying functions Y;(¢),
1 = 1,2, 3 defined respectively by

(4.6.25) v =va) (20 [saners)
(4.6.26) 1
[ malasn)\? p(t) q(t) R(t)* o’
= <( a ) p* (p—maa,n))® (p—ma(a,m)) (ma(a,n) —p)> ’
(4.6.27 v =ui) (20 [T ey as)

satisfy the integral asymptotic relation of type (4.6.24).
Lemma 4.6.4 Suppose that

(4.6.28) o= —=2my(a,n) — Pmy(a,n) and /Ootq(t) Ys(t)? dt = oo

holds. The function Yi(t) given by (4.6.25) satisfies the asymptotic relation (4.6.24)
for any b > a.

Proof. Let (4.6.28) hold. Using (4.3.2), (4.3.5) and (4.6.2), since o + fmq + my =
—msy, we obtain

28—«
m2a+l

Bla—1)+a

R(t)™™ [,(t) «@tD" 1(t), t— oo,

tq(t) s (t)” ~

(m1(my —ma))”?

so that applying (iii) of Lemma 4.3.1 we have

28—a+1
a+1
my

(4.6.29) / 5q(s)s(s)’ ds ~

(ma(my — my))?

B(a—1)+2a

t
« / R'(s) R(s) " 1, (s) S0 1 (s) ds, t — oo.

This, combined with (4.6.2), gives the following expression for Y;(t):

N (O‘_ﬁ>m2 op my ﬁ
10 ~ (e 2 ) Ry (0

_1

t Bla—1)+2a a=p
X (/ R'(s) R(s) 7" 1,(s) o@0 [,(s) ds) € RVgr(my), t— oc.
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4. Asymptotic behavior of positive solutions of fourth order quasilinear DE

Next, we integrate ¢(t) Y1(¢)? first on [t,o0), then on [b,t], for any b > a. Since
q(t)Y1(t)? € RVg(Bmy + o) = RVr(—2my) (cf.(4.6.28)), application of Lemma
4.3.1 and (4.3.7) yields

B —a
/ / Bdrds ~ ( a—F ) o m?ig)(afl))
a(my(my — my))®
B
a—1)+2a a—1)+2a a—F
« / R(s)R(s) "1, (s) ST 1, < / R(r)R(r) 1, (r) st lq(r)dr) s
b

(&)

a(2—a+1)

Oz—ﬂ ﬁ a—p)(a+1 / 1 ﬁ(a—ll—lua a—
- <a(m1(m1—m2))ﬁ) my" )</GR( VR(s) 1, (s) a@iD lq(s)ds> )

as t — oco. Multiply the above by 1/p(t), raise the result to the exponent 1/« and
then integrate twice on [b, t], for any b > a, we conclude via Lemma 4.3.1 that

/bt b=s < / / w)? dudr) . ds ~ (a(nffzn_hﬂ_)n;;ma) e

X R(£)™ 1, () atos0 ( / R(s) R(s) ™ 1,(s) "ot I(s) ds)” —Yi(0).

as t — oo. This proves that Y7 (t) satisfies the asymptotic relation (4.6.24). O

Lemma 4.6.5 Suppose that

(4.6.30) —2msy(a,m) — Bmy(a,n) < 0 < —mao(a,n) — Bms(a,n),

holds and let p be defined by (4.3.20). The function Ya(t) given by (4.6.26) satisfies
the asymptotic relation (4.6.24) for any b > a.

Proof. The proof is the same as the proof of Lemma 4.3.6. [J

Lemma 4.6.6 Suppose that

(4.6.31) o= —ms(a,n) — mg(a,n) and /OO q(t) s ()P dt < oo

holds. The function Y3(t) given by (4.6.27) satisfies the asymptotic relation (4.6.24)
for any b > a.

Proof. The proof is the same as the proof of Lemma 4.3.7. [J
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4.6 Asymptotic behavior of intermediate solutions of (E)under (Cs)

Since ¥3(t) € RVg(mi(a,n)) and ¥4(t) € RVg(ms(a,n)) (cf.(4.6.2) and (4.6.3)),
the regularity index p of z(t) must satisfy my(a,n) < p < mg(a,n). If p =
mi(a,n), then since z(t)/R(t)™@M = [,(t) — oo, t — oo, (t) is a member of
ntr — RV g (my(a,n)), while if p = mz(a,n), then x(t)/R(t)™(@" — 0, t — oo, and
so z(t) is a member of ntr — RVg(ms(a,n)). If ml(a n) <p< mg(oz n), then z(t)
belongs to RV z(p) and clearly satisfies z(t)/R(t)™ (") — oo and x(t)/R(t)ms(m —
0 as t — oo. Therefore, it is natural to divide the the totality of intermediate solu-
tions of type (I4) of (E) into the following three classes

ntr — RVg(mi(a,n)) or RVg(p), p € (mi(e,n), ms(c,n)) or ntr — RV g(ms(a,n)).

Theorem 4.6.4 Let p(t) € RVg(n), ¢(t) € RVg(o) and (Cq) hold. Equation
(E) has intermediate solutions x(t) € ntr — RVg (my(a,n)) satisfying (14) if and
only if (4.6.28) holds. The asymptotic behavior of any such solution x(t) is gov-
erned by the unique formula z(t) ~ Y1(t), t — oo, where the function Y (t) is given
by (4.6.25).

Theorem 4.6.5 Let p(t) € RVg(n), ¢(t) € RVg(o) and (Cs) hold. Equation
(E) has intermediate solutions x(t) € RVg(p) with p € (my(a,n) , ms(a,n)) if and
only if (4.6.30) holds, in which case p is given by (4.3.20) and the asymptotic behav-
ior of any such solution x(t) is governed by the unique formula x(t) ~ Y5(t), t — oo,
where the function Ys(t) is given by (4.6.26).

Theorem 4.6.6 Let p(t) € RVg(n), q(t) € RVg(o) and (Cq) hold.  Equation
(E) has intermediate solutions x(t) € ntr — RVg (ms(a,n)) satisfying (14) if and
only if (4.6.31) holds. The asymptotic behavior of any such solution x(t) is gov-
erned by the unique formula z(t) ~ Y3(t), t — oo, where the function Ys3(t) is given
by (4.6.27).

Proof of the ”only if’ part of Theorems 4.6.4, 4.6.5 and 4.6.6: Suppose
that equation (E) has a type-(I4) intermediate solution z(¢) € RVg(p), p € [m1, ms],
defined on [ty,00). We begin by integrating (E) on [t,00). Using (4.3.2), (4.3.3)
and (4.3.7), we have

(4.6.32) (p(t) 2" (t)*) :/ q(s)x(s)’ds N/ R(s)7 01, (s)l,(s) ds, t — oo.
t t
To proceed further we distinguish the two cases:

(@) o+ Bp+my=0 and (b) o+ Bp+ ma <O0.
Let case (a) hold. Integration of (4.6.32) on [y, t] yields

@

2 (t) o mE T R(1)"E 1 (1) ( / T R(s) R(s) " 1y (s) 7 1y (3) 1, (5)° ds) ,
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4. Asymptotic behavior of positive solutions of fourth order quasilinear DE

as t — oo. Integrating (4.6.33) twice over [ty,t], we obtain via Lemma 4.3.1 and
(4.6.3) that

S
«
me

(4.6.33) 2(t) ~

ms

RO 107 ([ RO R 467 100 () ds)

1
~ a(t) e (

t

/ R'(s)R(s)™ lp(s)a%l 1,(5) 1.(5)? ds) ’ , t — 00,

Let case (b) hold. Then, integration of (4.6.32) on [to, t] gives

1

a+1
my

— (0 + Bp+ m2)
t
X / R(s)7+Aptm2 lp(s)a%rl 1,(s)1.(s)P ds, t— oc.

to

(4.6.34) p(t) 2" ()™ ~

The divergence of the last integral as t — oo implies o + Sp + 2my > 0. To preform
further integration of (4.6.34) we consider the following two cases separately:

(b.1) o+ Bp+2my = 0; (b.2) o+ Bp+2mg > 0.

Suppose that (b.1) holds. Since o 4 Bp 4+ my = —my and =2 + my = my — my,
integrating (4.6.34) twice on [to, t], we have
1 1
2(t) ~ —

RO™ 0T ([ RORE 600 1) ds

my (m1 — mg) to

(4.6.35) ~ 13(t) mzo‘(l%” (/ R’(S)R(s)_llp(s)a%llq(s) lo(s)? ds) ’ ,

to

as t — oo, which means that z(t) € RVg(m,) and that its regularly varying part
[.(t) satisfies the relation

’]/)/Lé a—1
4.6.36 L)~ ——2 | (t)alatD
(4.6.36) O ~ =

x (/t R'($)R(s) " 1 (s)a+11y(s) lu(s)” ds);, t — oo.

to

Suppose that (b.2) holds. Applying first Lemma 4.3.1 in (4.6.34), then multi-
plying by 1/p(t), raising the result on 1/a and integrating twice from ty to ¢, we
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4.6 Asymptotic behavior of intermediate solutions of (E)under (Cs)

obtain

Ql~

2

my
(4.6.37) x(t) ~ (_(U + Bp+ms) (0 + Bp+ 2m2)>
R(t) 7222 o (1) 2] ()4 ,(1)

(o‘+,3p+2m2—77 + m2) (M + 2m2)7

67

t — 00.

This implies that x(t) € RV (ﬂ%wl + 2ms). It is easy to see that

2 — 2
m1<0+ﬁp+ ma 77+2m2:<7+50+ a+77<

(07 «

ms.

Now, let z(t) be an intermediate solution of type (I;) of (E) belonging to
RVg(my). Then, from the above observations it is clear that only the case (b.1) is
admissible, so that ¢ = —2my — fm; and z(t) must satisfy (4.6.35). Put

t

u(0) = [ RORE) L6 7(5) L(s) ds
to

Then, we can convert (4.6.36) to the differential asymptotic relation for u(t)

Bla—1)+2a

f(t) ~ CPR () R(t) " (1) «@+ 1,(t), t — oo,

B
e

(4.6.38) u(t)”

1

where C' = m§ /my(mi—ms). From (4.6.35), since limy_, o, z(t)/13(t) = oo, we have
limy 00 p(t) = oo, implying that the left-hand side of (4.6.38) is not integrable on
[to, 0), so is the right-hand side, that is,

<, 1 Bla=1)+2a
R'(t) R(t) " 1,(t) a@+0 1,(t)dt = oo,

to

which, as shown in the proof of Lemma 4.6.4 (cf.(4.6.29)), is equivalent to

/%ﬁWMWﬁZw-

We now integrate (4.6.38) on [tg, t] and in view of (4.6.29), we obtain

e

a_ﬁ/tsq(s)l/)g(s)ﬂds)a , t— 00,

(0%

a—1
p(t) ~my™ (

and this, combined with (4.6.35), shows that

1
l1—«a

2(t) ~ s (t) m3eD mﬁ (# / tsq(s) oL ds) R Yi(t), t— oo
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4. Asymptotic behavior of positive solutions of fourth order quasilinear DE

This completes the "only if” part of the Theorem 4.6.4.

Next, let x(t) be an intermediate solution of (E) belonging to RVg(p) for some
p € (my,m3). Clearly, z(t) falls into the case (b.2) and hence satisfies the asymptotic
relation (4.6.37). This means that

o+ Bp+2mg — o+ Bp+2a+ o+ 2a+
P Bp 2= | 9, — Bp N, ,_0t2tn
Q@ Q@ a—f

verifying that the regularity index p is given by (4.3.20). From the requirement
my < p < mg it follows that —2my — fmy < 0 < —msy — fmg, showing that the
range of o is given by (4.6.30). Since

0+ Bp+2my —n 0+ Bp+2my —n

+my = p — Mg, +2mg = p,
a a

—(o+ Bp+ma) =a(ms—p), o+ Bp+2my=a(p—m),

the relation (4.6.37) can be rewritten as

jolje

Y

N mp(t) q(t) R(1)* ‘L
=(t) (aZpam—mz)a(p—ml)(ms—p>) ()

from which it readily follows that x(t) enjoys the asymptotic behavior (4.6.26). This
proves the "only if” part of the Theorem 4.6.5.

Finally, let x(¢) be an intermediate solution of type (I;) of (E) belonging to
RV g(ms). Since only the case (a) is possible for z(t), it satisfies (4.6.33), which
implies p = mg and 0 = —my — fmg3. Letting

«@

0= ([T RO RO O oL as)

1

1
and using the relation [,(t) ~ (ms /mg3)l,(t)*+Tv(t), we convert (4.6.33) into the
differential asymptotic relation

B

(4.6.39) —av(t)* P () ~ 7:1% R'(t) R(t)™ 1,(t)+1 1,(t), ¢ — oo.
3

Since the left-hand side of (4.6.39) is integrable on [ty,00) (note that
limy oo 2(t) /104(t) = 0 and so limy_,o v(t) = 0), so is the right-hand side, that
is,

/OO R(OR) ™ ,() =11, (t)dt < oo

to
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4.7 Intermediate regularly varying solutions of (E) in the sense of Karamata

which is equivalent to [ q(¢)1(t)? dt < oo(see (4.3.55)). Integrating (4.6.39) over
[t,00), using (4.3.55), then yields

v(t) ~ “(““) ( ﬂ/ s) o , t— o0,

and this combined with (4.6.33) determines the precise asymptotic behavior of z(t)
as follows:

2(t) ~ Ya(t) mI= my >( s 5dS>M=Y3(t), Lo

Thus the ”only if” part of the Theorem 4.6.6 has been proved. [
Proof of the ” if” part of Theorems 4.6.4, 4.6.5 and 4.6.6 as the same as
the proof of the ”if” part of Theorems 4.3.4, 4.3.5 and 4.3.6. [J

4.7 Asymptotic behavior of intermediate
regularly varying solutions of (E) in the sense
of Karamata

This final section is concerned with the equation (E) whose coefficients p(¢) and
q(t) are regularly varying functions (in the sense of Karamata). It is natural to
expect that such equation may possess intermediate solutions which are regularly
varying. Our purpose here is to show that this new problem can be embedded
in the framework of generalized regularly varying functions, so that the results of
the preceding section provide full information about the existence and the precise
asymptotic behavior of regularly varying solutions of (E) in the sense of Karamata.

We assume that p(t) and ¢(t) are regularly varying functions of indices n and o,
respectively, i.e.,

(4.7.1) p(t) = Ph,(1),  qlt) = t1,(0),  L(8),1,(t) € SV,

and seek regularly varying solutions z(t) of (E) expressed in the from
(4.7.2) z(t) = tPl,(t), l.(t) € SV.

First, we assume that p(t) satisfies (Cy)implying a < n < min{a + 1,2a}, in
which case R(t) defined by (4.3.1) takes the form

t
R(t) = / 70 (s) Hds.
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4. Asymptotic behavior of positive solutions of fourth order quasilinear DE

It is easy to see that
1—
(47.3) Rt)eSViftp=a+1 and R() €RV (W) if <o+ 1.

An important remark is that the possibility n = a + 1 should be excluded. If
this equality holds, then R(t) is slowly varying by (4.7.3), and this fact prevents
p(t) from being a generalized regularly varying function with respect to R(t). In
fact, if p(t) € RVg(n*) for some n*, then there exists f(t) € RV(n*) such that
p(t) = f(R(t)), which implies that p(t) € SV. But this contradicts the hypothesis
that p(t) € RV(n) = RV(a + 1). Thus, the case n = a + 1 is impossible, and so 7
must be restricted to

(4.7.4) a<n<a+lif a>1, a<n<22uif a<l,

in which case R(t) satisfies

Q atlopg 1 a+1-—n
4- . ~ — «@ « —_— .
(4.7.5) R ~ ot () ERV( - ),t—>oo

Without loss of generality we may assume that R(t) is monotone increasing. Let
R7(t) denote the inverse function of R(t) (do not confuse this notation with
R(t)™* = 1/R(t)). Then, R7'(t) is a regularly varying function of index
a/(a+1—mn), and so any regularly varying function f(¢) € RV()) is considered
as a generalized regularly varying function of index aA/(av+ 1 — ) with respect to
R(t), and conversely any generalized regularly varying function f(t) € RVg(A\*) is
regarded as an (ordinary) regularly varying function of index A = A\ (a+ 1 —1n)/a.
It follows that

an ao ap
p(t)ERVR (O_f—l—l—n), q(t)GRVR <0¢—|—1—77)7 J?(t)ERVR (a+1—77)

Put

an ao ap

* *

s —— g = ; P = :
a+l-—n a+l-—n

4.7.6 *
( ) 1 a+1l-—n

Note that (4.7.4) implies
o> —n*<0 A 2% +ant—n">0,
and that the tree positive constants given by (4.3.9) are reduced to

200 — o 20— +1

mi(a,n*) = m, ma(a, n*) = ma mz(a,n*) = atl—n
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4.7 Intermediate regularly varying solutions of (E) in the sense of Karamata

It turns out therefore that any intermediate regularly varying solution of type (I;)
of (E) is a member of one of the three classes

ntr — SV, RV(p), p € (O, 20506_ 77) , ntr — RV (2a — 77) ,

«

while any intermediate regularly varying solution of type (Iy) of (E) belongs to one
of the three classes

ntr — RV(1), RV(p), p € (1, M)  ntr— RV (M> .

(0% 0%

Based on the above observations we are able to apply the theory of generalized
regularly varying functions to the present situation, thereby establishing necessary
and sufficient conditions for the existence of intermediate regularly varying solutions
of (E) and determining the asymptotic behavior of all such solutions explicitly and
accurately. First, we state the results on intermediate solutions of type (Iy) that
can be derived as corollaries of Theorems 4.3.1, 4.3.2 and 4.3.3.

Theorem 4.7.1 Assume that p(t) € RV(n), q(t) € RV(o) and (Cy) holds. Equa-
tion (E) possess intermediate slowly varying solutions if and only if

(477)  o=p—2a—2 and /ft(i/tm(s—t)q(s)ds); dt = oo,

p(t)

Any such solution x(t) enjoys one and the same asymptotic behavior x(t) ~ Xi(t),
t — oo, where X(t) is given by (4.3.14).

Theorem 4.7.2 Assume that p(t) € RV(n), q(t) € RV(o) and (Cy) holds. Equa-
tion (E) possess intermediate regularly varying solutions belonging to RV(p) with
pe (0, 20‘;") if and only if

(4.7.8) n—2a—2<0<§n—25—2,

in which case p is given by

_2a—n+o+2
= "

and any such solution x(t) enjoys one and the same asymptotic behavior

(4.7.9)

1

22 p(t) " q(t) E
A710) =l ~ (pa 2a—n—ap) (1-p)" 2a—n+1- ap)> e
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4. Asymptotic behavior of positive solutions of fourth order quasilinear DE

Theorem 4.7.3 Assume that p(t) € RV(n), q(t) € RV(o) and (Cy) holds. Equa-
tion (E) possess intermediate regqularly varying solutions belonging to RV (Q%T_") if
and only if

(4.7.11) o= gn —26—2 and /Oo tq(t) p(t)? dt < oco.

Any such solution x(t) enjoys one and the same asymptotic behavior x(t) ~ X3(t),
t — oo, where X3(t) is given by (4.3.16).
To prove Theorem 4.7.1 and 4.7.3 we need only to check that

* *

0" =—2a—7 — o0=n—2a-2,

B

o = pmy(a,n) —2mo(a,n*) <= o= En - 28 -2,

and to prove Theorem 4.7.2 it suffices to note that

. 2a+n"+o0" 24+0—n+2
p=——"">72" < p= ;
a— [ a—f
and to combine the relation R(t) ~ a+°1‘_nta+;_" L,(t) &, t = oo, with equality

(p")*(ma(e,n") — p*)(ma(a,n") — p*)*(ms(a,n") — p*)

= a1 gt Qe —ap)(1=p)" (20 —n+1—ap).

Similarly, we are able to gain a through knowledge of intermediate regularly varying
solutions of type (Iy) of (E) from Theorems 4.3.4, 4.3.5 and 4.3.6.

Theorem 4.7.4 Assume that p(t) € RV(n), q(t) € RV (o) and (Cy) holds. Equa-
tion (E) possess intermediate reqularly varying solutions of index 1 if and only if

(4.712) o=n—a—-F—2 and /m(l%/t/oorﬁq(r)drds)a dt = oo.

The asymptotic behavior of any such solution z(t) is governed by the unique formula
x(t) ~ Yi(t), t — oo, where Yi(t) is given by (4.3.45).

Theorem 4.7.5 Assume that p(t) € RV(n), q(t) € RV(o) and (Cy) holds. Equa-
tion (E) possess intermediate regularly varying solutions belonging to RV(p) with
pE (1, %) if and only if
(4.7.13) 77—04—5—2<0<é77—§—25—1,

a «
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4.7 Intermediate regularly varying solutions of (E) in the sense of Karamata

in which case p is given by (4.7.9) and the asymptotic behavior of any such solution
x(t) is governed by the unique formula

t2o¢+2 t_l t %ﬁ
p()QQ() ) s oo,
ap—2a+n) (p—1)* 2a—n+1—ap)

(4.7.14) x(t) ~ (pa (

Theorem 4.7.6 Assume that p(t) € RV(n), q(t) € RV(o) and (Cy) holds. Equa-
tion (E) possess intermediate regqularly varying solutions of index @ if and only

if

(4.7.15) o= gn _b_ 26 —1 and /OO q(t) (1) dt < co.

(07

The asymptotic behavior of any such solution z(t) is governed by the unique formula
x(t) ~ Y3(t), t = oo, where Ys(t) is given by (4.3.47).

Above corollaries combined with Theorems 4.1.1-4.1.2 enable us to describe in full
details the structure of RV-solutions of equation (E) with RV-coefficients. Denote
with R the set of all regularly varying solutions of (E) and define the subsets

R(p) =RNRV(p), tr—R(p)=RNtr—RV(p), ntr —R(p) =R Nntr — RV(p).
Corollary 4.7.1 Let p(t) € RV(n), q(t) € RV(0) and (Cy) holds.

1
(1) If o <n—2a—2, or 0 =n—2a—2 andfft( [ (s ds) dt < oo,
then

200 — 2 1 —
R:tr—R(O)Utr—R( - ") Utr—R(l)Utr—R(M>.

« «
1
(i) If o =n—2a—2 and fft( [ (s ds) dt = 0o, then
2c0 — 2 1-—
R:ntr—R(O)Utr—R( a& 77) Utr—R(l)Utr—R(%).

(iti) If o € (n—2a—2,2n—28—2), then

20 +2— 20 — 20 +1—
R:R(a+ ot ")uu—R( a n)utr—R(l)utr—R<u).

a—f Q «
(iv) If o =5n—28—2and [~ tq(t) ps(t)’ dt < oo, then

2c0 — 2a0 — 2 1—
R:tr—R< aa n)Untr—R( aa n)utr—R(l)Utr—R(¥).
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4. Asymptotic behavior of positive solutions of fourth order quasilinear DE

(V)]fazgn—Qﬁ—Qand [ tq(t) pa(t) dt = oo, 07’06( —28-2,n—a—[-2),

1

or o=n—a—pF—-2and [~ ( ff % q( drds) dt < oo, then

2 1—
thr—R(l)Utr—R(M).

«

1

(Vi) If o=n—a—3-2 and faoo< JE 2l g drds) dt = oo, then

2 1-—
Rzntr—R(l)Utr—R(M).

«

(vii) If JE(n—a—ﬁ—2,§n—2ﬁ—§—1),then

R:R<O+2a+2_n>Utr—R(QOH—l_n).

a—f Q

(viii) If o =2 on—20— g — 1 and [ q(t) pa(t)? dt < oo, then

R:tr_R(M)Um_R<M)_

(6] (%

(ix) If 025?7—26—%—1 and [ q(t) @a(t)? dt = oo, or a>§n—2ﬁ—§—1,
then
R=0.

Now, we assume that p(t) satisfies (Cz), which implies 7 < a. In what follows
we assume that n < «a, excluding the case 7 = a because of computational difficulty
and the fact that integral

might be either convergent or divergent. Using notation (4.7.6), from n < a we get
a? —n* > 0 and that the tree positive constants given by (4.3.9) are reduced to

. a . 200 — . 20 —n+1
ma(a, n’) = m, mi (o, n’) = ma ms(a, ") = m-

It turns out therefore that any intermediate regularly varying solution of type (I3)
of (E) is a member of one of the three classes

ntr — SV, RV(p), p € (0,1), ntr—RV(1),
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4.7 Intermediate regularly varying solutions of (E) in the sense of Karamata

while any intermediate regularly varying solution of type (I;) belongs to one of the
three classes

20 — % —n 2a—n+1 %0 —n+1
ntr—RV( « ”),R\/(p),pe< a-n ezt ),ntr—RV(w).
e (0% (6% «

Based on the above observations we are able to apply results for generalized regu-
larly varying solutions to the present situation, thereby establishing necessary and
sufficient conditions for the existence of intermediate regularly varying solutions of
(E) and determining the asymptotic behavior of all such solutions explicitly and
accurately. First, we state the results on intermediate solutions of type (I3) that
can be derived as corollaries of Theorems 4.6.1, 4.6.2 and 4.6.3.

Theorem 4.7.7 Assume that q(t) € RV(o), p(t) € RV(n) and (Cy) holds. Equa-

tion (E) possess intermediate slowly varying solutions if and only if

(47.16) o=n—-2a—2 and /aoot(]%/too(s—t)q(s)ds)i dt = co.

Any such solution z(t) enjoys one and the same asymptotic behavior x(t) ~ Xi(t),
t — oo, where X1 (t) is given by (4.6.6).

Theorem 4.7.8 Assume that q(t) € RV(o), p(t) € RV(n) and (Cz) holds. Equa-
tion (E) possess intermediate regularly varying solutions belonging to RV(p) with
p € (0,1) if and only if

(4.7.17) n—2a—-2<o<n—a—[F-2,

in which case p is given (4.7.9) and any such solution x(t) enjoys one and the same
asymptotic behavior

242 p(t) g (1) =7
4218 o0~ (e ey Ta)

Theorem 4.7.9 Assume that q(t) € RV(o), p(t) € RV(n) and (Cy) holds. Equa-
tion (E) possess intermediate reqularly varying solutions belonging to RV (1) if and

only if

(4719) o=n—a-—p—-2 and /:O(]%/too(s—t)sﬁq(s)ds);dt<oo.

Any such solution x(t) enjoys one and the same asymptotic behavior x(t) ~ X3(t),
t — oo, where X3(t) is given by (4.6.8).
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4. Asymptotic behavior of positive solutions of fourth order quasilinear DE

Similarly, we are able to gain a through knowledge of intermediate regularly
varying solutions of type (I4) of (E) from Theorems 4.6.4, 4.6.5 and 4.6.6.

Theorem 4.7.10 Assume that q(t) € RV(0), p(t) € RV(n) and (Cy) holds. Equa-
tion (E) possess intermediate regularly varying solutions of index 2%_71 if and only

if
(4.7.20) o= gn —26—-2 and /a tq(t) Ys(t)? dt = co.

The asymptotic behavior of any such solution z(t) is governed by the unique formula
x(t) ~ Yi(t), t — oo, where Yi(t) is given by (4.6.25).

Theorem 4.7.11 Assume that q(t) € RV(0), p(t) € RV(n) and (Cy) holds. Equa-
tion (E) possess intermediate regqularly varying solutions belonging to RV(p) with
p e (20‘—;71, Qo‘—zﬂ) if and only if

(4.7.21) én—Zﬁ—2<a<én—§—2ﬁ—1,
a Q a

in which case p is given by (4.7.9) and the asymptotic behavior of any such solution
x(t) is governed by the unique formula

t2a+2 t —1 t ﬁ

(4.7.22) a(t) ~ ( . p()” alt) ) o0,
p* (p—1)" (ap—2a+n) 2Qa—n+1—ap)

Theorem 4.7.12 Assume that q(t) € RV(0), p(t) € RV(n) and (Cy) holds. Equa-

tion (E) possess intermediate reqularly varying solutions of index 2ozl it and only

iof "

(4.7.23) o= gn _B_ 26—1 and /OO q(t) Yy (t)? dt < .

«

The asymptotic behavior of any such solution x(t) is governed by the unique formula
x(t) ~ Y3(t), t — oo, where Y3(t) is given by (4.6.27).

Above corollaries combined with Theorem 4.1.1, Theorem 4.1.2, Theorem 4.4.1 and
Theorem 4.4.2 enable us to describe in full details the structure of RV-solutions of
equation (E) with RV-coefficients. Denote with R the set of all regularly varying
solutions of (E) and define the subsets

R(p) =RNRV(p), tr—R(p)=RNtr—RV(p), ntr —R(p) =R Nntr — RV(p).
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4.7 Intermediate regularly varying solutions of (E) in the sense of Karamata

Corollary 4.7.2 Let q(t) € RV(0), p(t) € RV(n) and (Cs) holds.

(i) If o <n—2a—=2, or 0 =n—2a—2and [t (ﬁ ftoo(s—t)q(s)ds>a dt < oo,
then

2 — 20 +1—
R:tr—R(O)Utr—R(l)Utr—R(a ”)uu—n(u>.

oY oY
(ii) If o=n—2a—2and [t < [ (s ds) dt = oo, then
200 — 2 1-—
R:ntr—R(O)Utr—R(l)Utr—R< a& 77) Utr—R(%).

(iii) If o€ (n—2a0—2,n —a — [ —2), then

20—+ 2 20 — 2041 —
R:R(UJF ant )Utr—R(l)Utr—R(O‘ ”)Utr—R<M).

a—f Q@ «
1
(iv) If o=n—a— -2 and faoo( € )d5> dt < oo, then
2a0 — 2 1—
thr—R(l)Untr—R(l)Utr—R(a n)utr—R(W).
«
V) If o =n—a-8-2and [~ (ﬁftoo(s—t)sﬁq(s)daa dt = oo,
0 E (n—a—ﬁ—Z 77—25—2), or o = gn—Qﬁ—2 and
f tq(t)ys(t)? dt < oo, then
R:tr—R(Za_n)Utr—R<w).
a a
(Vi) If o =5n—28—2and [~ tq(t)¢s(t)’ dt = oo, then
R:ntr—R(Qa_n)Utr—R(w).
o «
(vii) If UE( — 20 — 25—5—1),th6n
2c0 — 2 2 1—
R:R<U+ a-nt )uu—R(u).
a—f Q

(viii) If 0 =2 on—28— g —1and [ q(t)¢s(t)’ dt < oo, then
R:tr_R(w> Um_R<M) |
a «

(ix) If o=2n—28-L2—1and [q(t)ys(t)’dt =00, or 0 >ELn—28-L—1,
then
R=a.
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