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испитивани  експериментално  захваљујући  својим  изузетним
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Прва тема овог рада је развој методе која користи резултате ab
initio  прорачуна  кристалног  материјала  у  балк  фази  за
конструкцију  симтетријски  адаптираног  Хамилтонијана.
Параметри  таквог  Хамилтонијана  могу  се  користити  за
конструкцију  Хамилтонијана  у  репрезентацији  анвелопних
функција, који се даље може применити на нанокристале. Друго,
електронска  структура  халидних  перовскитних  материјала  се
детаљно истражује, узимајући у обзир све релевантне ефекте. То
укључује  ефекте  измене  и  корелације  електрона,  као  и
температурне  ефекте  који  потичу  од  интеракције  електрона  и
фонона. Ефекти измене и корелације укључени су коришћењем
хибридног  PBE0  функционала  модификованог  да  задовољи
Копмансов услов у оквиру теорије функционала густине (DFT).
Температурни  ефекти  су  добијени  коришћењем  модификоване
Ален-Хајне-Кардона  методе:  елементи  матрице  прелаза  услед
фононске пертурбације добијени су коришћењем пертурбационе
теорије  функционала  густине,  док  су  фреквенције  фонона
добијене самоконзистентним фононским методом који узима у
обзир анхармонијске ефекте, при чему се истовремено третира и
ширење  и  ренормализација  енергетских  зона  помоћу
самоконзистентне  процедуре  засноване  на  Мигдаловој
апроксимацији.  На  крају,  температурно  зависна  електронска
стања у перовскитним нанокристалима су израчуната за квантне
јаме, жице и тачке различитих димензија.
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Abstract

Halide perovskite materials have been investigated in detail experimentally over the
years due to their exceptional optoelectronic properties. However, many questions
remained open which call for appropriate theoretical research. Theoretical investi-
gations were mainly focused on crystalline perovskite materials and were based on
the application of ab initio methods for calculation of electronic structure of mate-
rials. These methods cannot be applied in practice to nanocrystals which contain a
large number of atoms and hence the calculation cannot be performed in reasonable
timeframe. The methods that enable investigation of electronic states in perovskite
nanocrystals are developed in this thesis.

The first subject of this work is the development of method that uses the re-
sult of ab initio calculation of crystalline material in bulk phase to construct the
symmetry-adapted Hamiltonian. The parameters from such Hamiltonian can be
used to construct a Hamiltonian in the envelope function representation, which can
be applied to nanocrystals. Second, the electronic structure of halide perovskite
materials is investigated in detail, taking into account all relevant effects. This in-
cludes the electron exchange and correlation effects, as well as temperature effects
that stem from electron-phonon interaction. The exchange and correlation is in-
cluded using hybrid PBE0 functional modified to meet the Koopmans’ condition
within DFT framework. The temperature effects are obtained using modified Allen-
Heine-Cardona method: transition matrix elements due to phononic perturbation
are obtained using density functional perturbation theory, phonon frequencies are
obtained from self-consistent phonon method that takes anharmonic effects into ac-
count, while broadening and renormalization of the bands is treated simultaneously
using self-consistent procedure based on Migdal approximation. Finally, the tem-
perature dependent electronic states in perovskite nanocrystals are computed for
quantum wells, wires and dots of various sizes.
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Chapter 1

Introduction

Halide perovskite materials, in both inorganic and organic-inorganic forms, have
garnered much attention. Significant advancements have been made in recent years,
with ongoing progress in the field. This introduction provides an overview of solid-
state perovskite materials, their applications, and challenges in theoretical modeling,
focusing on both inorganic and organic-inorganic variants. While the primary focus
of this thesis is on inorganic halide perovskites, many of the concepts discussed here
can be applied, or at least adapted, to organic-inorganic halide perovskites. The
main property addressed in this thesis is the electronic structure, beginning with
the bulk phase and later extending to nanostructures. In the following sections, we
will review some basic facts and applications of halide perovskites, as well as the
open questions that remain relevant in the field.

Before delving into a brief history of halide perovskites, it’s important to first
address why these materials are so significant and why they have become a highly
active area of research.

The ever-growing global population is driving an increasing demand for energy.
This includes powering consumer electronics, as well as food production and indus-
trial expansion. Meeting these demands presents a significant challenge, given that
current energy resources for generation and storage are finite. Traditional energy
sources, such as fossil fuels, are not only limited but also generate pollution and
environmental concerns, including air pollution and greenhouse gas emissions. Nu-
clear energy raises issues with waste disposal, while some renewable sources, such as
hydroelectric plants, can disrupt local ecosystems, including aquatic habitats. Wind
turbines, though less harmful, can affect local wildlife, such as birds and bats.

Solar power presents a promising alternative, with photovoltaic (PV) cells di-
rectly converting solar radiation into electricity, while concentrated solar power
(CSP) uses mirrors to focus sunlight and generate heat for conversion into elec-
tricity. While CSP is effective in regions with abundant sunlight, such as deserts,
it is less commonly used due to its specific geographical requirements and higher
initial installation costs. They can be deployed on rooftops in urban areas without
the need for large, dedicated installations and require minimal maintenance.

Beyond terrestrial applications, PVs are also essential in space, where they are
used to power satellites, the International Space Station, and various lunar and
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Martian exploration missions.

The widespread application of PVs in both terrestrial and space environments
underscores the importance of developing efficient, cost-effective, and sustainable
materials for solar energy devices. One of the most promising materials to meet
these demands are halide perovskites.

In addition to large-scale industrial applications, the benefits of energy efficiency
can be scaled down to the household level. In the 21st century, much of the techno-
logical progress has been driven by advancements in semiconductors, either through
miniaturization or by increasing their performance. For example, what was consid-
ered a cutting-edge desktop computer in 2000 is now outpaced in processing power,
screen resolution, and refresh rate by handheld mid-range consumer devices of 2025,
such as tablets and smartphones.

With this increased processing power, however, comes a trade-off: higher power
consumption. As a result, frequent device charging has become the norm, with many
users recharging their devices daily or multiple times per day. Fortunately, devices
have also become more power-efficient and charge more quickly. This is where inno-
vations like solar-powered charging stations—already found in many public places,
such as parks—become highly beneficial to society.

On an even smaller scale, semiconductor-based wristwatches have evolved far
beyond their initial function of simply telling time. Modern smartwatches now
allow users to make calls, check emails, monitor heart rate, track steps, and even
measure respiration. These devices run operating systems that support a variety
of applications. Some can even replace credit cards and offer navigation features
through sophisticated GPS systems.

As the demand for smaller, more efficient devices grows, design choices have
evolved as well. Most smartwatches now include touch, heat, and light sensors that
automatically adjust screen brightness based on ambient lighting to conserve power.
Furthermore, an increasing number of devices, such as sport watches and cycling
computers, are integrating solar cells to provide solar-assisted charging. This inte-
gration has been shown to significantly extend battery life, with some manufacturers
claiming that solar-assisted charging can boost battery life several times compared
to models without solar charging. While these solar-powered features are typically
found on flagship models, as with most technology, they tend to trickle down to more
affordable models in subsequent generations, or even trickle up to more sophisticated
devices like smartphones and tablets.

This trend highlights the importance of continuing to improve device efficiency,
durability, and cost-effectiveness, as these innovations are crucial for both individual
consumers and society as a whole.

This thesis on perovskite nanostructures is structured as follows. The present
chapter, Chapter 1, serves as an introduction to perovskite materials, their crystal
structure, previously performed computations, and their applications. Chapter 2
provides the theoretical background required to follow the subsequent chapters, as
well as an introduction to notations, abbreviations, and terminology. Readers al-
ready familiar with the subject can skip this chapter and refer back to it for clar-
ification when needed. Chapters 3, 4, and 5 present the results obtained during
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this research. Chapter 3 introduces a streamlined method for deriving a symmetry-
adapted k · p Hamiltonian directly from ab initio DFT calculations, applying this
method to the cases of CdSe and CsPbX3 (X=Cl, Br, I) halide perovskites. Chap-
ter 4 focuses on obtaining an accurate, temperature-dependent band gap for CsPbX3

(X=Cl, Br, I) in its bulk phase. Chapter 5 combines the methods and results from
Chapters 3 and 4 to derive the electronic structure of CsPbX3 (X=Cl, Br, I) halide
perovskite nanostructures, including quantum wells, wires, and dots. Chapter 6 pro-
vides the conclusion to the thesis. Additionally, supporting information is provided
in the Appendix, which the main text will reference at appropriate points.

1.1 Perovskite crystal structure

The study of perovskite crystal structures dates back to 1839 when the first cal-
cium titanate compounds (CaTiO3) mineral was discovered. This structure was
named ‘perovskite‘ in honor of the Russian mineralogist Lev Perovski, and today
it is the designation for materials that share their crystal structure with CaTiO3.
Today, the term ‘perovskite‘ is commonly used in the field of optoelectronics as an
umbrella term for any metal halide perovskite.The general formula of metal halide
perovskites is ABX3, where A can either be monovalent organic cation like mety-
lammonium CH3NH

+
3 (MA+) or formamidinium CH3(NH2)

+
2 (FA+), or monovalent

inorganic cation like Cs+; B is a divalent metal cation like Pb2+, Sn2+, Ge2+; and
X sites contain a monovalent halide anion like Cl−, Br−, or I−. Halide perovskites
CsBX3 crystallize in orthorhombic, tetragonal, or cubic polymorphs depending on
external pressure and temperature [1]. Figure 1.1 shows all three of these structures
and spatial distortions that differentiate them. In inorganic (and organic) cubic
crystals, B2+ cations and X− anions form a 3D network of corner sharing octahedra
with X− positioned at the corners and B2+ at the center of the octahedron, and
A+ cations centered at the voids between octahedra [as seen in Figure 1.1(a) from
direction that is perpendicular to one of the octahedral planes]. Cubic structure is
the most symmetric of the 3, and its primitive cell contains 5 atoms [dashed pink
square in Figure 1.1(a)]. Tetragonal structure is obtained from cubic by tilting the
octahedra, as the void between them appears to be pinched-in and pinched out
along perpendicular directions with all neighboring voids having the opposite pinch
direction [Figure 1.1(b)]. The resulting structure has lower symmetry than cubic,
and the primitive cell now contains 10 atoms (dashed pink square in [Figure 1.1(b).
Orthorhombic structure is obtained from tetragonal by distorting the A+ sites from
the void centers between octahedra [Figure 1.1(c)]. As the distortion between sites
follows the pinch direction of the voids, no two neighboring distortions are the same.
The resulting orthorhombic structure has the lowest symmetry out of all 3, and its
primitive cell is made from two neighboring tetragonal primitive cells due to A+

distortion and contains 20 atoms in total [dashed pink square in Figure 1.1(c)].

The formation and stability of perovskite structures is evaluated by two param-



4 CHAPTER 1. INTRODUCTION

(a) Cubic (b) Tetragonal (c) Orthorhombic

Octaedra
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displacementA B X

b  ca  b

Figure 1.1. Cubic (a), tetragonal (b) and orthorhombic phases (c) of perovskite
structure with their primitive cells (pink dashed squares) and spatial distortions
that connect them.

eters: the tolerance t and the octahedral µ factor:

t =
rA + rX√
2(rB + rX)

, µ =
rB
rX
, (1.1)

where rI , I = A, B, X, is the ionic radius of A, B, X ions, respectively. Typically,
when 0.8 < t < 1.0 the crystal shows a 3D perovskite structure, and a value of
0.4 < µ < 0.9 favors a stable BX6 octahedra [1].

Besides ABX3 formula, halide perovskites can be also formed by partial replacing
atoms on X sites with another halide X′ to form AB(XαX

′
(1−α))3, where α is a rational

number, in order to tune the performance. Besides X sites, the same can be done for
B sites with either another B′ atom or B0 vacancy. Formula in the case when B site is
substituted is usually written as A2BB

′X6 which is sometimes referred to as a double
perovskite or A2BB

0X6 or A3BB
0X9 depending on the vacant sites. If there is a plane

where all B sites are replaced with B′ then this structure is sometimes referred as
a layered perovskite structure, and in the case where B0 vacancies disconnect the
bonds between layers or unit cells, a non-perovskite dimer phase appears.

1.2 Applications of perovskites

Over the years, halide perovskite materials have demonstrated superior capabilities
suited for optoelectronic devices, which is due to their excellent optical and elec-
tronic capabilities such as: high light harvesting ability, long and balanced carrier
diffusion length, high defect tolerance, high photoluminescence quantum yield and
readily tunable band gap. Production-vise, these materials hove proven to be solu-
tion processible, flexible and contain great cost-effective potential which is ideal for
industrial applications [2]. They emerged in the last decade as revolutionary mate-
rials for applications in solar cells [3, 4, 5, 6], light-emitting diodes (LEDs) [7, 8],
photodetectors [9, 10], lasers [11], detectors of ionizing radiation [12, 13], thermo-
electric [14] and other devices [15]. To understand the characteristics of these devices
and to design improved materials and devices, it is essential to be able to predict
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the electronic structure of the material. Despite a great interest in understanding
the electronic structure of halide perovskites and numerous developments of the
methods for electronic structure calculations and the software for performing such
calculations, it is still rather challenging to obtain accurate electronic structure of
halide perovskites.

The great interest in halide perovskites started in 2009, with the pioneering
work of Miyasaka et al. which synthesized MAPbI3 perovskite solar cell (PSC) and
achieved a power conversion efficiency (PCE) of 3.8% [16] and later with Lee and
Snaith [3] with PCE of 10.9%. The efficiency of PSCs has recently reached 26.0% [17]
, which proves to be stepping stone into commercialization. The idea of perovskite
LEDs goes back at least as far as PSCs, however it wasn’t unit Friend et al. in
2014 prepared MAPbX3 thin-film based LEDs with about 1% external quantum
efficiency (EQE) [18]. Nearly 10 years later, green, red, and near-infrared (NIR)
perovskite LEDs have all surpassed 20% EQE, with green variant reaching up to
28.9%. Thanks to their high color purity and tunability, luminescence efficiencies,
and wide color gamut, perovskites LEDs have the potential to become common
in high quality color displays. Meanwhile, perovskites have also shown promise as
a good choice for photodetectors and imaging array materials, with a very broad
detection region that spans from UV, visible, and NIR to X-ray and γ-ray beams.
Perovskite films can also be prepared with amplified spontaneous emission in mind,
able to produce coherent beam of light making them capable for laser devices with
their performance improving over the years [2].

Another important factor, that can be connected both to the stability and effi-
ciency of the material, is the environmental and health concern. This is an important
issue for devices that may contain toxic materials that can degrade, or need special
disposal methods, which also raises a sustainability concern. Namely, when dealing
with halide perovskites, great performance and stability is achieved with inorganic
and organic variants that unfortunately contain the toxic Pb. Efforts are made
towards Pb-free perovskites, however for now Pb-based perovskites show superior
photovoltaic properties compared to Pb-free ones. The consequences of replacing
Pb atoms on performance of and stability of perovskites can be found in more detail
in a recent review in Refs. [19, 20, 1, 2].

1.2.1 Solar cells

Solar cell devices can be simply considered as a PIN heterojunction, that consists of
P-type and N-type semiconductors with I as an intrinsic layer sandwiched between
them, where P-type serves as hole transport layer (HTL), and N-type as electron
transport layer (HTL). P and N semiconductors generate a built-in electric field
Ebi in I layer. Photocarrier dynamics is realized in the following steps: (1) charge-
generation, (2) charge-separation, (3) transport of charges, (4) recombination and
(5) collection. The intrinsic layer I is where perovskite material would be placed in
PSCs.

First, charges are generated (1) as incident photons enter the I material and
excite hole and electrons together that must dissociate and overcome the exciton
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binding energy (EB). Perovskites with narrow gaps have an absorption spectrum
that covers a wide range, leading to higher usage of incident photons at lower volt-
age, while having small binding energy EB that is less than 50 meV [21]. After
exciton dissociation, charges are separated (2) toward N(P) type ETL(HTL), which
is followed by charge extraction and transport (3) by ETL(HTL) to the electrode.
Unfortunately, radiative charge recombination (4) is inevitable which leads to losses.
Further losses can be caused by non-radiative recombination from defects and inter-
face imperfections. Finally, charges (electrons and holes) are collected (5) at their
respective electrodes.

Efficiency and stability of solar cells

The maximum power conversion efficiency (PCE) of solar cells can be estimated
by the Shockley-Queisser (SQ) limit, taking into account that photonic energy of
the Sun can be lost in one absorption layer due to multiple factors, some of which
are thermalization, transmision and recombination losses. Thermalization losses
account for photons that have a higher energy than the band gap of the material
and therefore the excess energy is lost to generating heat. On the other hand,
transmission losses account for photons with energy lower than the band gap that
are transmitted through the material. Finally, recombination losses account for
absorbed photons which excited electrons that recombine without generating elec-
tricity. The first result obtained by William Shockley and Hans-Joachim Queisser at
Shockley Semiconductor in 1961, gave a maximum efficiency of 30% at 1.1 eV [22],
while subsequent calculations obtained a value of 33.16% at 1.34 eV [23]. Today,
most solar cells are based on Si which dominates the market with its high PCE
(reaching 26.7%), great stability and mature fabrication technology [1]. However,
the efficiency of Si based solar cells is held back by significant thermal losses due to
the narrow band gap of Si, which cannot be widened because of poor tunability of
the material.

The PCE over SQ limit can be achieved with multi-junction solar cells using band
gap complementary strategy, which can simultaneously absorb more photons and
reduce thermalization losses. This strategy involves stacking layers with decreasing
band gap, starting from the layer that absorbs incident photon, so that subsequent
layers can absorb lower energy photons that were transmitted through the previous
layer with a wider gap. This way, high PCE was obtained from III–V semiconductors
using multi-junction solar cells, breaking the SQ limit for single-junction cells [24,
25, 26, 27]. Ideally, these layers can be made from material whose band gap can
easily be tuned for the required purpose. Fortunately, halide perovskites have a very
tunable gap which makes them ideal candidates for this application. For example,
tandem solar cells that have perovskite top layer and Si bottom layer have recently
achieved PCE of 34.6% [28].

This breakthrough in efficiency can be attributed to greater understanding of
the material, precise control of the crystallization process, better device engineering
and fabrication techniques. To go beyond current efficiency, it is necessary to mini-
mize losses that stem from non-radiative recombination in the perovskite layer and
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develop more efficient charge extraction layers while reducing defects and improving
the interface at the contacts with transport layers and electrodes [2].

Besides PCE, another important parameter to take into consideration for solar
cells and other devices is the stability of materials. Degradations can occur after
prolonged exposure to atmospheric conditions (due to moisture or high temperature)
and Sun’s UV radiation. Other issues include mechanical instabilities (like cracking
or delamination due to wind or vibrations), chemical instabilities (like oxidation),
photodegradation (organic molecules can be broken by UV light, reducing the effi-
ciency over time), ion migration (electrical or thermal stress can cause defects in the
material), electrochemical instabilities (unwanted chemical reactions can occur on
contact points with electrodes) and many more. Even though some materials may
show excellent performance and stability, over time they can significantly lose their
efficiency for one or more before mentioned reasons.

Pb-based perovskite solar cells

High optical absorption is very desirable for efficient and low-cost thin-film solar
cells. APbX3 exhibits extremely high optical absorption coefficients. The record
efficiency Pb perovskite solar cell has an absorber layer thickness of around 500 nm,
which is much thinner than the absorber layers used in the mainstream inorganic
thin-film solar cell technologies with similar PCEs such as GaAs, Cu(In,Ga)Se2
(CIGS), and CdTe.

First, the excellent performance of Pb-based perovskites is due to the combi-
nation of high symmetry (Oh point group) which results in high electronic dimen-
sionality, the band gap made from lone-pair Pb 6s and the inactive Pb 6p orbitals
combined with the strong spin-orbit coupling (SOC) results in small effective masses
of electrons and holes. For organic perovskites there is also the case for arrange-
ment of polar organic cations, and the ionic nature of halides (lone pair Pb 6s and
X halide p orbital have strong antibonding coupling) which leads to superior defect
tolerance. Removing any of these elements can degrade the performance and/or
stability of the solar cell [19].

Starting from the electronic structure, a desirable parameter for any solar cell
are small effective masses for both electrons and holes, which then give higher carrier
mobilities, longer carrier diffusion lengths, and less nonradiative recombination. In
APbX3, band edge of valence band maximum (VBM) originates from Pb 6s bands,
while conduction band minimum (CBM) comes from Pb 6p electrons. Even though
band edges from p orbitals give larger effective masses than those coming from
more localized s orbitals, APbX3 shows relatively small electron effective masses
since CBM originates from 6p orbital, that shows strong SOC. Indeed, a strong
SOC produces higher band dispersion, large splitting of 6p CBM and lower effective
masses. Thus elements with strong SOC like Pb provide beneficial parameters for
current carriers in perovskite structures[19].

Besides small effective masses, Pb-based perovskites have excellent defect toler-
ance. For solar cells, the formation of shallow (deep)-level point defects is desirable
(undesirable) since they present traps for free carriers (can cause nonradiative recom-
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bination). The most important features that contribute to domination of shallow
over deep defects in APbX3, is the inactive Pb 6p orbital and Pb 6s lone-pair states,
along with strong antibonding coupling between Pb 6s and halide X p orbitals and
their high ionicity, high crystal symmetry and large atomic size [20, 19].

The electronic dimensionality can in many cases be connected with structural
dimensionality. Namely, under electronic dimensionality one defines in how many
directions the atoms that contribute to band edges are spatially connected. For
example, pure ABX3 perovskite structure has 3D dimensionality since B and X
atoms that make up band edges are connected the same in all 3 directions. How-
ever, some double perovskites A2BB’X6 like Cs2SrPbI6 have 3D perovskite structure
but have 0D electronic structure, since Sr-I octahedra doesn’t contribute orbitals to
band edges. Other examples are Cs2PbI4 and Cs3PbI5, which are 3D perovskites,
but have 2D and 1D electric dimesionality, respectively, due to the Pb vacancies in
the structure which break the spatial continuity of Pb-I octahedra that contributes
orbitals to band edges. In the direction that Pb-I octahedra are vacant, the band
edges are almost flat making the effective masses of electrons and holes too heavy
to move in that direction, which is undesirable for current transport, therefore such
localized band edges are not suitable for single-junction photovoltaic applications.
Therefore, in general, as the electronic dimensionality generally decreases, the as-
sociated photovoltaic properties deteriorate. Exception is the case of 2D absorber
materials where the film growth is parallel with the layer that has small effective
electron and hole masses.

Pb-free perovskite solar cells

There are several ways to produce Pb-free perovskites. One is to replace Pb atoms
with another homovalent equivalent like Sn or Ge or heterovalent elements like Bi
and Sb. Another is to use heterovalent atoms either by ordered replacement or
ordered vacancy. This can be done for halide X atoms to obtain perovskites with
formula AB(XxX

′
(1−x))3, in order to tune the gap and improve performance1. Besides

X halides, B sites can be also modified to obtain perovskites with formula A2BB
′X6,

sometimes referred as double perovskite. Besides double perovskites, Pb can be
replaced with tetravalent Sn4+ or trivalent Bi3+ atoms, with modified perovskite
formulas A2SnX6 and A3Bi2X9, respectively, in order to keep charge neutrality.

Homovalent replacement is straightforward, as the structure and formula ABX3

of the perovskite is preserved. Replacing Pb with Sn has its benefits and drawbacks.
For example MASnI3 shows a reduced band gap and higher absorption coefficients
in the visible light region compared to MAPbI3, which is suitable for single-junction
solar cells, but has proven to be much less stable. Namely, Sn atoms have a higher
energy 5s2 states (compared to 6s2 Pb states) that make Sn-X bonds less stable
which can lead to Sn vacancies. Furthermore Sn2+ can easily oxidize to Sn4+, making
the solar cell much more unstable when in contact with air and moisture compared to
its Pb counterpart. Using Ge as a replacement doesn’t produce desired effect either,
since it has a larger band gap compared to Sn (and even some Pb) counterparts,

1This was done for both Pb-based and Pb-free perovskites.
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even though one would expect the band gap to decrease from Pb to Sn to Ge. One
reason for this anomaly is that Ge has 4s2 states that are even deeper than 5s2

states, the hybridization with halide p states is weaker which results in lower VBM
than for Sn analogs. Another reason the small radius of Ge2+ atom which leads to
structural distortion of the Ge-X6 octahedra, forming 3 shorter and 3 longer Ge-X
bonds. Combining large band gap with instability and likely oxidation from Ge2+

to Ge4+, and poor performance is the reason why Ge is not a good substitute for
Pb.

1.2.2 LEDs

LEDs with their high color purity and narrow light emission wavelengths are ideal
for displays, ambient and signal lighting, consumer electronics and other gadgets.
Compared to traditional incandescent light sources, LEDs are more efficient as they
can be switched on and off with periodicity too fast for the human eye to notice but
this enables less heat losses during operation and have high chromaticity [18].

Perovskite LEDs (PeLEDs) are shown to be a promising candidate as light emit-
ters due to their excellent color purity, spectral tunability, high luminescence effi-
ciencies and low production costs [18]. Despite the rapid advancements in PeLEDs
there are still some performance and stability concerns that prevent them to enter
commercial use. For now, the key focus is on improving device stability, and realiz-
ing high-performance for blue and white color PeLEDs while suppressing efficiency
roll-off and minimizing toxicity in the materials. First report of room-temperature
electroluminescence from halide perovskites was in 2014 and the field has been ad-
vancing ever since. The external quantum efficiency (EQE) of PeLEDs has exceeded
the 20% threshold in 2018, followed by more recent improvement to over 28% [2].
This rapid development is related to advances in material synthesis and device de-
sign. Thanks to the popularity of PSC, early PeLEDs inherited many designs from
them as well as solution processed organic LEDs (OLEDs). PeLEDs show compa-
rable optoelectronic properties of conventional III-V semiconductors while having
much simpler manufacturing process. The performance of PeLEDs can further be
improved by compositional engineering, passivization of defects and improving mor-
phology, control of dimensionality and more. Regardless of the dominant emission
mechanism for particular perovskite material, the main focus is on improving the in-
ternal quantum efficiency (IQE) of electroluminescence towards unity. This is rather
challenging, since radiative emissions need to be enhanced, while at the same time,
non-radiative recombination losses need to be suppressed. While many advance-
ments have been made regarding the efficiency, many challenges still remain, like
the device stability. Even though recently near infra red (NIR) PeLEDs have reached
commercially stable lifetimes, visible light variants are still unsatisfactory. Efficient
blue and white emitters are yet to be produced, with ion migration, efficiency roll-off
and device stability being the biggest concerns.

Using material engineering the optoelectronic properties of PeLEDs can be mod-
ulated. This consists of dimensional engineering and compositional engineering. Di-
mensional engineering can be performed by preparing the material in various forms
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like 3D bulk crystals, 2D/quasi-2D layers or nanosheets, 1D nanowires or 0D quan-
tum dots. Modulation of dimensionality can be effective method in modulating
the perovskite emission color, radiative efficiency, excitonic/non-excitonic nature,
charge/energy transfer routes and anisotropic emission. Like in PCE, compositional
engineering consists of mixing halide anions at X site. Various colors can be pro-
duced: from violet to blue using ABCl3 to AB(ClxBr1−x)3, green to red using ABBr3
to AB(BrxI1−x)3, and to NIR using ABI3. Besides X sites, A and B sites can be
modulated as well to improve device stability, crystal quality or reduce Pb toxicity
[2].

Stability concerns for PeLEDs are similar to PSCs as it currently presents the
biggest obstacle towards commercial use. Halide perovskites were considered in-
trinsically unstable under electric fields due to their soft and ionic crystal lattice.
Typical device lifetimes of PeLED are from 1 to 100 hours, which is far from > 104

hours required for commercial use. Exception are NIR PeLEDs, which EQE of 28%
and ultra long lifespan which are about 1.2× 104 and 3.3× 104 hours for 5mAcm−2

and 3.2mAcm−2, while lifetimes of about 2.4× 106 were estimated at lower current
densities. However, similar performance and stability for visible light PeLEDs is yet
to be achieved. The primary factor for poor lifetimes is the ion migration which
occurs under external factors like electric fields, heat and light, due to the low ion
migration activation energies and hybrid electronic-ionic conduction properties of
perovskites. Several strategies like molecular passivation, changing the dimensional-
ity and thermal management have been explored in order to suppress ion migration
to which halide ions mostly contribute [2].

Another concern is the efficiency roll-off, which happens when EQE decreases
with the increase of current density. This is a general issue for PeLEDs, which
prevents the progress of efficient high-brightness devices and lasers. The main con-
tributing process is the dominant Auger recombination at regions with high carrier
density. In general the decay rate of Auger recombination w.r.t. carrier density
can be quadratic or linear, depending on the dimensionality, for 3D and 2D/1D
perovskites, respectively. In general, small 3D and 2D/1D perovskites have greater
confinement of carriers in limited space, which results in higher local carrier density
and greater Auger recombination. One solution is to increase the physical volume
and reduce carrier density in order to suppress the Auger recombination. Another
is to reduce wave-function overlapping in order to minimize the possibility of inter-
and intra-band transitions between states, after which Auger recombination occurs.
Besides the Auger recombination, other factors that contribute to efficiency roll-off
at high density carrier regions are Joule heat generation that degrades the per-
ovskite, ion migration which can encourage phase segregation and defect formation
under high applied voltage, and carrier leakage that stems from imbalance of injected
electrons and holes [2].

1.2.3 Perovskite nanocrystals

Conventional colloidal semiconductor nanostructures are usually made from binary
compounds with simple crystal structure such as zinc-blende (ZnS, ZnSe, CdS, CdSe,
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HgTe, InP, InAs) or wurtzite (ZnS, ZnSe, CdS, CdSe) structure or face-centered
rock-salt-type compounds (PbS, PbSe) [29]. The synthesis of these nanostructures
is performed by costly and elaborate methods that require molecular precursors
that are highly air, moisture, or heat sensitive, or difficult to make, or require
a sophisticated synthesis in a core-shell structure (for example CdSe-CdZnS) in
order to meet the desired performance. These nanostructures also require electronic
surface passivation, are likely to form deep trap states due to their covalent nature
and band edges consisting of bonding orbitals [29]. In contrast, bonding in perovskite
nanocrystals is ionic in nature, which helps them form at room temperature and
standard pressure, using a vast selection of molecular precursors. The antibonding
character of their band edges contribute to the benign shallow state over the deep
trap state defects. The surface defects mostly consist of vacancies due to their
low formation energy, and deep trap defects are almost absent due to high energies
required to displace ions in the perovskite lattice. This excellent defect tolerance that
favors shallow state vacancies removes the need for passivation layers in perovskite
nanostructures [29].

Conventional colloidal semiconductors require core-shell strucure and passivation
of surface layers obtained from costly synthesis methods, in order to achieve high-
photoluminescence (PL) quantum yields (QY) for photoemission devices like LEDs.
The same can be obtained using perovskite nanocrystals, from using homogeneous
nanocrystals without passivation of the surface layer, with synthesis that is per-
formed under ambient conditions and/or without pre-purified chemicals [29].In both
cases, high PL QY of 95-100% with narrow emission lines are observed. However, the
spectral range for conventional core-shell nanostructures is limited to wavelengths
from 510 nm to 650 nm, while thanks to their highly modular composition (and
therefore their band gap), halide perovskite nanocrystals can reproduce the entire
visible spectrum from 400 nm to 700 nm. Unfortunately, this excellent performance
of PeLED nanocrystals is hindered by their instability and low EQEs. While NIR,
red and green PeLEDs have seen improvements in their EQEs, the progress for blue
PeLEDs is still desired [29].

1.3 Theoretical modeling performed on perovski-

te structure

The perovskite electronic structure has been studied extensively using theory with
density functional theory (DFT) [30, 31, 32], frozen phonon (FP) method [33, 34, 35],
Monte Carlo (MC) [36, 37, 38], molecular dynamics (MD) [39, 37, 35, 40] and many
more.

The crystal structure and lattice dynamics have been extensively studied in or-
der to explain: (1) phase diversity, (2) local and average crystal environment, (3)
thermodynamic and kinetic stability, and (4) anharmonic lattice vibration and con-
ductivity [41]. Under (1) phase diversity; ab initio MD calculations have been per-
formed in order to confirm x-ray diffraction (XRD) measurements that follow phase
transitions upon changing the temperature of the perovskite. For (2) local and aver-



12 CHAPTER 1. INTRODUCTION

age crystal environment; ab initio MD, neutron scattering [36, 42] and time resolved
infra-red [43] data all indicate a 1-10 ps reorientation process at room tempearture
for organic perovskite variant, which is the result of anharmonic molecular rotation
and large-scale dynamic distortions along imaginary vibration modes which results
in considerable deviation of the local structure. DFPT calculations show that the
acoustic phonon modes become imaginary (ω2 is negative) as they approach M and
R points in Brillouin zone (see for example Figure 4.2). Within the FP approxi-
mation, potential energy surface along M and R points has a double well with an
energy barrier of kBT at the saddle point [35], while MD simulations show con-
tinuous tilting of the octahedra at room temperature [39, 35]. With decrease in
temperature, this structural instability is reinforced by soft mode at R and cubic
lattice transitions into lower symmetry of the tetragonal, followed by the instability
contributions from the M point and lowers the symmetry again into orthorhombic
phase [35]. Some calculations regarding (3) thermodynamic and kinetic stability
have been performed. Using DFT and ab-initio thermodynamics (TD), the total
energy of the system, Gibbs free energy and other thermodynamic derivatives can
be evaluated. For halide perovskites, calorimetric experiments have shown that they
are metastable, and it’s likely that they are formed due to entropic (configurational,
vibrational and rotational) contributions to free energy. Although kinetic factors
can be calculated using ab initio techniques, they are considerably more cumber-
some and computationally expensive than equilibrium bulk thermodynamics and
there have been no rigorous attempts to use them on halide perovskites.Finally, (4)
anharmonic lattice vibrations and thermal conductivity have been calculated using
quasi-harmonic (QH) approximation as well as perturbative many-body expansions
and MD simulations. While QH approximation can calculate anharmonic effects, it
still considers that phonons have infinite lifetimes and do not scatter, so the thermal
conductivity is ill-defined in this case. Thermal conductivity can be calculated from
anharmonic lattice dynamics using perturbation theory that calculates third order
force constants or MD that considers contribution to all orders [41].

The electronic structure of halide perovskites resembles the characteristics of
traditional semiconductors with a well defined electronic structure and band gap,
however some peculiarities have been confirmed over the years, like the strong spin-
orbit coupling (SOC) effects and electron-phonon interaction.

In the case of halide perovskites, non-SOC calculation can provide an accurate
band gap due to cancellation of errors from local and semi-local functionals and non-
SOC treatment. For Pb-based perovskites, the 6s electrons contribute mostly to the
valence band maximum (VBM), so structural properties are not too influenced by
SOC. However, the conduction band minium (CBM) displays mostly Pb 6p char-
acteristics, where SOC treatment can result in gap closure of about 1 eV compared
to no-SOC calculation. Besides DFT, there were many many-body theory based
calculations for perovskites, like the quasi-particle GW approximation, that shows
that the band dispersion, as well as density of states, optical character and effective
mass, have considerable contributions from electron-electron interaction and SOC.
For inorganic halide perovskites, the SOC effects affect mostly the splitting of Pb
6p band into p1/2 and p3/2 two and four degenerate states at R point maintaining
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the direct gap. The same happens for organic variants, plus the VBM and CBM
split into two valleys symmetrically around R point in momentum space. This kind
of splitting occurs when crystals lack the center of inversion symmetry which can
generate a local electric field. Inorganic cubic perovskites have center of inversion
while organic do not.

Electron-phonon coupling can perturb the band structure and introduce temper-
ature dependence and couple electronic excitations (quasi-electrons and quasi-holes)
with vibrational excitations (phonon quasi-particles). In semiconductors, charge car-
rier scattering is mostly due to this electron-phonon interaction which can set a limit
on their mobility. Electron-phonon calculations are usually performed for a static
(rigid-ion) structure to the second-order using DFPT. However, electron-phonon
calculations of physical properties can be difficult to converge since the required
integration is over electronic and vibrational reciprocal space while electron-phonon
interaction is rarely a smooth function for real materials [44].

This thesis contributes to better understanding of halide perovskite nanocrystals
by exploring two important points.

First point focuses on developing a reliable way for obtaining accurate electronic
structure in bulk halide perovskites for CsPbX3 (X=Cl, Br, I) at various temper-
atures. This result is presented in this thesis as well as Ref. [45]. Therein, the
electronic structure of inorganic halide perovskites has been calculated using DFT
with hybrid functionals along with anharmonic phonon calculations in order to ob-
tain a temperature dependent self-energy. Using this self-energy, one can calculate
band renormalization and width due to electron-phonon coupling, both statically
and dynamically. Dynamic calculation is performed using Migdal approximation
and a self-consistent procedure was developed. This is one of the main focus of this
thesis and can be found in Chapter 4.

Second point expands on the first point by using the results for bulk in or-
der to produce the electronic structure of nanocrystals. The method that is used
for extracting bulk structure results directly from DFT and performing symmetry-
adaptation when used on Kane model is described in Chapter 3 and published in
Ref. [46]. This method is then tested and applied to nanostructures as well [46, 47],
however instead of Kane model used for bulk, nanostructures require adopting the
Burt-Foreman envelope model that makes use of the same symmetry-adaptation
procedure. Chapter 5 is dedicated to testing Burt-Foreman model against DFT for
CdSe quantum wells [46] and proceeds with obtaining temperature dependent elec-
tronic structure for CsPbX3 (X=Cl, Br, I) nanocrystals in the shape of quantum
wells, wires and dots. The later results, concerning the temperature dependent elec-
tronic structure of CsPbX3 (X=Cl, Br, I) perovskite nanocrystals, presents original
work, published first in this thesis.
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Chapter 2

Theory

2.1 Introduction

This chapter serves as an overview of theoretical methods that were used in ob-
taining the results in subsequent Chapters and will be structured as follows. First,
some general information about crystal structure is given in Sec. 2.2. Next, the
full electron Hamiltonian and approximations that are routinely used like the Born-
Oppenheimer, perfect crystal, mean-field, nearly-free electron, adiabatic and har-
monic approximations are expanded upon in Sec. 2.3. Once these approximations
are set, some general notions and solutions for an electron in periodic potential are
presented in Sec. 2.4 and Sec. 2.5, respectively. Next, the basis of the Kane model,
which is used throughout the thesis, is presented in Sec. 2.6. The rest of the chapter
takes a more general approach, by splitting calculations for electronic and phononic
structure and presenting them in Sections 2.7 and Sec. 2.8, before combining these
two into electron-phonon interaction explained is Sec. 2.9. Finally, the chapter fin-
ishes with Sec. 2.10 where basic elements of Group theory, required to follow basic
concepts present in Chapter 3, are presented.

2.2 Crystal structure

Perfect crystal

Understanding the electronic structure is one of the key components of solid-state
physics and material science both in theoretical and experimental terms. Crystalline
materials consist of atoms that are connected by bonds and form a periodic lattice
in real space. In theory, the perfect crystal approximation is often used. Under this
approximation, the crystal is made up from orderly spaced atoms of the material
without any local impurities, disorder or deformations in the structure. In practice,
this is rarely true, however, the number of impurities and imperfections can be
reduced enough for their effects on the crystal structure to become negligible. Within
the perfect crystal approximation, group theory is a powerful tool which can be
used to deduce many properties of the crystal structure. Symmetry operators of a
crystal form a group, and they commute with the corresponding Hamiltonian, which

15
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means that the symmetry operators and the Hamiltonian have a common basis of
eigenfunctions.

Symmetries that are present in the system define what kind of eigenfunctions
can be used to describe it. For example, a sphere will be symmetric for rotations
by a continuum set of angles around any axis that contains its center symmetry.
In this case there in an infinite number of symmetry operations. However, a cube
will be symmetric only for discrete set of angles around a finite number of axes. In
group theory language it can be said that, a sphere contains full rotation group of
symmetries, while a cube contains finite number of rotations contained in the full
rotation group.

Symmetry operations

Symmetry operation that is simply defined only by an axis, direction and an angle
of rotation is referred to as a proper rotation or just a rotation, where all points
on the axis are fixed. All rotations around one axis belong to the full group of
rotations, which is a continuous group with infinitely many elements. In atom,
there are infinitely many rotations around infinitely many axes that pass through
the center of the nucleus (central axis). Once atoms are brought together, they can
form bonds, and organize into a crystal lattice structure, the number of rotations
and axes that preserve the symmetry is reduced to a finite number. These rotations
also form a group of symmetry operations, which will be a subgroup of the full group
of rotations.

Another symmetry operation is reflection, which is defined by a plane upon the
space is mirrored, where all points on that plane are fixed.

If there exists a symmetry operation that contains a rotation around an axis
and a reflection on a plane perpendicular to that axis, it is referred as an improper
rotation.

If there is at least one shared fixed point for all rotations and reflections in a
system, then all these operations will form a point group.

There are 14 types of point groups: Cn, S2n, Cnh, Cnv, Dn, Dnh, Dnd, T , Td, Th,
O, Oh, Y , Yh, where n is an integer, and they yield 32 crystallographic point groups.

Translations translate all points in crystal space to an equivalent point in that
same space by some vector, and they do not contain any fixed points.

If translations are added to a point group, then such symmetry group is called
a space group.

Symmetry group can also contain a compound symmetry operation that consists
of a translation followed by a rotation. Individually, this translation and rotation
may not even be a symmetry operation of the crystal, but together form a symmetry
in the space group. If the rotation is proper, the direction of translation is called
a screw axis. If the rotation is improper, the corresponding plane of reflection is
called a glide plane. Groups that have only rotations (proper and improper) and
translations, which in themselves can form subgroups of the full symmetry group of
a crystal, are called symmorphic. Groups that contain a screw axis or a glide plane,
are called nonsymmorhpic.
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The symmetry group (point or space) will govern which eigenvalues and eigenvec-
tors can describe the system. For example, any set of eigenvectors of a Hamiltonian
can be transformed by symmetry operations to produce degenerate eigenvalues. The
symmetry of a system and its Hamiltonian, is directly responsible for the degeneracy
of states. The higher the symmetry, the greater is the possible degeneracy of states.

Certain rules, limit the number of possible rotations and screw axes, as well as
reflection and glide planes. It can be mathematically shown (it was first done by
Fedorov and then independently by Schoenfiels [48]), that there is a finite number
of possible space and point groups. There are 230 possible space groups, and only
73 of them are symmorphic. This means that there are 230 ways to form a crystal
structure, however not all 230 ways have been discovered.

More details on symmetry operations can be found in Refs. [48, 49].

Consequences of symmetry in a system

In free hydrogen-like atom, the full group of rotations allows for electrons to have
degenerate levels. Angular orbital momentum l and spin angular momentum s = 1/2
of an electron, are dictating the degeneracy of each energy level. As an infinite group,
full group of rotations does not limit the number of degeneracy, so the principal
quantum number n, and therefore l ≤ n− 1 can take any number provided that the
atom can have electrons with such quantum number. The degeneracy for each n is
dn, and is equal to dn =

∑l=n−1
l=0 (2l + 1)(2s + 1) = 2n2. Each degenerate level, will

have d wave-functions that correspond to some irreducible representation of the full
rotation group. These wave-functions are also called the partners of the irreducible
representation, and any symmetry operation can be expressed in matrix form with
these wave-functions as basis functions.

When such atom is placed in a crystal structure, many of these degeneracies
are lifted as a result of lowered symmetry and these levels will split according to
decomposition of irreducible representations between infinite full rotation group and
finite point group of the crystal. Just like for hydrogen-like atom, every energy level
in crystal, degenerate or non-degenerate, corresponds to some irreducible represen-
tation of the crystal point group, where the number of degeneracy d is equal to the
dimension of that irreducible representation [50].

Even though full rotation symmetry is lost in a crystal, another class of sym-
metry operations becomes present as a consequence of the crystal structure. In the
perfect crystal approximation, the crystal is not bounded and its structure spawns
to infinity in space. Rotations and reflections, rotate and reflect all points in crystal
space, respectively, to equivalent points in that space. Translations translate all
points in crystal space to an equivalent point in that same space, and for infinite
crystal approximation, there are infinitely many possible translations. Translational
symmetry allows for a whole crystal structure to be represented by finite volume in
crystal space, called unit cell. Translating a copy of a unit cell in three directions,
infinitely many times, reproduces the crystal structure in perfect crystal approxi-
mation.
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Bravais lattice and unit cells

Translations that form a group of translations in a crystal can be expressed by these
lattice vectors as:

T = n1A1 + n2A2 + n3A3 (2.1)

where i = 1, 2, 3, and three non-planar vectors Ai are multiplied by integer values
ni. Each translation T points to one point in space and all these points form a
Bravais lattice.

All points on the Bravais lattice are equivalent, and every such point has a finite
number of closest neighbors, which is called the coordination number of the lattice.

The whole space of Bravais lattice can be divided on finite volumes that do not
overlap or leave voids in space between them, and contain only one point of the
Bravais lattice. Such volume is called the primitive cell or primitive unit cell. Space
inside the primitive cell can be determined by vector t as:

t = x1a1 + x2a2 + x3a3, (2.2)

where i = 1, 2, 3, and a set of three non-planar vectors ai are multiplied by xi, which
are real number between 0 and 1. Vectors ai are called vectors of the primitive cell,
or primitive vectors. In general, Ai and ai do not have to be parallel to each other,
since the choice for the shape of primitive cell is not unique. However, some choices
for a primitive cell can have a lower symmetry than the underlying Bravais lattice.

In order to keep the symmetry of the Bravais lattice, one can choose to work
with a non-primitive or conventional unit cell (sometimes simply referred to as a
unit cell). The conventional unit cell fills the whole space without overlap or voids
by translation using a subspace of the Bravais lattice vectors T. It is usually bigger
in volume than the primitive cell and can contain more than one lattice point, but
has the same symmetry as the underlying Bravais lattice. Numbers that specify the
size of the (conventional) unit cell are called lattice constants.

Another choice for a unit cell is the Wigner-Seitz unit cell. Wigner-Seitz cell
contains one lattice point and the smallest polyhedron bounded by planes that
bisect and are perpendicular to lines connecting all neighboring points. This way,
the Wigner-Seitz unit cell is also a primitive unit cell: it contains one lattice point
but has the same symmetry as the underlying Bravais lattice.

While Bravais lattice is a mathematical order of points in space, crystal itself can
be viewed as a physical structure that contains physical objects of finite size (like
atoms or molecules) located at points of the Bravais lattice. In order to differentiate
the physical crystal from the Bravais lattice the term crystal structure is used.
Crystal structure consists of a physical unit (made out of atoms or molecules) called
basis, and its copies which are translated by all Bravais lattice vectors. Equivalently,
each point on Bravais lattice contains a copy of the basis, hence sometimes this is
referred as a lattice with a basis. Crystal structure that has only one atom as its
basis is called monoatomic Bravais lattice.

Bravais latices can be divided into seven systems (and their corresponding point
group): triclinic T (group S2), monoclinic M (group C2h), orthorhombic O (group
D2h), rhombohedral or trigonal R (group D3d), tetragonal or quadratic Q (group
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D4h), hexagonal H (group D6h) and cubic K (group Oh). Several of these systems
can have be further divided into different types of the same system: monoclinic into
two, orthorhombic into four, tetragonal into two, and cubic into three, to give a
total of 14 types of Bravais lattices.

More detail on Bravais lattices, systems and types, as well as unit cells can be
found in Refs.[48, 49].

Reciprocal lattice and Brillouin zones

Consider a general plane wave eik·r, where r and k are arbitrary vectors in direct
and reciprocal space, respectively. In order to express periodicity of a lattice using
plane waves the following must be true:

eiT·G = 1, (2.3)

where T are the Bravais lattice vectors in direct space, and G are lattice vectors
in reciprocal space or reciprocal lattice vectors for that Bravais lattice defined by
vectors T. Reciprocal lattice vectors G can be expressed as:

G = m1B1 +m2B2 +m3B3, (2.4)

where i = 1, 2, 3, Bi are three non-planar vectors in reciprocal space and mi is an
integer.

Reciprocal lattice vectors form a Bravais lattice in reciprocal space that inherits
symmetry properties from the direct Bravais lattice however, they do not have to
share the same lattice type (and usually do not). Using the conditionAi ·Bj = 2πδij,
the vectors Bj, j = 1, 2, 3, in reciprocal space are:

Bj = ϵjpq2π
Ap ×Aq

A1 · (A2 ×A3)
. (2.5)

For arbitrary r and k the periodicity of Bravais lattice will lead to:

eiG·(r+T) = eiG·r,

ei(k+G)·T = eik·T.
(2.6)

Same as unit cell in direct space, the reciprocal space can be filled by primitive
unit cells that contain one lattice point. The Wigner-Seitz primitive cell in reciprocal
space is called the First Brillouin zone (1BZ). If ai, i = 1, 2, 3, are primitive vectors
of the unit cell in direct space, then the primitive vectors in reciprocal space bj, j =
1, 2, 3, will obey the relation ai ·bj = 2πδij. The point at the center of 1BZ is called
the Γ point. If one were to construct the Wigner-Seitz cell in reciprocal space around
Γ point, but instead of bisecting the lines that connect the first closest neighbors
with perpendicular planes, repeats the process for second closest neighboring points,
the intersection of these planes would be called the Second Brillouin zone. The same
can be repeated for third or n-th closest neighboring points to construct third or
n-th Brillouin zone.
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Possible lattice formations

Certain rules, limit the number of possible rotations and screw axes, as well as reflec-
tion and glide planes. It can be mathematically shown (Fedorov and Schoenfiels),
that there is a finite number of possible space and point groups. There are 14 types
of point groups, and 32 point groups in total. These 32 point groups are also referred
to as crystallographic point groups. There are 7 systems of Bravais latices and 14
types of Bravais lattices in total. All these combine for 230 possible space groups,
and only 73 of them are symmporphic. This means that there 230 ways for a crystal
structure to form, however not all 230 ways have been discovered.

Further reading

More detailed description of group theory and its application to crystal structure
can be found in Refs. [48, 50] and effective-mass method and k · p can be found
in Refs. [48, 51]. Since knowledge basic of group theory and point groups is essen-
tial when reading this thesis, a short reminder about particular point groups and
irreducible representations used in this thesis will be presented in Sec. 2.10.

2.3 Approximations to the full electronic Hamil-

tonian

In Sec. 2.2, general considerations were made about the crystal structure, possible
symmetry operations and their connection to the group theory, or more precisely
point groups and space groups.

In this section, an introduction to the electronic structure problem is given: what
kind of Hamiltonian describes system of electrons in a crystal and what approxi-
mations can be used to simplify the problem but still maintain a good physical
description of the emerging phenomena?

One can start from the total Hamiltonian HTOT, that considers positions and
momentum of all nuclei and electrons, and Coulomb interaction between them (while
at this point neglecting spin-orbit interactions for simplicity):

HTOT =
∑

I

P2
I

2MI

+
∑

I>J

ZIZJ
4πϵ0

e2

|RI −RJ |

−
∑

I,i

ZI
4πϵ0

e2

|RI − ri|

+
∑

i

p2
i

2me

+
∑

i>j

1

4πϵ0

e2

|ri − rj|
,

(2.7)

where nuclei have massMI , atomic number ZI , momentum PI , and position RI and
electrons have mass me, elementary charge e, momentum pi, and position ri. The
first two terms are the kinetic energy of nuclei and Coulomb interaction between
them, the third is the Coulomb interaction between nuclei and electrons, and the



2.3. ELECTRONIC HAMILTONIAN: APPROXIMATIONS 21

fourth and the fifth term are the kinetic energy of electrons and the electron-electron
Coulomb interaction. The total Hamiltonian HTOT is inserted into a Schrödinger
equation:

HTOTΨTOT = ETOTΨTOT, (2.8)

where ΨTOT, ETOT are the total wave-function and energy of the system accounting
for all electrons and ions. In order to find a solution one first has to simplify the
problem and introduce several approximations.

Born-Oppenheimer approximation

The first one is the Born-Oppenheimer approximation which decouples nuclei kinetic
energy and Coulomb interaction between them from the rest of the terms that
contain some information about electrons. The justification for this is as follows:
the mass of a proton mp is about 1.8× 103 times greater than the mass of electron
me (mp/me = 1836.15267343). The frequencies at which nucleus moves in a crystal
are around 1013 s−1, and if we assume that in typical semiconductors band gap is
around 1 eV, which is the least energy required to excite the electron, that makes
the frequency of electronic motion to be around 1015 s−1, which means that response
of electrons to the movement of the nuclei in the atom is instantaneous, or from the
electron’s point of view - nuclei appear to be stationary. This approximation allows
a separation of two problems: ionic movement and Coulomb interactions between
the charges. When decoupled, ionic and electronic part of the Hamiltonian HTOT

can be solved separately and the total wave-function and energy can be decoupled:

ΨTOT = Φ({R})Ψ({R}, {r}),
HTOT = Hion +Hel

HionΦ({R}) = EionΦ({R}),
HelΨ({R}, {r}) = EelΨ({R}, {r}),

(2.9)

where Φ({R}) and Ψ({R}, {r}) are separated ionic and electronic wave-functions,
respectively, with {R}, and {r} as a short-hand notation for collection of all ionic
and electronic coordinates, respectively. This approximation is assumed in Sections
2.7 and 2.8, that deal with the electronic and phononic structure, respectively, as
well as in Sec. 2.9, that considers the electron-phonon interaction.

Perfect crystal approximation

After decoupling nuclear and electronic parts of the Hamiltonian, one is still left with
two many-body problems that describe a crystal system with a very large number
of atoms (at the order of 1023). The second approximation is the perfect crystal
approximation, mentioned in the previous section when discussing the crystal struc-
ture. In perfect crystal, translational invariance and periodic conditions, allow one
to reduce computations in the irreducible unit cell that generates the whole struc-
ture when translated along 3 axes. For most systems considered here it also assumes
that a crystal has no boundaries (edges) or interfaces with other materials. Such
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approximation is true for large systems, which are referred here as bulk crystals.
Crystal structures that are confined in one, two, or all three dimensions are collec-
tively referred to as nanostructures or nanocrystals. In the case of nanostructures,
periodic conditions are valid only in directions where there is no confinement: the
irreducible cell now has to include all atoms in the confined space and take into
account the boundaries of the crystal in confined directions. Depending on the con-
finement, there are 3 types of nanostructures: quantum wells, quantum wires, and
quantum dots, which correspond to 1- ,2- ,and 3- dimensional confinement. The
effects of the confinement on electronic properties when compared to bulk phases
varies over different shapes and sizes of the nanostructure as well as type of material
that is considered.

Even though infinite crystals don’t really exist, in theory this is usually a good
approximation. Since the number of atoms in a real crystal is of the order of 1023,
the approximation of an infinite crystal structure is good as long as the number of
atoms in the unit cell is much smaller. For bulk crystals this is always the case.
However, in the cases where crystal is confined to a much smaller space, like in a
nanostructure, this approximation is not valid. Instead of boundary conditions, the
infinite crystal approximation and translation symmetry allow for the use of periodic
conditions, since all points in the unit cell have their equivalence in another unit
cell under certain rules, which simplifies many aspects of the calculation for bulk
crystals. These periodic conditions will be the basis for Bloch theorem that solves
the problem of electron in a periodic potential.

Mean-field approximation

With the electronic part decoupled and computational cell reduced, one is still faced
with a fermion many-body problem that is still impossible to solve even with mod-
ern supercomputers. One electron interacts with the collective charge distribution
of all the other electrons and ions, and, they in turn respond and redistribute their
charge to again interact with that electron and so on. Since all electrons are indis-
tinguishable, they should all respond the same.

One way to approximate this behavior is to introduce the mean-field approxi-
mation which replaces Coulomb terms with an averaged potential V (r) that is the
same for all electrons. This allows one to further reduce the problem from many-
interacting electrons to a one-electron in periodic potential V (r). It is clear that
the many-body interactions make this kind of approximation not so obviously valid,
however, this approximation has proven quite useful. In some cases, it can produce
both qualitatively and quantitatively decent results, and in some it can fail com-
pletely. In many cases however, it produces decent qualitative results, with some
discrepancy from experimental results. If a good quantitative estimate is required
in these cases, mean-field results can be a starting point for a more refined method
that introduces some many-body effects.

For example, Density Functional Theory (DFT), that relies on self-consistent
mean-field V SCF(r) that takes into account the Hartree potential and exchange-
correlation energy that accounts for many-body interactions has proved to be a very
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useful method, whose advantages and disadvantages have been studied intensively.
A more refined method would be the GW method that relies on electronic Green’s
function G to include many-body effects like the electron self-energy, and replaces
the electronic mean-field Coulomb interaction with a screened Coulomb term W .
More details on both the DFT and GW can be found in Sections 2.7.1 and 2.7.5,
respectively.

Nearly-free and tight-binding approximation for electrons

In solids, the bonds between the neighboring atoms are formed from valence elec-
trons while all other electrons that occupy the filled orbitals are referred as core
electrons. Since most of the information about the electronic structure of a crystal
can be deduced from valence electrons one can make a convenient (but not nec-
essary) approximation to group nuclei and their respected core electrons together,
into ions. The valence electrons see the effective potential made from core electrons
and the nucleus as a pseudopotential1. However, valence (or all) electrons can be
considered as nearly-free or tightly-bounded to their core atoms.

The nearly-free electron approximation assumes that electrons are not strongly
bounded to their core atoms(ions) and behave similarly to free electrons, which
makes plane waves a convenient basis for nearly-free electrons. A different approach
would be the tight-binding approximation which assumes that electrons are tightly
bounded to their atoms. In this case, convenient basis for bound electrons are atomic
orbitals, so the wavefunctions are usually represented as a linear combination of
atomic orbitals (LCAO).

Both the plane wave basis and LCAO are routinely used in DFT with and without
the use of pseudopotentials. There are also other ways to solve the electron problem
using a different basis from the ones mentioned but they are outside of the scope of
this work, and will be briefly mentioned in Sec. 2.7.1 that deals with DFT in more
detail. For all DFT results that are presented in Chapters 3, 4, and 5, the plane
wave basis with pseudopotentials is used.

Adiabatic and harmonic approximation

When computing the movement of nuclei, nuclear interactions are neglected and they
are considered as a system of bosons with different masses, that have classical trajec-
tories and interact like point charges. In the Born-Oppenheimer approximation, it is
considered that electrons remain in their ground state as nuclei vibrate. This is also
an adiabatic approximation, which allows for nuclei to only see the timed-average
of electronic potential of all electrons. The sum of all averaged potentials and av-
eraged kinetic energy of electrons in the crystal is called the Born-Oppenheimer
energy EBO. All possible configurations of ions make up the Born-Oppenheimer
energy surface EBO({R}) that depends on collective positional coordinates of nuclei

1In practical calculations however, this is not straightforward, since sometimes it’s not clear if
all core electrons should be grouped into ions or should some electrons from filled orbitals also be
considered as ’valence’, therefore careful tests are necessary.
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{R}. The Born-Oppenheimer energy, acts as a potential and causes a restitution
force that nuclei see while moving.

The Born-Oppenheimer energy EBO({R}) can be expanded into a Taylor series,
by displacing atoms from their equilibrium positions up to some order. In the
harmonic approximation, the atomic displacements are only to second-order. This
way, phononic frequencies are obtained as a solution to the Hessian problem, that
includes second-order derivatives of the Born-Oppenheimer surface with respect to
positions of atoms.

One method that takes advantage of the harmonic approximation is the Density
Functional Perturbation Theory (DFPT) which combines DFT with perturbation
theory and linear response to obtain solutions for the collective nuclear motion: in-
teratomic force constants, vibrational (phonon) frequencies and vibrational (phonon)
modes.

Harmonic approximation is valid in many semiconductors that are stable at both
low and high temperatures. However it fails in some cases where material shows
a phase transition at a high temperature when anharmonic terms are necessary
(e.g. cubic ABX3 perovskites at high-T , like the CsPbX3 (X=Cl, Br, I), which is
the material investigated in this thesis, and its anharmonic phonon structure was
necessary to obtain the important results in Chapter 4).

For anharmonic vibrations, one of the methods that can be used is the Self-
Consistent Phonon (SCPH) theory. SCPH employs many-body formalism with
phonon Green functions and phonon self-energy.

More details on DFPT and SCPH can be found in Sections 2.8.3 and 2.8.4,
respectively.

2.4 Electron in periodic potential

In order to simplify the problem, one can apply the Born-Oppenheimer, mean-field
and perfect crystal approximations mentioned in Sec. 2.3 and imagine that there
is only one nearly-free electron in the whole crystal. This electron interacts with a
periodic mean-field potential V (r):

T (T)V (r) = V (r+T) = V (r), (2.10)

where T (T) is an operator that translates r by T: r → r + T, and T is a lattice
vector T = n1A1 + n2A2 + n3A3.

The equation that describes a one-electron Hamiltonian H(1e) in a crystal:

H(1e)Ψ(1e)(r) =

[
p2

2me

+ V (r)

]
Ψ(1e) = E(1e)Ψ(1e)(r). (2.11)

where E(1e) is the energy of an electron corresponding to an eigenfunction Ψ(1e)(r).
Kinetic energy operator p2/(2me) commutes with T (T) for any system of indepen-
dent electrons, which means that if V (r) commutes with T (T) then H(1e) will also
commute with T (T). From Eq. (2.10), one can see that [V (r), T (T)]Ψ(1e)(r) = 0 is
true, therefore [H(1e), T (T)]Ψ(1e)(r) = 0 must also also true.
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Bloch functions and Bloch theorem

Bloch theorem2 states that solution for Schrodinger equation for an electron in a
periodic potential can be expressed as plane waves modulated by periodic functions.
These solutions are expressed using Bloch functions Ψ

(1e)
k (r) as:

Ψ
(1e)
k (r) = eik·ruk(r), (2.12)

where k is a continuous vector in reciprocal space. Periodic functions uk(r) are
sometimes called Bloch factors or modulating factors [48] since they modulate the
plane wave eik·r. The wavefunction in Eq. (2.12) can be interpreted as describing a
free electron described by the plane wave eik·r, that is modulated by some periodic
potential described with ukn(r). This makes a clear connection of Bloch theorem
and the nearly-free electron approach, since free electrons can be expressed using
plane waves eik·r.

Translation symmetry

Translation symmetry introduces a new quantum number k, which is a position
vector in the reciprocal crystal space, and when multiplied by ℏ it is sometimes
called the crystal momentum of an electron. In crystal, energy levels of electron
form bands since they now change with the continuous quantum number k. Full set
of electron energy levels for all k forms a dispersion relation which is also called the
electronic crystal structure. The shape of the unit cell in reciprocal space determines
the the first Brillouin zone, so all points on the reciprocal lattice can be reduced
points inside that cell. When switching from real to reciprocal space of the crystal,
primitive vectors and shape of the unit cell also change, but all symmetry properties
from the real space are conserved. For arbitrary k in the reciprocal space, a point
group Gk can be assigned which is a subgroup of the point group of the whole crystal
symmetry GΓ, where Γ corresponds to the origin in reciprocal space kΓ = 0⃗. Using
decomposition of irreducible representations from GΓ to Gk, it is possible to deduce
which degeneracies will be allowed at point k.

If the electronic crystal structure can be obtained at some point k0 for some or all
bands, then the splitting of these bands can be deduced when moving away from k0

using group theory. Band at k0 which corresponds to an irreducible representation
within Gk0 , can at k0 +∆k become either reducible (if the band is degenerate and
the symmetry is lowered) or it can compose a larger irreducible representation with
another band (and increase degeneracy if the symmetry is raised). Even though
group theory provides information about composition and decomposition of the ir-
reducible representations and therefore the composition and decomposition of the
band structure in k-space it cannot predict the order of magnitude at which the en-
ergy of the band is raised, lowered or split. In other words, group theory can provide
possible degeneracies of bands at any k (and their corresponding irreducible repre-
sentations) but not their ordering with respect to the energy. Magnitudes at which

2Discovered by Felix Boch in 1929. In mathematics, this is also known as Floquet’s theorem,
discovered by Gaston Floquet in 1883.
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band structure changes when moving away from a k0 point for which band ener-
gies and their wavefunctions are known, can be obtained with perturbation method
using effective-mass method for a non-degenerate or degenerate band, included in
Sec. 2.5, as well as k · p theory which can include several bands (non-degenerate
and degenerate) at once, included in Sec. 2.6. However, both of these perturbation
methods are usually limited to a small area around k0.

2.5 The effective-mass model

From translational properties, Bloch functions Ψ
(1e)
kn were introduced as a general

solution for an electron in periodic potential with two quantum numbers: n - which
refers to the state of an electron, and k which is a continuous vector restricted to the
1BZ. Energy of an electron in a mean-field periodic potential E

(1e)
kn , corresponding

to n and k, is the solution to equation:

H(1e)Ψ
(1e)
kn (r) = E

(1e)
kn Ψ

(1e)
kn (r), (2.13)

which can also be expressed as:
[
p2

2me

+ V (r)

]
eik·rukn(r) = E

(1e)
kn e

ik·rukn(r), (2.14)

and after acting with operator p = (−iℏ∇) on eik·r, and then multiplying by e−ik·r

from the left one obtains:
[

1

2me

(
p2 + 2ℏk · p+ ℏ2k2

)
+ V (r)

]
ukn(r) = E

(1e)
kn ukn(r), (2.15)

or simply
H(1e)

k ukn(r) = E
(1e)
kn ukn(r), (2.16)

where H(1e)
k is the term in the large bracket on the left-hand side of Eq. (2.15). The

ℏk in H(1e)
k , which is a consequence of the periodicity of the crystal, is sometimes

also called the crystal momentum of an electron3.
Bloch functions Ψkn and Bloch factors ukn now obey the following relations:

⟨Ψkn|Ψk′m⟩ =
1

NVuc

∫

sc

drΨ∗
kn(r)Ψk′m(r) = δnmδk,k′ ,

⟨ukn|ukm⟩ =
1

Vuc

∫

uc

dru∗kn(r)uk′m(r) = δnm,

(2.17)

3Like the genuine momentum p, whose conservation law is a consequence of continuous invari-
ance of space, the crystal momentum is also conserved, but only up to a translation by a discrete
reciprocal lattice vector G: ℏk′ = ℏk+ℏG, as a consequence of discrete translational symmetry of
the crystal (another reason for confining k to 1BZ). Because the symmetry of the crystal is discrete
and not continuous, conservation of ℏk cannot be proved using Noether’s theorem. Bloch functions

are not eigenstates of the momentum p = −iℏ∇, since: −iℏ∇Ψ
(1e)
kn (r) = eik·r (ℏk− iℏ∇)ukn(r).
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where V = NVuc is the full crystal volume, Vuc is the volume of the unit cell,
number N → ∞ is the total number of unit cells in the crystal, and δnm and δk,k′

are Kronecker delta function, respectively. In the reciprocal space, volume of the
crystal and unit cell (1BZ) are (2π)3/V and (2π)3/Vuc, respectively. The ’(1e)’
label from superscripts is from this point forward, always assumed and dropped for
simplicity.

If Bloch factors |ukn⟩ form a complete set of periodic functions, where n goes
through all possible states: occupied and unoccupied, then the representation of Hk

in |ukn⟩ basis is exact. In the case when n goes to all possible states n ∈ [1,∞),
diagonalizing an infinite matrix ⟨ukm|Hk |ukn⟩ leads to dispersion relation in the
1BZ. However, in practice, one can only work with a finite subset of |ukn⟩. In case
when n ∈ [1, N ], where N is some finite number, the dispersion relation is not exact
and gives only an approximate solution.

In most III-V and II-VI semiconductors highest valence and lowest conduction
bands are fairly isolated and contain most of the current carriers around small regions
of k that lie at extreme values of these bands where the gap is found, making this
approximation somewhat justified. In the case of a direct gap, one can consider
only one k0 for an exact solution and then perform a perturbative expansion around
k− k0.

Non-degenerate effective-mass model

If one considers an example of spinless GaAs, which is a III-V semiconductor with
zincblende structure. The direct gap is at k0 = Γ, where Ek0c is the energy of the
non-degenerate lowest conduction state k0c. Using the second-order non-degenerate
perturbation theory, one can expand the conduction band energy Ekc around gap
point k0 to a small area in k-space:

Ekc = Ek0c +
ℏ2

2me

(k− k0)
2 + E

(1)
kc + E

(2)
kc , (2.18)

where

E
(1)
kc =

ℏ
me

(k− k0) · pcc,

E
(2)
kc =

∑

r ̸=c

ℏ2

m2
e

|(k− k0) · pcr|2
Ek0c − Ek0r

,

pcr = ⟨Ψk0c|p |Ψk0r⟩ ,

(2.19)

and the case of GaAs, E
(1)
kc = 0 since pcc = 0. The Eq. (2.18) is the so-called

effective-mass equation and it is limited to a small area around k0 and relatively
isolated bands. The derivation of Eq. (2.18) can be done by using time-independent
perturbation theory as seen in A.2 of the Appendix.

Degenerate effective-mass model

For spinless zincblende GaAs, the valence band maximum is a 3-fold degenerate state
with energy Ek0v. Degenerate eigenstate Ψk0v =

∑
iCi |k0v(i)⟩, can be expressed
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using basis |k0v(i)⟩ and coefficients Ci where i = 1, 2, 3. When moving away from k0

these 3 states are no longer degenerate. Using the degenerate perturbation theory,
and assuming that |k0v(i)⟩ and Ek0v are known, one has to solve for system of 3
equations in order to obtain Ci coefficients and energies Ekv away from k0:

∑

j

[
H

(0)
ij δij +H

(1)
ij +H

(2)
ij

]
Cj = EkvCi, i, j = 1, 2, 3, (2.20)

where:

H
(0)
ij = Ek0v +

ℏ2

2me

(k− k0)
2,

H
(1)
ij =

ℏ
me

(k− k0) · pij,

H
(2)
ij =

∑

r ̸=v

ℏ2

m2
e

(k− k0) · pirprj · (k− k0)

Ek0v − Ek0r

.

(2.21)

Perturbative termsH
(1)
ij andH

(2)
ij can conveniently be expressed by a 3×3 matrix,

which is sometimes referred as Dresselhaus-Kip-Kittel (DKK) model[52].

The derivation of Eq. (2.21) can be done by using time-independent perturbation
theory as seen in A.2 of the Appendix. In practice, one can first obtain the crystal
structure experimentally using X-ray crystallography with great degree of accuracy.
Next step would be to identify the type of lattice and obtain all possible symmetries
present in the crystal. After that, one can attempt to calculate the electronic crystal
structure.

Another method similar to DDK was developed by Luttinger and Kohn[53], and
later Luttinger[54]. This method can determine the analytical form of Hamiltonian
using theory of invariants.

If the semiconductor had a relatively small gap (around 0.5 eV), these methods
would not hold well, and Kane developed a quasi-degenerate theory using a multi-
band model [55, 56, 57] which is used throughout Chapter 3.

2.6 Kane model: The k · p equation

Kane’s solution to narrow band semiconductors was to include both the conduction
band and 3-fold degenerate valence band into one k · p model[55, 56, 57]. The
model uses k · p term as a perturbation and includes contribution from the rest of
the bands in the second-order terms using Löwdin’s perturbation method[58]. For
simplicity, the spin-orbit coupling (SOC) was omitted in the previous section, but
here it will be included. Starting equation is the one-electron equation for periodic
potential:

[
p2

2me

+ V (r) +
ℏ

4m2
ec

2
(σ ×∇V ) · p

]
|Ψkn⟩ = Ekn |Ψkn⟩ , (2.22)
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where ℏ(σ ×∇V ) · p/(4m2
ec

2) term takes SOC into account and σ = (σx, σy, σz) is
a vector whose components are Pauli matrices:

σx =

[
0 1
1 0

]
, σy =

[
0 −i
i 0

]
, σz =

[
1 0
0 −1

]
. (2.23)

With SOC included |Ψkn⟩ is now a two-component spinor:

|Ψkn⟩ = eik·r |ukn⟩ ,
|ukn⟩ = uαkn |α⟩+ uβkn |β⟩ ,

(2.24)

accounting for spin up(|α⟩) and spin-down(|β⟩) states:

|α⟩ =
[
1
0

]
, |β⟩ =

[
0
1

]
, ⟨α|β⟩ = ⟨β|α⟩ = δαβ. (2.25)

Inserting Eq. (2.24) in Eq. (2.22) gives:

[
H +

ℏ2k2

2me

+
ℏ
me

k · psoc

]
|ukn⟩ = Ekn |ukn⟩ ,

H =
p2

2me

+ V (r) +
ℏ

4m2
ec

2
(σ ×∇V ) · p,

psoc = p+
ℏ

4mec2
(σ ×∇V ) .

(2.26)

For any k, Bloch factors |ukn⟩ form a complete set (n = 1, . . . N) . Assuming that
for some k0, all Bloch factors |uk0m⟩ can be obtained and energies Ek0m can be
computed, Bloch factors for any vector k and band a can be expressed in the basis
of k0 as:

|uka⟩ =
∑

m

B(a)
m |uk0m⟩ . (2.27)

Inserting Eq. (2.27) in Eq. (2.26) and multiplying by ⟨uk0n| from the left remember-
ing that ⟨uk0n|uk0m⟩ = δnm, the k · p problem is reduced to:

∑

m

[
Ek0m +

ℏ2

2me

(k2 − k20)

]
δnmB

(a)
m

+
∑

m

[
ℏ
me

(k− k0) · ⟨uk0n|psoc |uk0m⟩
]
B(a)
m = E

(a)
k B(a)

n ,

(2.28)

which can be written as a matrix eigenvalue problem
∑

mHnm(k)B
(a)
m = E

(a)
k B

(a)
n .

Eq. (2.28) is expressed in the basis of Bloch factors, so reverting back to basis of
Bloch functions |Ψkn⟩ is straightforward using the relation that connects matrix
elements of psoc between the two:

pnm ≡ ⟨Ψk0n|psoc |Ψk0m⟩ = ℏk0δnm + ⟨uk0n|psoc |uk0m⟩ , (2.29)
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so that Eq. (2.28) can be also written as:

∑

m

[
Ek0m +

ℏ
2me

(k− k0)
2

]
δnmB

(a)
m

+
∑

m

[
ℏ
me

(k− k0) · pnm
]
B(a)
m = E

(a)
k B(a)

n .

(2.30)

The Eq. (2.30) is the first-order k · p equation for Kane model.
The size of the square matrix Hnm depends on how many bands are included. If

infinite amount of bands were included in the Hnm, this problem would be exactly
solved, for any k in the 1BZ, to an accuracy of obtained |uk0m⟩ and Ek0m. However,
this would obviously not be computationally feasible, so the size of Hnm has to
be finite. To include contributions from other bands which are not contained in
the first-order of Hmn, Kane used Löwdin’s perturbation method which produces
second-order terms H

(2)
nm:

H(2)
nm =

∑

ij

ℏ(k− k0)i
me

Pnm,ij
ℏ(k− k0)j

me

,

Pnm,ij =
∑

r ̸=[m,n]

(pnm)i(pnm)j
(Ek0n + Ek0m)/2− Ek0r

, i, j = x, y, z ,

(2.31)

where bands labeled r are called remote bands in order to distinguish them from the
main bands, labeled with n and m, that enter the Hamiltonian through the zeroth
(Ek0m) and the first-order perturbation (pnm)

4. The second-order k · p equation in
Kane model for bulk crystal is:

∑

m

[
Ek0m +

ℏ
2me

(k− k0)
2

]
δnmB

(a)
m

+
∑

m

[
ℏ
me

(k− k0) · pnm +H(2)
nm

]
B(a)
m = E

(a)
k B(a)

n .

(2.32)

The set of parameters which must be obtained before solving for Ekn in Eq. (2.32)
can be distinguished as ones of the: zeroth order Ek0m, first-order pnm, and second-
order Pnm,ij in terms of perturbation, and will be referred as the k · p parameters
for Hnm. However, Kane model doesn’t provide any method of obtaining these
parameters and they have to be obtained by some other means.

Obtaining k · p parameters using fitting methods

One way to obtain k · p parameters of Hnm is to perform a fit using experimentally
obtained energy levels Ekn for some k points in 1BZ. Using only this method how-
ever, it is impossible to know how many independent parameters there should be,

4Originally, Löwdin’s perturbation method would contain Ekn instead of (Ek0n + Ek0m)/2 in
the denominator of Eq. (2.31), which would require a self-consistent method of solution. Kane
opted for this geometric average in his method [57]
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since when fitting the data there isn’t a unique way to do it. It would be most useful
to know how many independent parameters there should be just by considering the
symmetries of the crystal structure.

This was solved by Luttinger [53, 54] and later generalized by Pikus and cowork-
ers [48], by using the theory of invariants to obtain the number of k · p parameters by
taking advantage of the group theory and symmetry of the crystal. The advantage of
this method is that it produces the exact (and the least) number of parameters that
are required according to the crystal symmetry. However, the disadvantage is that
it can not determine the numerical values of these parameters and that some input
from experimental results is required. This way, k · p parameters can be uniquely
fitted to experimental results.

Obtaining k · p parameters using ab-initio methods

Another way to obtain k · p parameters of Hnm is to perform an ab-initio calculation
using DFT or some other available method to obtain numerical values for Ek0m and
|Ψk0n⟩ in order to calculate pnm and Pnm,ij. This method produces all numerical pa-
rameters without the need for any experimental results however, it does not initially
give the same analytical form like the theory of invariants does and can appear to
have more parameters than the crystal symmetry would suggest.

This shortcoming can be overcome by finding a unitary transformation that
transforms initial ’symmetry non-adapted’5 analytical form into the ’symmetry-
adapted’ form that theory of invariants produces, thus reducing the initial number
of parameters to the one that is required by the crystal symmetry. Even though the
exact number of parameters is unique to the crystal symmetry and size of Hnm, the
analytical forms are not unique.

Using unitary transform to adapt parameters from one analytical form to another
is called symmetry-adaptation of the k · p Hamiltonian. Procedure which performs
this symmetry-adaptation relying only on ab-initio methods was developed for the
purpose of this thesis. The whole procedure that starts with obtaining initial k · p
parameters from DFT, then obtaining the unitary transformation that rotates the
basis to a symmetry-adapted form as published in Ref. [46], and described in Chap-
ter 3.

5This analytical from actually has all symmetry properties that are required by the crystal
symmetry however, it is not that obvious until some unitary transformation is performed.
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2.7 Electronic structure

This section is dedicated to computational techniques for obtaining the electronic
structure, namely the density functional theory (DFT) and the many-body GW
method. In all subsequent subsections, the Born-Oppenheimer approximation is as-
sumed and the calculations are considering only the electronic subsystem neglecting
all influence of the ionic vibrations. The ionic movement in the crystal is studied in
Sec. 2.8, while Sec. 2.9 studies the influence of this ionic movement on the electronic
structure.

Both DFT and GW are considered ab-initio methods, in a sense that they do
not require any experimental parameters as inputs. In practical calculations, one
can consider the lattice structure itself as an experimental input, to some degree.
Atomic positions can be declared in coordinates that are relative to the lattice
constant, which can be determined by minimization of the total energy of the unit
cell. Modern DFT codes can also start from an approximate lattice structure and
relax both atomic positions and lattice constant until forces on all atoms vanish.

DFT has proven to be a very powerful and universal tool. In practice, it relies
on the ansatz that the electronic density of an interacting system can be determined
by an electronic density of an auxiliary non-interacting system that is easier to solve
mathematically. In DFT, the total energy of the ground state of a system is a
functional of the ground state electron density only. This density is obtained self-
consistently through an auxiliary problem described by the Kohn-Sham equations.
These equations provide one-electron energies and wave-functions of this auxiliary
Kohn-Sham system, which can be used to estimate the electronic structure. In
some cases, the Kohn-Sham electronic structure gives a very good estimate, while in
others it fails to reproduce even the most basic features like the electronic gap. This
problem has several solutions and one of them is to explicitly include many-body
effects using Hedin’s equations and the appropriate GW approximation in order to
make the computation feasible.

Although GW provides a more accurate picture of the electronic structure as
a more refined, many-body model 6, it still relies on DFT to provide that initial
step to obtain the starting electronic density, energies and wave-functions. Using
DFT states as an input, GW computes self-consistently the electronic self-energy
using interacting or non-interacting Green function G and the screened Coulomb
interaction W . This way, the electronic properties obtained from the Kohn-Sham
equation can be improved to better resemble experimental results.

Interested readers can find more information about DFT, GW and other tech-
niques in obtaining electronic structure across the literature, for example in Ref. [59,
60, 61].

6One can recognize that a similar many-body treatment which dealt with electron-electron
many-body interactions is applied for electron-phonon interactions in Sec. 2.9.
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2.7.1 Density Functional Theory - DFT

One of the many challenges of the problem of many interacting electrons is that the
solution for Hel inherits dependence on the position r for all N electrons described
by the many-body function Ψ(r1, r2, . . . rN). Hohenberg and Kohn [62] approached
the problem for systems with many electrons with the idea to simplify the search
for its solution by suggesting that all properties of such systems can be determined
by the electronic density n(r) of the ground state, which is a scalar function that
depends on one vector coordinate r only:

n(r) =

∫
dr2 . . . rN |Ψ(r, r2, . . . rN)|2. (2.33)

The result was an exact theory for many-body electron systems.

The Hamiltonian operator H of such many-body system can be expressed as:

H = Tel + Vel−el + Vext, (2.34)

where Tel and Vel−el, are the kinetic energy operator and operator for electron-
electron interaction, respectively, accounting for all electrons in the system. The
external potential operator Vext(r) contains all electron-ion interaction in the system
and the background potential created by all ions. Ions are considered static by the
BA approximation.

Hohenberg-Kohn theorems

Hohenberg and Kohn provided and proved two theorems which are the basis of the
density functional theory (DFT):

• Theorem 1: For any system of interacting particles in an external potential
Vext(r), the potential Vext(r) is determined uniquely, up to a constant, by the
ground state particle density n0(r).
Corollary: Since the Hamiltonian is fully determined, except to a constant
shift of the energy, it follows that the many-body wavefunctions for all states
(ground and excited) are determined. Therefore all the properties of the sys-
tem are completely determined by the ground state density n0(r).

• Theorem 2: A universal functional F [n] for the energy E[n] in terms of the
density n(r) can be defined, valid for any potential Vext(r). For any particular
Vext(r), the exact ground state energy of the system is the global minimum
value of this functional, and the density n(r) that minimizes this functional is
the exact ground state density n0(r).
Corollary: The functional E[n] alone is sufficient to determine the exact
ground state energy and density. In general, the excited sates of the electrons
must be determined by other means.
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The functional F [n] is universal in a sense that it doesn’t depend on Vext(r). In
other words, the mathematical form of F [n] will be the same for any kind of system:
semiconductor, metal, superconductor, molecule etc.7

Theorem 1 can be easily proved by reductio ad apsurdum as shown in Ref. [62].
Assume that two external potentials for the same system, that differ more than just
by a constant V

(1)
ext and V

(2)
ext and lead to two different Hamiltonians H(1) and H(2),

respectively. Assume that both V
(1)
ext and V

(2)
ext produce the same electron density

n0(r). This density n0, should return two different ground states Ψ(1) and Ψ(2), for
Hamiltonians H(1) and H(2), respectively, with energies E(1)[n] and E(2)[n], respec-
tively:

E(i)[n] =
〈
Ψ(i)

∣∣H(i)
∣∣Ψ(i)

〉
, i = 1, 2. (2.35)

Because E(1) =
〈
Ψ(1)

∣∣H(1)
∣∣Ψ(1)

〉
is not a ground state of Ψ(2), then:

E(1) =
〈
Ψ(1)

∣∣H(1)
∣∣Ψ(1)

〉
<
〈
Ψ(2)

∣∣H(1)
∣∣Ψ(2)

〉
, (2.36)

so adding and subtracting H(2) from the right-hand side leads to:

E(1) <
〈
Ψ(2)

∣∣H(1) +H(2) −H(2)
∣∣Ψ(2)

〉
,

E(1) < E(2) +

∫
dr
[
V

(1)
ext (r)− V

(2)
ext (r)

]
n0(r).

(2.37)

The same argument from Eq. (2.36) can used in the case for E(2) and Ψ(1) with
manipulation from Eq. (2.37) to obtain:

E(2) < E(1) +

∫
dr
[
V

(2)
ext (r)− V

(1)
ext (r)

]
n0(r), . (2.38)

Together, Eq. (2.37) and Eq. (2.38), produce a contradiction:

E(1) + E(2) < E(2) + E(1). (2.39)

The strict inequality in Eq. (2.39) is due to assumption that the ground state is not
degenerate. This leads to a conclusion of uniqueness of ground state density n0(r)
which can be attributed to only one possible external potential Vext.

Theorem 2 is sometimes split into two points. The first point implies is that
for any potential Vext some functional F [n] can be defined with a density n(r). This
defines a set of all possible densities n(r) that Vext can produce. The second point,
is that not every such density n(r) in the space of densities that Vext defines, can
be the density of the ground state n0(r) for that particular Vext. In degenerate
case, ground state densities will be a subset of all possible densities, while in non-
degenerate case, only one density will return a ground state, and any other That
means, that only densities that return a ground state for some Vext can be, in reverse,
obtained from that same Vext. These unique densities are called ’V-representable’

7Of course, this functional will differ in terms of the number of electrons and ions, ionic masses
and distance between ions etc. but the mathematical form is conserved.
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densities. This limits the number of possible densities that are possible within DFT.
These densities are usually limited to smooth potentials without delta functions or
singularities. One can write the energy functional EHK[n] as a sum of individual
functionals of density:

EHK[n] = F [n] +

∫
drVext(r)n0(r)

= Tel[n] + Eel−el[n] +

∫
drVext(r)n(r) + Eion−ion

= FHK[n] +

∫
drVext(r)n(r) + Eion−ion,

(2.40)

where Tel[n] and Eel−el are functionals of many-body kinetic and potential energy of
electrons, respectively. The classical potential energy between ions Eion−ion doesn’t
depend on electron density, and it is the before mentioned constant part extracted
from the external potential. The functional FHK[n] is the universal functional that
contains all internal energies (kinetic and potential) for the system of interacting
electrons:

FHK[n] = Tel[n] + Eel−el[n]. (2.41)

Functional FHK[n] does not depend on Vext and is mathematically universal for all
systems. The label ’HK’ is used here to emphasize that it refers to Hohenberg-Kohn
formulation of F [n], which is limited to non-degenerate ground states.

Consider a system with a ground state density n(1)(r) is produced by Vext, and
corresponds to a non-degenerate state Ψ(1) with energy E(1):

E(1) = EHK[n
(1)] =

〈
Ψ(1)

∣∣H
∣∣Ψ(1)

〉
. (2.42)

Consider another density n(2)(r) that corresponds to a state Ψ(2), which is not a
ground sate but a possible density for Vext, with energy E(2):

E(2) = EHK[n
(2)] =

〈
Ψ(2)

∣∣H
∣∣Ψ(2)

〉
. (2.43)

If n(1) is the density obtained from the ground state Ψ(1) then any other density n(2)

obtained from state Ψ(2) will have higher energy than E(1):

〈
Ψ(1)

∣∣H
∣∣Ψ(1)

〉
<
〈
Ψ(2)

∣∣H
∣∣Ψ(2)

〉
. (2.44)

This means that if the exact functional FHK[n] is known, then one can search for
the ground state by trial densities n until the minium of EHK[n] is found. Once
the minimum of EHK[n] is obtained by varying the density, the ground state density
is also obtained. Note that this functional FHK can be used to find the ground
state only and for any other excited state of the system with the same Vext has to
be determined in another way. In other words, if one knew a density n′ of some
excited state Ψ′, then EHK[n

′] doesn’t have to be the energy of that excited state.
Excited states can in a way be connected to some local minimum or a saddle point
of some functional, but Hohenberg-Kohn theorem is explicitly restricted to a global
minimum, which corresponds to the ground state.
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One issue with this formulation of DFT by Hohenberg and Kohn is that it does
not provide any insight on how to construct the functional FHK, it just states that
it should exist. The other is that it is limited to ’V-representable’ densities, cases
where the ground state is non-degenerate, and does not consider the case when
different states Ψ produce the same density n(r).

Universal functional F [n] can also be expressed in another formulation of by Lieb
and Levy FLL[n] to extend Hohengerg-Kohn theorems to degenerate cases. One such
example for a case of degenerate ground state density is the homogeneous electron
gas: wavefunctions are plane waves which all correspond to the same uniform density
however, the ground state is determined by the lowest kinetic energy in the case of
non-interacting electrons. In the case of interacting electrons, the density is also
uniform, however the wave-functions are correlated and cannot be expressed by a
simple determinant. The same logic can be applied for inhomogeneous cases.

Levy-Lieb formulation of F [n]

Formulation of DFT by Levy[63] and Lieb[64] extends the range of the definition of
the energy functional giving it a more physical meaning, provides some insight on
how the functional should be constructed, and leads to the same ground state density
as Hohenberg-Kohn formulation, but also applies for degenerate ground states. The
idea is to define a functional ELL[n] and perform minimization in two steps. In the
first step of minimization, the purely electron part of Hamiltonian is minimized by
varying Ψ over all variables to define functional FLL[n]:

ELL[n] = min
Ψ→n(r)

⟨Ψ|Tel + Vel−el |Ψ⟩+
∫

drVext(r)n(r)

= FLL[n] +

∫
drVext(r)n(r),

(2.45)

where FLL[n] is the universal functional minimized for a set of Ψ that produce the
same density n(r):

FLL[n] = min
Ψ→n(r)

⟨Ψ|Tel + Vel−el |Ψ⟩ . (2.46)

The difference between FHK and FLL can be demonstrated on the homogeneous
electron gas of non-interacting electrons. In such case, the many-body wavefunction
is constructed from a Slater determinant where individual electrons are represented
as plane waves. All states correspond to one uniform density which is generated
uniquely by a uniform Vext. Since there is no interactions between the electrons,
only the functional of the kinetic energy is present. In FHK formulation, there is no
use to vary over density to obtain the ground state however, in FLL formulation, the
ground state is defined by minimizing the kinetic energy over different Ψ to obtain
the lowest value and therefore the ground state.

The formulation of FLL in Eq. (2.46) provides a practical meaning for the func-
tional as the minimum of the sum of kinetic and potential parts for all possible
many-electron wavefunctions Ψ that have the given density n(r).



2.7. ELECTRONIC STRUCTURE 37

In the second step of the minimization, same as for EHK[n], the functional ELL[n]
is minimized by varying over the density n(r). In order for density n(r) to be ’N-
representable’ it needs to be positive for all r and integrate to N electrons present in
the system, there is no requirement to be a ground state density of any potential V ext.
If a density isn’t ’N-representable’, automatically it will not be ’V-representable’,
therefore it cannot minimize ELL[n]. This way Levy-Lieb formulation provides some
insight of possible trial densities in the minimizing procedure.

In order for a trial density to describe the exact ground state for some external po-
tential Vext and be ’V-representable’ it must be checked first if it is ’N-representable’.
In other words, all ’V-representable’ densities from Hohenberg-Kohn formulation
are also ’N-representable”. Because the condition for minimization of the functional
E[n] by varying over density is fulfilled in both Hohenberg-Kohn EHK and Levy-Lieb
ELL formulations, they must lead to the same ground state density.

In summary, in Hohenberg-Kohn formulation, functional FHK is defined only
for densities that can be generated by some external potential Vext which minimize
EHK(i.e. the ’V-representable’ densities that lead to ground state). In Levy-Lieb
formulation the functional FLL[n] can be defined for any density n(r) that is formed
from many-body electron wavefunction ΨN , with the condition that it integrates to
finite number of N electrons over the whole space

∫
drn(r) =

∫
drΨ∗

NΨN = N .
Densities that minimize FHK[n] for some ΨN are called ’N-representable’ densities.
If they can also be obtained from some Vext, they are ’V-representable’ and they
must lead to the same ground state in EHK[n] and ELL[n].

2.7.2 Kohn-Sham scheme

Until this point, all discussion was on the exact DFT, that is, on the assumption
that the functional F [n] can be exactly defined, ground state density obtained by
minimizing E[n] and determining the many body Hamiltonian for all states (ground
and excited) Ψ. Unfortunately, to this day, no one knows how F [n] should look
like. This problem is further complicated by the fact that one is dealing with many-
body functions Ψ and some simplification has to be performed in order to make this
problem solvable.

One such, simplification is the Kohn-Sham scheme which asserts the following:
For any interacting system, there is a local single-particle potential VKS(r) which
corresponds to an auxiliary non-interacting system, and this auxiliary system pro-
duces the ground state density nKS(r) which is equal to the ground state density of
that interacting system n0(r).

This also asserts that ’V-representable’ densities of an interacting system for can
also be ’V-representable’ densities of the auxiliary non-interacting system.

This way, the electrons density is still connected to an interacting system but
the kinetic part acts on individual electrons the same as in the non-interacting
case. Unlike in the case of homogeneous gas of non-interacting electrons, where all
electron-electron interactions are omitted, here the electrons are only independent
in a sense that one electron interacts with the Coulomb field generated of all the
other electrons, which is described by the Hartree energy, and all many body effects
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are described by the exchange-correlation energy. This allows one to write a system
of one-electron Schrödinger equations, called Kohn-Sham equations, whose solutions
are eigenstates of the auxiliary system, called the Kohn-Sham states.

The idea is to start from the energy functional E[n] and add and subtract the
kinetic energy operator of non-interacting electrons Ts[n] and Hartree energy EH:

E[n] = F [n] + Ts[n]− Ts[n] + EH[n]− EH[n] +

∫
drVext(r)n(r), (2.47)

and rewrite the energy functional E[n] as:

E[n] = Ts[n] + EH[n] +

∫
drVext(r)n(r) + Exc, (2.48)

where Exc is the so-called exchange-correlation energy which contains all many-
body effects of exchange (due to Pauli principle) and correlation (from many-body
effects) in F [n] (either in HK or LL formulation) reduced by the kinetic energy of
non-interacting electrons and Hartree energy:

Exc = F [n]− Ts[n]− EH[n]. (2.49)

To emphasize that the Kohn-Sham scheme was applied, the energy functional
E[n] can simply be renamed to EKS[n] and written as:

EKS[n] = FKS[n] +

∫
drVext(r)n(r) + Exc, (2.50)

where the Kohn-Sham functional FKS[n] is:

FKS[n] = Ts[n] + EH[n]. (2.51)

The kinetic energy of non-interacting electrons Ts[n] is explicitly:

Ts[n] =
∑

i

∫
drψ∗

i

(−iℏ∇)2

2me

ψi, (2.52)

while Hartree energy EH is:

EH =
1

2

∫
dr

∫
dr′

e2n(r)n(r′)

4πε0|r− r′| . (2.53)

The Kohn-Sham approach asserts that the exact ground state density of the
auxiliary system and the ground state density of the many body system are the
same. This means that the same ground state density n0(r) can be expressed either
by many-body functions Ψ or a sum of wavefunctions of the auxiliary system:

n(r) =

∫
dr2 . . . rN |Ψ(r, r2, . . . rN)|2 =

N∑

i

|ψi(r)|2, (2.54)
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where N is the number of electrons is the system and ψi(r) are wavefunctions of the
independent electrons of the auxiliary system that are also orthonormal:

⟨ψi|ψj⟩ = δij. (2.55)

From Theorem 2 of Hohenberg and Kohn, varying over density will produce the
ground state of functional EKS[n] and the chain rule:

δEKS

δn
= 0,

δEKS

δψ∗
i

=
δEKS

δn

δn

δψ∗
i

=
δEKS

δn
ψi ⇒ δEKS

δψ∗
i

= 0. (2.56)

This minimization procedure can be solved by using Lagrange optimization which
states that extreme values for some function f(x) can be obtained by differentiating
the Lagrange function L(x, λ) = f(x) − λg(x), under the condition that g(x) = 0,
where λ is the Lagrange multiplier. In this case, f(x) → EKS and g(x) → ⟨ψi|ψj⟩ −
δij. The Lagrange function is:

L = EKS[n]−
∑

ij

λij [⟨ψi|ψj⟩ − δij] . (2.57)

Varying L over all ψ∗
i :

δL
δψ∗

i

= 0 ⇒ δEKS

δψ∗
i

=
∑

j

λijψj, (2.58)

one arrives at: [
−ℏ2∇2

2me

+ VKS(r)

]
ψi(r) =

∑

j

λijψj(r), (2.59)

where VKS(r) is the Kohn-Sham effective potential obtained after Lagrange opti-
mization:

VKS(r) = Vext(r) + VH(r) + Vxc(r), (2.60)

VH is related to the Hartree potential:

VH(r) =
δEH

δn

∣∣∣∣
n(r)

=

∫
dr′

e2n(r′)

4πε0|r− r′| , (2.61)

and Vxc is related to exchange-correlation:

Vxc(r) =
δExc

δn

∣∣∣∣
n(r)

. (2.62)

Potential Vxc is in this simplest (pedagogical) case a local function of r however,
that isn’t always true. Because the terms on the left of Eq. (2.59) are hermitian,
the Lagrange multipliers λij will also be hermitian and there should always exist a
unitary transformation U that transforms basis functions ψ to ψKS which make λij
diagonal, while retaining orthonormal relations and keeping the density same:

ψKS = Uψ ⇒ UλijU
† = δijε

KS
j ,

〈
ψKS
i

∣∣ψKS
j

〉
= δij, ⇒ n(r) =

∑

i

|ψKS
i (r)|2. (2.63)
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In the new basis, Eq. 2.59 becomes:

[
−ℏ2∇2

2me

+ VKS(r)

]
ψKS
i (r) = εKS

i ψKS
i (r), (2.64)

Finally, one can see that the Kohn-Sham eigenvalues are just unitary transform
of Lagrange multipliers from Eq. (2.59) which raises the ambiguity of their physical
meaning.

Density of the auxiliary system n(r) =
∑N

i |ψKS
i (r)|2 that appears in the Hartree

part of VKS must be the same one that minimizes EKS[n] and the same as a ground
state density for a many body system. The Kohn-Sham equation must be solved
self-consistently until the input density nin(r) obtained from the previous step8 and
and the one constructed in the current step nout(r) =

∑N
i |ψKS

i (r)|2 are numerically
same up to an arbitrary small parameter ε:

|nin(r)− nout(r)| < ε, ∀ r ∈ V. (2.66)

Other conditions for self-consistency can also include the total energy:

∣∣Estep+1[n]− Estep[n]
∣∣ < εE, ∀ r ∈ V, (2.67)

the Kohn-Sham effective potential:

∣∣V step+1
KS (r)− V step

KS (r)
∣∣ < εV , ∀ r ∈ V, (2.68)

or Kohn-Sham wavefunctions:
∣∣∣ψKS step+1

i (r)− ψKS step
i (r)

∣∣∣ < εψ, ∀ r ∈ V. (2.69)

Because it is used in self-consistent calculations, the Kohn-Sham effective potential
VKS is sometimes also referred to as the self-consistent field potential9.

Once Kohn-Sham eigenvalues εKS
i and ground state density n0(r) are found, the

kinetic energy functional Ts[n] can be determined as:

Ts[n] =
N∑

i

εKS
i −

∫
drVKS(r)n(r), (2.70)

8In practice, the input density for the next step is usually constructed as a mixture of input
and output density of the current step:

nstep+1
in = (1− αmix)n

step
in + αmixn

step
out , (2.65)

where αm is the mixing parameter. The input density for the first step can be guessed in many
different ways, one example is to start with a density of isolated atoms. The mixing parameter
0 ≤ αm ≤ 1 should be chosen to speed up the convergence however, if it’s too large, then there is
the risk of oscillations in total energy and the charge density in each step which makes convergence
impossible, if it is too small then the convergence can be very slow w.r.t. number of cycles required
for self-consistency.

9Although, this is a broader term and could be applied to cases other than Kohn-Sham DFT,
like the Hartree-Fock method for example.
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and from Eq. (2.61), the Hartree energy EH is:

EH =
1

2

∫
drVH(r)n0(r). (2.71)

Using Eq. (2.50) (or Eq. (2.48) ) with Eq. (2.70) and Eq. (2.71) the energy
functional EKS[n] for ground state density becomes:

EKS[n0] = Ts[n0] + EH[n0] +

∫
drVext(r)n0(r) + Exc[n0]

=
N∑

i

εKS
i [n0]−

∫
drVKS(r)n0(r) +

1

2

∫
drVH(r)n0(r) + Exc[n0]

=
N∑

i

εKS
i [n0]−

1

2

∫
drVH(r)n0(r)−

∫
drVxc(r)n0(r) + Exc[n0].

(2.72)

With Eq. (2.72), the DFT cycle in Kohn-Sham formulation is complete - the total
energy of the ground state is a functional of the ground state density EKS[n0], which
is represented as a sum of:

• Kohn-Sham energies for N electrons εKS
i obtained from an auxiliary system

which was used to obtain the ground state density n0(r), minus two terms
which are a byproduct of using functional derivatives δEH/δn and δExc/δn in
Lagrange optimization procedure, but also a functional of the same ground
state density n0,

• Exchange-correlation energy as a functional of the ground state densityExc[n0],
and

Energy of Coulomb interaction between the ions10 Eion−ion which is a constant term
in the BA approximation is included in the external potential Vext. A more detailed
discussion about formulation of DFT can be found in paper by Hohenberg and
Kohn[62] and many DFT related literature like Refs. [65, 59, 61] and more.

2.7.3 Kohn-Sham scheme in practice

The Kohn-Sham scheme is a straightforward procedure that generates electronic
density of the ground state of an interacting electronic system using an auxiliary
system of non-interacting electrons. The process is repeated until the input and
output density produced using Kohn-Sham states differ less than a preset arbitrary
value as in Eq. (2.66), and/or if some of the other self-consistency conditions are
met, like for example from Eq. (2.67), Eq. (2.68), or Eq. (2.69).

In practical implementations, there are several ways the scheme can be imple-
mented. Namely, Kohn-Sham states ψKS

i (r) can be represented in several ways

10Why they are more often referred as ions rather than nuclei will be clear in on of the subsequent
paragraphs.
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considering basis functions (like plane waves or molecular orbitals). Because the
exact form of the exchange-correlation functional Vxc is still unknown, there are
several ways this functional can be approximated.

Besides the choice of basis and exchange-correlation approximation, there is also
a choice of working with all electron calculations or employing the pseudopotential
method to reduce calculations to valence electrons only.

Pseudopotentials and plane wave basis

In order to solve Eq. (2.64) to obtain the electron density n(r), one must solve a sys-
tem of N equations, where N is the number of all electrons - both core and valence.
Without going into much detail, one can justify that in order to model electronic
structure of solids and molecules, only valence atoms are of interest, since it is the
valence atoms that form chemical bonds and are responsible for many chemical prop-
erties of the material. Solving for just valence electrons rather than for all electrons
would significantly reduce the computational burden. Core electrons are localized
close to the nucleus and do not participate in forming chemical bonds, they can be
considered as a fixed cloud of negative charge around the nucleus. Valence electrons
on the other hand, localize much further from the nucleus, so it is possible to treat
them separately, as if they are interacting with a positive ion consisting of nucleus
and the cloud of core electrons. This is the basic idea of pseudopotentials. Pseu-
dopotentials are constructed by first performing an all electron atomic calculation
and then designing a (pseudo)potential that would replicate the same properties by
acting only on valence electrons.

The pseudopotentials have been implemented for several basis functions for ψKS
i .

Depending on the system that is in question, each implementation has its own
strengths and weaknesses. One of the more popular choices is the plane wave method
where ψKS

i are represented as regular plane waves. This is a very common method
for crystals. In most codes that use this method, the number of plane waves is
controlled by the kinetic energy cutoff Ecutt. Plane waves with increasing energy are
added to the basis until their energy exceeds Ecutt. There are two most popular types
of plane wave pseudopotential implementations: norm-conserving and ultra-soft.

The norm-conserving (NC) pseudopotentials [66, 67], ensure that the integral
over squared electron wavefunctions is conserved when compared to the all electron
calculation: ∫

dr |ψKS−pseudo−nc
i (r)|2 =

∫
dr |ψKS−all−elec.

i (r)|2. (2.73)

They are able to model various systems with quite formidable accuracy, and the
easiest to implement which is reason why most DFT codes develop bleeding edge
capabilities for NC and plane waves first. However, they can require a large basis
which in turn requires more computational resources.

Ultra soft (US) pseudopotentials [68], which are able to better produce states
closer to the core using a smaller basis thus requiring less computational resources
than NC pseudopotentials however, they are more difficult to construct and depend-
ing on the system their accuracy is not always consistent.
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Another popular implementation is the projector augmented wave (PAW) [69].
PAW combines plane waves for the valence regions to ensure computational effi-
ciency and localized projectors for core regions in order to improve accuracy and
reproduce the all electron states in the core and valence region. This way PAW
produces more detailed and accurate results than the simpler plane wave method,
while using approximately the same computational resources. However, PAW pseu-
dopotentials are much more difficult to construct and implement, resulting in a
much more complex code. For this reason, they are usually the last method to be
implemented for bleeding edge capabilities in most DFT codes.

All electron calculation

The all electron calculation can be implemented using plane waves and Gaussian
basis. Other popular implementations include some form of modified plane waves
in order to increase accuracy of the description for electronic states near nuclei.
Most notable ones that are worth mentioning are: augmented plane waves (APW)
which combine atomic functions with plane waves, linearized augmented plane waves
(LAPW) which are an extension of APW that linearize the energy dependence of
atomic spheres to increase accuracy.

Exchange-correlation functionals

As mentioned, the exchange-correlation part of the self-consistent potential Vxc, is
still unknown. Whether using pseudopotentials or all electron models, there are sev-
eral ways to model them in regards on whether it is expressed as a local V LDA

xc [n(r)],
semi-local V GGA

xc [n(r),∇n(r)], or non-local potential Vnon−loc.
The simplest one is the local density approximation (LDA) [70, 71, 72] which

approximates Vxc at r with the exchange-correlation energy that a homogeneous
electron gas Eheg

xc [n(r)] with density n(r) would have at point r. The total exchange-
correlation energy of LDA is then an integral sum over whole volume:

ELDA
xc =

∫
drV LDA

xc (r)n(r) =

∫
drEheg

xc [n(r)]n(r). (2.74)

LDA relies on the assumption that electron density of an inhomogeneous system
n(r) is an overall smooth function over r and that the change of density ∇rn(r)
doesn’t affect the exchange-correlation energy.

Semi-local potential VGGA[n,∇n] makes use of a generalized gradient approxima-
tion (GGA) in order to make Vxc dependent on density n(r) and the gradient of the
density ∇rn(r). The total exchange-correlation energy EGGA

xc is obtained as:

EGGA
xc =

∫
drV GGA

xc (r,∇rn)n(r). (2.75)

Most popular GGA functionals are the ones by PBE Perdew-Burke-Ernzerhof (PBE)
[73] and Becke-Lee-Yang-Parr (BLYP) [74, 75]. For solids, a modified PBE func-
tional called PBEsol is usually preferred over regular PBE since it is optimized to
produce more accurate lattice constants [76].
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In order to increase accuracy, dependence on the second derivative of the density,
which is supposed to improve description for densities that vary rapidly, and kinetic
energy density τ(r) which is supposed to improve description of correlation effects
can be included:

Emeta−GGA
xc =

∫
drV meta−GGA

xc (r,∇rn,∇2
rn, τ(r))n(r). (2.76)

These functionals are called Meta generalized gradient approximation (meta-GGA),
and one example is Tao-Perdew-Staroverov-Scuseria (TPSS) [77].

When it comes non-local potentials, most famous are the class of hybrid poten-
tials. In general, they are usually constructed as a mixture of exchange-correlation
in local or semi-local functional and the exact exchange energy from Hartree-Fock
theory EHF

x in some ratio α:

Ehyb.
xc = (1− α)Eβ

xc + αEHF
xc , (2.77)

where β is a type of functional (e.g. LDA, PBE, etc.) and 0 < α < 1 is the mixing
parameter, although there can be multiple αi parameters. The exact Hartree-Fock
(HF) exchange energy:

EHF
x = −

∑

i>j

∫ ∫
dr1r2

ψKS∗
i (r1)ψ

KS∗
j (r2)ψ

KS
i (r1)ψ

KS
i (r2)

|r1 − r2|
, (2.78)

is obviously non-local since it accounts for exchange of two electrons at r1 and r2,
respectively. One popular choice is the mixture of PBE functional with HF exchange
known as PBE0 [78]:

EPBE0
xc = αEHF

x + (1− α)EPBE
x + EPBE

c , (2.79)

where EPBE
x and EPBE

c are separate exchange and correlation parts from PBE func-
tional, repsectively. The mixing parameter is usually α = 0.25 however, for certain
purposes this parameter can be determined in order to meet certain conditions in
order to increase the accuracy of the calculation as seen in Ref. [79].

Using periodic conditions, Eq. (2.64) is solved for states i → kn, where k is a
point on the grid in reciprocal space and n is the Kohn-Sham state at k. In order
to have a converged self-consistent calculation one should check the convergence
parameters for Ecut (in plane wave basis) and the size of the k-grid. Specially, for
hybrid functionals, the non-local nature of HF exchange requires additional Fourier
transform for the other electron, which introduces another grid in reciprocal space,
called q-grid. This is one of the reasons why hybrid functionals are not as practical
since their computational resources increase as square compared to local or semi-
local counterparts.

Non-self-consistent calculation

After the self-consistent calculation is completed, and ground state density is ob-
tained n0(r) one can perform a non-self-consistent calculation which can interpo-
late Kohn-Sham states on a more dense k-grid or for higher states n. Specially if
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the dispersion relation of Kohn-Sham states is desired, one can perform a non-self-
consistent calculation on a k-path in reciprocal space. One of the ways interpolation
is routinely done in DFT is by k · p perturbation theory, which is explained in detail
in Sec. 2.6.

DFT with many-body techniques

The only observable that DFT can provide exact information on are the total energy
of the ground state and the ground state density. Therefore, the Kohn-Sham band
structure can be considered just an approximation, without the full many-body
treatment, to the real electronic band structure. However, this has proved to be a
good approximation, the main reason lies in the fact that Kohn-Sham equation relies
on ground state density that is considered exact in DFT. In most cases Kohn-Sham
electronic structure provides decent results when compared to experiment. While
the simpler LDA can predict some small gap insulators as metals (like for e.g. Ge),
most functionals based on GGA correct these mistakes [60]. The main downside is
that many-body effects which lead to broadening of the bands are neglected. In the
absence of a more reliable and computationally cheaper method, this is the best first
estimate for the electronic structure for most metals, insulators and semiconductors.

Around the same time that Kohn-Sham DFT was formulated, in 1965, Hedin
[80] developed a full many-body theory for obtaining ground and excited states in
electron systems. This theory accounts for all many-body effects using self-energy
of the Dyson equation, which can be solved self-consistently. Unfortunately, this
requires computational resources not available even to modern computer clusters.
Using many approximations, and keeping only the simplest diagrams of self energy,
Hedin equations reduce to computationally solvable GW equations [80, 81],where G
stands for Green’s function and W for the screened Coulomb interaction. The GW
is routinely used with Kohn-Sham states as a starting point for Green’s function,
which after self-consistent calculations leads to many-body corrections to Kohn-
Sham energies for band structure and band gap. However, since screened potential
is non-local, the computational resources needed for GW greatly surpass the ones
for DFT, so it is limited to systems with fewer electrons. The GW method is further
explained in Sec. 2.7.5.

2.7.4 Band gap in electronic structure

In electronic structure, the difference between the extremum of energy levels of the
highest occupied valence band and the lowest occupied conduction band is called
the electronic band gap or just band gap of the material. It is an essential property
of materials that determines their electrical conductivity. Based on the width of the
gap, and the possible conductivity of current, materials can be classified as metals
(in the case when there is no band gap, i.e. conduction and valence bands overlap),
insulators (in the case of wide band gaps) and semiconductors (in the case of small
or moderate band gap).

In spectroscopic experiments, these band gaps are usually determined by pho-
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toemission. In these experiments an electron is either ejected out of, or, added into
the material sample, by direct and inverse photoemission, respectively.

In absorption experiments, where an incident photon excites an electron to an-
other state but doesn’t eject it out of the material, a different type of band gap is
observed. This is the so-called optical gap. In this process an excited electron is still
bound to the material and in its place a hole is created. In theory, this process is
very difficult to compute numerically. Because excited electron and hole form a pair,
all theoretical aspects must consider them together, which means that two-particle
Green’s functions must be involved which leads to significant numerical burden.

Unlike the optical gap, electrical band gap can be theoretically obtained much
easier. There are several ways, some of which are: using DFT Kohn-Sham states,
using Hartree-Fock, or using ∆ SCF method, which are explained below in this
section. An improvement to DFT Kohn-Sham gap, can be obtained using the GW
method, to which Sec. 2.7.5 is dedicated.

Electronic gap: photoemission experiments

Direct photoemission uses ultraviolet of X-ray photons to eject electron from a
neutral sample. Incidental photon with energy hν ejects an electron from its initial
valence state s, which is below and separated from the Fermi level EFermi by energy
Es, to the surface of the material. The electron then hits the detector with kinetic
energy Ekin. The ionization potential EIP

s for state s, is defined as energy required
to remove the bound electron from the state s:

EIP
s = −Es = hν − Ekin − Fwork, Es < EFermi, (2.80)

where Fwork is the work function, or rather, energy distance from the Fermi level to
vacuum (surface of the material). Using direct photoemission valence states can be
probed. Ionization potential EIP

s is a positive number.
Inverse photoemission is used to probe conduction and valence states. In inverse

photoemission incidental electron of kinetic energy Ekin is scattered into the sample
and it goes into radiative transmission to conduction state s, which is above and
separated from the Fermi level EFermi by energy Es, emitting a photon of energy hν
in the process. The electron affinity EEA

s for state s, is defined as:

−EEA = Es = Ekin − hν + Fwork, Es ≥ EFermi. (2.81)

Electron affinity EEA is positive when s is a valence state and negative when s is
conduction state.

Theoretically, the band gap can be determined using several methods, some of
which are described below.

DFT Kohn-Sham gap

The electron density n(r) is made from N electrons, which in the ground state ac-
count for all occupied states in the case of insulators and semiconductors. However,
Kohn-Sham equations Eq. (2.59) and Eq. (2.64) do not impose any kind of limit
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on the number of states. This means that one could solve for arbitrary number of
Kohn-Sham states NKS ≥ N and thus obtain Kohn-Sham energies for unoccupied
states. The difference between the highest occupied and lowest unoccupied states is
the Kohn-Sham band gap EKS

gap in insulators and semiconductors:

EKS
gap = εKS

N+1 − εKS
N . (2.82)

If EKS[n0] were simply equal to just the sum of Kohn-Sham states
∑NKS

i εKS
i

(plus constant Eion−ion), then Kohn-Sham energies would represent the energies of
adding or removing an electron at state i from the system, thus the Kohn-Sham
band gap would represent the DFT gap in semiconductors and insulators. However,
since there is no way to obtain any excited states in DFT using Eq. (2.72), and the
simplest estimate about the band gap is the one obtained from Kohn-Sham states,
the DFT band gap usually refers to the simple Kohn-Sham band gap.

Hartree-Fock

In the Hartree-Fock method, the many-electron function ΦHF is represented as a
Slater determinant. This determinant is filled with single particle electron orbitals
ϕi(rj), where i and j represent the indices for columns and rows, respectively:

ΦHF(r1, r2, . . .) =
1√
N !

∣∣∣∣∣∣∣∣∣

ϕ1(r1) ϕ1(r2) . . . ϕ1(rN)
ϕ2(r1) ϕ2(r2) . . . ϕ2(rN)

...
...

. . .
...

ϕN(r1) ϕN(r2) . . . ϕN(rN)

∣∣∣∣∣∣∣∣∣
. (2.83)

where N is the number of electrons in the system and the only condition for ΦHF is
to be antisymmetric when two electrons are exchanged, as per Fermi-Dirac statistics.

This property can account for the exchange effects due to Pauli principle, however
the correlation is not included since this determinant produces a simple sum of all
possible exchanges of products of wavefunctions of individual electron orbitals ϕi(rj)
so the operator ∇2

rk
simply commutes with all ϕi(rj) for which k ̸= j, thus making

individual electron orbitals uncorrelated to one another in terms of their individual
kinetic energy.

The expectation value of Hamiltonian H returns the total energy of the system
in HF approximation EHF. For spinless system EHF is:

EHF
N = ⟨ΦHF|H |ΦHF⟩ =

N∑

i

∫
drϕ∗

i (r)

[
−ℏ2∇2

i

2me

+ Vext(r)

]
ϕi(r)

+
N∑

i>j

∫
dr dr′ ϕ∗

i (r)ϕ
∗
j(r

′)vc(ri − rj)ϕi(r)ϕj(r
′)

−
N∑

i>j

∫
dr dr′ ϕ∗

i (r)ϕ
∗
j(r

′)vc(ri − rj)ϕj(r)ϕi(r
′)

(2.84)
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where vc(r) = 1/(4πϵ0|r|) is the Coulomb potential.

Following a similar procedure to the one used to derive the Kohn-Sham equations,
from Eq. (2.56) to Eq. (2.64), one arrives at Hartree-Fock equations for electron
orbitals:

[
−ℏ2∇2

i

2me

+ Vext(r) + VH(r)

]
ψHF
i (r) +

∫
dr′ Vx(r, r

′)ψHF
i (r′) = εHFi ψHF

i (r), (2.85)

where ψHF
i and εHF

i are obtained after unitary transform similar to Eq. (2.63), VH(r)
and V x(r) are Hartree and exchange terms, respectively:

VH(r) =
∑

j

∫
dr′ |ψHF

j (r′)|2vc(r− r′),

Vx(r, r
′) = −

∑

j

∫
dr′ ψHF∗

j (r′)(r)vc(r− r′)ψHF
j (r).

(2.86)

Unlike for Kohn-Sham wave-functions and energies ψKS
i and εKS

i , for which it was
established previously that they posses no physical meaning, in the Hartree-Fock
case ψHF

i and εHF
i have a physical meaning, they represent eigenfunction and eigen-

value of i-th orbital, respectively. This interpretation is stated using Koopmans’
theorem11 [59].

Koopmans’ theorem: The eigenvalue of the filled (empty) orbital εHF
i is equal

to the change in the total energy from Eq. (2.84), if an electron is subtracted from
(added to) the system i.e. decreasing (increasing) the size of the determinant by
omitting (adding) a row and a column in Eq. (2.83) involving a particular orbital
ϕj(ri), keeping all the other orbitals same.

This means that the first ionization energy is equal to Eio = EHF
N−1−EHF

N = −εHF
N

and first energy of electron affinity is Eea = EHF
N − EHF

N+1 = −εHF
N+1. Using this

interpretation, the band gap in Hartree-Fock approximation can be computed by
performing one calculation with N electrons, and using N + n, n ≥ 1, orbitals and
simply subtracting the energies of εHF

N+1 and εHF
N orbitals as EHF

gap = εHF
N+1 − εHF

N . In
Eq. (2.85), the eigenvalue of occupied orbitals εHF

i is lowered by the exchange part Vx,
which reduces the self-interaction of Hartree term VH by some degree. However, for
empty orbitals, this is not the case since Vx this term is omitted in Eq. (2.85). This
the reason why Hartree-Fock approximation overestimates band gaps in most cases.
Significant improvements can be made by allowing orbitals to relax and taking into
account the exchange of an added electron with all the others, which is routinely
done for finite systems and knows as ∆ SCF approximation [59].

11Besides that density must be constructed from N occupied states only, Kohn-Sham equations
pose no limit on the number of states NKS ≥ N that are calculated or requires any antisymmetric
condition on the total wavefunction, the Koopmans’ theorem doesn’t apply in their case. Koop-
mans’ theorem can be reinstated for DFT, in a sense that highest occupied Kohn-Sham state would
correspond to ionization energy if the exact effective potential was known.
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∆ SCF

In experiments, removing or adding an electron to the system corresponds to direct
and inverse photoemission, after which the system, with changed number of elec-
trons, has to relax to its ground state. One should also consider these relaxation
effects. For finite systems like isolated atoms and small molecules, the so-called
’∆ SCF’ approximation is reasonably successful [82, 61] and consists of calculating
ground state densities and energies for three systems: cation - with one electron
removed EN−1 (direct photoemission), neutral - with all electrons present EN , and
anion - with one electron added EN+1 (inverse photoemission), to produce the quasi-
particle gap Eqp

∆SCF:

Eqp
∆SCF = (EN+1 − EN)− (EN − EN−1). (2.87)

When ’∆ SCF’ is applied with Hartree-Fock it can improve results when compared
to EHF

gap that doesn’t allow for orbitals to relax, which usually leads to overestimation
of ionization and excitation energies. By performing 3 separate self-consistent cal-
culations for EN , EN−1, and EN+1, with N , N −1 and N +1 electrons, respectively,
orbitals are relaxed in each, and some correlation effects are included.

Unfortunately, for infinite systems like solids where the number of electrons is
at the order of 1023, ∆ SCF approximation does not hold because the removal or
addition of one electron is negligible on the total density. Furthermore, the exact
exchange-correlation energy and potential is not known, and most approximations
rely on assumption that it is a smooth function of density, so removal or addition
of one electron wouldn’t introduce a discontinuity in the density and exchange-
correlation energy. Without such discontinuity, the quasi-particle gap of Eq. (2.87)
reduces to Kohn-Sham gap since:

n0 +∆n ≃ n0, ⇒ Vxc[n0 +∆n] ≃ Vxc[n0]. (2.88)

Optical gap: absorption experiments

As previously mentioned, besides electronic band gap, materials also have an optical
gap. Experimentally, optical gaps occur in the process of absorption, where electron
is excited to a conduction state by the absorbed photon, but unlike in the process
of emission, the electron doesn’t leave the system. For photoemission the system
relaxes to a static ground state, whereas in absorption the system is in a dynamic
excited state, thus it cannot be described by any direct DFT approach. Another
problem with optical gaps, is that excited electron creates a hole, which interacts
with that excited electron. Therefore any such excitation must consider excited
electron and hole as a pair or an exciton. This makes it impossible to impose any
local approximation.

This is a very complex many body problem which has to capture non-locality and
dynamics. In order to do so, it has to take into account some higher order interaction
terms, which are usually solved by the Bethe-Salpeter equation [83].Solving this
equation is rather complex and requires significant computational resources that far
surpass any DFT method.
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These are just several most relevant aspects of the DFT band gap problem, which
is explored in great detail in literature [84], and is out of scope of this work.

2.7.5 GW method

Kohn-Sham formulation of DFT assumes that the mean field, with which one elec-
tron interacts, and consists of external potential generated by ions, the Hartree
potential of all other electrons and the exchange-correlation potential is static. All
Coulomb-like interactions are considered long range.Being only able to describe the
ground state energy and density, DFT itself is unable to give any information about
excited states or band structure. In absence of such information of the electronic
structure, Kohn-Sham energies and wavefunctions are often considered as DFT elec-
tronic structure. Even though Kohn-Sham eigenvalues and eigenstates are just solu-
tions for an auxiliary problem that leads to the same density as the ground state of
the system, they have proven to be an excellent starting point in more sophisticated
calculations.

Precisely, the GW approximation, which relies on one electron Green function
G and the dynamical screened Coulomb interaction W is one such example where
Kohn-Sham solutions can be used as components for many-body approach. Using
Dyson’s equation, any Green function G can be expressed in series of Feynman dia-
grams of simpler bare Green functions G0. Collection of all diagrams is represented
as the self-energy Σ which is analogous to exchange-correlation energy in DFT.

This section serves as an overview of the main concepts of GW method, and keen
readers can find more insightful information in Refs. [80, 85, 86, 81, 87, 82, 88].

From Hedin’s equations to GW approximation

Using functional derivatives, in 1965, Hedin [80] derived a system of equations that
describe all many-body physics of an electron system12:

Σxc(1, 2) = iG(1, 4)W (1+, 3)Γ̃(4, 2; 3) (2.89)

G(1, 2) = G0(1, 2) +G0(1, 3)Σxc(3, 4)G(4, 2) (2.90)

Γ̃(1, 2; 3) = δ(1, 2)δ(1, 3) +
δΣxc(1, 2)

δG(4, 5)
G(4, 6)G(7, 5)Γ̃(6, 7; 3) (2.91)

χ̃(1, 2) = −iG(1, 3)G(4, 1)Γ̃(3, 4; 2) (2.92)

W (1, 2) = vc(1, 2) + vc(1, 3)χ̃(3, 4)W (4, 2) (2.93)

where integer numbers 1, 2, 3 . . . 7 are used instead of space, time and spin coor-
dinates, e.g. r1, t1, σ1 → 1, and integration over these coordinates is noted by an
overline, e.g.

∫
dr1
∫
dt1 → 1. The exchange-correlation is expressed through self-

energy Σxc, W and vc are screened and bare Coulomb interaction, respectively, G
and G0 are dressed and bare Green’s function (or dressed and bare propagator),
respectively. Irreducible polarization χ̃ represents a response of electron density to

12Presented equations are taken directly from Ref [60].
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an external potential, Γ̃ is a irreducible version of a three point vertex Γ which
represents a response of inverse dressed propagator to perturbation potential u:

Γ(1, 2; 3) = −δG
−1(1, 2)

δu(3)
(2.94)

Perturbation potential u is introduced as a probing potential when deriving Hedins
equations using functional derivatives. The total effective potential that electrons
veff see is their internal Hartree potential vH plus the perturbation potential u :
veff = vH + u. Finally, δΣxc/δG is a four-point kernel. These equations are rather
involved and impossible to solve even for simplest systems.

First approximation is to neglect three point vertex corrections Γ and Γ̃, i.e. to
assume that these vertices are diagonal in space and time coordinates:

Γ(1, 2, 3) = Γ̃(1, 2; 3) = δ(1, 2)δ(1, 3), (2.95)

which makes the polarization χ̃:

χ̃(1, 2) = −iG(1, 2)G(2, 1+) (2.96)

where χ̃ is the polarization in the so-called bubble approximation, because it corre-
sponds to a closed bubble diagram formed from electron and hole pair: G(1, 2) and
G(2, 1+), respectively. Another name for bubble approximation is the random-phase
approximation (RPA), which originates from calculations on homogeneous electron
gas, where wave-functions are plane waves so the response function χ̃ would con-
tain sums of exponents with dominant phases entering the sum, and ’random-phase’
terms would average to zero. The self-energy Σxc becomes:

Σxc(1, 2) = iG(1, 2)W (1+, 2). (2.97)

The new system of equations is now:

Σxc(1, 2) = iG(1, 4)W (1+, 2) (2.98)

G(1, 2) = G0(1, 2) +G0(1, 3)Σxc(3, 4)G(4, 2) (2.99)

Γ̃(1, 2; 3) = δ(1, 2)δ(1, 3) (2.100)

χ̃(1, 2) = −iG(1, 2)G(2, 1+) (2.101)

W (1, 2) = vc(1, 2) + vc(1, 3)χ̃(3, 4)W (4, 2) (2.102)

(2.103)

GW using Kohn-Sham states

The basic components of many-body perturbative approach is the reference non-
interacting system which can be represented using solution from DFT Kohn-Sham
equations[87]. In order to construct bare Green functions G0

kn, one would usually
start using single particle Kohn-Sham states |kn⟩ with energy εkn:

G0
kn(ω) =

fkn
ω − εkn − iη

+
1− fkn

ω − εkn + iη
(2.104)
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where fkn are electron occupation numbers (1 or 0 for semiconductors and insulators
at zero temperature) and η → 0+ is a positive real infinitesimal which shifts poles
above and below the real axis for occupied and empty states, respectively. The
dressed Green functions Gkn(ω) obey the Dyson equation:

[Gkn(ω)]
−1 =

[
G0

kn(ω)
]−1 − [Σxc

kn(ω)− V xc
kn ] . (2.105)

The static term V xc
kn is subtracted from the dynamic self-energy Σxc(ω) to avoid

double counting since the static exchange-correlation is included in Kohn-Sham
eigenvalues εkn.

Self-energy Σxc(ω) can be separated into static exchange and dynamic correlation
as Σxc

kn(ω) = Σx
kn + Σc

kn(ω). The static exchange part Σx
kn is simply the Fock term

from Hartree-Fock self-energy:

Σx
kn = ⟨kn|Σx(r1, r2) |kn⟩

= −
occ∑

m

∫

BZ1

dq

(2π)3

∑

G

v(q+G) |ρnm(k,q,G)|2 fk−qm.
(2.106)

where the sum goes over occupied bands m only. The dynamic correlation part Σc
kn

is:

Σc
kn(ω) = ⟨kn|Σc(r1, r2, ω) |kn⟩

= i
all∑

m

∫

BZ1

dq

(2π)3

∑

GG′

v(q+G)ρnm(k,q,G)ρ∗nm(k,q,G
′)

×
∫

dω′G0
k−qm(ω − ω′)ϵ−1

GG′(q, ω
′).

(2.107)

The sum in Eq. (2.107) goes over both occupied and unoccupied bands, q,G and
G′ are vectors in reciprocal space, v(q+G) = 4π/|q+G|2 is the Fourier transform
of vc, and ρnm(k,g,G) 13 is expressed as:

ρnm(k,g,G) = ⟨kn| ei(q+G)·r |k− qm⟩ =
∫

Ω

drψ∗
kn(r)e

i(q+G)·rψk−qm(r) (2.108)

The inverse dielectric function ϵ−1
GG′(q, ω′) is connected to reducible polarization

χ as:

ϵ−1
GG′(q, ω) = δGG′ + v(q+G)χGG′(q, ω), (2.109)

and reducible polarization χ is connected to irreducible polarization χ̃ by a Dyson
equation:

χ(1, 2) = χ̃(1, 2) + χ̃(1, 3)vc(3, 4)χ(4, 2), (2.110)

13In Yambo code documentation and Ref. [87], ρnm(k,g,G) is referred as ’oscillator’. This
quantity and its Fourier transform appear frequently so within Yambo there are procedures that
take advantage of symmetry operations to reduce the number of calculations for k and k−q pairs,
and fast Fourier transform numerical techniques to speed up the computations.
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which leads to a practical expression:

χGG′(q, ω) = [δGG′′ − v(q+G′′)χ̃GG′′(q, ω)]
−1
χ̃G′′G′(q, ω). (2.111)

Irreducible polarization is often approximated with bare polarization χ̃0 = −iG0G0

that is constructed from bare Green functions G0 :

χ̃GG′(q, ω) ≈ χ̃0
GG′(q, ω)

= 2
∑

nn′

∫

BZ1

dq

(2π)3
ρ∗kn′n(q,G)ρkn′n(q,G

′)(fk−qn)(1− fkn′)

×
[

1

ω − εk−qn − εkn′ + iη
− 1

ω − εk−qn′ − εkn − iη

]
.

(2.112)

Once the diagonal terms for state |kn⟩ of static exchange Σx and dynamic cor-
relation Σc(ω) parts of self-energy are obtained they are inserted into Eq. (2.105).
The GW quasi-particle energy ωQP

kn are poles of Gkn(ω) or obtained by solving for
ω:

ω − εkn − Σxc
kn(ω) + V xc

kn = 0 (2.113)

Another way of obtaining quasi-particle energies is by plotting the imaginary part
of the dressed Green function on a dense ω grid, i.e. the spectral function Akn(ω) =
−1/π| ImGkn(ω)| which should produce a quasi-particle peak at ReωQP

kn = EQP
kn

which is a value relatively close to εkn and perhaps some satellites. The half-width
of that peak is the imaginary part of the solution ImωQP

kn which is closely related to
the lifetime of that state. In practice however, calculating Σxc(ω) on a dense set of
ω is often avoided if the spectral function Akn(ω) is not required.

GW calculation in practice

Most codes perform a DFT calculation first and then GW on top of those results.
Even though DFT calculation can converge for a set of numerical parameters like
the k-grid density, number of bands in KS equation m, or the kinetic energy cutoff
determined by the number of G vectors, often GW calculations require careful study
of convergence for every value separate. In that case it is often a good strategy for
starting DFT calculation to have more ingredients than the convergence requires in
order to insure a good convergence in GW as well.

Because Σx
kn from Eq. (2.106), is static and doesn’t require much computational

resources it is calculated first to check the convergence and determine if starting DFT
calculation provides enough ingredients. The convergence is checked for density of
k-grid where integration over q becomes a sum over all k. If DFT is converged, a
non-self-consistent calculation can be performed to increase the density of the k grid.
The number of G vectors NG in the sum is controlled by kinetic energy cutoff which
cannot be increased by a non-self-consistent calculation and a new starting DFT
calculation has to be performed. These convergence parameters should give a decent
estimate on where one can look for convergence when calculating the dynamical part
Σc

kn(ω).
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The dynamical part of self-energy Σc
kn(ω) is the most involved part and requires

careful study of convergence. The number ofG vectorsNG determines the size of the
inverse dielectric square matrix ϵ−1(q, ω). At the same time calculations of χ̃ which
make up ϵ−1 must contain enough empty bands for sums over n and n′ in Eq. (2.112)
to converge. If DFT calculation is well converged a non-self consistent calculation
can be performed to obtain more empty KS states. There is also an integral over q
which turns into a sum over the whole k-grid from the DFT calculations. If DFT
is well converged, a non-self consistent calculation can be used to obtain results for
a denser k/q-grid. Convergence over the number of G, n, and q must be checked
carefully and independently of each other.

Simplifying the dielectric function ϵ−1
GG′: RPA and PPA

The most involved term of the dynamic correlation part Σc
kn in Eq. (2.107) is the

inverse dielectric function ϵ−1
GG′(q, ω). Within RPA, when polarization contains only

bubble diagrams, and even when irreducible polarization is approximated with bare
polarization χ̃GG′(q, ω) ≈ χ̃0

GG′(q, ω), dielectric function ϵ−1
GG′(q, ω) and therefore

χ̃0
GG′(q, ω) will require a very dense set of ω values. In Eq. (2.111), in order

to obtain reducible polarization χGG′(q, ω), one has to find an inverse matrix of
[δGG′′ + v(q+G′′)χ̃GG′′(q, ω)], which is a NG×NG sized matrix, where NG is the
number of G vectors.

The number NG is often huge, and finding an inverse to such large matrices is,
by itself a significant computational burden making the calculation of χ̃0

GG′(q, ω) a
bottleneck of the whole computational procedure. Things become more cumbersome
if this has to repeated for every ω and q, which means that Nω×Nq such matrices
have to be inverted, where Nω and Nq are the number of ω and q points, respec-
tively. Such approach requires many computationally demanding (time consuming
and often memory intensive) calculations that one wishes to avoid.

In order to avoid the inversion of Nω×Nq matrices of size NG×NG, one can use
the plasmon-pole approximation (PPA) and determine ϵ−1

GG′(q, ω) directly as:

ϵ−1
GG′(q, ω) ≈ ϵ−1

GG′(q, ω)PPA

= δGG′

+RGG′(q)
[
(ω − ΩGG′(q) + iη)−1 − (ω − ΩGG′(q)− iη)−1

]
,

(2.114)

where RGG′(q) and ΩGG′(q) are parameters which are determined by fitting each
component. Fitting is performed using the PPA condition which states that non-
PPA ϵ−1

GG′(q, ω) from Eq. (2.109) and from PPA Eq. (2.114) must give the same
result for frequencies ω = 0 and ω = iEPPA, where EPPA is an input parameter.
This way, for non-PPA ϵ−1

GG′(q, ω) from Eq. (2.109), the polarization χ̃0
GG′(q, ω) is

calculated only twice, namely for ω = 0 and ω = iEPPA, instead for a dense grid of
ω. Although the inversion of NG×NG matrices is avoided, there are still Nω×Nq

matrices, which is often a very large number.
The number of calculations for different q points can also be reduced by deducing

which points are equivalent due to symmetry rules to avoid repeated calculations.
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Secant method and quasi-particle approximation (QPA) can reduce the number of
ω points for which Σc

kn(ω) has to be calculated.

Avoiding calculation for a dense ω set: Secant method

To avoid Nω calculations over dense set of ω, one can look for a solution for
Eq. (2.113) by some method of optimization like the Secant method. In Secant
method, Σxc

kn(ω) is calculated for initial guess of ω (for e.g. ω = εkn) and then in
subsequent steps in search of the solution of Eq. (2.113) for ω.

Further reducing calculations over ω: QPA

Besides the Secant method, another useful approximation is the linear or quasi-
particle approximation (QPA), which assumes that Σxc

kn can be approximated by a
smooth linear function i.e. a linear Taylor series around εkn. In QPA, the energies
are:

EQPA
kn = εkn + Zkn [Σ

xc
kn(εkn)− V xc

kn ] , (2.115)

where

Zkn =

[
1− ∂Σxc(ω)

∂ω

∣∣∣∣
ω=εkn

]−1

(2.116)

is sometimes also called the quasi-particle strength or renormalization factor, it is
usually 0.6 ≤ Z ≤ 1. The dressed Green function Gkn(ω) from Eq. (2.105) in QPA
becomes:

Gkn(ω) ≈ GQPA
kn (ω) = Zkn

[
fkn

ω − EQPA
kn − iη

− 1− fkn

ω − EQPA
kn + iη

]
. (2.117)

One-shot method: G0W0

Performing the GW loop only once using the RPA approximation χ̃ ≈ χ̃0 = −iG0G0

produces W ≈ W 0 = vc + vcχ̃
0W 0 is often called the one-shot or G0W0 approxi-

mation. To go further, one would calculate the polarization χ̃ again with dressed
G or GQPA and continue the loop until self-consistency is achieved. Even though
calculations that go beyond G0W0 are possible, they are much more computation-
ally demanding. All mention of GW results in this work will refer to the G0W0

calculations.
Band gaps obtained within G0W0 correspond to energies of adding or removing

an electron like the ones measured using inverse and direct photoemission spec-
troscopy. Optical gaps, where electron is excited to an empty state by a photon,
which is measured by absorption spectroscopy methods, cannot be obtained by any
GW approximation. The reason for this is that absorbed photon creates an elec-
tron and hole pair, which in turn interact with the system, and such pair cannot
be described when 3 and 4 point vertices are neglected (Γ̃(1, 2; 3) = δ(1, 2)δ(1, 3)
and δΣxc(1, 2)/δG(4, 5) = 0 in Eq. (2.91), respectively) like in the case of GW ap-
proximation. One has to return to Hedin’s equations and include them to form a
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Bethe-Salpeter equation [83] which solves the problem for electron-hole pair and
produces absorption spectra. Such calculations are only mentioned here in passing,
since they are not related to any results obtained in this thesis.

2.8 Phononic structure

In Sec. 2.3, the problem of total Hamiltonian HTOT was separated on electronic
Hel. and ionic parts Hion. using the Born-Oppenheimer approximation. Section 2.7
contained theoretical discussion and described computational methods for obtaining
the electronic structure in crystals by solving for the electronic part Hel. of HTOT.

This section is dedicated to the ionic part Hion. of the total Hamiltonian HTOT.
In solids, ions move around their equilibrium positions producing quanta of vibra-
tion called phonons. Ionic movement directly depends on the ground state electronic
structure, which is the reason why computation of the electronic structure was ex-
plained first, in the previous chapter, and is essential for following the computational
techniques explained in the present chapter.

The section starts with a general theoretical discussion about ionic vibration
assuming the harmonic approximation. Even though BO approximation separated
the electronic and ionic problem, in practice the ionic problem is closely related to
the atomic configuration and the ground state energy of the electronic system, so
these two problems become again, in a way, non separable. Atomic configuration
affects the electronic ground state and electronic ground state in turn affects the
vibration of ions.

Similar to electronic structure, one is interested in the dispersion relation of
phononic energies in the 1BZ, called the phononic structure. Periodic ionic move-
ment can be described using phononic frequencies ωqν (energies ℏωqν) which are
distinguished by phonon bands ν (Nν = 3 × Nat.), and their reciprocal vector q
(crystal momentum ℏq) in the 1BZ14. Naturally, all symmetry operations that were
valid in the electronic case, hold here as well and can be used to reduce the number
of calculations in same aspects.

When ionic vibrations are small and harmonic, they can be computed by dis-
torting one-by-one atom from its equilibrium position, to obtain forces on the atoms
and then interatomic force constants which lead to phonon frequencies. Interatomic
force constants can then be Fourier transformed to reciprocal space and sorted to
their respectable q vectors. This method is called the frozen phonon method. The
phonon related to reciprocal vector q is calculated by moving atoms from separate
unit cells that are connected by a lattice vector T from Sec. 2.4, which requires the
usage of large supercells. Calculations can become untractable as T becomes larger
in order for q to become smaller, i.e. in the case of q → 0. Another downside of
this method is the fact that a chosen supercell defines the q-grid: if one wishes use
a new, denser q′-grid, the whole procedure must be repeated, even for points that

14To distinguish electron- and phonon- related indices, the vectors for the crystal momentum for
phonons (electrons) will be labeled q (k) and phonon (electron) bands will be labeled with Greek
letters ν, ν′ (Latin letters n, n′, m, etc.)
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q′- and q-grid share. General theoretic discussion and basis of the frozen phonon
method is presented in Sec. 2.8.1

To overcome this problem, a perturbation theory can be implemented directly
into DFT, called the density functional perturbation theory (DFPT) which reduces
all calculations to one unit cell and the 1BZ. Within DFPT, linear responses to elec-
tronic density, Kohn-Sham states, and self-consistent potential are obtained which
are then used to generate interatomic force constants and phonon frequencies. DFPT
method is explained in greater detail in Sec. 2.8.3

Finally, in the case when ionic movement is not harmonic, the self-consistent
phonon (SCPH) method can be used to obtain phononic frequencies for anharmonic
vibrations using many body Green’s function theory. SCPH method is expanded in
Sec. 2.8.4.

2.8.1 Ionic vibrations

When possible lattice structures were discussed in Sec. 2.2 and for the purpose
of translational invariance within the lattice in Sec. 2.4, atoms were considered
to have a fixed position in space. Even though atoms in the sense of a crystal
structure are considered to be static, they are actually periodically moving around
their equilibrium positions, and their crystal structure is then considered to be a
time average of their individual positions. This movement however, is rather slow
compared to the frequency of electrons since the mass of a proton is about 1.8×103

greater than the mass of an electron which means that for typical semiconductors
with a band gap around 1 eV the frequency of the electrons will be around 103 times
greater than the frequency of the ions. In other words, ions seem stationary from
the electron’s point of view and from ionic point of view, the movement of electrons
is instantaneous i.e. ions can’t excite electrons enough and they stay in their ground
state while ions are moving. This is the basis of the adiabatic Born-Oppenheimer
(BO) approximation first mentioned in Sec. 2.3.

In such adiabatic approximation, the total Hamiltonian HTOT can be decoupled
into kinetic part of the ions Tion and the total BO Hamiltonian that contains kinetic
energy of all electrons Tel and Coulomb interaction between electrons and ions Vel−ion,
electrons and electrons Vel−el and between ions Vion−ion:

Hel.+ions ≡ HTOT = Tion +HBO,

HBO = Tel + Vion−ion + Vel−ion + Vel−el.
(2.118)

Suppose that it is possible to obtain a wavefunction Ψ({R}, {r}) which solves for
HBO where {R} and {r} are the collective coordinates af all ions and electrons,
respectively. This solution results in the BO energy surface EBO({R}) which is
defined on a manyfold of all possible positions of ions in the crystal {R}. The
configuration of ionic positions which produces the minimal value for EBO on the
manyfold of possible ion configuration {R} is called the equilibrium configuration
{Req}:

EBO({Req}) = min
{R}

⟨Ψ({R})|HBO({R}) |Ψ({R})⟩
⟨Ψ({R})|Ψ({R})⟩ . (2.119)
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In BO approximation, where EBO is solved separately, the Schrödinger equation
for ionic vibrational energy Evib is:

(∑

κ,p

P 2
κ,p

2Mκ

+ EBO({R})
)
Φ(R) = EvibΦ(R), (2.120)

where κ = 1, . . . , Nat. is used to distinguish individual atoms, out of Nat atoms
contained in one unit cell, and p is used to distinguish individual unit cells in the
crystal.

In order to make sum over p finite, a set of connected but not overlaping primitive
unit cells is constructed in order to form a supercell. This supercell conmensurates
with the underlying Bravais lattice [49].

The position of one unit cell from the origin is determined by a lattice vector
Tp, where p marks the index or a particular unit cell.

The position of individual ions can be determined relative to their unit cell
Rκ,p = Tp +Rκ, where κ is the index of an atom found in the unit cell p15.

Since the movement of the atoms is much smaller than the distance between
them, one can assume that the ionic configuration will change only in a small area
around the minima of the BO energy surface EBO, thus allowing one to expand it
using Taylor series:

EBO({R}) =EBO({Req}) +
∑

κ,p

∂EBO({R})
∂Rκ,p

∣∣∣∣
R=Req

∆Rκ,p

+
1

2

∑

κ ,p
κ′,p′

∂2EBO({R})
∂Rκ,p∂Rκ′,p′

∣∣∣∣
R=Req

∆Rκ,p∆Rκ′,p′ + . . .
(2.121)

where ∆Rκ,p = Req
κ,p − Rκ,p. The zero-th term EBO({Req}) can be normalized to

zero. The first term, linear in ∆R, represents a force acting on ion κ in cell p:

Fκ,p = −∂E
BO({R})
∂Rκ,p

, (2.122)

where all forces on ions is zero forR = Req since it is a derivative at the minima of the
energy surface. The second term, quadratic in ∆R, describes harmonic oscillations
around {Req}. These harmonic terms are also called interatomic force constants
Cκα,p
κ′α′p′ :

Cκα,p
κ′α′p′ =

∂EBO

∂Rκ′α′,p′∂Rκα,p

, (2.123)

and they provide information on how the force on ion κ, p along the direction α is af-
fected by the movement of ion κ′, p′ along the direction α′ and vice versa since deriva-
tives in this case are symmetric w.r.t. exchange of indices (κα, p) ↔ (κ′α′, p′). In the

15The terms ’atom’ and ’ion’ are used interchangeably in most of this chapter. When atomic
cores (with or without their core electrons) are approximated as point charges, with net positive
charge, as in this case, the term ion is more accurate. It should be emphasized that these ions
originate from atoms. However, there are cases where these ions originate from molecules, but that
is out of the scope of this work.
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harmonic approximation all terms of ∆R that are beyond quadratic in Eq. (2.121)
are neglected.

In the harmonic and adiabatic BO approximation, the equation for ionic vibra-
tions is:



∑

κ,p

P 2
κ,p

2Mκ

+
1

2

∑

κ ,p
κ′,p′

Cκα,p
κ′α′,p′∆Rκα,p∆Rκ′α′,p′


Φ(R) = EvibΦ(R). (2.124)

One can use Fourier transform on the interatomic force constants Cκα,p
κ′α′,p′ to

obtain the dynamical matrix Dκα
κ′α′(q):

Dκα
κ′α′(q) =

1

Nuc

∑

p,p′

e−iq·Tp

M
1/2
κ

Cκα,p
κ′α′p′

eiq·Tp′

M
1/2
κ′

=
∑

p′

(MκMκ′)
−1/2Cκα,0

κ′α′,p′e
iq·Tp′ .

(2.125)

The dynamical matrix can be made to depend only on the distance between unit
cells (Tp−Tp′), and since the interatomic constants are symmetric when exchanging
indices p ↔ p′ (as well as κ ↔ κ′ and α ↔ α′), one unit cell can be chosen as the
origin to reduce the summation over p since

∑
p e

iq·0 = Nuc in Eq. (2.125).

Conmensurable and inconmensurable perturbations

One can take a brief moment, to analyze the meaning of Eq. (2.125) for different
values of q. For phonons, same as for electrons, all reciprocal vectors q can be
reduced to one unit cell in the reciprocal space, i.e. to the 1BZ.

If one were to imagine a 1 dimensional chain of unit cells with primitive vectors
of real and reciprocal lattice a and b, respectively, then the lattice vectors can be
expressed as Tp = a × p, p ∈ Z and generators of translations q = (2π/a)b × s,
s ∈ R, and a · b = 1.

For s ∈ Z, the exponent in Eq. (2.125) is ei
2π
a
s×ap′ = ei2πs×p

′
= 1, and the

dynamical matrix

Dκα
κ′α′(q) =

∑

p′

(MκMκ′)
−1/2Cκα,0

κ′α′,p′ , (2.126)

describes a phonon for which displacement is periodic over all unit cells p′ and
Dκα
κ′α′(q) are purely real. This case is equivalent to q = 0⃗ ≡ Γ, also known as the

long-wavelength limit16.
In the case where s = 1/m, m ∈ Z/{0,±1}, the exponent in Eq. (2.125) is

ei
2π
a
s×ap′ = ei2πs×p

′
= ei2π×

p′
m , the dynamical matrix

Dκα
κ′α′(q) =

∑

p′

(MκMκ′)
−1/2Cκα,0

κ′α′,p′e
i2π× p′

m , (2.127)

16In the case of molecules, where there is no translational invariance, calculation for Γ point only
is sufficient.
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describes a phonon for which displacement is periodic at everym-th cell andDκα
κ′α′(q)

are complex numbers. This case is equivalent to q ̸= 0⃗. For solids where translational
invariance holds, calculation on q-grid is required. Denser q-grids require larger
supercells as small q corresponds to an interatomic constant for large a distance
between unit cells Tp′ in the BvK cell.

When s ∈ Z/{0} and s = 1/m, m ∈ Z/{0,±1} it is said that these perturbations
are conmensurable with the BvK cell, since a 1-to-1 correspondence between lattice
vectors Tp′ and q grid can be established.

However, when s = 1/m, but m ∈ R/Q (e.g. s = 1/
√
2, 1/

√
7), a 1-to-1 corre-

spondence between q and Tp′ is impossible. In this case the perturbation described
by q is inconmensurable with the BvK cell17.

In practice, only conmensurable perturbations can be calculated using methods
that obtain dynamical matrices directly from BvK supercells like for e.g. the frozen
phonon method. Inconmensurable (as well ass conmensurable) perturbations in
harmonic approximation can be directly computed using DFPT (Sec. 2.8.3).

Properties of dynamical matrices

Even though interatomic force constants are real, the dynamical matrix will be
purely real only when q = 0⃗ ≡ Γ. Exchanging p ↔ p′ in Eq. (2.125) in interatomic
force constant is equivalent to exchanging q ↔ −q, and which is equivalent to
complex conjugation of dynamical matrices Dκα

κ′α′(−q) = (Dκα
κ′α′)∗(q), which leads to

relations:

ω2
qν = ω2

−qν , ξκα,ν(−q) = ξ∗κα,ν(q), (2.128)

where ξκα,ν(−q) are eigenvectors that diagonalize dynamical matrices and ωqν are
their eigenvalues:

∑

κ′α′

Dκ′α′

κ α (q) ξκ′α′,ν(q) = ω2
qν ξκα,ν(q). (2.129)

The size of the dynamical matrix is 3×Nat, where Nat is the number of atoms in
one unit cell. The number of possible solutions ν for each q will be 3×Nat.

Eigenvectors ξκα,ν(q) are orthogonal and normalized to unity:

∑

ν

ξ∗κ′α′,ν(q)ξκα,ν(q) = δκκ′δαα′ ,

∑

κα

ξ∗κα,ν′(q)ξκα,ν(q) = δνν′ ,
(2.130)

17As a remainder: Z and Q represent a set of integers and rational numbers, both of which are
subsets or the set of real numbers R.
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Phonons in the classical treatment

The solutions for ionic displacements can also be obtained by following the classical
route. The ionic Hamiltonian Hion. in the BO approximation from Eq. (2.124) is

Hion. =
∑

κ,p

P 2
κ,p

2Mκ

+
1

2

∑

κ ,p
κ′,p′

Cκα,p
κ′α′,p′∆Rκα,p∆Rκ′α′,p′ . (2.131)

One can write down the equations of motion using the Hamiltonian equations:

Ṗργ,s = − ∂Hion.

∂∆Rργ,s

= −1

2

∑

κ ,p
κ′,p′

Cκα,p
κ′α′p′ (∆Rκα,pδρκ′δγα′δsp′ +∆Rκ′α′,p′δρκδγαδsp)

Ṙργ,s =
∂Hion.

∂Pργ,s
=
∑

κ,p

Pκα,p
Mκ

δρκδγαδsp

Mρ∆R̈ργ,s = −
∑

κα,p

Cκα,p
ργ,s∆Rκα,p

(2.132)

The solution in the harmonic approximation can be represented using plane waves
that travel parallel to vector q:

∆Rκα,p =M−1/2
κ

∑

q

Qκα(q)e
−i(ωqt−q·Tp), (2.133)

where Qκα(q) contains the polarization and the amplitude of the wave. Inserting
Eq. (2.133) into equation of motion Eq. (2.132):

∑

q

ω2
qQργ(q)e

iq·Ts =
∑

q

∑

κα,p

1

M
1/2
ρ

Cκα,p
ργ,s

1

M
1/2
κ

Qκα(q)e
iq·Tp , (2.134)

and multiplying both sides by N−1
uc

∑
s e

−iq·Ts , where Nuc is the number of unit cells
in BvK cell:

∑

q

ω2
qQργ(q) =

∑

q

∑

κα

1

Nuc

∑

p,s

e−iq·Ts

M
1/2
κ

Cκα,p
ργ,s

eiq·Tp

M
1/2
κ

Qκα(q)

=
∑

q

∑

κα

Dκα
ργ (q)Qκα(q),

(2.135)

leads to:

∑

q

[∑

κα

Dκα
ργ (q)Qκα(q)− ω2

qQργ,ν(q)

]
= 0. (2.136)

Since all q terms are independent to each other, the last equation will be zero when
all terms in the sum over q are zero, which essentially leads to Eq. (2.129):

Dκα
ργ (qν)Qκα,ν(q)− ω2

qνQργ,ν(q) = 0. (2.137)

The polarization Qκα,ν(q) is equivalent to eigenvectors of ξκα,ν(q), and they obey
the same relations. Because of this, vectors eκ,ν(q) =

∑
α ξκα,νeα are also called

polarization vectors of phonon mode q, ν or just phonon polarization vectors.
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Acoustic and optical phonon modes

If the unit cell would contain only one atom, all three frequencies should linearly
approach zero in the long wavelength limit, i.e. when |q| → 0. Classically speaking,
this case corresponds to whole unit cells with their center of mass moving together,
the group velocity of this wave is non-zero, like a runaway wave. Since it resembles
the acoustic sound waves, these 3 modes are called the acoustic modes. When q = 0
the relative distance between unit cells (atoms) doesn’t change, so the whole lattice
is moving in phase (unison) so the restitution force acting on the atoms is zero, and
the frequency is also zero: ω2

qν = 0.
The translational invariance in the crystal, ensures that when all atoms are

displaced by some constant vector δ⃗, all physical observables and their derivatives
stay the same:

EBO({R}+ δ⃗) = EBO({R}), ∂EBO({R}+ δ⃗)

∂Rκα,p

=
∂EBO({R})
∂Rκα,p

. (2.138)

This displacement can also be expanded using Taylor series:

∂EBO({R}+ δ⃗)

∂Rκα,p

=
∂EBO({R})
∂Rκα,p

+
∑

κ′α′,p

δα′
∂2EBO({R})
∂Rκ′α′,p′∂Rκα,p

+O(δ2), (2.139)

with the second term on the right-hand side vanishing:

∑

α′

δα′

∑

κ′,p′

∂2EBO({R})
∂Rκ′α′,p′∂Rκα,p

= 0, ∀δα′ ∈ R,

⇒
∑

κ′,p′

∂2EBO({R})
∂Rκ′α′,p′∂Rκα,p

=
∑

κ′,p′

Cκα,p
κ′α′,p′ = 0.

(2.140)

This is called the acoustic sum rule. Since all interatomic force constants are eval-
uated for the equilibrium configuration R = Req, this means that the force acting
in the direction α on the ion κ, p is unaffected by the sum of movement of all other
atoms κ′, p′ in all directions α′. Since collective displacements of atoms correspond
to q = Γ = 0⃗, the same will be true for the dynamical matrix:

∑

κ′,p′

eiΓ·⃗0

Mκ

Cκα,0
κ′α′,p′

eiΓ·T
′
p

Mκ′
=
∑

κ′

Dκα
κ′α′(Γ) = 0 (2.141)

If the unit cell contains two or more atoms of the same type, the rest of the modes
(Nn.at.−1)×3 should approach non-zero values as |q| → 0. In classical terms, there
is movement of atoms within the unit cell and the center of mass within that unit
cell is also moving. At |q| = 0 the unit cells are not moving in unison but rather like
a standing wave with zero group velocity. However since there is a restitution force
acting on the atoms in the unit cell they are vibrating with a non-zero frequency.
This behavior is similar to optical waves, therefore these modes are called the optical
modes.
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When |q| = 0 it is impossible to distinguish transversal and longitudinal direc-
tions of motion for optical modes. However, when q is still small but non-zero,
there will be two transversal components in the plane perpendicular to q and one
longitudinal parallel to q. If there are at least two atoms with a different charge
(and mass), an electric field between them is also generated. This macroscopic elec-
tric field VE = eE · r is not invariant after translation and therefore incompatible
with Born von-Karman periodic conditions. The range of dipole-dipole Coulomb
interaction between the moving ions is much greater than the boundaries of the unit
cell.

Such electric field will result in lifting the degeneracy around |q| = 0 but not
exactly at |q| = 0. For any direction of q there will always be one longitudinal
component (that lies along the direction of q) and two transversal components
(that lie in the plane perpendicular to q). The frequency of the non-degenerate
longitudinal optical component ωLO

q will be slightly higher than the 2-fold degenerate
transversal optical components ωTO

q . This phenomena is often referred to as LO-TO
splitting. When observing plots that show a phonon dispersion in 1BZ, this splitting
is often ’present’ at Γ point as well, due to the scale of the plot and being ’zoomed
out’, but it should be noted that they are degenerate only at exactly Γ and nowhere
else. The magnitude of the splitting greatly depends on the direction when moving
away from Γ.

Imaginary phonon frequencies: saddle points and anharmonic behavior

In the harmonic approximation, the interatomic force constants Cκα,p
κ′α′p′ can be writ-

ten as a Hessian matrix that consists of second derivatives of EBO. Since they are
evaluated at equilibrium position of atoms, where the energy surface EBO exhibits
a minimum, this matrix is positive definite, meaning that all its eigenvalues ω2

qν are
positive. Since those eigenvalues physically represent the harmonic frequencies of
ionic movement, only the positive values of

√
ω2
qν should be taken.

If however, all values of ω2
qν are negative, this means that the atomic configura-

tion in EBO is extremal, but it is the maximal value instead of minimal. This would
be a case of unstable equilibrium configuration. In the third case, where some ω2

qν

are positive and some are negative means that the chosen ionic configuration for
EBO is a saddle point. The frequencies for which ω2

qν is negative are called silent or
imaginary frequencies.

The discussion in this section assumed that there are no temperature effects i.e.
that the crystal is at T = 0 K. In practice, temperature effects can vary depending
on the material. In some materials it has minimal effects on the configuration of ions
at equilibrium and the only difference between T = 0 K and the room temperature
is a small effect of thermal expansion. In other materials, temperature effects can
lead to phase transitions where the configuration of ions is changed beyond simple
temperature expansion. In the later case, the harmonic approximation usually fails
when considering their configurations at temperatures other than T = 0 K.
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Phonons in the second quantization

The Hamiltonian for ionic vibration can also be written in the second quantization
using the well known ladder operators âqν and â†qν , which destroy and create a
qν-phonon respectively. The ionic displacements ∆Rκα,p are then expressed as:

∆Rκα,p = N−1/2
uc

∑

qν

eiq·Tpξκα,ν(q)

(2Mκωqν/ℏ)1/2
(
âqν + â†−qν

)
. (2.142)

This transforms the phonon Hamiltonian Hph:

Hph =
∑

κα,p

(
P 2
κα,p

2Mκ

+
1

2

∑

κ′α′,p′

Cκα,p
κ′α′,p′∆Rκα,p∆Rκ′α′,p′

)
, (2.143)

to:

Hph =
∑

qν

ℏωqν

(
â†qν âqν +

1

2

)
. (2.144)

Since ωqν appears in the denominator for the expression of ionic displacements
∆Rκα,p in Eq. (2.142), the summation over acoustic modes at Γ point (|q| = 0,
ωqν = ωΓA = 0) is skipped i.e. it is assumed that they contain zero amplitudes.

2.8.2 Frozen phonon method

In the harmonic approximation there are several ways to compute the dynamical
matrix (interatomic force constants). The simplest and earliest one is the frozen
phonon method which uses finite, periodic displacements of atoms from their equi-
librium configuration and was performed as early as in the 1980s [89, 90, 91]. In
the first step, the equilibrium configuration of ions is obtained, using either ab initio
methods like DFT, or using empirical lattice parameters. In most DFT codes, forces
are calculated on all atoms and all directions, so second derivatives are obtained di-
rectly from calculating forces on a system when one atom is displaced without the
need to displace atoms in pairs.

Procedure for frozen phonon calculation using DFT is as follows. One should
perform a calculation for displacing one atom κ, along one direction α in unit cell
p for ±∆R amount. After DFT calculation is complete, forces on all the rest κ′, p′

atoms along α′ directions are stored as Fκ′α′,p(∆Rκα,p) and process is repeated for all
displacements ±∆Rκα,p until all Fκ′α′,p(∆Rκα,p) are obtained18. Interatomic force
constants Cκα,p

κ′α′,p′ are then calculated using these displacements with the central finite
difference formula :

Cκα,p
κ′α′,p′ = − ∂2EBO({R})

∂Rκ′α′,p′∂Rκα,p

= −Fκ′α′,p′(+∆Rκα,p)− Fκ′α′,p′(−∆Rκα,p)

2∆R
. (2.145)

Since DFT can only produce the ground state, the displaced atoms are said to be
static and in their ground state or ’frozen in time’, therefore the name - frozen

18This process can be significantly reduced by skipping calculations for elements that are equiv-
alent due to symmetry rules.
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phonons. One can reduce the number of these calculations by using symmetry
properties of the crystal and determine how many interatomic force constants will
be unique and obtain the rest using the group theory. The simplicity of this method
is in its implementation, since it doesn’t require anything more than a standard
DFT. However, for a chosen grid of q vectors the Born von-Karman cell has to
contain at least the same number of unit cells. Moreover, the calculations for one
q grid are all coupled in a sense that if one desires to perform calculations on a
denser grid, the whole procedure has to be repeated on a supercell that corresponds
to that grid. The scaling of computational workload is very unfavorable when linear
dimensions of the supercell are increased as they scale as 3×NUC

at ×R9
IFC where RIFC

is the range of the interatomic force constants and scales as R3
IFC ∝ NSC

at where NSC
at

is the number of atoms in the supercell [92].This poor scaling of computational
resources becomes a problem especially when matrices in the long wavelength limit
(|q| → 0) are required.

2.8.3 Density functional perturbation theory - DFPT

The density functional perturbation theory (DFPT) avoids the computational bur-
den of supercells, and is able to perform all the calculation using only the atoms in
the unit cell. This method can be formulated either using the linear response theory
formulated by Baroni et at. [93, 94, 95, 92] as implemented in Quantum Espresso
code by Giannozzi et al [96, 97] or the variational method formulated by Gonze et
al. [98, 99, 100, 101, 102] as implemented in Abinit code [103, 104]. Both meth-
ods give the same result within the error of numerical accuracy. Since it doesn’t
require supercells, besides the reduced computational load, the DFPT computation
can be performed for arbitrary q, since calculations for each q are now decoupled
from any kind of predetermined grid. This means that unlike the frozen-phonon,
which computes interatomic forces in real space, and then obtains dynamical matri-
ces by Fourier transform to reciprocal space, the DFPT obtains dynamical matrices
directly. Because phonon dispersion is usually a rather smooth function of q, dy-
namical matrices can be easily interpolated for a denser q grid. The interpolation is
done by Fourier transform of dynamical matrices from reciprocal to real space which
will return the interatomic constants for a supercell. These interatomic constants
can be used to determine the dynamical matrices (and then the phonon frequencies)
for any q point that was not on the original grid. In the long wavelength limit, the
dynamical matrices are separated into analytic and non analytic part. The analytic
part for which the macroscopic electric field is zero is easily obtained. To obtain
the non analytic part, which contains the effects of macroscopic electric field, the
required macroscopic dielectric constant ε∞ and Born effective charges Z∗ can be
easily obtained with DFPT [93, 94, 95, 98, 99, 100, 101, 102, 92]. The non-analytic
part is essential to properly produce the LO-TO splitting in the phonon structure.
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Hellman-Feynman theorem

One can begin with the BO Hamiltonian HBO, which is

HBO({R}) = Tel({r}) + Vel−ion({R}, r) + Vel−el(r, r
′)

+ Vion−ion({R}),

Tel({r}) =
∑

i,p

−ℏ2∇2
i,p

2me

,

Vel−ion({R}, {r}) = −
∑

κ,i,p≥p′
Zκe

2vc(ri,p′ −Rκ,p),

Vel−el({r}, {r′}) =
∑

i>j,p≥p′
e2vc(ri,p − rj,p′),

Vion−ion({R}) =
∑

κ>κ′,p≥p′
Zκ,pZκ′,p′e

2vc(Rκ,p −Rκ′,p′),

(2.146)

where indices i, j and κ, κ′ take into account all electrons and ions, in one unit cell,
p, p′ go over all unit cells, vc is the Coulomb potential vc = (4πϵ0)

−1|r|−1, and {r}
and {R} are collective coordinates of all electrons and ions, respectively.

In the ground state, the BO energy can be expressed as a functional of electron
density:

EBO = Tel[n] +

∫
drnR(r)Vel−ion +

∫
drnR(r)Vel−el + Vion−ion, (2.147)

where nR(r) = Ψ∗({R}, r)Ψ({R}, r) is the electron charge density in the ground
state for ionic configuration {R} and Vion−ion depends only on ionic coordinates and
not on the electron density.

Hellman-Feynman theorem [105] states that the first derivative of the eigenvalues
of the Hamiltonian Hλ, which depends on a parameter λ is given by the expectation
value of the derivative of the Hamiltonian:

∂Eλ
∂λ

= ⟨Ψλ|
Hλ

∂λ
|Ψλ⟩ (2.148)

when HλΨλ = EλΨλ. In the BO approximation, and in the case for ionic vibrations,
this parameter λ can be replaced with the ionic positions {R}. This means that the
force acting on one ion from Eq. (2.122) can also be obtained as:

Fκ,p = −∂E
BO({R})
∂Rκ,p

= ⟨Ψ({R})| ∂H
BO

∂Rκ,p

|Ψ({R})⟩ (2.149)

Inserting Eq. (2.147) into Eq. (2.149), the force on one ion in BO approximation is
obtained:

Fκ,p = −
∫

drnR
∂Vel−ion

∂Rκ,p

− ∂Vion−ion

∂Rκ,p

(2.150)
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Interatomic force constants are then obtained by differentiating forces in Eq. (2.150):

Cκα,p
κ′α′,p′ =

∂2EBO

∂Rκ′α′,p′∂Rκα,p

= − ∂Fκα,p
∂Rκ′α′,p′

=

=

∫
dr

∂nR

∂Rκ′α′,p′

∂Vel−ion

∂Rκα,p

+

∫
drnR

∂2Vel−ion

∂Rκ′α′,p′∂Rκα,p

+
∂2Vion−ion

∂Rκ′α′,p′∂Rκα,p

.

(2.151)

This result was first given by De Cicco and Johnson (1969) [106] and by Pick, Cohen,
and Martin (1970) [107] and it shows that in the BO approximation, the interatomic
force constants depend not only on electron charge density in the ground state but
also on its linear response to ionic movement ∂nR/∂Rκα,p.

The electron-ion potential V ion−ion is just a sum over individual Coulomb poten-
tials of ions so its second derivatives are disconnected from the electron density. The
potential V el−ion, is local in r when Rκ are fixed parameters, so the computation of
its first and second derivatives over Rκα,p is straightforward.

The most involved part of the procedure is obtaining the derivative of elec-
tronic density ∂nR

∂Rκ′α′,p′
. The Kohn-Sham scheme in DFT claims that the ground

state density of an interacting system is the same as the ground state density of a
corresponding non-interacting auxiliary system. Using the Kohn-Sham scheme one
can obtain ∂nR

∂Rκ′α′,p′
by perturbing the Kohn-Sham Hamiltonian which describes this

auxiliary non-interacting system.

Perturbations of Kohn-Sham Hamiltonian: The Sternheimer equation

Within density functional theory, the electronic density of the system is obtained
from the Kohn-Sham Hamiltonian HKS:

HKSΨkm =

[
p2

2me

+ V KS(r, {R})
]
Ψkm = εkmΨkm, (2.152)

where VKS is the effective Kohn-Sham potential from Eq. (2.60) in Sec. 2.7.2 that
describes local potential acting on the auxiliary system of non-interacting electrons.
Contributions to VKS include: the external potential Vext, Hartree electronic screen-
ing VH and the exchange-correlation potential Vxc:

V KS = Vext + VH + Vxc,

Vext = −
∑

κ,p

Zκe
2vc(r−Rκ −Tp),

VH =
e2

4πϵ0

∑

p

∫

sc

dr′
n(r′, {R})

|r− r′ −Tp|
,

Vxc =
δExc[n]

δn

∣∣∣∣
n(r,{R})

(2.153)
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The electron density n(r) in this case is expressed using a sum of Kohn-Sham states,
where index R compared to one found in Eq. (2.147), Eq. (2.149), Eq. (2.150) and
Eq. (2.151) is dropped since the equilibrium configuration {Req} is assumed:

n(r) =
occ.∑

km

Ψ∗
kmΨkm =

occ.∑

km

u∗kmukm, (2.154)

where m goes over occupied states only. One can define a differential operator ∆λ

that acts on function Fλ that depends on some set of parameters λ = {λ1, λ2, . . . }
as:

∆λFλ =
∑

i

∂λiFλδλi (2.155)

and replace λi with ionic positions Rκα,p to expand the Kohn-Sham Hamilotnian,
wave-function, energy and electronic density to linear order around the equilibrium
configuration {Req}:

HKS = HKS
0 +∆RV KS,

Ψkm = Ψ0
km +∆RΨkm,

εkm = ε0km +∆Rεkm,

n(r) = n0(r) + ∆Rn(r),

(2.156)

which transforms the Kohn-Sham equation Eq. (2.152) to:

(
HKS

0 − ε0km
) ∣∣∆RΨkm

〉
= −

(
∆RV KS −∆Rεkm

) ∣∣Ψ0
km

〉
. (2.157)

The Eq. (2.157) is also known in atomic physics as the Sternheimer equation, named
after Sternheimer who used it in 1954 to calculate atomic polarizabilities [108].
Self-consistent version of this equation was introduced by Mahan in 1980 [109] to
calculate atomic polarizabilities within DFT using linear density approximation.

Using first-order perturbation theory, the linear response to ∆R for εkm, V
KS,

n(r), and Ψkm can be obtained as:

∆Rεkm =
〈
Ψ0

km

∣∣∆RV KS
∣∣Ψ0

km

〉
,

∆RV KS = ∆RVext +

∫

sc

dr′
e2∆Rn(r′)

4πϵ0|r− r′| +
dVxc[n]

dn

∣∣∣∣
n=n(r)

∆Rn(r),

∆Rn(r) =
occ.∑

km

[
(∆RΨ0∗

km)Ψ
0
km +Ψ0∗

km(∆
RΨ0

km)
]

= 2Re
occ.∑

km

Ψ0∗
km∆

RΨ0
km

∆RΨkm =
∑

k′m′ ̸=km

Ψ0
k′m′

⟨Ψ0
k′m′ |∆RV KS |Ψ0

km⟩
ε0km − ε0k′m′

.

(2.158)



2.8. PHONONIC STRUCTURE 69

Projection on unoccupied states only

The linear response to ionic movement of electron density ∆Rn(r) in Eq. (2.158)
has one sum over occupied states and another over both occupied and unoccupied:

∆Rn(r) = 2Re
occ.∑

km

∑

k′m′ ̸=km

Ψ0∗
kmΨ

0
k′m′

⟨Ψ0
k′m′|∆RV KS |Ψ0

km⟩
ε0km − ε0k′m′

. (2.159)

If one separates the sum over all states for ∆Rn(r) as a sum of occupied and
unoccupied states:

∑
k′m′ ̸=km =

∑occ.
k′m′ ̸=km+

∑unocc.
k′m′ ̸=km the terms which contain∑occ.

km

∑occ.
k′m′ ̸=km would cancel each other since the expectation values in their nu-

merators are the same:

⟨Ψk′m′|∆RV KS |Ψkm⟩ = ⟨Ψkm|∆RV KS |Ψk′m′⟩ (2.160)

and their denominators have the opposite signs: ε0km−ε0k′m′ and ε0k′m′ −ε0km, respec-
tively.

The linear response to electron density ∆Rn(r) has only contributions from ma-
trix elements that connect occupied to unoccupied states:

∆Rn(r) = 2Re
occ.∑

km

Ψ∗
km

unocc.∑

k′m′

Ψk′m′
⟨Ψ0

k′m′ |∆RV KS |Ψ0
km⟩

ε0km − ε0k′m′
. (2.161)

In other words, the electron-density linear response ∆Rn(r), does not respond to
any perturbations that connect occupied states only. One can define an operators
Pv and Pc that project to occupied and unoccupied states:

Pv =
occ.∑

v′

∣∣∣Ψ(0)
kv′

〉〈
Ψ

(0)
kv′

∣∣∣

Pc =
unocc.∑

c′

∣∣∣Ψ(0)
kc′

〉〈
Ψ

(0)
kc′

∣∣∣ ,

PvPc = PcPv = 0

Pv + Pc = 1,

(2.162)

and express ∆Rn(r) as:

∆Rn(r) = 2Re
occ.∑

kv

Ψ∗
kv

(
Pc∆

RΨkv

)
. (2.163)

Since it has been shown that only Pc∆
RΨkv is required for ∆Rn(r), one can apply

projection Pc from the left on the Sternheimer equation (2.157):
(
HKS

0 − ε0kv
)
Pc
∣∣∆RΨ0

kv

〉
= −Pc∆RV KS

∣∣Ψ0
kv

〉
, (2.164)

where [HKS
0 , Pc] = [∆Rεkv, Pc] = 0 and Pc

∣∣∣Ψ(0)
kv

〉
= 0. Even though Eq. (2.164)

doesn’t connect occupied states, one can ensure to avoid singularities by adding
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αPv in parenthesis on the left-hand-side, since PcPv = 0, where α is a small but
non-zero parameter. This transforms Eq. (2.164) to:

Pc
∣∣∆RΨ0

kv

〉
= Gkv(ε

(0)
kv )Pc∆

RV KS
∣∣Ψ0

kv

〉
,

Gkv(ω) =
[
HKS

0 + αPv − ε0kv
]−1

(2.165)

In semiconductors and insulators, where the electronic ground state has a well
defined number of occupied states and a reasonably wide band gap, one can make
a clear separation in sums in Eq. (2.161) and Eq. (2.163). In metals however, even
infinitesimal perturbations such as ionic movement can change the orbital occupation
number of electrons which can influence the Fermi level which separates occupied
and occupied states. This case has been discussed by de Gironcoli in 1995 [110] in
detail. Popular approach is to apply broadening the Kohn-Sham energy levels using
some smearing function: Gaussian, Lorentzian, Fermi-Dirac distribution, which has
a direct influence on electronic density and any derivative of it. The rest of this
chapter is limited only to the case of insulators and semiconductors when there is a
well defined gap in the electronic structure.

Projection on one unit cell: decoupling of individual q-points

One of the main advantages of DFPT over the frozen phonon method is the ability
to decouple perturbations of different q, making calculation for any q independent
of all other q′ and avoid the use of large super cells. One can introduce projectors
P k+q which project onto k + q manyfold of states, and by translational invariance
commute with HKS. Projectors P k+q also commute with projectors Pv/c and their

product is P k+qPv/c = P k+q
v/c . Projecting Eq. (2.164) over k+ q manifold results in:

P k+q
c

(
HKS + αP k+q

v − ε0kv
) ∣∣∆RΨ0

kv

〉
= −P k+q

c ∆RV KS
∣∣Ψ0

kv

〉
. (2.166)

where
∣∣∆RΨk+qv

〉
= P k+q

v

∣∣∆RΨkv

〉
, and v signifies an occupied state. If one were

to take the Fourier transform of ∆RV KS as:

∆RV KS =
∑

q

eiq·r∆qvKS
q (2.167)

where vKS
q is a lattice-periodic function, the Eq. (2.166) transforms into:

(
HKS

k+q + α
occ.∑

v′

|uk+qv′⟩ ⟨uk+qv′| − ε0kv

)
P k+q
c |∆qukv⟩

= −P k+q
c ∆qvKS

q |ukv⟩ ,
(2.168)

where ukv are lattice-periodic functions, HKS
k+q = e−i(k+q)·rHKSe+i(k+q)·r and projec-

tion operator P k+q
c can also be written as:

P k+q
c = 1− P k+q

v = 1−
occ.∑

v′

|uk+qv′⟩ ⟨uk+qv′ | . (2.169)
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Fourier q-components for electron-density ∆qnq(r) response and unit-cell potential
response ∆qvKS

q (r) are:

∆qnq(r) = 2Re
∑

kv

u∗kv(r)∆
quk+qv(r)

∆qvKS
q (r) = ∆qvextq +

∫
dr′

e2∆qnq(r
′)

|r− r′| e−iq(r−r′)

+
dvxc[n]

dn

∣∣∣∣
n=n(r)

∆qnq(r)

(2.170)

Eq. (2.168) and Eq. (2.170) form a set of self-consistent equations which are used
to obtain linear responses for:

• electron density ∆qnq(r),

• wavefunctions ∆quk+qv(r),

• and Kohn-Sham effective potential ∆RvKS
q (r),

to a perturbation of ionic displacement connected to vector q.
Since these equations are solved in terms of lattice periodic functions only, there

is no need to use supercells. Equivalently, this means that all q perturbations are
decoupled from each other. This is convenient, since calculations for any q (or a
grid of q-s) can be done independently from any other q′ (or a grid of different
q-s). This makes DFPT much more flexible than the frozen phonon method, where
calculations on one q-grid are predetermined by the size of the supercell, and if a
different q′-grid is chosen (with a different supercell) calculations must be repeated
even for the points that appear on both grids.

Interpolation of Dynamic matrices: Fourier transform of Interatomic
force constants

The Fourier transform of interatomic force constants C̃κα
κ′α′(q) will be:

C̃κα
κ′α′(q) = (Nuc)

−1
∑

pp′

e−iq·TpCκα,p
κ′α′,p′e

+iq·Tp′

=
∂2EBO

∂Rκ′α′(−q)∂Rκα(q)

(2.171)

where ∂/∂Rκα(q) =
∑

p e
−iq·Tp∂/∂Rκα,p. Using Eq. (2.151) one can separate the

contributions to C̃κα
κ′α′(q) from electron-ion potential V el−ion :

C̃κα
κ′α′(q)el−ion =

∫
dr

∂n(r)

∂Rκ′α′(−q)

∂Vel−ion

∂Rκα(q)

+

∫
drn(r)

∂2Vel−ion

∂Rκ′α′(−q)∂Rκα(q)
,

(2.172)
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and ion-ion potential V ion−ion:

C̃κα
κ′α′(q)ion−ion =

∫
dr

∂2Vion−ion

∂Rκ′α′(−q)∂Rκα(q)
. (2.173)

The derivative ∂n(r)/∂Rκ′α′(−q) is obtained from the DFPT loop as individual
components of ∆qnq(r). The derivatives ∂V el−ion/∂Rκα,q are already obtained as
components of ∆qv

el−ion
q in Eq. (2.170) and the second derivative is simply obtained

as components of the double variation ∆−q∆qvel−ion
q . The ion-ion potential V ion−ion

does not depend on electronic structure so it does not appear in the DFPT self-
consistent equations. This term, as well as its derivatives can be computed separately
from the electronic terms. The procedure is straightforward and it includes obtaining
the Ewald term EEw which already obtained in most codes during DFT procedure,
and computing its second derivatives to obtain C̃κα

κ′α′(q)ion−ion is done once without
the need for self-consistency.

The dynamic matrix is then obtained as:

Dκα
κ′α′(q) = (MκMκ′)

−1/2
[
C̃κα
κ′α′(q)el−ion + C̃κα

κ′α′(q)ion−ion

]
. (2.174)

Finally, eigenvectors ξκα,ν(q) and eigenvalues ωqν of Dκα
κ′α′(q) give phonon polariza-

tion vectors and phonon frequencies for ionic perturbation corresponding to vector
q, respectively.

Interatomic force constants in real space can be obtained by inverse Fourier
transform of dynamical matrices, considering that dynamical matrices were obtained
for a dense grid of q-vectors to ensure the convergence. Since the phonon dispersion
is a rather smooth function for q, interpolation to a denser q-grid can be done by
an inverse Fourier transform from real space interatomic force constants. Dense q
grid of Dynamical matrices is then used to produce phonon density of states and
dispersion relation.

The DFPT equations Eq. (2.168) and Eq. (2.170) are solved self-consistently,
using ground state calculations for a grid of k and k + q vectors, hence the com-
putational load is the same as the one for a ground state calculation. One should
always converge a DFT calculation first, before proceeding to DFPT procedure.

Convergence of DFPT calculations

One way to converge DFPT calculations, is to take a look at the acoustic sum rule,
which stems from the translational invariance, and states that for zone center q = Γ
perturbations, acoustic modes should have zero frequency or:

∑

κ′

Dκα
κ′α′(Γ) = 0. (2.175)

This was established in Eq. (2.140) and Eq. (2.141) when total energy in BO approx-
imation EBO was obtained by minimizing the BO energy surface using wavefunctions
that describe all electrons Ψ({r}, {R}). Since DFPT relies on DFT, for all terms
in the effective Kohn-Sham potential a collective translation of the ions is possible
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except for the exchange-correlation potential, which uses a fixed grid in real space in
the DFT implementation. Using a denser k-grid and/or larger kinetic energy cutoff
(more plane waves in the wavefunction expansion for plane wave basis codes) will
help acoustic modes approach zero but it will never land there exactly. One simple
fix for this is to modify the dynamical matrices:

Dκα
κ′α′(Γ)new = Dκα

κ′α′(Γ)− δρκ′
∑

ρ

Dκα
ρα′(Γ). (2.176)

This will modify the phonon frequencies at Γ only. If one wishes to obtain them at
q → 0, other dynamical matrices for q ̸= 0 should also be corrected. Since phonon
frequencies only approach zero at Γ one should check the convergence for different
k grids and kinetic energy cutoffs, and try to obtain a reasonably small values for
acoustic modes at Γ. Once the correction in Eq. (2.176) is small enough, one should
continue for rest q point using the same k-grid and kinetic energy cutoff.

The second sum rule that could be used for convergence is the charge neutrality
for Born effective charges and it states that the sum of Born effective charges in the
unit cell must be zero: ∑

κ

Z∗
κα,α′ = 0, (2.177)

where Born effective charges tensor Z∗
κα,α′ is defined as proportionality coefficient to

the linear order that relates the polarization per unit cell created along direction α′

and the displacement of ion κ. The charge neutrality sum rule in Eq. (2.177) will be
violated because numerical calculations have finite basis for Kohn-Sham wavefunc-
tions (they take finite number of plane waves in plane wave implementations), or
because of the discretization of the real space integrals used for exchange-correlation
potentials. This can be fixed by either redistributing excess charges evenly among
atoms:

newZ∗
κα,α′ = Z∗

κα,α′ −Nat

∑

κ

Z∗
κα,α′ , (2.178)

or developing a weighing strategy to redistribute the charges to each atom in pro-
portion to their mean electronic charge. However, numerical results for sum of Born
effective charges in Eq. (2.177), should converge to a reasonably small value when
basis for Kohn-Sham functions and number of k-points in the electronic calculations
is sufficiently large.

2.8.4 Self-constistent phonon method - SCPH

Since the standard approach based on the use of harmonic approximation and DFPT
is not sufficient to describe phonons in some materials, a more sophisticated approach
is needed. One can therefore use the self-consistent phonon method (SCPH) follow-
ing the methodology and the implementation of Ref. [111]. This section, serves as
a brief overview of the main ideas of SCPH and its implementation.

In the BO approximation, the dynamics of lattice ions is described by the Hamil-
tonian H = T + U , where T is their kinetic energy, while U is the potential energy
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which is a function of the displacements from the equilibrium position. The poten-
tial energy can be expanded as U = U0 + U2 + U3 + U4 + . . ., where the term Un
is of n−th order with respect to atomic displacements and the term U1 is missing
because it contains forces which are zero in equilibrium. Keeping the terms U0 and
U2 only is the standard harmonic approximation. In this case, phonon frequencies
are obtained from diagonalization of the corresponding dynamical matrix.

To obtain the phonon frequencies in general case when the terms beyond U2 are
included, one can make use of many body Green’s function theory. The Hamiltonian
is divided into H = H0 +H1 where H0 = T + U0 + U2 is the harmonic part of the
Hamiltonian whose solution is known, while the anharmonic termsH1 = U3+U4+. . .
constitute the interaction part. The phonon Green’s functionG0 for the Hamiltonian
H0 is known, while the Dyson equation relates G0, the phonon Green’s function
G of the Hamiltonian H and the self-energy Σ. The Dyson equation has to be
complemented with the equation for self-energy. The self-energy is in principle given
by a diagrammatic expansion involving an infinite number of Feynman diagrams.
In practice one selects only the most relevant diagrams for the problem at hand.
To obtain the renormalized phonon frequencies, it turns out that the most relevant
diagram is the loop diagram originating from the quartic term U4 (shown in Fig.
1(a) in Ref. [111]). The Green’s function and the self-energy can then be found self-
consistently and the renormalized phonon frequency is determined from the pole of
the Green’s function.

To perform the calculation within the SCPH method, one also has to obtain
all relevant force constants that appear in the Un terms in the expansion of U .
The second-order force constants are obtained from a supercell density functional
theory calculations and the finite displacement method. While the finite displace-
ment method can in principle be used to obtain higher order force constants, a
different strategy yields more stable results for the force constants. Namely, finite-
temperature ab-initio molecular dynamics calculation is performed to obtain various
atomic configurations and the corresponding total energy and forces in these config-
urations. The force constants that appear in anharmonic terms in U are then fitted
to the data obtained, where great care has to be taken to avoid overfitting the data.

Details of the full calculation protocol for CsPbX3 (X=Cl, Br, I), are reported
in Sec. 4.3.4.
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2.9 Electron-phonon interaction

A detailed review on electron-phonon interactions from first principles was done
recently by Giustino [44]. In that review, there are two approaches: one using
an approximation that electronic system can be described by sharp quasiparticle
excitations, and another, more involved using field-theoretic approach that doesn’t
rely on such approximation and was intensively covered by Marini in Ref. [112].
This section borrows some elements from that review in the sharp quasiparticle
approximation in order to derive the practical approach for calculation of electron-
phonon effects on electron energy levels first used used by Allen and Heine [113] and
Alen and Cardona [114, 115] called Allen-Heine-Cardona theory.

The total Hamiltonian can be rewritten using the second quantization as:

HTOT = Hel. +Hion. +Hel−ion, (2.179)

where Hel., Hion. are Hamiltonians that describe the ionic and electronic systems,
and Hel−ion is the Hamiltonian that describes the electron-ion interaction.

The ionic Hamiltonian Hion. can be written in the second quantization as in
Eq. (2.144):

Hph =
∑

qν

ℏωqν

(
â†qν âqν +

1

2

)
, (2.180)

where â†qν (âqν) is the creation(annihilation) operator for a phonon in the state qν,
and ℏωqν is the energy of that photon in the BO and harmonic approximation,
obtained by solving the Eq. (2.129), where dynamical matrices Dκ′α′

κα (q) have the
form of a Hessian.

The electronic Hamiltonian in sharp quasiparticle approximation He can be ap-
proximated using the Kohn-Sham Hamiltonian HKS in the first quantization:

Hel. = HKS = − ℏ2

2me

∇2 + V KS(r, {Req}), (2.181)

and in the second quantization, when diagonalized by Kohn-Sham one electron
functions |Ψkn⟩:

Hel. =
∑

kn,k′n′

⟨Ψkn|HKS |Ψk′n′⟩ ĉ†knĉk′n′ =
∑

kn

εKS
kn ĉ

†
knĉkn. (2.182)

where ĉ†kn (ĉkn) is the creation(annihilation) operator for an electron in state kn,
and εKS

kn is the Kohn-Sham energy of state kn. The electronic wavefunctions Ψkn(r)
are normalized to the volume of a supercell that contains Nuc unit cells of volume
Vuc, and can be written using Bloch waves and Bloch factors:

Ψkn(r) = (NucVuc)
−1/2eik·rukn(r), (2.183)
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where ukn are unit cell periodic functions normalized to the volume of a unit cell:

⟨Ψkn(r)|Ψk′n′(r)⟩ = N−1
uc

∫

sc

dr

Vuc
e−ik·ru∗kn(r)uk′n′(r)eik

′·r

= N−1
uc

∑

p

∫

uc

dr

Vuc
e−ik·(r+Tp)u∗kn(r+Tp)uk′n′(r+Tp)e

ik′·(r+Tp)

= N−1
uc

∑

p

e−i(k−k′)·Tp

∫

uc

dr

Vuc
e−i(k−k′)·ru∗kn(r)uk′n′(r)

= δk,k′

∫

uc

dr

Vuc
e−i(k−k′)·ru∗kn(r)uk′n′(r)

= δk,k′ ⟨kn|k′n′⟩uc = δk,k′δnn′ ,

(2.184)

where N−1
uc

∑
p e

−i(k′−k)·Tp = δk,k′ , ukn(r+Tp) = ukn(r) is a consequence of transla-
tional invariance and Vuc is the volume of the unit cell.

In order to obtain the electron-ion part of the Hamiltonian, one can perturb the
electronic potential V KS from the electronic Hamiltonian Hel., with respect to ionic
displacements around equilibrium configuration {Req}. The Kohn-Sham effective
potential V KS can be expanded in terms of ionic displacement ∆Rκα,p = Rκα,p−Req

κα,p

in Taylor series:

V KS(r, {R}) = V KS({Req}) +
∑

κα,p

∂κα,pV
KS∆Rκα,p

+
1

2

∑

κα,p

∑

κ′α′,p′

∂κα,p∂κ′α′,p′V
KS∆Rκα,p∆Rκ′α′,p′ + . . .

(2.185)

The expansion in Eq. (2.185) is similar to the Taylor expansion for EBO in Eq. (2.121)
in Sec. 2.8.1 about phononic structure. In that section, EBO was a result of a
minimizing procedure for Hamiltonian HBO that contained all ionic and potential
energies of the interacting system. This minima let to the equilibrium configuration
of ions, which then led to vanishing of the first derivative of EBO with respect to
displacement from that equilibrium position. In Eq. (2.185), one is interested in
change of the local Kohn-Sham potential V KS, when ions are displaced from their
equilibrium position. The first derivatives of ∂κα,pV

KS do not vanish in this case,
since they doesn’t represent a force acting on ions.

Derivatives can be transformed by expanding ∆Rκα,p using the ladder operators
from Eq. (2.142):

∑

κα,p

∂κα,pV
KS∆Rκα,p =

∑

κα,p

∂κα,pV
KS
∑

qν

N
−1/2
uc ξκα,ν(q)e

iq·Tp

(2Mκωqν/ℏ)1/2
(
âqν + â†−qν

)

= N−1/2
uc

∑

qν

eiq·r∆qνv
KS
(
âqν + â†−qν

)
,

(2.186)
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where:

∆qνv
KS =

∑

κα

ξκα,ν(q)e
iq·r

(2Mκωqν/ℏ)1/2
∂κα,qv

KS,

∂κα,qv
KS =

∑

p

e−iq·(r−Tp)∂κα,pV
KS,

(2.187)

and new label vKS is used instead of V KS in order to emphasize that all partial
derivatives are over ∂/∂Rκα(q) instead of ∂/∂Rκα,p. Eq. (2.187) can be also seen as
a Fourier transform, that replaces sums over (κα) → ν (since Nκ × Nα = Nν) and
p → q (since Nuc = Np = Nq), and introduces second-quantization operators âqν
and â†−qν . The electron-phonon Hamiltonian in the second quantization Hel−ph will
be the perturbation of V KS from the equilibrium configuration of ions:

Hel−ph =
∑

kn,k′n′

⟨Ψkn|V KS({R})− V KS({Req}) |Ψk′n′⟩ ĉ†knĉk′n′ . (2.188)

From Eq. (2.185) one can see that electron-phonon interaction in Eq. (2.188) will
contain terms from a Taylor expansion of V KS with respect to ionic displacements.

From Eq. (2.186) one can see that first-order terms will introduce sum over one
set of qν corresponding to coupling to phonon operators (âqν + â†−qν). Using the
normalization relations, the first-order term in brackets will transform as:

∑

kn,k′n′

⟨Ψkn|N−1/2
uc

∑

qν

eiq·r∆qνv
KS |Ψk′n′⟩ =

∑

kn,k′n′

∑

qν

N−1
uc

∑

p

e−i(k−q−k′)·Tp

×
∫

uc

dr

Vuc
e−i(k−q−k′)·ruknN

−1/2
uc ∆qνv

KSuk′n′ =

∑

kn,k′n′

∑

qν

δk−q,k′ ⟨kn|N−1/2
uc ∆qνv

KS |k′n′⟩uc =
∑

knn′

∑

qν

⟨kn|N−1/2
uc ∆qνv

KS |k− qn′⟩uc =
∑

knn′

∑

qν

⟨k+ qn|N−1/2
uc ∆qνv

KS |kn′⟩uc .

(2.189)

Similarly, for the second-order, there will be two sums over qν and q′ν ′ that couple
to a product of operators (âqν + â†−qν)(âq′ν′ + â†−q′ν′). The second-order term in
brackets will transform in an similar manner as the first term:

1

2

∑

kn,k′n′

⟨Ψkn|N−1
uc

∑

qν

∑

q′ν′

eiq
′·r∆q′ν′e

iq·r∆qνv
KS |Ψk′n′⟩ =

1

2

∑

kn,k′n′

∑

qν

∑

q′ν′

δk−q−q′,k′ ⟨kn|N−1
uc ∆q′ν′∆qνv

KS |k′n′⟩uc =

1

2

∑

knn′

∑

qν

∑

q′ν′

⟨k+ q+ q′n|N−1
uc ∆q′ν′∆qνv

KS |kn′⟩uc .

(2.190)



78 CHAPTER 2. THEORY

By including the terms up to second-order with respect to atomic displacements,
electron-phonon Hamiltonian Hel−ph takes the form

Hel−ph = N−1/2
uc

∑

kmn

∑

qν

gFanmn,ν(k,q)ĉ
†
k+qmĉkn(â

†
−qν + âqν)

+N−1
uc

∑

kmn

∑

qq′νν′

gDW
mn,νν′(k,q,q

′)ĉ†k+q+q′mĉkn×

× (â†−qν + âqν)(â
†
−q′ν′ + âq′ν′),

(2.191)

where gFannm,ν(k,q) and gDW
nm,νν′(k,q,q

′) are first-order Fan and second-order Debye-
Waller (DW) matrix elements of electron-phonon interaction given as:

gFanmn,ν(k,q) = ⟨k+ qm|∆qνv
KS |kn⟩uc

=
∑

κα

ξκα,ν(q)

(2Mκωqν/ℏ)1/2
⟨k+ qm| ∂vKS

∂Rκα(q)
|kn⟩uc ,

(2.192)

and

gDW
mn,νν′(k,q,q

′) = ⟨k+ q+ q′m| 1
2
∆qν∆q′ν′v

KS |kn⟩uc

=
1

2

∑

κκ′αα′

ξκα,ν(q)

(2Mκωqν/ℏ)1/2
ξκ′α′,ν′(q

′)

(2M ′
κωq′ν′/ℏ)1/2

× ⟨k+ q+ q′m| ∂2vKS

∂Rκ′α′(q′)∂Rκα(q)
|kn⟩uc ,

(2.193)

respectively. Matrix elements gFanmn,ν(k,q) and g
DW
mn,νν′(k,q,q

′) have the physical di-
mension of energy, and measure the probability of an electron transitioning from one
state to another due to interaction with a phonon. Fan term gFanmn,ν(k,q) measures
the probability of interacting with one phonon qν and DW term of interacting with
two phonons qν and q′ν ′.

The first-order matrix elements gFanmn,ν(k,q) can be obtained in harmonic approx-
imation using DFPT, as derivatives ∂κα,qv

KS are already obtained at the end of the
self-consistent procedure that solves Sternheimer equation Eq. (2.168) in search for
density response ∆qn(r). This is described in approaches by both Baroni et al.
[93, 94, 95, 92] and Gonze et al. [98, 99, 100, 101, 102].In order to save on memory
and space, ∂κα,qv

KS are not saved by default of DFPT procedure in most codes (like
for e.g. Quantum Espresso [97], and Abinit [104]), however there is usually an op-
tion to change this. The end result of DFPT, which are ωqν and ξκα,ν(q) are always
saved by default, and when combined with ∂κα,qv

KS, the computation of gFanmn,ν(k,q)
is straightforward using Eq. (2.192).

The second-order terms in Eq. (2.193) would require solving the second-order
Sternheimer equation, like the one in Eq. (A.11) in A.3 of the Appendix, which is
much more involved and usually avoided in the literature. However, Allen and Heine
[113] and Allen and Cardona [114, 115] used rigid-ion approximation and translation
invariance to obtain second-order DW term, diagonal in kn. This approach became
known as the Allen-Heine-Cardona theory.
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2.9.1 Allen-Heine-Cardona theory

This section provides a brief overview of the Allen-Heine-Cardona (AHC) theory that
is used to describe the phonon-induced band gap renormalization in semiconductor
materials. Using the AHC formulation, a procedure for self-consistent calculation
of phonon-induced renormalizations of band energies and their broadening will be
presented in Chapter 4.

In the work of Allen, Heine and Cardona[113, 114, 115] the ionic displacements
were treated as perturbation within the Reyleigh-Schrödinger perturbation theory
(RSPT) for the Kohn-Sham Hamiltonian. Within RSPT, only terms diagonal in kn
are considered, which constrains the DW terms to q+q′ = 0 case. This simplification
along with rigid-ion approximation is the basis of the Allen-Heine-Cardona (AHC)
formulation for temperature dependent renormalization of Kohn-Sham energy levels
∆EAHC

kn :

∆EAHC
kn (T ) =

1

2
λ2EFAN

kn (T ) +
1

2
λ2EDW

kn (T )

= N−1
uc

∑

qν

2nqν(T ) + 1

2ωqν/ℏ

×
{ ∑

κκ′αα′

ξκα,ν(−q)

(Mκ)1/2
ξκ′α′,ν(q)

(Mκ′)1/2

× 2Re
∑

n′ ̸=n

⟨ukn| ∂vKS

∂Rκα(−q)
|uk+q′n′⟩ ⟨uk+q′n′ | ∂vKS

∂Rκ′α′ (q)
|ukn⟩

εkn − εk+qn′ + iδ

−
∑

κκ′αα′

[
ξκα,ν(−q)ξκα′,ν(q)

2Mκ

+
ξκ′α,ν(−q)ξκ′α′,ν(q)

2Mκ′

]

× 2Re
∑

n′ ̸=n

⟨ukn| ∂vKS

∂Rκα(Γ)
|ukn′⟩ ⟨ukn′| ∂vKS

∂Rκ′α′ (Γ)
|ukn⟩

εkn − εkn′ + iδ

}
.

(2.194)

where iδ is a small parameter, introduced to avoid numerical divergence if the de-
nominator becomes too small, while parameter λ→ 1 that originates from RSPT is
kept in order to emphasize that one is dealing with second-order terms. Derivation
of Eq. (2.194) can be obtained by following A.3, A.4, and A.5 of the Appendix, re-
spectively. Eq. (2.194) is also called adiabatic AHC formula because phonon energies
ℏωqν were neglected in the denominator:

εkn − εk+qn′ ± ℏωqν ≈ εkn − εk+qn′ . (2.195)

Adiabatic formula has been first used with semiempirical calculations [113, 114, 115]
and more recently using DFT with pseudopotentials [116, 117]. The same equation
as Eq. (2.194) can be obtained using more sophisticated approach using many-body
formalism and field-theory, using the same approximations[112, 44].
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2.9.2 Fan term in the non-adiabatic case

Following the many-body perturbation theory procedure, energy renormalization of
electronic levels due to ionic movement in solids can be obtained following procedures
in Refs. [112, 44]. In many-body language, renormalization 1

2
λ2E

(2)
kn (T ) which is

purely real, is replaced by electron-phonon self-energy Σkn(T ) which is a complex
number. Up to the second order this self-energy will contain two terms, Fan ΣFan

kn (T )
and Debye-Weller ΣDW

kn (T ). In present discussion, the Debye-Weller term is identical
to 1

2
λ2EDW

kn (T ), however the Fan terms requires some attention.

Following Mahan 2000 [Chapter 3.4, Eq. (3.212)] [118], one can perform a similar
procedure for one-phonon self-energy to obtain:

ΣFan
kn (iω, T ) = − 1

βNq

∑

m,qν

|gnm,ν(k,q)|2
∑

j

D(0)
qν (iωj)G

(0)
k+qm(iω − iωj), (2.196)

where β = (kBT )
−1, kB is the Boltzman constant, T is the temperature, Nq is the

number of q-points in the sum, and G
(0)
k+qm(iω − iωj) and D

(0)
qν (iωj) are electronic

and phononic Green’s functions at finite temperatures, respectively:

G
(0)
k+qm(iω − iωj) =

1

iω − iωj − εk+qn + εF
,

D(0)
qν (iωj) =

1

iωj − ωqν

− 1

iωj + ωqν

,

(2.197)

where εF is the Fermi energy, iωj are Matsubara frequencies and ℏ = 1 for simplic-
ity. Again, following Mahan 2000 [Chapter 3.5 Eq. (3.216)] [118] one can use the
summation over all Matsubara frequencies:

− 1

β

∑

j

D(0)
qν (iωj)G

(0)
k+qm(iω − iωj) =

nqν(T ) + 1− fk+qm

iω − εk+qm − ωqν

+
nqν(T ) + fk+qm

iω − εk+qm + ωqν

,

(2.198)

where nqν(T ) and fkm are Bose-Einstein and Fermi-Dirac occupation numbers for
qν-phonon and km-electron, respectively. At this point, one can perform analytic
continuation for iω by simply performing a rotation to the real axis as iω → ω+ iδ,
where δ is some arbitrary small real parameter. This transforms ΣFan

kn (T ) to:

ΣFan
kn (ω, T ) =

1

Nq

∑

mqν

|gnm,ν(k,q)|2×

×
[
nqν(T ) + 1− fk+qm

ω − εk+qm − ωqν + iδ
+

nqν(T ) + fk+qm

ω − εk+qm + ωqν + iδ

]
.

(2.199)

Diagonal terms for Debye-Waller part of self-energy ΣDW
kn = ΣDW

knmδnmδq,−q′δνν′ can
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be obtained from rigid-ion approximation and rewritten from Eq. (2.191) as:

ΣDW
kn (T ) = − 1

Nq

∑

mqν

grianm,ν(k,q) [2nqν(T ) + 1] ,

grianm,ν(k,q) =
∑

κκ′αα′

[
ξκα,ν(−q)ξκα′,ν(q)

2Mκωqν/ℏ
+
ξκ′α,ν′(−q)ξκ′α′,ν(q)

2Mκ′ωqν/ℏ

]

× Re
⟨ukn| ∂vKS

∂Rκα(Γ)
|ukm⟩ ⟨ukm| ∂vKS

∂Rκ′α′ (Γ)
|ukn⟩

εkn − εkm + iδ
.

(2.200)

Sometimes ΣDW
kn and ΣFan

kn terms are referred as static and dynamic terms, respec-
tively, based on their dependence on ω.

2.9.3 Solving the AHC equation

Fan renormalization term has adiabatic and static 1
2
λ2EFan

kn (T ) and non-adiabatic
and dynamic ΣFan

kn (ω, T ) form presented Eq. (2.194) (also Eq. (A.45) in the Ap-
pendix) and Eq. (2.199), respectively. In the adiabatic and static case, the renor-
malization neglects phononic energies in the denominator, but the calculation is
straightforward, if all ingredients of Eq. (A.56) are known. For the non-adiabatic
case, there are a few methods of solution.

Optimization method - direct solution

In the non-adiabatic case, the energy renormalization is expressed as a solution for
optimization equation, provided that non-diagonal terms in band indices Σknm(ω, T )
can be neglected:

ω = εkn + ΣFan
kn (ω, T ) + ΣDW

kn (T ), (2.201)

where ω is a complex number whore real part represents the renormalized energy
level Reω = Ekn(T ). Since one is considering electrons that interact with ionic
vibrations, one can expect that there will be some uncertainty or smearing of their
energy levels. The imaginary part of ω will represent the half-width of that smearing
centered around ω. Because ΣDW

kn is not dependent on ω, and purely real, the main
focus will be on the ΣFan

kn (ω, T ) term, which is dependent on ω, and complex.

Spectral function method

Besides direct solving for ω from Eq. (2.201), one can search for a peak in the
spectral function Akn(ω, T ):

Akn(ω, T ) = − 1

π
| ImGkn(ω, T )|

= − 1

π
Im

1

ω − εkn − Σkn(ω, T )

= − 1

π

ImΣkn(ω, T )

[ω − εkn − ReΣkn(ω, T )]2 + [ImΣkn(ω, T )]2
,

(2.202)
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where Σkn = ΣFan
kn + ΣDW

kn . This spectral function should produce a well defined
peak near εkn and perhaps a small satellite. In practice, one performs a numerical
calculation for a mesh of ω points. In order to check if the range of ω-mesh is
sufficient one can check if the spectral function integrates to unity:

∫
dω Akn(ω, T ) = 1. (2.203)

Linear QP approximation

Similarly to the quasi-particle (QP) approximation in GW method for electron-
electron self-energy, explained in Sec. 2.7.5, one can make a similar approximation
in the case of electron-phonon self-energy. Eq. (2.201) can be split for real and
imaginary parts of ω. The Fan term can approximated by Taylor expansion for ω
around εkn:

ΣFan
kn (ω, T ) = ΣFan

kn (εkn, T ) +
∂ΣFan

kn

∂ω

∣∣∣∣
ω=εkn

(ω − εkn) + . . . (2.204)

Keeping only the first derivative in Taylor expansion of ΣFan
kn and inserting it into

Eq. (2.201), one obtains the linear quasi-particle equation for energy renormalization
ωQPL = EQPL

kn + iΓkn(T ). The real part of ωQPL is the renormalized energy level:

EQPL
kn (T ) = εkn + Zkn

[
ReΣFan

kn (εkn, T ) + ReΣDW
kn (T )

]

−
(
Zkn

∂ ImΣFan
kn

∂ω

∣∣∣∣
ω=εkn

)
Γkn ,

(2.205)

where

Zkn =

(
1− ∂ ReΣFan

kn

∂ω

∣∣∣∣
ω=εkn

)−1

, (2.206)

while the imaginary part represents smearing Γkn:

Γkn(T ) = Zkn ImΣFan
kn (εkn, T )

+ Zkn
∂ ImΣFan

kn

∂ω

∣∣∣∣
ω=εkn

(EQPL
kn − εkn).

(2.207)

Equations (2.205) and (2.207) are decoupled only in the case when ∂ ImΣFan
kn /∂ω is

zero or negligible around ω = εkn. Decoupled linear QP equations are:

EQPL
kn (T ) = εkn + Zkn

[
ReΣFan

kn (εkn, T ) + ReΣDW
kn (T )

]
,

Γkn(T ) = Zkn ImΣFan
kn (εkn, T ).

(2.208)

Besides neglecting ∂ ImΣFan
kn /∂ω at ω = εkn, there are a few more checks to be

performed in order to use the linear QP approximation. This involves checking if
renormalization factor is Zkn ≤ 1. For constant ΣFan

kn around εkn, the renormalization
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factor Zkn = 1, which corresponds to on-the-mass-shell (OTMS) approximation
for the real part. When ΣFan

kn is smooth and decreasing with ω around εkn, then
∂ ReΣFan

kn /∂ω will be negative and Zkn < 1. If ΣFan
kn is smooth and increasing with

ω around εkn, then ∂ ReΣFan
kn /∂ω will be positive and Zkn > 1, which points to

a breakdown of linear QP approximation. The case where ∂ ReΣFan
kn /∂ω rapidly

changes sign around εkn usually points to an underconverged calculation for ΣFan
kn .

Besides Zkn ≤ 1, one should also check if the spectral function Akn has any satel-
lites and if the peak is symmetric. If both are true, then the spectral function Akn

can also be simplified using linear QP approximation, where it becomes a symmetric
Lorentzian centered around EQPL

kn with half-width Γkn:

AQPL
kn (ω, T ) = − 1

π

Zkn ImΣkn(εkn, T )

[ω − εkn − ZknReΣkn(εkn, T )]2 + [Zkn ImΣkn(εkn, T )]2

= − 1

π

ZknΓkn

(ω − EQPL
kn )2 + Γ2

kn

,
(2.209)

OTMS approximation

For the simplest solution for Eq. (2.201), is to approximate the solution to real axis
by simply inserting the bare value εkn into ΣFan

kn : and obtain renormalization in the
so-called on-the-mass-shell (OTMS) approximation:

Eotms
kn (T ) = εkn +ReΣFan

kn (εkn, T ) + ReΣDW
kn (T ). (2.210)

Eq. (2.210) assumes that one is dealing with sharp excitations and that there is no
smearing, so one can imagine that possible energies form an infinitely thin shell in
kn space for fixed T .

AHC equation in practice

The sum over electronic states in Eq. (2.194), Eq. (2.199), and Eq. (2.200) contains
both occupied and unoccupied states and one should perform a convergence test
w.r.t. number of unoccupied bands that are included in that sum. One can use the
Sternheimer equation, Eq. (2.168), Sec. 2.8.3, from the DFPT procedure to calculate
contribution to unoccupied states from P k+q

c |∆qukn⟩ and P k+q
c ∆qvKS |ukn⟩, which

was first demonstrated by Gonze et al. 2011 [119]. However, since one is using
DFPT equation which is adiabatic and static, these terms can only have the same
form as the ones for 1

2
λEkn(T ) from Eq. (2.194) (Eq. (A.45) in the Appendix A.3).

Although non-adiabatic Fan term would require a proper summation for all bands,
one can approximate that the contribution which stems from highly occupied states
is much smaller so that static and adiabatic treatment is justified for them. The
convergence test in this case is performed to check which unoccupied states give
significant contribution and which can be treated as static and adiabatic.

The convergence of ∆Ekn(T ) w.r.t. the number of q′-points in practice has
proven to be very slow [120], which makes these kind of calculations demanding and
in some cases not tractable. At present, there are several schemes used to interpolate
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gFannn′,ν′(k,−q′) in order to increase the q-grid density at reduced computational cost.
Interpolation of ξκα,ν(q) and ωqν is routinely performed and available in most DFPT
codes. It involves Fourier transform of dynamical matricesDκα

κ′α′(q) and then directly
solving for ξκα,ν(q) and ωqν at interpolated q points, which is described in more
detail in Sec. 2.8.3 Significantly more involved part of interpolation are transition
matrix elements ⟨ukn| ∂vKS/∂Rκα(−q′) |uk+q′n′⟩. Several strategies for this have
been developed with much success, however this topic exceeds the reach of this
work and more information can be found in Ref. [121, 122].

Finally, one should address the numerical parameter iδ in the numerator of
Eq. (2.194) and Eq. (2.199). This parameter is expected to be small, and standard
value of δ was set to 100 meV in works from Refs. [123, 117]. However, Ponce et
al 2015 [120], showed that this parameter has to also be included in convergence
tests. At T → 0 the parameter should indeed be arbitrary small, however, given
the connection of the imaginary part of ΣFan

kn to the broadening parameter iΓkn the
choice for δ in the case of finite temperatures should be carefully discussed. Indeed,
Green’s functions G

(0)
k+qm and D

(0)
qν used in Eq. (2.196) have their ’bare’ forms.

Using ’dressed’ Green’s function instead of ’bare’ ones is one of the results of this
thesis, as it removes some ambiguity since iδ is then replaced by ImΣkn (or Γkn),
so real and imaginary parts of ΣFan

kn (ω, T ) are solved self-consistently. More detail
on this procedure is presented Sec. 4.2.

2.10 Elements of Group theory

This section serves as a brief introduction to the language and notation of point
groups used in the thesis (Oh, Td, Double groups). The notation in this section
follows Refs. [124, 50].

2.10.1 Basic definitions

Definition of a group: A set of elements and a binary composition called a
product, will form a group G when these four conditions are fulfilled:

• Product of any two elements of the group is also an element of that group
(closure):
(∀A,B ∈ G) : AB ∈ G.

• Associative law is valid for all members of group G:
∀A,B,C ∈ G : (AB)C = A(BC).

• A unique unit or identity element E exists, so that product with any A gives
A:
(∃E ∈ G)(∀A ∈ G) : AE = EA = A.

• For every A ∈ G there is a unique inverse element A−1, so the product AA−1

gives unit or identity element E:
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(∀A)(∃A−1) : AA−1 = A−1A = E,
specially E = E−1 : EE−1 = E−1E = E.

In general, products do not commute but if they do the group is called Abelian
group: if ∀(A,B ∈ G) : AB = BA, then G is Abelian.

Depending on the number of elements, groups can be infinite or finite. The
number of elements in the group G is the order of the group, often labeled as |G|. If
collection of elements g in a group G also forms a group, then g is a subgroup of G.
Order of group g must be a divisor of the order of group G, i.e. |G|/|g| = d, where
d is an integer.

One example of an infinite group is the full group of rotations. Sphere can be
rotated by any angle around any axis that contains the center of the sphere. Finite
group example would be a group of all permutations of three numbers (123), or a
group of rotations that rotate a square back to it’s original position.

For finite groups, if any element X is multiplied by itself n times, the identity
element E is recovered: Xn = E. This will be true also for 2n, 3n, 4n, . . ., so the
smallest integer n is the order of element X.
Rearrangement theorem: If E,A1, A2, . . . , Ak . . . , Ah are elements of group G
then for any Ak ∈ G, an assembly of elements AkE,AkA1, AkA2, . . . , AkAk . . . , AkAh
contains each element of the group once and only once.

A set of elements that can reproduce the whole group by multiplication are called
group generators which can be used to construct multiplication tables. By rearrange-
ment theorem, every row and column of the multiplication table will contain each
element once and only once.

Conjugation and class

Definition of conjugation: Two elements A,B ∈ G are said to be conjugate if
there exists an element X ∈ G for which A = XBX−1. Theorem: If A is conjugate
to B and B is conjugate to C, then A is also conjugate to C:
A = XBX−1 ∧B = Y CY −1 : A = XY CX−1Y −1 = (XY )C(XY )−1.
Theorem: Elements of group G can be split into conjugation classes C1, C2, . . . , Cr,
where r is the number of conjugate classes, with the following properties:

• Every element of G is in some class once and only once: G = C1+C2+. . .+Cr,

• All elements of a class are mutually conjugate and consequently have the same
element order,

• An element that commutes with all elements of the group is in a class by
itself and is called a self-conjugate element (in non-Abelian group identity E
is always self-conjugate and in a class by itself, but in Abelian group every
element is self-conjugate and in a class by itself).

• the number of elements in a class |Ci| is a divisor of the order of the group
|G|,
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• CiCj =
∑r

k=1 hij,kCk where hij,k = hji,k are called the class multiplication
coefficients which can be either a positive integer or zero.

Cosets

Definition: If g is a subgroup of G, and X is an element of G, then gX is a right
coset of g, while Xg is a left coset of g, and X is called a coset representative. A
coset isn’t necessarily a subgroup, but it will be if X ∈ g by the rearrangement
theorem. Two cosets of the same subgroup will have exactly the same elements or
no elements in common.

The concept of cosets becomes more clear if one imagines a space group that
contains a point group and a group of translations. Applying a translation to a
subgroup of rotations is a coset of that subgroup of rotations. If the symmetry
group contains only pure translations and rotations they are called symmorphic,
otherwise if it contains at least one symmetry operation that involves a translation
followed by a rotation they are called non-symmorphic.

2.10.2 Representation

Homomorphism and Isomorphism

Definition: Two groups G1 and G2, can have a mapping f which maps elements
from G1 onto G2, f : G1 → G2 while preserving multiplication f(g1)f(g2) = f(g1g2),
where g1 and g2 are elements of G1 and G2, respectively. If there is a 1-to-1 corre-
spondence (|G1| = |G2|), they are isomorphic. Otherwise, if there is many-to-one
correspondence, they are homomorphic.

The mapping f can be seen as a mathematical representation of group elements
and multiplication (e.g. matrix representation of elements and their multiplication).
If representations are isomorphic they are called faithful, if they are homomorphic
they are called unfaithful.

In quantum mechanics, faithful representations of groups are important because
one wants to establish a 1-to-1 correspondence in order to faithfully apply symmetry
operations on operators and wave-functions.

Matrix group

Definition: Matrix group Γ is a group of non-singular matrices (non-singular ma-
trices have an inverse). If all matrices are unitary (inverse matrix is the adjoint of
the same matrix), then it is called a unitary matrix group.

Two matrices M1, M2 are said to be conjugate if there exists a non-singular
matrix S such that M2 = SM1S

−1.

Two matrix groups Γ1, Γ2 are equivalent if there exists a non-singular matrix S
for which Γ2 = SΓ1S

−1. If follows from this that Γ1 and Γ2 must also be isomorphic.
However, if two matrix groups are isomorphic, they don’t have to be equivalent: they
can be isomorphic and have different dimensions, and in turn, not equivalent.
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Theorem : Every matrix group is equivalent to a unitary matrix group.
In other words, any matrix group Γ can be transformed into an equivalent unitary
matrix group ΓU . Non-singular matrices S that transform matrices from one unitary
group to another, equivalent, and also unitary group, will also be unitary matrices
S−1 = S†.

Definition: Trace of a matrix M is a sum of it’s diagonal elements, written as
tr{M}. Character of a matrix group Γ is a function χ defined for all elements as
M ∈ Γ as: χ(M) = tr{M}.
Theorem: If Γ is a matrix group with identity E then χ(E) = tr{E} = dimE, and
if M1 and M2 are in the same conjugation class in Γ, then χ(M1) = χ(M2).

Theorem: Two matrix groups are isomorphic and have the same character group
if and only if they are equivalent.

Reducible and irreducible representations

Definition: If all the matrices in the representation can be transformed by some
non-singular matrix to equivalent representation in which, all the matrices have
the same block form, then that representation is called reducible. Otherwise it is
irreducible. The blocks in the reducible representation will themselves form a repre-
sentation. Irreducible representation cannot be expressed in terms of representations
of lower dimensionality. Any reducible representation ΓR can be expressed in block
forms of some irreducible representations Γi, i = 1, 2, 3, . . .:

ΓR =




Γ1 O O . . .
O Γ2 O . . .
O O Γ3 . . .
...

...
...

. . .


 , (2.211)

Or in shorthand notation:

ΓR = Γ1 + Γ2 + Γ3 + . . . (2.212)

Schur’s lemma Let two irreducible representations Γ and Γ′ of group G have the
property: Γ(g)S = SΓ′(g) for all elements g ∈ G, then either S is a zero matrix or
S is a non-singular matrix so Γ and Γ′ are equivalent.

Theorem: Representation is irreducible if and only if the only matrices that com-
mute with all matrices of the representation are scalar multiples of the unit matrix.

Theorem: For any group G of order |G| with elements g1, g2, . . . g|G|, the represen-
tation Γ(G) will be irreducible if and only if:

1

|G|

|G|∑

i=1

|χ(gi)|2 = 1, (2.213)

where χ(gi) is the character of matrix Γ(gi).



88 CHAPTER 2. THEORY

Theorem The number of irreducible representations is the same as the number of
classes r and

r∑

i=1

d2i = |G|, (2.214)

where di = dimΓi(G) and Γi(G) are irreducible representations of G.
Definition: Character table of a group G is an r × r square array whose entries
are χi(Ct), where Ct is a class of elements of G and i, t = 1, 2, . . . , r. Examples of
character tables for point groups Td and Oh can be found in Appendix C and in
Figure 2.1.

Basis of a representation

Definition: Representation of a group G is defined by a homomorphism γ which
maps G to a group T (G) of non-singular linear operators acting on a finite dimen-
sional vector space V over the complex field. This is represented as γg = T (g) for
all g ∈ G.

If γ is a representation it follows:

• T (g1)[T (g2)x] = T (g1g2)x for all x ∈ V and g1, g2 ∈ G,

• T (E)x = x for all x ∈ V, i.e. TE is the identity operator,

• [T (g)]−1x = T (g−1)x for all x ∈ V and g ∈ G,

and specially if γ is isomorphism, then T (G) is a faithful representation.
Suppose that there is a basis of linearly independent vectors x1,x2, . . . ,xn span-

ning over some vector space V, and define matrices Γx(g) as:

T (g)xi =
d∑

j=1

[Γx(g)]ijxj, (2.215)

where Γx(g) is the matrix representation of element g in the basis x ofV obtained by
the mapping γ. Set of all distinct non-singular matrices Γx(g) for all g ∈ G form a
unitary matrix group as a consequence of the homomorphic mapping γ : γg = Tx(g),
∀g ∈ G.

Orthogonality relations

Assume that for some group G, of order |G|, and number of classes r, there are r
irreducible representations Γ1,Γ2, . . . ,Γr, with dimensionality d1, d2, . . . , dr, respec-
tively. These irreducible representations can be mapped onto matrices DΓi(g)µν ,
where g is the element in G and µ, ν are indices of the matrix.
Theorem: The orthogonality relation for matrix elements is

1

|G|

|G|∑

g

DΓi(g)µνD
Γj(g−1)µ′ν′ =

δij

di
δµµ′δνν′ , (2.216)
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where δij is 1 for equivalent representations Γi,Γj and 0 for non equivalent. If the
matrix group is unitary, then

1

|G|

|G|∑

g

DΓi(g)µν [D
Γj(g)µ′ν′ ]

† =
δij

di
δµµ′δνν′ , (2.217)

where † makes the matrix adjoint: [DΓj(g)µ′ν′ ]
† = DΓj(g)∗ν′µ′ .

Theorem: The orthogonality relation for characters is (summation over group ele-
ments)

1

|G|

|G|∑

g

χΓi(g)χΓj(g−1) = δij, (2.218)

and if the matrix representation is unitary:

1

|G|

|G|∑

g

χΓi(g)χΓj(g)∗ = δij. (2.219)

Since all elements gk of class Ck have the same character, the orthogonality
theorem can be also expressed by visualizing the character table where classes and
irreducible representations form a square table as seen in Figure 2.1.

When visualizing the character table, one can imagine a ruler that multiplies
two characters from the same column with their class order |Ck| but different (or
same ) rows and moves horizontally through the whole table, or equivalently using
the following theorem:
Theorem: The orthogonality relation for characters is (summation goes over all
classes Ck, k = 1, . . . , r, where |Ck| is the order of Ck):

1

|G|
k∑

r

χΓi(gk)χ
Γj(g−1

k )|Ck| = δij, (2.220)

and if the matrix representation is unitary:

1

|G|
r∑

k

χΓi(gk)χ
Γj(gk)

∗|Ck| = δij. (2.221)

Similarly, one can image the same ruler multiplying two characters from the same
row, but different (or same) column with square roots their respectable class orders√

|Ck| and
√

|Ck′| and moves vertically through the whole table, or equivalently
using the following theorem:
Theorem: The orthogonality relation for characters is (summation over irreducible
representations Γi for elements gk in class Ck of order |Ck|)

1

|G|
r∑

i

√
|Ck|χΓi(gk)χ

Γi(g−1
k′ )
√
|Ck′| = δkk′ , (2.222)
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and if the matrix representation is unitary:

1

|G|
r∑

i

√
|Ck|χΓi(gk)χ

Γi(gk′)
∗
√

|Ck′ | = δkk′ . (2.223)

Using the above orthogonality relations of character combined with Eq. (2.214),
one can deduce whether some representation is irreducible or not. If the repre-
sentation is reducible, it will not obey the character orthogonal theorem. If the
representation is indeed irreducible, obtained characters can be inserted into the
character table and aid in finding the remaining irreducible representations.

Figure 2.1. Visual example for using character orthogonality rules on Td point
group.

Character table and orthogonality relations

Figure 2.1 illustrates a character table of point group Td and how to use character
orthogonality rules with it. First two columns show names of irreducible representa-
tions and their respectable basis functions. Rest of the columns show the values of
characters of their respective class in each representation. Classes are labeled using
Schoenflies notation where E is the identity element, Cn is rotation by 2π/n, σd is
a reflection on a diagonal plane, and Sn is an improper rotation (rotation followed
by a reflection in horizontal plane) by 2π/n and each preceding number shows the
class order (for example, class 8C3 has 8 elements which represent rotation by 2π/3).
Adding all class orders one obtains the order of Td point group

|G| = 1 + 3 + 6 + 6 + 8 = 24.

The red and blue rectangles depict an imaginary ruler that slides horizontally and
vertically, respectively, while multiplying characters from the table for the summa-
tion. The red rectangle corresponds to Eq. (2.221), or in this case:

1

24
[2 · 3 · 1 + 2 · (−1) · 3 + 0 · 1 · 6 + 0 · (−1) · 6 + (−1) · 0 · 8] = 0.
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The blue rectangle corresponds to Eq. (2.223), or in this case:

1

24
[1 · 1 + (−1) · 1 + 0 · (−1) + (−1) · 0 + 1× 0]

√
6
√
8 = 0.

Finally, the green rectangle corresponds to Eq. (2.214), or in this case: 12 + 12 +
22 + 32 + 32 = 24.

2.10.3 Double groups

The vector spaceV of the representation can be a space that spans over basis vectors
or functions. In 3-dimensional space, rotations of geometric vectors is represented
by 3× 3 matrix group of unitary matrices SO(3). From the full rotation group one
can deduce that the character of a rotation around z-axes for angle α is:

χl(α) =
sin[(l + 1/2)α]

sin(α/2)
(2.224)

where l is the orbital angular momentum number connected to the orbital momen-
tum operator L and takes integer values. Basis functions of the full rotation group
are the spherical harmonics Y m

l (θ, ϕ), where m has integer value for projection of
L onto the z-axis and has values of m = −l,−l + 1, . . . ,−1, 0, 1, . . . l − 1, l. When
spin-orbit interaction is included, the total momentum becomes J = L + S, where
S is the spin angular momentum that projects on z-axis with half-integer values
ms = −1/2,+1, 2, allowing only half-integer values of j = |l− s|, |l− s|+1, . . . , l+ s
and it’s z-axis projectionmj = −j,−j+1, . . . , j−1, j. Replacing l → j in Eq. (2.224)
one obtains the formula for characters when j has half-integer value. The characters
of rotation by α + 2π are:

χj(α) =
sin[(j + 1/2)(α + 2π)]

sin[(α + 2π)/2]
=

sin[(j + 1/2)α] cos[(j + 1/2)2π]

sin(α/2) cos(π)
, (2.225)

which leads to:
χj(α + 2π) = χj(α)(−1)2j. (2.226)

This implies that 2π rotations and any rotations followed by 2π rotations should
change sign if and only if j is half-integer. In order to include rotations for both
integer and half-integer values of j, instead of SO(3) one uses it’s double cover, the
SU(2) group. The smallest dimension of SO(3) representation is d = 1 and it always
returns identity after 2π rotation. Matrix representations are called single valued,
therefore the name single (valued) groups. For SU(2), the smallest dimension of
representation is d = 2, whose basis vectors are called spinors, and these matrices
change sign after 2π rotation. Matrix representations are called double valued,
therefore the name double (valued) groups.

The generators of SU(2) group are 2 × 2 complex matrices called the Pauli
matrices:

σx =

[
0 1
1 0

]
, σy =

[
0 −i
i 0

]
, σz =

[
1 0
0 −1

]
, (2.227)
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and they are the basis for the simplest representation of half-integer spin represen-
tation i.e. the D1/2 representation.

To construct a double group Gd from single group G, one has to include |G|
more elements, which are constructed as a coset of G: RG, where R represents 2π
rotations. Even though number of elements and rank of a double group is doubled
|Gd| = 2|G|, the number of classes r and irreducible representations will not nec-
essary be also doubled. Rotations by π that have another perpendicular axes in
it’s class will share the class with rotations by π + 2π, otherwise π + 2π rotations
will be in a separate class. Rotations for all other angles will have a separate class
when followed by a 2π rotation. All irreducible representations of G will also be ir-
reducible representations of Gd, and will have the same characters for α and α+2π
rotations. For the rest of irreducible representations, characters must change sign
after 2π rotation.

All rules and theorems for single groups also apply to double groups. Using
Eq. (2.214), one can deduce the dimensions of the remaining irreducible representa-
tions. Among them, 2-dimensional D1/2 representation must be one of them.

Double valued basis of spinors Ψ consists of two wave-functions ψ↑ and ψ↓ for
+1/2 and −1/2 spins, respectively, and they can be also represented as:

Ψ = ψ↑ + ψ↓ = ψ+1/2 |α⟩+ ψ−1/2 |β⟩

=

[
ψ+1/2

0

]
+

[
0

ψ−1/2

]
=

[
ψ+1/2

ψ−1/2

]
.

(2.228)

The inclusion of double groups and spinors is essential for describing the spin-
orbit coupling between electronic angular momentum and spin. In solid-state the
inclusion of spin changes the degeneracy of states and can also introduce the spin
splitting effect in crystals. Connecting the states to their corresponding irreducible
representations Γi (non-degenerate to 1-dimensional representations and set of d-
degenerate states to a d-dimensional representation) one can obtain the irreducible
representations to which these states transform when spin is included by multiplying
those single representations with D1/2 representation. The product Γi⊗D1/2 should
return Γdj representation that appears only for double groups. If the product returns
more than one representation, this corresponds to spin splitting of the states, each
corresponding to irreducible representations found in that product. Examples for
these products for Td and Oh point groups can be found in B.1 and B.2 of the
Appendix, respectively.

Character tables for Td and Oh double groups can be found in Appendix C.
Therein, the spinor D1/2 representation is labeled as Γ6 and Γ+

6 for Td and Oh,
respectively.



Chapter 3

Construction of
symmetry-adapted Kane
Hamiltonians

This chapter is dedicated to construction of symmetry-adapted Hamiltonians relying
on Kane’s k · p theory presented in Sec. 2.6 and closely follows published work of
the author (Ref. [46]). However, present chapter is limited to only the parts that
concern bulk phase of the CdSe zincblende crystal along with cubic CsPbX3 (X=Cl,
Br, I). The procedure that is used to obtain band gaps for CsPbX3 (X=Cl, Br, I)
which follows Ref. [45] will be described later, in Chapter 4. The full discussion on
nanostructures is contained in Chapter 5: for CdSe they are described in Sec. 5.4
and segments of Ref. [46], while for CsPbX3 (X=Cl, Br, I) they can be found in
Sec. 5.5 and in Ref. [47].

3.1 Introduction

Kane model proved to be both practical and successful in treating the electronic
states in semiconductors [53, 55, 125, 51]. It is based on the representation of the
single-particle wavefunction in terms of Bloch functions of the bulk material at a
certain point in the Brillouin zone (typically the Γ point) and slowly varying envelope
functions. The k · p Hamiltonian for a nanostructure is then an operator that acts
on the column of envelope functions corresponding to each of the bulk bands.

Despite the success in using the k·pmethod for description of bulk band structure
around a certain point in the Brillouin zone (usually the Γ point) and for treating the
semiconductor nanostructures, there is still no systematic way to construct the k ·p
Hamiltonian for a given material and obtain the parameters of the Hamiltonian. The
parameters of most conventional k·p Hamiltonians (such as the 8-band Hamiltonian
[125, 126, 127]) for a few most common classes of semiconductors can be found in the
literature [128, 129] and were obtained from the band gap and effective masses in the
valence and conduction band. Parameters of k ·p Hamiltonians with larger number
of bands (such as, for example, the 30-band Hamiltonian [130, 131, 132, 133, 134])

93
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are typically obtained by fitting to the calculated band structure of the material.
However, given a relatively large number of fitting parameters, it is questionable if
the fit gives unique parameters. It is also not clear what part of the Brillouin zone
should be used in the fitting procedure, since it is not expected that the k ·p method
describes the bulk band structure throughout the whole Brillouin zone.

Given the fact that new classes of semiconductor materials and nanostructures
based upon them emerge or find new applications quite often, it would be of signifi-
cant interest to develop the procedure for construction of desired k ·p Hamiltonians.
Since all parameters of the k · p Hamiltonian are related to momentum matrix el-
ements between single-particle wavefunctions of the bulk, it is in principle possible
to obtain them from electronic structure calculation of the bulk material. This is
indeed done when k · p is used as a method for interpolation of ab-initio calculated
band structure to a more dense grid of k-points [135, 136, 137, 138]. However,
there is a certain shortcoming of this approach when it comes to the construction
of k · p Hamiltonians that should be used in future applications. Namely, due to
the symmetry of the crystalline material the energy levels in characteristic points
in the Brillouin zone are degenerate and for this reason the choice of Bloch wave-
functions from the Hilbert space spanned by the degenerate states is not unique. As
a consequence, one may end up with different forms of the final k · p Hamiltonian
depending on the particular choice of Bloch functions from this space. The number
of Hamiltonian parameters in these forms might be significantly larger than the true
number of parameters imposed by the symmetry of the crystal (demonstrated in B.3
of the Appendix and section II-C of the Supplementary Information of Ref. [46]).

This chapter is organized as follows. Sec. 3.2 starts by describing the procedure
for construction of symmetry-adapted Hamiltonians based on Kane model found in
Sec. 2.6. In Sec. 3.3 this procedure is applied for Hamiltonians that are based on
zincblende CdSe and cubic CsPbX3 (X=Cl, Br, I). Sec. 3.4 contains computational
details for zincblende CdSe in the case of DFT and G0W0 calculations, in Sections
3.4.1 and 3.4.2, respectively. Computational details for cubic CsPbX3 (X=Cl, Br,
I) calculations are found in Chapter 4, which focuses on these materials, or more
precisely in Sec. 4.3. Finally, numerical results showing the obtained electronic
structures for zincblende CdSe and cubic CsPbX3 (X=Cl, Br, I) are presented in
Sec. 3.5 followed by conclusion in Sec. 3.6.

3.2 Construction of symmetry-adapted Hamilto-

nian

In Sec. 2.6, Kane model with Löwdin’s perturbation was used to construct a k · p
Hamiltonian, from which the so-called k · p parameters emerged pnm, and Pnm,ij
which are to be obtained using Bloch functions Ψk0n and energies Ek0n at point k0,
which is referred to as the unperturbed point in 1BZ. Bands which are considered
in the Hamiltonian directly, are called main bands, while the remaining bands enter
the Hamiltonian as a second-order perturbation Pnm,ij where they appear in the
denominator and are called remote bands. The k · p equation from Sec. 2.6 that is
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used to construct the Hamiltonian from ab initio methods in this chapter is:

∑

m

HnmB
(a)
m =

∑

m

(
H(0)
nmδnm +H(1)

nm +H(2)
nm

)
B(a)
m = EknB

(a)
m ,

H(0)
nm = Ek0m +

ℏ
2me

(k− k0)
2,

H(1)
nm =

ℏ
me

(k− k0) · pnm,

H(2)
nm =

∑

ij

ℏ(k− k0)i
me

Pnm,ij
ℏ(k− k0)j

me

,

pnm = ⟨Ψk0n|psoc |Ψk0m⟩ = ℏk0δnm + ⟨uk0n|psoc |uk0m⟩ ,

Pnm,ij =
∑

r ̸=[m,n]

(pnm)i(pnm)j
(Ek0n + Ek0m)/2− Ek0r

, i, j = x, y, z ,

(3.1)

where main bands are labeled withm,n indices, while remote bands are labeled with
r indices, and H

(0)
nm, H

(1)
nm, and H

(2)
nm are matrix elements of zeroth, first and second

-order terms in the Hamiltonian H, respectively. Since k · p theory is applicable
only in small region around k0 the relativistic term for electron kinetic energy is
neglected since it is negligible in the 1BZ. For similar reason, SOC modification to
momentum operator psoc can also be neglected psoc ≈ p, while SOC contributions
are contained to zero-th order in energies Ek0n and in eigenstates Ψk0n.

In Sec. 2.4, it was shown that any k point in 1BZ has symmetry operations
which form a group Gk which is a sub group of the whole crystal symmetry GΓ.
Unperturbed point k0 is often chosen as a point with full crystal symmetry or some
other high symmetry point, and often the main bands in the Hamiltonian will be
degenerate. The allowed degeneracies depend on the dimensions of the irreducible
representations contained in the point group Gk0 which correspond to these states.
When degenerate states are included the issue of uniqueness of the Hamiltonian
arises.

Let d be the degeneracy of the set of eigenstates |ϕ1⟩ , |ϕ2⟩ , . . . , |ϕd⟩ at k0 and
let Hd be Hilbert space spanned by these states. The states |ϕ1⟩ , |ϕ2⟩ , . . . , |ϕd⟩ will
form an orthonormal basis of Hd but any other orthonormal basis may be chosen.
Different basis would give different momentum matrix elements pnm which would
result in a different form in H

(1)
nm and H

(2)
nm. This arbitrary choice might not lead to a

minimal number of unique parameters in the Hamiltonian, which would be imposed
by the group Gk0 .

Eigenstates Ψk0n obtained from DFT might not give the desired form of the
Hamiltonian Hnm, in a sense that this initial form will appear to have more param-
eters than the ones found in literature for the same structure. Indeed, this is often
the case however, the desired form of Hnm can be obtained by applying a unitary
transformation to those eigenstates.

If a set of eigenstates |ϕ1⟩ , |ϕ2⟩ , . . . , |ϕd⟩ was obtained from DFT, it cannot be
deduced from DFT alone to which irreducible representation this set will correspond
to. This set will form matrices Γ(g) of some irreducible representation of the group
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Gk0 which are given as:
Γmn(g) = ⟨ϕm|P (g) |ϕn⟩ , (3.2)

where g is an element of the group Gk0 and P (g) is the operator that applies the
symmetry operation g on the given eigenstate. The matrices Γ(g) are obtained by
direct calculation from Eq. (3.2). Once Γ(g) matrices for all g are obtained, their
characters are compared with the known character tables of Gk0 in order to identify
which irreducible representation they belong to. Conventional matrices Γ

′
(g) can be

found in group theory literature or databases of point groups. Since there are many
ways to represent Γ

′
(g), they might differ from the source. For the results found in

this chapter, the Bilbao crystallographic server was used. Matrices Γ
′
(g) and Γ(g)

are connected by a unitary transformation U :

U †Γ(g)U = Γ
′
(g), (3.3)

which is true for every g ∈ Gk0 . This same unitary transformation U from Eq. (3.3)
also transforms basis set |ϕi⟩ to a new basis |ψj⟩, where i, j = 1, 2, . . . , d:

|ψj⟩ =
d∑

i=1

Uij |ϕi⟩ ,

⟨ψj| =
d∑

i=1

⟨ϕi|U∗
ji.

, (3.4)

In the new basis |ψj⟩, operator P (g) from Eq. (3.2) will produce the conventional
Γ

′
(g) matrices:

P (g)ij = ⟨ψi|P (g) |ψj⟩
=
∑

km

⟨ϕk|U †
kiP (g)Umj |ϕm⟩

=
∑

km

U †
ki ⟨ϕk|P (g) |ϕm⟩Umj

=
∑

km

U∗
ikΓ(g)kmUmj

= Γ
′
(g)ij.

(3.5)

In the |ψj⟩ basis, the block in Hmn that corresponds to these degenerate states
will have a more convenient, symmetry-adapted form in which relevant parameters
and their symmetry can easily be identified. If Hmn has several sets of degenerate
states α with degeneracy dα, a corresponding Uα must be obtained for each of those
degenerate sets and transform their basis in order to obtain a full symmetry-adapted
Hamiltonian:

∣∣ψαj
〉
=

dα∑

i

Uα
ij

∣∣ϕαj
〉

(3.6)

Furthermore, in the new symmetry adapted basis
∣∣ψαj
〉
, the Hamiltonian H can be

divided in blocks B(Γ′
α,Γ

′

β) which consist of first and second-order terms that contain
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products from degenerate sets |ψα⟩ (dα degenerate) and |ψα⟩ (dβ degenerate) which
transform in accordance with the irreducible representations Γ

′
α (dα dimensional)

and Γ
′

β (dβ dimensional), respectively.
As mentioned in Sec. 2.6 and explained in detail in Ref. [48, 51], Luttinger used

the method of invariants, which is a systematic way to obtain the minimal number of
parameters just by symmetry properties for B(Γ′

α,Γ
′

β) blocks. This method however,
is unable to produce the numerical value for such parameters. Using this procedure
to transform initial Hamiltonian from ab initio methods to symmetry adapted form
links the Luttinger method (from 1955.) to modern numerical ab initio calculations
and enables the reconstruction of Luttinger parameters for any symmetry and any
material.

Equivalently, one can transform the Hmn directly using a block diagonal matrix
that contains all unitary transforms for all states, degenerate and non-degenerate:

Hsym.ad. = U †HinitU, U = diag(U1, U2, . . . Uα, . . .), (3.7)

whereHsym.ad andHinit are the symmetry-adapted and initial Hamiltonian. For non-
degenerate states, or states that do not need to be transformed that block would
just be an identity matrix Uα = 1.

The procedure of obtaining a unitary transformation U which connects Γ
′
(g) and

Γ(g) has been developed in Ref. [139] and will be outlined here. One firsts obtains
a set of coefficients rab as:

rab =

√
nΓ

|G|

(∑

g∈G

Γaa(g)Γ
′

bb(g
−1)

)1/2

, (3.8)

where Γaa(g) and Γ
′

bb(g) are known matrix elements for the symmetry operation
(group element) g and its inverse g−1, respectively, |G| is the order of the group
G, while nΓ is the dimension of the representations Γ and Γ

′
. This will produce

multiple rab, but only the pairs (a, b) for which rab > 0 can be chosen. In Ref.[139],
it was proven that such a pair must exist. The matrix U is then obtained from:

Uij =
1

rab

nΓ

|G|
∑

g∈G

Γia(g
−1)Γ

′

bj(g). (3.9)

To summarize, obtaining a symmetry-adapted Hamiltonian Hmn from any ab
initio method is done by the following steps:

• Perform ab initio calculation of the band structure for bulk.

• Chose the unperturbed point k0 in the 1BZ that is most suited for the k · p
expansion and extract the band energies Ek0n and their eigenstates Ψk0n ob-
tained in the previous step.

• Select the states that enter the HamiltonianHmn and identify their correspond-
ing irreducible representations within the point group Gk0 by calculating Γα(g)
from Eq. (3.2) and comparing their characters with the ones in the literature
or irreducible representation databases.
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• Once all Γα(g) for each degenerate set of states α are obtained, match them
with the corresponding Γ

′
(g) matrices found in literature or some irreducible

representation database.

• Calculate Uα for each set of degenerate states |ϕα⟩ using Γα(g) with their
corresponding Γ

′
(g) from Eq. (3.8) and Eq. (3.9).

• Apply Uα to |ϕα⟩ and obtain symmetry-adapted basis functions |ψα⟩ using
Eq. (3.6).

• Evaluate the momentummatrix elements in |ψα⟩ basis to obtain the symmetry-
adapted Hamiltonian, or equivalently transform Hinit with block diagonal U =
diag(U1, U2, . . . , Uα, . . .) using Eq. (3.7).

It is obvious that this method is not limited to any particular crystal symmetry
or only high symmetry k0 points. However, it is most advantageous for crystals
and k0 points with the higher order. If one had to calculate several materials that
share the same symmetry, one would only need to keep track of minimal number of
required parameters and their numerical value while keeping the analytical form of
the Hamiltonian fixed. Since DFT and similar ab initio procedures can be compu-
tationally demanding, all these parameters can be obtained for one material, and
then stored in a database where they could be available for others to use for much
less computationally demanding k · p calculations. Moreover, these same parame-
ters can be used for k · p Hamiltonians that use Burt-Foreman envelope function
method for nanostructures, as seen in Sec. 5.2, where from a numerical point, the
computational resource requirements can be significantly reduced with a fully sym-
metric and a minimal set of parameters.

3.3 Analytical results: Blocks of the Hamiltonian

Blocks of symmetry-adapted Hamiltonian are considered for CdSe and CsPbX3

(X=Cl, Br, I). The former CdSe, is a zincblende crystal with Td symmetry, while
the later CsPbX3, is a cubic perovskite with Oh symmetry1. Both materials have a
direct gap, CdSe at the Γ point and CsPbX3 at the R point, which will be considered
as their respectable unperturbed points k0. Hamiltonian of two sizes is considered:
a smaller, here referred as a standard 4×4 (8×8) Hamiltonian and a larger, here re-
ferred as an extended 13×13 (26×26) Hamiltonian for the case when SOC is omitted
(included).

When SOC is included, previously obtained states without SOC, that correspond
to irreducible representations of a single point group, will either split or become
double degenerate states, that correspond to irreducible representations of double
point groups. This splitting or turning into double degenerate states corresponds
to multiplying single irreducible representations with spinor representation of that
point group. Multiplication table of single irreducible representations with spinor

1Oh contains all symmetry operations of Td, plus inversion.
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representation for Td (Oh) can be found in Eq. (B.14) in B.1 [Eq. (B.27) in B.1] of
the Appendix. The case when degenerate bands are split into two sets of degenerate
bands due to inclusion of SOC is referred to as spin splitting of the bands.

Labels of bands are as follows: CBM and VBM are conduction band minima and
valence band maxima, and CBMx (VBMx) are bands that are x levels higher (lower)
than CBM (VBM). Bands that are included in the Hamiltonians are presented in
Figure 3.1, where splitting due to inclusion of SOC is illustrated. The Hamiltonian
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Figure 3.1. Bands that are included in the extended Hamiltonian and their double
group partners for CdSe (Td group, left) and CsPbX3 (Oh group, right). Bands: Γ1,
Γ+
1 , and Γ−

2 non-degenerate, Γ3, Γ
−
3 , Γ7, and Γ±

7 are 2-fold degenerate, Γ4 and Γ±
5

are 3-fold degenerate, Γ8 and Γ±
8 are 4-fold degenerate. Notation follows the one

found in Ref. [124].

is divided into blocks, where each block B(Γa,Γb) contains first and second-order
k · p parameters in symmetry adapted basis, connecting Γa and Γb (non) degenerate
states. If these blocks connect the same states they are absolutely diagonal. If they
connect two same irreducible representations from different states they are irrep
diagonal. The rest are off-diagonal blocks.

Figure 3.2 and Figure 3.3 illustrate blocks B(Γα,Γβ) that are present in the
CdSe Hamiltonian when SOC is omitted and included. Absolutely diagonal and
irrep-diagonal states are represented with colored squares while off-diagonals are
represented with gray squares. In the case of the zincblende CdSe, the Td point
group doen’t have inversion. So states do not have any parity, hence there are
irrep-diagonal blocks that connect valence and conduction states in the extended
Hamiltonian. When symmetry adaptation procedure is applied, each block is ob-
tained with the smallest number of parameters, and this number is determined by
the point group of the crystal. Analytical expressions for all the elements of all
blocks of the k · p Hamiltonian are given in Sec. B.1 of the Appendix as well as in
Supplementary Information of Ref. [46], in the case of Td, and in Sec. B.2 of the
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Appendix for Oh point group. It can be checked that the same form of the blocks
of the Hamiltonian is obtained when Luttinger’s method of invariants is applied
[54, 51]. Also, the standard four-band Hamiltonian obtained there coincides with
the second-order four-band Kane Hamiltonian [51]. The standard eight-band Hamil-
tonian obtained in Ref. [46] coincides with Weiler eight-band Hamiltonian [126, 51],
after an appropriate unitary transformation is made. Numerical parameters for all
Hamiltonians as well as unitary transformation that leads to Weiler Hamiltonian
can be found in Supplementary Information of Ref. [46].

The advantage of symmetry-adapted form over the initial form of the k · p Hamil-
tonian is illustrated in the Appendix B.3. The number of parameters can be dras-
tically reduced after the unitary transform which brings initial Hamiltonian into
the symmetry-adapted form. Namely, 1 and 5 parameters in the symmetry-adapted
form for the first and the second-order terms, respectively, compared to 5 and 49 first
and second-order terms, respectively, in the initial form, just for the simplest 4×4
Hamiltonian. This shows clear advantage in terms of simplicity for any use of these
Hamiltonians like for e.g. in calculating electronic structure for nanostructures.

In the case of cubic perovskite CsPbX3, where Oh group is just Td with inversion
around the center, irreducible representations can have different parity (+ or −).
Since the p corresponds to irreducible representation Γ−

15, which has odd parity,
states connected with the same parity will only have second-order terms, while
states connected with opposite parity will have only first-order terms, according to
symmetry rules. All conduction states have + parity while all valence states have
− parity, so there will be no irrep-diagonal states that mix conduction and valence
electrons.

Figure 3.2. The matrix form of k · p Hamiltonian obtained when SOC is omitted
(left); included (right) for zincblende CdSe. Labels of the bands are based on their
corresponding irreducible representations with superscripts which denote bands that
form the gap -m, bands that correspond to higher conduction states -c, and lower
valence states -v. Each block of the matrix contains the terms that originate from
matrix elements between the states that transform according to irreducible repre-
sentation specified on the left and above the matrix. The central square marked
with thick black lines denotes the smaller standard Hamiltonian.
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Figure 3.3. The matrix form of k · p Hamiltonian obtained when SOC is omitted
(left); included (right) for cubic perovskite CsPbX3. Labels of the bands are based
on their corresponding irreducible representations. In this case conduction states
have + parity, while all valence states have − parity. Each block of the matrix
contains the terms that originate from matrix elements between the states that
transform according to irreducible representation specified on the left and above
the matrix. The central square marked with thick black lines denotes the smaller
standard Hamiltonian.

All B(Γa,Γb) blocks for Td single and double point group as well as for Oh double
group can be found in B.1 and B.2 of the Appendix, respectively. Point group
character tables for both Td and Oh are in Appendix C.

3.4 Computation details

This section lists computational details for CdSe cubic crystal used for this chapter,
namely ones used in DFT and G0W0 calculations. Relevant parameters and codes
used for DFT with semi-local functional as well as hybrid functional for CsPbX3

(X=Cl,Br,I) can be found in Chapter 4 in Sections 4.3.1 and 4.3.2, respectively and
in Ref. [45].

Numerical parameters for symmetry-adapted k · p Hamiltonian blocks for zinc-
blende CdSe, obtained using DFT with semi-local functional PBEsol and using the
G0W0, can be found in Ref. [46]. Numerical parameters for symmetry-adapted k · p
Hamiltonian blocks for cubic CsPbX3 (X=Cl, Br, I) k · p Hamiltonians, obtained
using DFT with semi-local functional PBEsol (for Cl, Br) and PBE (for I) can be
found in Ref. [140].

3.4.1 DFT

The band energies and wavefunctions were obtained from DFT where exchange-
correlation energy was modeled using the Perdew-Burke-Ernzerhof generalized gra-
dient approximation revised for solids (PBEsol) [76]. Calculations were performed
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using the Quantum Espresso code [96, 97]. Core electrons were modeled using fully
relativistic optimized norm-conserving Vanderbilt pseudopotentials [141, 142].

For CdSe, the 10×10×10 grid in reciprocal space of the Brillouin zone was used,
while the kinetic energy cutoff of the plane waves used to represent the wavefunctions
was 90 Ry. The lattice constant of a = 6.096 Å, obtained by minimization of the
energy of the structure, was used in all subsequent calculations.

3.4.2 G0W0

The G0W0 calculations for zincblende CdSe were performed using the Yambo code
[87, 88], with input Kohn-Sham wavefunctions obtained from previous DFT calcula-
tion on the 4×4×4 grid in reciprocal space. Plasmon-pole approximation was used
to account for the frequency dependence of the dielectric function. Kinetic energy
cutoff used for the calculation of dielectric function in G0W0 calculation was 50 Ry.
The corresponding number of bands was 400 (800), while the number of bands used
in the evaluation of self-energy was 300 (600) in the case when spin-orbit interaction
is omitted (included). It is estimated that these values yield numerical accuracy of
20 meV or better for band energy corrections.

3.5 Numerical results

In Figure 3.4 the plot for the band structure of zinc-blende CdSe is shown. Re-
sults are obtained from a standard DFT calculation and from diagonalizing the
k · p Hamiltonian for a path in k-space. Two cases for Hamiltonian size are pre-
sented: standard 4×4 (8×8) and extended 13×13 (26×26) when the SOC is omitted
(included).

The expected result, that the extended Hamiltonian would produce a band struc-
ture that is quantitatively and qualitatively closer to the full DFT than the standard
one is confirmed on the plot. The preferred strategy to adding states to standard
Hamiltonian is to add them symmetrically around the main states, until enough
states ensure that qualitative trend of the band structure is followed in the whole
1BZ and that adding more states doesn’t give significant improvement, since more
states would require more computational resources for nanostructures. Adding more
valence than conduction states or vice-versa to the standard Hamiltonian could lead
to closing of the gap at points away from k0 which is the Γ point in this case. In
this case this was more prone to happen if the number of conduction states added
was greater than the number of valence states added. If such spurious states were
to occur, this would prevent any further application of the k · p Hamiltonian to the
nanostructure. Opting for 13(26) states in the extended Hamiltonian was a com-
promise between (a) accurate description of the band structure in the largest area
of the 1BZ as possible, (b) to use a reasonable amount of bands to do so and (c) to
avoid appearance of any spurious states that would close the gap.

The accuracy of standard and extended Hamiltonians, against the DFT in terms
of band structure is presented in Figure 3.5. Results show the maximal absolute dif-
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Figure 3.4. Band structure of zincblende CdSe calculated using DFT and using
standard and extended k · p Hamiltonian when the effects of spin-orbit interaction
are: (a) omitted; (b) included.

ference between k · p and DFT band structure when moving away from the k0 point
(Γ in this case) within a sphere of radius kr in the 1BZ. The standard (extended)
Hamiltonian produce a band structure that differs no more than 4 eV (1.75 eV)
inside the sphere inscribed in the 1BZ, with a difference not greater than 45 meV
(35 meV) inside a sphere of radius kr = 0.2 in units of 2π/a, where a is the lattice
constant. Figure 3.5 shows that in the reasonable vicinity of k0, in any direction,
the extended Hamiltonian produces a significantly better band structure to the one
obtained with the standard Hamiltonian, when compared to DFT. If only the low
field electrical properties or the optical properties at photon energies just above the
gap are needed, the standard Hamiltonian is usually sufficient. However, if optical
properties in a wider range of energies (which would be relevant in the case of solar
cells), or transport at larger electrical field (which would be relevant in field-effect
transistors) is required, the extended Hamiltonian provides a good description for
all relevant electronic states.

So far, the results considered only the Hamiltonians constructed from wavefunc-
tions and energies obtained from DFT using PBEsol functional. It is well known
that the DFT typically underestimates the band gap when compered to the exper-
imental result. In this case, the DFT gap using PBEsol functionals is 0.47 eV and
0.40 eV when SOC is omitted and included, respectively, which is not a good value
when compared to the experimental one of 1.71 eV [143]. Since the methodology of
k · p in general, is by no means limited to only DFT wavefunctions and energies, it
would be useful to construct these same Hamiltonians with parameters that provide
a much closer gap to the experimental result. One way to do so, is to calculate
the band structure using many-body perturbation theory in the GW approximation
[80], mentioned in Sec. 2.7.5. Here, the G0W0 variant of GW approximation is used,
in which the self-energy is obtained from Green’s function G0 of an electron in DFT
Kohn-Sham potential, without further iterations. The G0W0 calculation provides
band gaps of 1.77 eV and 1.60 eV, without and with SOC, respectively, which is in
a much better agreement with the experimental value.

The energies EGW
k0n

obtained from G0W0 method are used to obtain Pnm,ij param-
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Figure 3.5. Maximal absolute difference ∆E between the band energy obtained
from DFT and k · p within the region of the Brillouin zone in the shape of a sphere
of radius kr centered at Γ when the effects of spin-orbit interaction are: (a) omitted;
(b) included. The difference is shown for main bands where the results obtained
using standard k · p Hamiltonian are shown using empty symbols, while the results
obtained using the extended k · p Hamiltonian are shown using filled symbols. Insets
show a zoom of the same graph in the region around kr = 0.

eters for standard and extended Hamiltonians. The band structure obtained from
these parameters when SOC included is presented in Figure 3.6.

Besides the G0W0 method, one could perform a DFT calculation using hybrid
functional like PBE0 (described in Sec. 2.7.3) which has proved to be much more
useful when obtaining electronic structure for the cubic phase of cesium-lead-halide
perovskites CsPbX3 (X=Cl, Br, I). The computational resources required for hybrid
functional are similar to those of the G0W0 method. However since the cubic phase
of perovskites has 5 atoms per unit cell, compared to 2 atoms which are present in
the zincblende CdSe case, it wasn’t computationally feasible to obtain energies for
higher states that are required for second-order parameters Pnm,ij to converge. In
this case, the correction to DFT obtained parameters is only to the zero-th order
i.e. energies Ekn are replaced with the ones obtained from hybrid DFT calculation
while first and second-order parameters pnm and Pnm,ij remain the same as the ones
obtained from the standard DFT calculation. Furthermore, because the cubic phase
for these perovskites is only observed at high temperatures, another correction has
to be included to the zero-th order parameters. At high temperatures where the
cubic phase is formed for CsPbX3 perovskites, phonon-induced renormalization for
band energies is significant and it will be discussed in detail in Chapter 4. This
phonon-induced renormalization is introduced with the electron-phonon self-energy
Σ(T ) which has a strong temperature dependence. In Figures 3.7, 3.8 and 3.9 band
structure obtained from standard (8×8) and extended (26×26) Hamiltonians with
PBE0 energies and Σ(T ) is compared to the one obtained from standard DFT.
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Figure 3.6. Band structure of zincblende CdSe calculated using standard and
extended k · p Hamiltonian parametrized starting from band energies obtained in
G0W0 calculation. DFT results are given for comparison.

3.6 Conclusion

In conclusion, this chapter presented a method that allows automatic construction
of k · p Hamiltonians in their symmetry-adapted form starting from output of ab-
initio band structure calculation of bulk material. This method was then applied
to construct the k · p Hamiltonians for zincblende CdSe and cubic CsPbX3 (X=Cl,
Br, I) materials. While construction and parameterization of k · p Hamiltonians is
usually believed to be a rather difficult and time consuming task, it is the author’s
expectation that the method presented in this chapter will change the situation and
that it will be straightforward in the future to obtain k · p Hamiltonians for new
materials and apply them to study electronic properties of nanostructures based on
these materials without the need to perform any kind of fitting.
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Figure 3.7. Band structure of the cubic phase of CsPbCl3 calculated using standard
and extended k · p Hamiltonian parametrized using band energies obtained using
hybrid PBE0 functional and self-energy correction Σ(T ) at T=320 K that stems
from the phonon-induced renormalization of band energies. DFT results obtained
with PBEsol functional are also given for comparison.

Γ R X M Γ X

−4

−2

0

2

4

6

8

E
(k

)
[e

V
]

DFT

8×8 +PBE0+ Σ(T )

26×26 +PBE0+ Σ(T )

Figure 3.8. Band structure of the cubic phase of CsPbBr3 calculated using stan-
dard and extended k · p Hamiltonian parametrized using band energies obtained
using hybrid PBE0 functional and self-energy correction Σ(T ) at T=400 K that
stems from the phonon-induced renormalization of band energies. DFT results ob-
tained with PBEsol functional are also given for comparison.
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Figure 3.9. Band structure of the cubic phase of CsPbI3 calculated using standard
and extended k · p Hamiltonian parametrized using band energies obtained using
hybrid PBE0 functional and self-energy correction Σ(T ) at T=300 K that stems
from the phonon-induced renormalization of band energies. DFT results obtained
with PBE functional are also given for comparison.
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Chapter 4

Temperature dependence of band
gap in halide perovskites

Present chapter, follows the paper that describes electronic structure calculations of
the temperature dependence of the band gap and band energies for halide perovskite
materials CsPbX3 (X = Cl, Br or I) in cubic crystal structure[45]. These materials
were first considered in Chapter 3 in their bulk phase, while results considering
nanostructures based on them are reserved for Chapter 5 (more precisely Sec. 5.5).

4.1 Introduction

Halide-lead perovskite materials are relevant for applications in many electronic
devices, which by design should be able to perform at wide range of temperatures.
At low temperatures, an orthorhombic structure has been observed, followed by a
narrow range for tetragonal structure before the phase transition to cubic structure
which has been observed around and above room temperature i.e.: 320 K, 403 K
and 300 K, for CsPbCl3, CsPbBr3 and CsPbI3, respectively. When designing any
kind of electronic device, the first step would be to obtain an accurate electronic
structure at all possible temperatures for all materials that this device is based
on. However, there are several challenges that need to be addressed when dealing
with halide-lead perovskites that can be made of three main points. First, for
many other semiconductors, standard local or semi-local approximations to density
functional theory (DFT) underestimate the material band gap [41, 144, 145] and
more sophisticated approaches, such as the use of GW approximation [146, 147, 148]
or hybrid functionals [149, 150], are necessary. Second, in the case of case of halide-
lead perovskites, electronic structure calculations become more demanding, as one
has to take into account the effects of spin-orbit interaction due to presence of heavy
atoms such as lead [41, 144, 145]. Third, temperature effects on the band gap and the
overall electronic structure of perovskites are rather pronounced [38, 151, 152, 153,
154, 155, 156] and one cannot simply assign the electronic structure calculated for
fixed atoms in the crystal lattice as the electronic structure at higher temperatures.
First two points have been addressed previously in the literature, however the third

109
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point still requires some discussion and will be the main focus of this chapter.

The most successful theory for treating the temperature effects on the electronic
structure of semiconductors is the Allen-Heine-Cardona (AHC) theory [113, 114,
115], described in Sec. 2.9. Within this theory, one expands the Hamiltonian up to
second-order terms in atomic displacements from the equilibrium position and per-
turbatively evaluates the change in band energies. In conjunction with the methods
for electronic structure calculation for fixed atomic positions, this theory was used
to study the temperature dependence of the band gap and zero temperature band
gap renormalization in a variety of semiconductors [120, 157, 117, 158, 115, 159].
However, the theory can be straightforwardly applied to a particular material only
if its crystal structure at a given temperature is the same as at zero temperature.

As mentioned, halide-lead perovskite materials CsPbX3 (X = Cl, Br or I) exhibit
cubic structure at high temperatures only [160, 161, 33, 162, 163, 164]. As the
temperature is lowered they transform to a tetragonal structure and finally to an
orthorhombic structure [160, 161, 33, 162]. Therefore, the cubic structure is not a
stable structure at zero temperature. When one attempts to calculate the phonon
dispersion in the material by assuming a cubic structure at zero temperature, phonon
modes of imaginary frequencies are obtained [165, 162, 166, 167] and it is not clear
how to treat such phonons within AHC theory.

Previous works on the effects of temperature on halide perovskite semiconductors
have not addressed other bands than the conduction band minimum (CBM) and
the valence band maximum (VBM). While these two bands are most relevant for
the determination of the band gap of the material, there is a significant interest
to know the energies of the other bands. These are important, for example, to
understand the optical response of the material in the ultraviolet spectral range
relevant for ultraviolet detectors [10]. On the theoretical side, the knowledge of
band energies at characteristic points in the Brillouin zone is necessary to construct
multiband Hamiltonians [130, 132, 133, 46] that can further be used to predict the
electronic states in halide perovskite nanostructures. While the renormalization
of energies of the other bands can in principle be obtained in the same way as
for CBM and VBM within AHC theory, certain issues, related to the energy level
broadening parameter δ, arise. On the one hand, band renormalization for other
bands converges linearly with respect to δ when δ → 0 in contrast to Lorentzian
convergence of CBM and VBM [120], which makes it more challenging to obtain
the convergence of other bands. On the other hand, other bands typically exhibit
larger broadening of energy levels than the CBM and VBM. Consequently, it is
questionable if one should evaluate the δ → 0 limit for other bands at all. Preferably,
the broadening of the energy levels should be evaluated simultaneously with the band
energy renormalization.

In this chapter, following calculations for lead halide perovskites are performed:
electronic structure calculations for cubic and orthorhombic phase, phononic struc-
ture for cubic phase using harmonic and anharmonic treatment, and temperature
dependent electron-phonon renormalization of the electronic structure. Electronic
structure calculations (without the effects of phonon-induced band renormalization)
are performed using a hybrid functional that satisfies the Koopmans condition.
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Phononic structure is obtained using density functional perturbation theory (DFPT)
and self-consistent phonon (SCPH) theory. Electron-phonon renormalization of elec-
tronic structure is performed using AHC theory that introduces temperature depen-
dence of the electronic structure. The challenge of treating phonons within AHC
theory is overcome by performing phonon band structure calculations at a finite
temperature within the framework of SCPH theory, where all phonon modes remain
stable. The challenge of the choice of energy level broadening is overcome by per-
forming the calculation in which energy levels and their broadening are determined
self-consistently. The obtained temperature dependence of the band gap for cubic
structure is compared to experimental results from the literature. Calculation of
orthorhombic structure at zero temperature is shown also. Finally the chapter ends
with a comment on overall temperature dependence of the band gap of CsPbX3

materials from zero to high temperatures.

This chapter is organized as follows. Sec. 4.2 starts with explaining the self-
consistent Migdal approximation and describes the self-consistent method, based
on AHC theory found in Sec. 2.9 that was used to obtain the main results in this
chapter. Sec. 4.3, contains computational details and results necessary for the next
section. Computational details and obtained results start with results from stan-
dard DFT with semi-local functionals in Sec. 4.3.1 followed by hybrid functional
calculations in 4.3.2. Next, DFPT compuational details and results are shown for
harmonic phonons in Sec. 4.3.3, followed by anharmonic calculations performed us-
ing self-consistent phonon calculations (SCPH) in Sec. 4.3.4. Sec. 4.4 contains the
main results that include temperature renormalization of electron bands using on-
the-mass-shell (OTMS) approach in Sec. 4.4.1 and self-consistent procedure (SCP)
based on Migdal approximation in Sec. 4.4.2. In Sec. 4.4.3 results from Sec. 4.4
are compared with experiments. Chapter ends with discussion and conclusions in
Sec. 4.5.

4.2 Self-consistent Migdal approximation

The non-adiabatic and dynamic Fan term from Eq. (2.199) from Sec. 2.9.2 that
described Allen-Heine-Cardona theory was:

ΣFan
kn (ω, T ) =

1

Nq

∑

m,qν

∣∣gFannm,ν(k,q)
∣∣2×

×
[
nqν(T ) + 1− fk+qm

ω − εk+qm − ωqν + iδ
+

nqν(T ) + fk+qm

ω − εk+qm + ωqν + iδ

]

=
1

Nq

∑

m,qν

∣∣gFannm,ν(k,q)
∣∣2×

×
[
(nqν(T ) + 1− fk+qm)G

(0)
k+qm(ω − ωqν)+

(nqν(T ) + fk+qm)G
(0)
k+qm(ω + ωqν)

]
,

(4.1)
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where gFanmn,ν(k,q) is the electron-phonon matrix element that contains probability of
transition between k+qm and kn electron states by scattering from qν-phonon with
frequency ωqν , nqν(T ) is the Bose-Einstein factor for qν phonons at temperature T
and fk+qm is the Fermi-Dirac occupation factor for k+ qm state with εk+qm as the
Kohn-Sham energy of that state and δ is a positive real infinitesimal. The matrix
element gFannm,ν(k,q) was given in Eq. (2.192) in Sec. 2.9, as well as in Eq. (A.40) in
A.4 of the Appendix, and can be expanded as:

gFanmn,ν(k,q) = ⟨k+ qm|∆qνv
KS |kn⟩uc

=
∑

κα

ξκα,ν(q)

(2Mκωqν/ℏ)1/2
⟨k+ qm| ∂vKS

∂Rκα(q)
|kn⟩uc ,

(4.2)

where κ = 1 . . . Nat and α = x, y, z are ion and directional indices, ξκα,ν(q) and ωqν

are eigenvectors and energies for qν-phonons, respectively, and term in brackets is
the transition matrix element between electron states k + qm and kn induced by
phonon with vector q. Similarly, from Eq. (2.200) one obtains the Debye-Waller
term in the rigid-ion approximation:

ΣDW
kn (T ) = − 1

Nq

∑

mqν

grianm,ν(k,q) [2nqν(T ) + 1] ,

grianm,ν(k,q) =
∑

κκ′αα′

[
ξκα,ν(−q)ξκα′,ν(q)

2Mκωqν/ℏ
+
ξκ′α,ν′(−q)ξκ′α′,ν(q)

2Mκ′ωqν/ℏ

]

× Re
⟨ukn| ∂vKS

∂Rκα(Γ)
|ukm⟩ ⟨ukm| ∂vKS

∂Rκ′α′ (Γ)
|ukn⟩

εkn − εkm + iδ
.

(4.3)

Using on-the-mass-shell approximation (OTMS), the renormalized Kohn-Sham state
EOTMS

kn (T ) can be simply obtained as:

EOTMS
kn (T ) = εkn +ReΣFan

kn (εkn, T ) + ReΣDW
kn (T ), (4.4)

or by applying one of the solution methods described in Sec. 2.9.3.
As discussed in Chapter 2, Sec. 2.9.3, there are challenges in obtaining converged

result for band energy renormalization via the AHC theory for bands other than
VBM and CBM using Eqs. (4.1), (4.3) and (4.4). The convergence with respect
to energy level broadening parameter δ as δ → 0 is a slow linear convergence[120]
and hence one needs to use rather small δ, which in turn requires large number of
q-points in the summation. The broadening of the energy levels obtained from the
imaginary part of the self-energy is on the order of 100meV or more. It is therefore
questionable if the δ → 0 limit is relevant at all. It is certainly more appropriate to
self-consistently determine the renormalization and broadening of the energy levels.
One way to achieve this will be explained in this section.

The terms (ω − εk+qm ± ωqν + iδ)−1 represent the retarded Green’s function of

a bare electron G
(0)
k+qm(ω ± ωqν), while ΣFan

kn (ω, T ) itself is the self-energy in the so-
called Migdal approximation. A more accurate approximation is the self-consistent
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Migdal approximation where the bare Green’s function G(0) is replaced with the
dressed Green’s function G. With this, ΣFan

kn (ω, T ) would take the form

ΣFan
kn (ω) =

1

Nq

∑

m,qν

∣∣gFannm,ν(k,q)
∣∣2×

×
[
(nqν(T ) + 1− fk+qm)Gk+qm(ω − ωqν)+

(nqν(T ) + fk+qm)Gk+qm(ω + ωqν)
]
.

(4.5)

One can in principle find the Green’s function, the self-energy, the spectral func-
tion and hence the energy level renormalization and broadening by self-consistently
solving Eq. (4.5) and the Dyson equation. However, this requires evaluation of all
these quantities at wave vectors throughout the whole Brillouin zone in each step of
the self-consistent procedure, which is a highly demanding computational task. A
significant simplification that decouples different kn states can be made as follows.

The Green’s function in Eq. (4.5) is given as

Gk+qm(ω) =
1

ω − εk+qm − Σk+qm(ω)
. (4.6)

One can then make a replacement Σk+qm(ω) → Σkn(ω) = ΣFan
kn (ω)+ΣDW

kn in Eq. 4.6.
Such a replacement is justified by the fact that the dominant contribution to the
sum in Eq. (4.5) comes from the terms in the sum that have m = n and small value
of q. For such terms Σk+qm(ω) ≈ Σkn(ω). It is therefore appropriate to replace the
self-energy for all terms in the sum with self-energy of the dominant terms. The
expression for ΣFan

kn then reads

ΣFan
kn (ω) =

1

Nq

∑

m,qν

∣∣gFannm,ν(k,q)
∣∣2×

×
[

nqν(T ) + 1− fk+qm

ω − εk+qm − ωqν − Σkn(ω−ωqν)
+

nqν(T ) + fk+qm

ω − εk+qm + ωqν − Σkn(ω+ωqν)

]
.

(4.7)

It is important to note that Eq. (4.7) does not contain the self-energies of the states
other than kn, which is a consequence of the approximation used for Σk+qm(ω). The
self-energy ΣFan

kn (ω) can now be obtained using a self-consistent procedure (SCP) as
follows. One starts with some initial guess for Σkn(ω) and evaluates ΣFan

kn (ω) using
Eq. (4.5) and the total self-energy as the sum of the Fan and the Debye-Waller term.
New value of ΣFan

kn (ω) is then calculated again using Eq. (4.7) and the procedure is
repeated until the convergence of ΣFan

kn (ω) is reached. The spectral function is then
obtained as

Akn(ω) = − 1

π
Im

1

ω − εkn − Σkn(ω)
(4.8)

and the renormalized energy Ekn is obtained as the energy ωmax at which the spectral
function reaches a maximum. This procedure for evaluation of renormalized energies
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is similar in spirit to the procedure suggested in Ref. [44] (Eq. 166 therein), where
approximations that also lead to decoupling of different kn states were used. The
difference between these procedures is that here the full frequency dependence of
self-energies is considered rather than the energy of the renormalized state and its
broadening only.

It is worth mentioning that, it is rather challenging to treat the electron-phonon
interaction in real materials beyond the approximations mentioned. These approx-
imations all contain the assumption that electron-phonon interaction is not too
strong. Full nonperturbative treatment of electron-phonon interaction has so far
only been performed for model Hamiltonians, such as the Holstein or Fröhlich model.
In a recent study of the Holstein model [168] it was shown that for relatively weak
electron-phonon coupling the spectral functions in the Migdal and self-consistent
Migdal approximation are similar to the spectral functions obtained using more ad-
vanced approaches, such as the cumulant expansion method and the dynamical mean
field theory. Moreover, self-consistent Migdal approximation performs overall only
somewhat worse than the cumulant expansion method, which is not the case for the
Migdal approximation that gives inaccurate results starting from moderate values of
electron-phonon coupling. Based on the knowledge gained from the Holstein model,
one can infer about the accuracy of the OTMS and SCP results for real perovskite
materials. It is expected that the SCP results which are based on the self-consistent
Migdal approximation should in principle be more accurate than the OTMS results
which are based on the Migdal approximation. On the other hand, it will be shown
in Sec. 4.4 that OTMS and SCP results are not too different. This suggests that
the regime where electron-phonon coupling is considered to be relatively weak, it is
appropriate to apply either the Migdal or the self-consistent Migdal approximation.

In both the OTMS and SCP approach, as typically done in the literature [44],
only the diagonal (intraband) self-energies Σkn(ω) were evaluated and not the off-
diagonal (interband) self-energies Σknm(ω) (with n ̸= m). In the case of OTMS
approach one is actually interested in diagonal self-energies only because they di-
rectly determine the band energy renormalization, see Eq. (4.4). On the other
hand, introduction of off-diagonal self-energies in the SCP approach would strongly
increase the computational burden of the whole procedure. On physical grounds, it
should be noted that band energy renormalization due to interband electron-phonon
scattering processes is already described by the diagonal self-energies [via the m ̸= n
terms in the sum in Eq. (4.1)]. Hence, inclusion of non-diagonal self-energies would
represent only a higher order effect.

4.3 Computational details

4.3.1 DFT with semi-local functionals

Density functional theory calculations of the electronic structure of the CsPbX3

materials were performed using the semi-local PBEsol [76] functional in case of
CsPbCl3 and CsPbBr3, while the PBE functional [73] was used in case of CsPbI3.
Calculations were performed using the plane wave code Quantum Espresso [96, 97].
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Norm-conserving fully relativistic pseudopotentials [142, 141] were used to treat the
effect of core electrons. The effects of spin-orbit interaction were included. The
wavefunctions were represented on a 4 × 4 × 4 reciprocal space k−point grid with
a kinetic energy cutoff of 50 Ry for CsPbCl3 and CsPbBr3 and a cutoff of 40 Ry
for CsPbI3. Taking a note, a different functional was used for CsPbI3 because the
gap obtained using the PBEsol functional at the optimized lattice constant obtained
from this functional is nearly zero, which prevents the use of this functional in further
DFPT calculations.

The optimized lattice constants for the cubic structure obtained from the cal-
culations are respectively 10.6 a0, 11.1 a0 and 12.1 a0 (in units of first Bohr radius
a0) for CsPbCl3, CsPbBr3 and CsPbI3. We note that the lattice constants obtained
for CsPbCl3 and CsPbBr3 are in excellent agreement with the experimental lattice
constant at the lowest temperature where the material exhibits a cubic structure
(which are 10.59 a0 at 320 K for CsPbCl3 and 11.10 a0 at 403 K for CsPbBr3, see
Ref. [164]). This agreement is reasonable in case of CsPbI3 (experimental lattice
constant is 11.67 a0 at 300 K, see Ref. [169]) and would be better if the PBEsol
functional, which gives the lattice constant of 11.8 a0, were used. However, as noted
before, the use of PBEsol functional for CsPbI3 closes the gap of the material and
hence this functional was not used for CsPbI3. While the agreements obtained are
somewhat fortuitous because standard DFT calculations are performed at zero tem-
perature, the lattice constants obtained were used in further calculations because
they are in good agreement with experimental lattice constants. The direct band
gaps at the R-point obtained for CsPbCl3, CsPbBr3 and CsPbI3 are respectively
0.59 eV, 0.22 eV and 0.21 eV. These gaps are well below the experimental band
gaps, see Figure 4.1. This is expected because it is well known that semi-local
functionals underestimate the band gap [84].

Calculations for the orthorhombic structure of CsPbX3 material that is stable at
zero temperature were performed as following. The coordinates of the initial struc-
ture were taken from The Materials Project website [170] as structures numbered
675524, 567629, and 1120768 for CsPbCl3, CsPbBr3 and CsPbI3, respectively, and
were further relaxed (cif files for the initial and relaxed structures are included in
Supplementary Information of Ref. [45]). CsPbCl3 orthorhombic structure corre-
sponds to space group number 38 (Amm2) with 10 atoms per primitive cell, while
CsPbBr3 and CsPbI3 orthorhombic structures both correspond to space group num-
ber 62 (Pmna) with 20 atoms per primitive cell. The same density functionals, k-
point grid dimension, and the plane wave kinetic energy cutoff were used as in the
case of the cubic structure. PBEsol functional was used for optimization of atomic
coordinates and the dimensions of the unit cell for all three materials (since the gap
of orthorhombic CsPbI3 does not close when the PBEsol functional is used in the
calculation). The calculations were performed using the Quantum Espresso code
[96, 97] with variable cell relaxation option. The band gaps obtained for orthorhom-
bic CsPbCl3, CsPbBr3 and CsPbI3 are respectively 1.1 eV, 0.83 eV and 0.62 eV.
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4.3.2 Hybrid functional calculations

To overcome the band gap problem of semi-local functionals, electronic structure
calculation was performed using a hybrid functional. In particular, PBE0 func-
tional was used [78, 171] whose parameter α is chosen to satisfy the Koopmans
condition. We take the values of α for CsPbX3 materials that were calculated in
Ref. [79]. Hybrid functional calculations were also performed using the Quantum
Espresso code [96, 97, 172]. The calculation parameters common to standard semi-
local DFT calculation were set to the same values. In addition, for cubic structures
a 4 × 4 × 4 reciprocal q−points grid was used to sample the Fock operator and
the Gygi-Baldereschi method [173] was used to treat the singularity at q → 0. For
orthorhombic structures that have a larger unit cell than cubic structures, 3× 3× 2
k- and q-points grid was used in the case of CsPbBr3 and CsPbI3, while for CsPbCl3
a 4× 4× 4 k- and q-points grid was used.

In hybrid functional calculations, obtained values of the band gap of the cubic
phase are: 2.4 eV, 1.5 eV and 0.96 eV for CsPbCl3, CsPbBr3 and CsPbI3. These
values are closer to experimental values than the values obtained from semi-local
functionals. However, these values are still smaller than the experimental band
gaps, see Figure 4.1. Such a result indicates that temperature effects might play a
significant role and that it is important to investigate them.

In case of orthorhombic structure, band gaps of 3.0eV, 2.4eV and 1.5eV, respec-
tively for CsPbCl3, CsPbBr3 and CsPbI3, were obtained. These results are in good
agreement with experimental gaps of the low-temperature orthorhombic structures,
which are 3.056 eV for CsPbCl3 (Ref. [174]), 2.25 eV for CsPbBr3 (Ref. [175]) and
1.72 eV for CsPbI3 (Ref. [176]).

Figure 4.1. Comparision of experimental and theoretical results for the electronic
gap for CsPbX3 (X = Cl, Br or I) calculated without taking temperature effects into
account. The line x = y represents the experimental results for lowest temperature
of the cubic structure. The symbols denote calculated values for the cubic structure
using the PBE (PBEsol) functional for CsPbI3 (CsPbCl3 and CsPbBr3) (inverted
triangles) and PBE0 functional modified to satisfy the Koopmans condition (dia-
monds).
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4.3.3 DFPT

To take into account the effect of temperature on electronic band structure, it is nec-
essary to calculate the phonon frequencies and eigenvectors and the electron-phonon
coupling constants. For this reason, DFPT calculations of phonons in harmonic ap-
proximation were performed. The same density functional, kinetic energy cutoff and
the reciprocal space k−point grid were used as in DFT calculations. The calculations
were performed using the Abinit code [103, 177, 178, 104].

The phonon band structures obtained from calculations for cubic CsPbX3 ma-
terials are presented in Figure 4.2 (dashed line), where phonons with imaginary
frequencies are presented using negative values. Since cubic structure is not stable
at zero temperature, there is a significant number of phonon modes with imaginary
frequencies. It is therefore a challenge to include such modes in the calculation of
phonon-induced band renormalization.

4.3.4 SCPH

Standard DFPT calculations of phonon band structure assume a zero temperature
and the harmonic approximation. As discussed in Section. 2.8.3, this leads to phonon
modes with imaginary frequencies for the cubic structure. To overcome this issue,
one has to take into account the anharmonic effects and the effects of temperature.
This can be naturally accomplished using the self-consistent phonon method [179,
111].

The calculations based on the SCPH method were performed for cubic ABX3

(X=Cl, Br, I) perovskites using the following protocol. The calculations were per-
formed using the ALAMODE code [180, 111], while DFT calculations and ab-initio
molecular dynamics simulations were performed using the Quantum Espresso code
[96, 97]. One first has to be obtain all relevant force constants. (i) Harmonic force
constants were obtained by performing the DFT calculation of 2 × 2 × 2 cubic su-
percell, where a shifted 4× 4× 4 k−point grid was employed. Other parameters of
the DFT calculation are the same as in Sec. 4.3.1. An atom is displaced by 0.01 Å
in a certain direction and new atomic forces are calculated. The harmonic force
constants are then obtained from these forces using a least square fit implemented
in the ALAMODE code. (ii) To obtain anharmonic force constants, one first gener-
ates representative atomic structures which will be used for evaluation of forces and
subsequent force constant fitting. Ab initio molecular dynamics was perfomed for
NV T ensemble in 2000 steps at a temperature of 500 K with a timestep of 2 fs for
a 2× 2× 2 cubic supercell. To gain on computational speed in this calculation the
kinetic energy cut-off is reduced to 30 Ry and k−point grid consisting of Γ point
only was used. This is justified in this place, since the goal is only to get config-
urations where atoms are displaced from their equilibrium positions, rather than
to extract physical quantities from the molecular dynamics simulation. Then, 30
snapshots were selected from the simulation which are equally spaced from timestep
500 to timestep 2000. (iii) For the snapshots obtained, each atom was additionally
displaced by up to 0.1 Å in each direction. For these 30 snapshots, the atomic forces
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were accurately computed from DFT by using 50 Ry kinetic energy cutoff and a
shifted 4 × 4 × 4 k−point grid. (iv) With the forces obtained a fitting of the force
constants using the adaptive LASSO method is performed, following Refs. [181, 111].
In the fitting, there is a restriction that fourth order force constants are zero be-
yond third neighbor atoms, that the fifth and sixth order constants are nonzero
for nearest neighbors only and that higher order constants are equal to zero. (v)
The force constants obtained in the previous step are used as input for the SCPH
method calculation. In the SCPH method calculation, the off-diagonal elements of
the self-energy are neglected and 4×4×4 grid was used to represent the self-energy
in reciprocal space.

The phonon band structure obtained from the SCPH method is presented in
Figure 4.2. Phonon frequencies that are non-negative throughout the whole Brillouin
zone were obtained. Also, with an increase of temperature, a small but non negligible
shift in frequencies is present. These shifts are negative for the three highest bands
and positive for the rest. It will be shown, in Sec. 4.4.1, that these shifts are large
enough to have a significant contribution to the renormalization of electronic bands.
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Figure 4.2. Phonon dispersion (left column) and phonon density of states (in
arbitrary units) for CsPbX3 (X = Cl, Br or I, in rows from top to bottom) obtained
using the SCPH method at T = 400K (solid line) and T = 700K (dot-dashed line),
as well as using DFPT with harmonic approximation (dashed line).

4.4 Results

The calculations, in the following sections, were performed using the author’s code
which takes DFPT results from the Abinit code. These results include variations of
the Kohn–Sham potential with respect to ionic displacements and the interatomic
force constants, that are then used to calculate first and second-order matrix ele-
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ments of electron–phonon interaction. In all band energy renormalization calcula-
tions bare band energies that appear in Eq. (4.1) and Eq. (4.3) were taken from
DFT calculations reported in Sec. 4.3.1.

4.4.1 Band energy renormalization with OTMS approach

This section applies the AHC procedure using the OTMS approach, briefly described
in Sec. 4.2 and in detail in Sec 2.9.2 and Sec. 2.9.3 on cubic CsPbX3 perovskites. The
results can be also found in Ref. [45] were author’s own code was used which takes
DFPT results from the Abinit code to produce phonon-induced renormalization.

Convergence with respect to Nq

In order to obtain reliable results, one has to use enough q-points in the summations
in Eq. (4.1) and Eq. (4.3) and check the sensitivity of the results to the value of
δ in Eq. (4.1). It has been shown in Ref. [120] that the band energy renormaliza-
tion for polar materials converges as 1/Nq with the number of points Nq and that
a Lorentzian type convergence for CBM and VBM energies of polar materials is
obtained while decreasing δ.

In Ref. [38] phonon modes obtained within the harmonic approximation were
used, however, the phonon modes with imaginary frequencies were simply disre-
garded. In such an approach it remains unclear whether one should disregard only
the phonons at certain q-points where their frequency becomes imaginary or one
should disregard the whole phonon mode that produces an imaginary frequency in
at least one point in the Brillouin zone. To understand whether the approach where
imaginary phonon frequencies are discarded can provide reasonably good results,
the convergence tests with respect to Nq and δ were performed in three cases: (i)
assuming phonon frequencies from DFPT and disregarding the contribution from
phonons with imaginary frequencies; (ii) assuming phonon frequencies from DFPT
and disregarding the contribution from the whole phonon bands that exhibit imag-
inary frequencies at any q-point; (iii) assuming phonon frequencies obtained from
the SCPH method. These three cases will be referred to as cases (i), (ii) and (iii) in
what follows.

Figure 4.3 shows the results for the band gap renormalization obtained using
the OTMS approach in each of these cases. It can be seen that, in case (i) the
behavior with respect to Nq is not convergent and one obtains unphysically large
band gap renormalizations. In this case several phonon bands cross zero energy at
several different points in the Brillouin zone (see left column in Figure 4.2), which
leads to divergence of Fan matrix elements due to ωqν term in the denominator, see
Eq. (4.2). The convergence is better in case (ii) when such phonon bands are simply
disregarded, however one obtains band gap renormalization which is underestimated
with respect to case (iii). In case (iii), the convergence with respect to δ and Nq is
obtained.
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Figure 4.3. Dependence of band gap renormalization obtained using the OTMS
approach on the number of q-points Nq and on the small parameter δ (whose value
is specified in the legend) for CsPbX3 (X = Cl, Br or I, in rows from top to bottom)
materials at T = 400K. The column labeled as PHCUT0 denotes the result obtained
assuming phonon frequencies from DFPT and disregarding the contribution from
phonons with imaginary frequencies [case (i) discussed in the text], while the col-
umn labeled as PHCUT6 denotes the results obtained assuming phonon frequencies
from DFPT and disregarding the contribution from the whole bands that exhibit
imaginary frequencies at any q-point [case (ii) in the text]. The column labeled as
SCPH denotes the result obtained by taking phonon frequencies from the SCPH
method [case (iii) in the text].

.

Contributions of phonons to VBM and CBM

Figure 4.4 shows a decomposition of the CBM and VBM renormalization into con-
tributions from phonons of different energies ℏωph. Most of the contributions come
from the region where the density of phonon states is highest and these contribu-
tions come mostly from lower bands. Lower energy phonons also tend to have larger
electron-phonon coupling matrix elements due to the ωqν term in the denominator
in Eq. (4.2). This fact also contributes to prevalent contribution of lower energy
phonons to band energy renormalization. Since most of these lower energy phonons
turn into imaginary frequency phonons within DFPT calculation, the results ob-
tained in case (ii) are underestimated in comparison to the results in case (iii). The
contributions of the first-order Fan and second-order Debye-Waller terms in Eq. (4.4)
to band energy renormalization are now analyzed. In line with previous literature
results for other materials [113, 182], one can find that these two terms have opposite
signs and that both of these terms have significant absolute values, see Figure 4.5.
For these reasons, accurate calculation of each of these terms is necessary to obtain
reliable final result for band energy renormalization.
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Figure 4.4. Contributions from phonons of different frequencies to VBM (left
column) and CBM (middle column) renormalization at T = 400K and temperature
dependent gap renormalization (right column) for CsPbX3 (X = Cl, Br or I, in
rows from top to bottom) obtained using the OTMS approach. The results in case
(ii) are shown as filled bins, while the results in case (iii) are shown as transparent
bins. The value of each bin b(ωi) represents the contribution of all phonons with
frequencies from the range (ωi−∆ω/2, ωi+∆ω/2) to band energy renormalization,
so that ∆Ekn =

∑
i b(ωi). Filled circles in the right column correspond to case (ii),

while empty deltoids correspond to case (iii).

Linearity of temperature dependence

There is also the linearity of the temperature dependence of the band gap renormal-
ization that should be discussed. One can notice from Eq. (4.4) [with self-energies
given by Eqs. (4.1) and (4.3)] that the temperature dependence originates only from
the Bose term in these equations. When phonon energies are small the temper-
ature dependence of the Bose term is linear. As a consequence, the temperature
dependence of band energy renormalization is also linear in case (ii), as can be seen
in Figure 4.4 On the other hand, in case (iii) the phonon frequencies also depend
on temperature and the temperature dependence of the band gap is determined
by the ratio of the Bose term (which contains temperature dependent phonon fre-
quency) and the phonon frequency [which comes from the Fan matrix element, see
Eqs. (4.2) and (4.1)]. The Bose term increases the gap with temperature as in case
(ii), however, most of the temperature dependent frequencies (especially the ones
where density of phonon states is largest) increase with temperature. They then
tend to decrease the renormalization, which leads to nonlinear dependence in case
(iii), as seen in Figure 4.4.

The temperature dependence of the band gap of the investigated materials using
the OTMS approach is among the results presented in Figure 4.9. For the reasons



122 CHAPTER 4. HALIDE PEROVSKITES: BAND GAP

0 10 20 30
−2

−1

0

1

2

b(
ω

p
h
)

[e
V

]

VBM

0 10 20 30
−1.0

−0.5

0.0

0.5

1.0
CBM

Fan+DW

DW

Fan

0 5 10 15 20
−2

−1

0

1

2

b(
ω

p
h
)

[e
V

]

0 5 10 15 20
−1.0

−0.5

0.0

0.5

1.0

Fan+DW

DW

Fan

0 5 10 15
h̄ωph [meV]

−2

−1

0

1

2

b(
ω

p
h
)

[e
V

]

0 5 10 15
h̄ωph [meV]

−1.0

−0.5

0.0

0.5

1.0

Fan+DW

DW

FAN

CsPbCl3

CsPbBr3

CsPbI3

Figure 4.5. Contributions from Fan and Debye-Waller terms of phonons at different
frequencies to VBM (left column) and CBM (right column) renormalization at T =
400 K for CsPbX3 (X = Cl, Br or I, in rows from top to bottom) obtained using
the OTMS approach. The value of each bin b(ωi) represents the contribution of all
phonons with frequencies from the range (ωi − ∆ω/2, ωi + ∆ω/2) to band energy
renormalization, so that ∆Ekn =

∑
i b(ωi).

previously discussed, these results and all subsequent results were obtained by taking
the phonon frequencies obtained from the calculation based on the SCPH method.
In all calculations reported in this and the next section renormalized band energies
were obtained by adding the phonon-induced renormalization to the band energies
calculated using the hybrid functional as described in Sec. 4.3.2.

Bands other than VBM and CBM

The OTMS approach can be used in principle to determine the renormalization of
bands other than the CBM and the VBM. As discussed in the introduction and
Sec. 4.2 (and hinted at the end of Sec. 2.9.3), band renormalization for other bands
exhibits a slow linear convergence with respect to δ when δ → 0 in contrast to
Lorentzian convergence of CBM and VBM. As a consequence, one has to go to rather
small values of δ to reach convergence. However, for small values of δ, large values
of Nq are needed, which introduces a large computational burden. This behavior is
illustrated in Figure S1, Figure S9 and Figure S14 in the Supplementary Information
of Ref. [45], for the cases of CsPbCl3, CsPbBr3, and CsPbI3, respectively. For larger
values of δ (100meV and 50meV in the figure) good convergence with respect to Nq

is achieved but the result still depends on δ and one therefore needs to go to smaller
δ to achieve convergence with respect to δ. However, for smaller values of δ (10meV
and 1meV), convergence with respect to Nq could not be achieved with grids up to
20× 20× 20. As also discussed in the introduction and Sec. 4.2, it is questionable if
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the limit δ → 0 of the energy level broadening parameter gives accurate results given
the fact that the energy levels of higher bands can exhibit significant broadening.
For all these reasons, it is more desirable to self-consistently determine the energy
level broadening. These results are the subject of Sec. 4.4.2.

4.4.2 Band energy renormalization using the SCP approach

Results for band energy renormalization obtained using the SCP approach are pre-
sented in this section. The frequency dependence of the self-energy and the spec-
tral function for several bands at the R point in the case of CsPbBr3 material at
T = 400 K is presented in Figure 4.6 (the same results for CsPbCl3 and CsPbI3
are presented respectively in Figures S4 and S17 in Supplementary Information of
Ref. [45]). Naming of the bands in ascending order of energies at the R point is as
VBM4 (2×), VBM3 (4×), VBM2 (2×), VBM1 (4×), VBM (2×), CBM (2×), CBM1
(4×), CBM2 (2×), CBM3 (2×), CBM4 (4×), where the numbers in brackets denote
their degeneracy. The spectral functions of the CBM and VBM are relatively narrow
and symmetric, while the spectral functions of other bands (CBM1 and VBM1 in
Figure 4.6 and CBM2-4, VBM2-4 in Figures S10 and S12 in Supplementary Infor-
mation of Ref. [45] in case of CsPbBr3, see also Figures S2, S4 and S6 for CsPbCl3,
as well as Figures S15, S17 and S19 for CsPbI3 material) are wider and somewhat
asymmetric. Such a result confirms that it was necessary to go beyond the OTMS
approach in the δ → 0 limit to obtain accurate results for bands other than CBM
and VBM. There is even a difference between the OTMS and SCP result for CBM
and VBM which leads to band gap difference between the two approaches on the
order of 100 meV at T = 400 K (see Sec. 4.4.3 for more details).
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Figure 4.6. The frequency dependence of the self-energy and the spectral function
for bands VBM1, VBM, CBM and CBM1 at the R point in the case of CsPbBr3
material at T = 400 K

.

Convergence with respect to Nq

In Figure 4.7 one can observe that convergence with respect to Nq was achieved
with a 20 × 20 × 20 grid. Convergence is achieved both for real part of self-energy
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that corresponds to band energy renormalization and for imaginary part of the
self-energy that is related to energy level broadening. As expected, it is easier to
reach convergence for energy levels that exhibit larger broadening, that is, for states
other than CBM and VBM ( Figure 4.7 and Figures S11 and S13 in Supplementary
Information of Ref. [45], see also Figures S3, S5 and S7 for CsPbCl3 material, as well
as Figures S16, S18 and S20 for CsPbI3 material). CBM and VBM states exhibit
lowest broadening due to the fact that single phonon emission processes from these
states are not possible. Hence the total scattering rate from these states, which is
related to energy level broadening, is determined by phonon absorption processes
only. On the other hand, for bands higher than CBM (lower than VBM), there
is always a nearby other band below (above) it to which phonon emission is also
possible. Hence, these states exhibit higher electron-phonon scattering rates than
CBM and VBM, which leads to larger broadening of these states.
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renormalized energy on the size of the q-points grid. The results are presented for
CsPbBr3 material at T = 400K for bands VBM1, VBM, CBM and CBM1 at the R
point.

Temperature dependence at R-point

The final results for temperature dependence of band energies and the imaginary
part of self-energies (that are related to energy level broadening) at the R point for
the CsPbBr3 material are presented in Figure 4.8. The same results for CsPbCl3 and
CsPbI3 are presented in Figure S8 and Figure S21, respectively, in the Supplemen-
tary Information of Ref. [45]. The results indicate that the temperature dependence
of band energies is most pronounced for the CBM and the VBM and that it is
much weaker for the other bands. The energy level broadenings increase as the
temperature increases and this dependence is nearly linear for most bands.

The temperature dependence of the band gap calculated within the SCP ap-
proach is presented in Figure 4.9. The results suggest that the gap renormalization
and the band gap are somewhat smaller in the SCP approach than in the case of the
OTMS approach. The largest difference between the two approaches is at highest
temperatures. Such a difference originates from the fact that the spectral func-
tion within the SCP approach takes a relatively broad asymmetric shape at these
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Figure 4.8. Temperature dependence of the band energy and the imaginary part of
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calculated using the SCP approach. The results are shown for CsPbBr3 at the R
point. Vertical and horizontal dotted lines represent the temperature of the phase
transition to cubic structure Tc = 403 K and band energy from PBE0 calculations,
respectively.

temperatures, while the OTMS approach inherently assumes a narrow symmetric
Lorentzian spectral function. The comparison of the temperature dependence of the
band gap within the SCP approach with experiments will be discussed in Sec. 4.4.3.

Temperature dependence at Γ, X, M points

To gain insight into the effect of temperature on band energies throughout the
Brillouin zone, SCP calculations of the spectral function and band energy renormal-
ization at points Γ, X and M in the Brillouin zone were also performed for the three
investigated materials. The results are presented in Figures S23 - S85 in Supple-
mentary Information of Ref. [45]. All energy levels at X and M points are twofold
degenerate, while the degeneracy of the bands at Γ is as follows: VBM4 (4×), VBM3
(2×), VBM2 (4×), VBM1 (2×), VBM (4×), CBM (2×), CBM1 (4×), CBM2 (2×),
CBM3 (2×), CBM4 (4×). One can see (Figures S29, S36, S43, S50, S57, S64, S71,
S78, and S85 in Supplementary Information of Ref. [45]) that in most cases the
real and the imaginary part of the self-energy are smooth and continuous when the
temperature changes. The exception are VBM2 for CsPbCl3 between T = 50K and
T = 100K, and VBM1 for CsPbBr3 and CsPbI3 between T = 550K and T = 600K,
all three at the X point (Figures S50, S57, and S64 in Supplementary Information
of Ref. [45], respectively). In these cases, the spectral function has two competing
maxima (see Figures S87 - S89 in Supplementary Information of Ref. [45]) that are
well inside the range of its half-width and the change of temperature changes the
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dominant maximum. It should be noted that for all of the examined points, the
changes of state energies are such that the band gap remains determined by the R
point VBM and CBM. However, the increase of the temperature can change the
ordering of the bands: at certain points in the Brillouin zone some neighbouring
bands below (above) VBM1 (CBM1) will swap places with respect to their order
obtained from the PBE0 functional calculations. Nevertheless, for simplicity, the
bands are labeled based on their ordering obtained from zero temperature PBE0
functional calculations. When it comes to energy level broadening, it turns out that
it is lowest for the VBM and CBM bands (with imaginary part of the self-energy
well below 100 meV for these states and significantly above 100 meV for the other
states), as in the case of the R point. The CBM and VBM states at these points
are well separated in energy from the other bands (see the material band structures
in Fig. S86 in Supplementary Information of Ref. [45]) which restricts the phase
space for electron scattering. The exception to this behaviour is the VBM state at
the Γ point which is rather broad. In this case, there are several bands that are
close in energy to the VBM state at Γ. The hole can scatter to these bands which
contributes to the increase of energy level broadening.

4.4.3 Comparison of the temperature dependence of the
band gap with experiments

In this section, the results for the band gap and its temperature dependence are
compared with available experimental results from the literature.

In case of CsPbBr3 band gap of 2.08 eV and 2.20 eV was obtained from SCP and
OTMS, respectively, at a temperature of 400 K. This result is close to the experi-
mental value of 2.36 eV from Ref. [183], obtained at 403 K. Presented calculation
gives the band gap of CsPbCl3 of 3.01eV and 3.07eV from SCP and OTMS, respec-
tively, at a temperature of 320K. This result is in good agreement with experimental
value of 2.85 eV from Ref. [184]. For the CsPbI3 material, band gap of 1.35 eV and
1.45eV was obtained from SCP and OTMS, respectively, at a temperature of 300K,
which is in reasonable agreement with experimental values of 1.67 eV (Ref. [185])
and 1.73 eV (Ref. [186]).

High temperatures with cubic structure

Next, one can focus on the slope of the temperature dependence of the band gap.
In the range of temperatures where the material is in the cubic form, the calculated
temperature dependence is nearly linear. Therefore, for the purpose of comparison
with experiment, it is sufficient to discuss its slope. In case of CsPbBr3, the obtained

slope
(

dEg

dT

)
ph

is 0.50 meV
K

and 0.80 meV
K

from SCP and OTMS, respectively, in the

temperature range from 400 K to 700 K. For CsPbCl3, the calculation yields the
slope of 0.68meV

K
and 0.96meV

K
from SCP and OTMS, respectively, in the temperature

range from 320 K to 700 K. Finally, for CsPbI3 a slope
(

dEg

dT

)
ph

of 0.41 meV
K

and
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0.77 meV
K

was obtained from SCP and OTMS, respectively, in the temperature range
from 300 K to 700 K.

To compare the slope of the temperature dependence to experiment, one also has
to take into account the effect of thermal expansion, which is not included in the
calculation with a fixed lattice constant. The slope of the temperature dependence
of the band gap from the effect of thermal expansion is given as

(
dEg
dT

)

TE

=

(
dEg
da

)(
da

dT

)
, (4.9)

where dEg

da
is the slope of the dependence of the band gap on the lattice constant

and da
dT

is the slope of the temperature dependence of the lattice constant, which is
related to linear thermal expansion coefficient as

α =
1

a

da

dT
. (4.10)

Estimation of dEg

da
was done by calculating the gap dependence of the lattice con-

stant using DFT with the same semi-local functional used in Sec. 4.3.1. Obtained
values are respectively: 2.1, 2.4 and 1.1 eV

Å
for CsPbBr3, CsPbCl3 and CsPbI3. Liter-

ature values of linear thermal expansion coefficients are respectively 0.26 · 10−4K−1,
(0.22−0.30)·10−4K−1 and (0.39−0.40)·10−4K−1 for CsPbBr3, CsPbCl3 and CsPbI3

(Ref. [187]). From Eqs. (4.9) and (4.10) one then obtains that
(

dEg

dT

)
TE

is respec-

tively equal to 0.32 meV
K

, 0.35 meV
K

and 0.29 meV
K

for CsPbBr3, CsPbCl3 and CsPbI3.
The results suggest that the contribution from thermal expansion is smaller than
the contribution from phonon-induced band gap renormalization for all the materials
studied.

The total slope of the temperature dependence of the band gap can be estimated
by adding contributions from phonon-induced band gap renormalization and from
thermal expansion

dEg
dT

=

(
dEg
dT

)

TE

+

(
dEg
dT

)

ph

. (4.11)

Finally, the obtained slopes dEg

dT
are: 0.81 meV

K
(1.12 meV

K
), 1.02 meV

K
(1.31 meV

K
), and

0.70 meV
K

(1.06 meV
K

) from SCP (OTMS) results, respectively for CsPbBr3, CsPbCl3
and CsPbI3.

Experimental data for the temperature dependence of the band gap of the cu-
bic structure and its slope are relatively scarce. Ref. [188] reports the slope of
(0.85± 0.05) meV

K
for CsPbI3 based on the measurements in the temperature range

from 570K to 620K. This value is in the range between results shown from SCP and
OTMS for the same material. The slope of 0.341 meV

K
was reported for CsPbBr3 in

Ref. [155] in the temperature range from 380K to 435K where the material exhibits
a phase transition from tetragonal to cubic structure. This slope is significantly
smaller than the one estimated here. It is however questionable if the comparison
of these slopes is meaningful given the fact that experimental data cover only a
very small initial part of the temperature range where the material is cubic. For
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the CsPbCl3 material, author is not aware of any literature data with temperature
dependence of the band gap in the cubic phase. Overall, further experimental mea-
surements of the temperature dependence of the band gap in a broader temperature
range in the cubic phase are certainly desirable.
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Figure 4.9. Temperature dependence of the calculated band gap of CsPbX3 materi-
als (X = Cl, Br or I, from top to bottom). The calculated band gap of orthorhombic
structures at zero temperature is represented by hexagons, while the band gaps of
the cubic structure calculated using the SCP (OTMS) approach are represented by
full (dotted) lines and two color squares (circles). Experimental results are rep-
resented by single color squares with the values of 2.85 eV (Ref. [184]), 2.36 eV
(Ref. [183]), and 1.67 eV (Ref. [185]) respectively, at temperatures of 320 K, 403 K
and 300 K, respectively, for CsPbCl3, CsPbBr3 and CsPbI3, respectively. Dashed
lines are used as a guide to the eye to connect the zero temperature result for the
band gap of orthorhombic structure with the result at the lowest temperature where
the material exhibits a cubic structure.

Low temperatures with orthorhombic structure

Finally, the temperature dependence of the band gap at lower temperatures when
the materials exhibit an orthorhombic or a tetragonal structure is addressed. Ex-
perimental results at these temperatures generally indicate that temperature depen-
dence of the band gap is rather weak. For example, it was reported in Ref. [176]
that the band gap of CsPbBr3 (CsPbI3) increases by about 60 meV (80 meV) from
0 K to 300 K. In Ref. [184] a similar result was obtained for CsPbBr3, while in case
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of CsPbCl3 the changes of the band gap in this temperature range were smaller than
20meV. In Refs. [189, 190, 191], a comparably weak temperature dependence of the
gap was observed for nanocrystals based on CsPbX3 materials in the same temper-
ature range. For all the three materials, the band gap at zero temperature is only
slightly (by less than 100meV) lower or even slightly larger than at lowest tempera-
ture where the material exhibits a cubic structure, see the reference to the values of
experimental band gaps at the end of Sec. 4.3.2 for orthorhombic structure and the
beginning of this section for cubic structure. Presented calculations of the band gap
of orthorhombic structure at zero temperature and of the cubic structure are in line
with such behavior, see the dashed lines in Figure 4.9. Since the orthorhombic and
tetragonal structure have a larger unit cell than the cubic structure, temperature
dependent electronic structure calculations of these structures were not performed
due to larger computational cost and the fact that experimental results indicate a
rather weak temperature dependence in this range of temperatures.

4.5 Discussion and conclusions

Next, one can discuss previous computational works where the effects of temper-
ature on electronic structure of halide perovskites were investigated. In Ref. [151]
the effects of temperature were included by performing finite temperature ab-initio
molecular dynamics with a sufficiently large supercell and by calculating the average
band gap change from many molecular dynamics snapshots. Excellent agreement
with experimental band gaps of cubic inorganic halide perovskites at the lowest
temperature where the material exhibits a cubic structure was obtained. On the
computational side, this approach is rather demanding as it would require a sepa-
rate molecular dynamics simulation at each temperature to obtain the temperature
dependence of the band gap. This approach inherently assumes classical phonons
which is likely a good approximation at room temperature because the dominant
phonon modes that determine the electronic structure renormalization have energies
which are significantly smaller than thermal energy kBT at room temperature. In
Refs. [167, 192] the effects of temperature were also included by taking an average
over many different configurations with atoms displaced from their equilibrium po-
sitions. In Refs. [152, 153] the authors exploited the special displacements method
[193, 194] which enables the calculation of the band gap at a given temperature from
a single calculation of a large supercell with atoms displaced from their equilibrium
positions in accordance with a particular pattern. In Ref. [38], AHC theory, the
finite difference approach, as well as the approach with average over many different
atomic configurations sampled using a Monte Carlo approach were used to study
temperature dependence of the band gap of cubic methylammonium lead iodide per-
ovskite. However, AHC theory was applied by simply excluding imaginary phonon
modes, while from this section (that relies on Ref. [45]) one can find that such a
procedure does not give reliable results in case of inorganic halide perovskites that
are investigated.

Several advantages are mentioned here, as well as shortcomings, of the approach
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based on AHC theory over other approaches. To obtain temperature dependence of
the electronic structure, the most demanding steps of the procedure - DFPT calcu-
lations and extraction of force constants for the application of the SCPH method -
need to be performed only once, that is, they do not have to be repeated for each
temperature. On the other hand, in all approaches based on atomic displacements
(sampled either from molecular dynamics, Monte Carlo or using the special displace-
ments) the whole computational procedure has to be repeated at each temperature.
Within AHC approach it is straightforward to obtain the renormalization of states
other than CBM or VBM, while in the methods based on supercell calculations this
is either impossible or one has to exploit a certain type of unfolding procedure, such
as the one used in Ref. [193]. It should be mentioned that the approach based on
AHC theory certainly has its limitations. Being based on expansion up to second-
order terms with respect to atomic displacements, it is not expected to be highly
accurate in conditions when such an expansion is not sufficient. On the other hand,
the approaches based on atomic displacements usually do not have such a limitation.

In conclusion, this chapter shows ab-initio calculations of temperature dependent
electronic structure of inorganic halide perovskite materials CsPbX3. The challenge
that comes from the fact that cubic structure is not stable at zero temperature and
that one obtains phonon modes with imaginary frequencies in a standard DFPT
calculation was overcome by using the SCPH method that gives the phonon spec-
trum with real non-negative frequencies. The challenge of obtaining the energies of
bands other than the CBM and the VBM in the calculations based on AHC theory
was addressed by exploiting a self-consistent procedure for evaluation of relevant
self-energies and spectral functions. The obtained band gaps at the lowest tem-
perature where the material exhibits a cubic structure are in good agreement with
experiment. Also, one can see that there is good agreement of calculated and ex-
perimental temperature dependence of the band gap for the CsPbI3 material where
reliable experimental data are available in the literature. Results of this chapter also
suggest that the band gaps at the lowest temperature where the material exhibits a
cubic structure are similar to the band gaps at zero temperature where the material
exhibits an orthorhombic structure. Such a finding is consistent with experimen-
tal data that suggest a rather weak temperature dependence at lower temperatures
where the material exhibits an orthorhombic or a tetragonal structure. Finally, it
was shown that temperature dependence of band energies at the R point is most
pronounced for the CBM and the VBM, while it is less pronounced for higher and
lower bands.



Chapter 5

Nanostructures

Present chapter follows published results in Ref. [46] in the case of CdSe and expands
upon the results and methods published in Ref. [47] for halide perovskites CsPbX3

(X=Cl, Br, I). Although this chapter is dedicated to nanostructures, it relies on
bulk phase results obtained in both Chapter 3 and Chapter 4 as they are one of the
necessary steps in computing these results.

5.1 Introduction

Most electronic and optical devices consist of semiconductor materials, and over
the years, general improvements of these devices made them smaller in size and
more power efficient. The size of a bulk phase, can be as small as few micrometers,
however, as one enters the scale of a few dozen nanometers or less, the electronic
properties of the material start to change from the bulk counterpart. Materials at
these scales are called nanostructures or nanocrystals, and their properties become
very dependent on their size and shape. This dependence makes it possible to fine
tune electronic properties, like the band gap of a material, to desired values, allowing
one to replicate the electronic properties of a much more expensive or less durable
material using more cost effective and/or more durable materials. Working with
nanostructures whose electronic properties change with their size introduces new
challenges for investigating and modeling semiconductor materials.

This chapter is dedicated to discussing methods for obtaining the electronic
structure and using them on CdSe and CsPbX3 (X=Cl, Br, I) halide perovskite
nanostructures, whose bulk phase properties were previously explored in Chapters
3 and 4, respectively. Modeling of bulk phase materials rested on the translational
invariance and periodic conditions of Bloch theorem, where the whole crystal struc-
ture can be reduced to one unit cell that is infinitely replicated without overlap in
all 3 directions in real space. Calculations limited to one unit unit cell were able
to produce electronic, phononic, and electron-phonon properties with much success
using methods explained in Chapter 2, in Sections 2.7, 2.8, and 2.9, respectively.

On the other hand, Chapter 3 dealt with symmetry adaptation of k · p Hamil-
tonian in Kane model, in order to reduce the computational burden of DFT and
explore the limits where k · p theory is a good approximation for electronic struc-
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ture compared to DFT. In a sense, the true usefulness of the method developed in
Chapter 3 will become evident in the present chapter. Namely, the translational
invariance and periodicity is violated for nanostructures, since the crystal is reduced
to a size where it can no longer be considered as infinite. The Bloch theorem doesn’t
hold anymore, so one has limited choice when it comes to modeling the electronic
structure. One choice is to use DFT by making the computational cell the size
of the actual nanostructure with added vacuum on its edges. This choice rapidly
increases the computational resources with increase in size and creates a problem
of implementing this vacuum space on computational level. Another choice is to
modify the Bloch theorem and still use the k · p method with Kohn-Sham states,
but for nanostructures. Using the k · p method, nanostructures can be modeled
using feasible resources that range from a simple desktop personal computer to the
ones required at DFT or DFPT level.

One such method that modifies the k · p model for nanostructures is the Burt-
Foreman envelope function method. This method effectively replaces the plane wave
eik·r with an envelope function in Bloch theorem, found in Chapter 2, Eq. (2.12),
while still keeping the one-electron formalism. This way, after some derivation and a
few approximations, the one-electron equation obtained for states in the nanostruc-
ture resembles the Kane model, however the solution requires solving for envelope
functions instead. These envelope functions can also be represented in plane wave
basis and the solution will consist of solving for amplitudes in that expansion. Square
moduli of envelope functions also follow the ones obtained from DFT wave-functions
for the corresponding nanostructure [46]. Finally, this method can be easily imple-
mented using the same symmetry-adapted Hamiltonians used for bulk in Chapter 3,
making the calculations more transferable and easily implemented by simply using
minimal number of k · p parameters with symmetry-adapted form of Hamiltonian.

This chapter is organized as follows. First the Burt-Foreman method is presented
in Sec. 5.2. Sec. 5.3 derives the solution in plane wave basis for quantum dots,
wires and wells. This methodology is applied and tested in Sec. 5.4, where results
for CdSe quantum wells are compared with the same ones obtained from DFT.
This comparison with DFT is performed in order to benchmark the applicability of
k · p envelope function method on nanostructures. After this validation, in Sec. 5.5
the same methods are applied on lead-halide perovskites CsPbX3 (X=Cl, Br, I),
where besides the dependence of size and shape of the nanostructures (dots, wires
and wells), these materials also show temperature dependence. Finally, Sec. 5.6
concludes the chapter with final discussion on the obtained results.

5.2 Burt-Foreman envelope function method

Nanostructures can be classified by the number of dimensions in which the bulk ma-
terial is confined. When confinement is in one-dimension only, these nanostructures
are referred to as quantum wells, in two-dimensions they are called quantum wires,
and when confined in all three-dimensions - quantum dots. In this chapter a few
assumptions will be made. First, the confinement is always made along a direction
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of unit cell vectors (direct and reciprocal). Second, the nanostructure consists of
an integer number of unit cells in the confinement direction (in order for chemi-
cal formula to remain the same as for bulk). Third, the effects of interaction with
surrounding material and the nanostrucure is neglected at their interface and the
material is not distorted in any way. At that interface it behaves as in the bulk.

In Chapter 2, Sec. 2.4, it was shown that in bulk, under the assumption that
the crystal is not bounded and spans to infinity in all directions, the translational
invariance introduces the electron crystal momentum k which was used as a con-
tinuous quantum number and the generator of translations using plane waves. The
electron was described as nearly free using the Bloch functions Ψkn(r) = ukn(r)e

ik·r

which contain a plane wave eik·r multiplied by a periodic Bloch factor ukn(r). Bloch
factors are invariant when translated by direct (reciprocal) lattice vectors R (G)
which translate any point from one unit cell (Brillouin zone) to their equivalent in
another unit cell (Brillouin zone), i.e.: ukn(r+R) = ukn(r) (uk+Gn(r) = ukn(r)).

When dealing with nanostructures, the crystal is confined in one, two, or three
directions, and infinite crystal approximation is not valid anymore so the full trans-
lational invariance, that was present in bulk, is lost in directions where confinement
is present. Consequently, the electron crystal momentum k as defined in bulk (or
rather, the components of k that are limited to 1BZ), is not a good quantum num-
ber in nanostructures. The nearly free electron can not be modulated by Bloch
factors that are periodic inside one unit cell, but rather by some factors that are
periodic over the whole direction of confinement. However, since the confinement
itself contains unit cells which are described by Bloch functions, perhaps these Bloch
functions can become modulators for some function that would describe a nearly
free electron within the nanostructure. This function should be position dependent
and change as it moves along the space: it should vanish (or be negligible) outside of
the nanostructure and be slowly varying when compared to the bulk Bloch functions
inside the nanostructure, but still follow or envelope the trend of Bloch function1,
therefore it is often called an envelope function.

In this formulation, the confinement, as a result, generates a new unit cell, one
that (along the direction of the confinement) contains integer number of bulk unit
cells as well the surrounding space filled with non-interacting material or vacuum
that spans to infinity.

In bulk, Bloch wavefunctions are a product of plane waves which have the pe-
riodicity of the unit cell and Bloch factors ukn(r) which would change with r as it
moves along the atoms within the unit cell. This would suggest that plane waves are
smoother than the Bloch factors. In nanostructure, envelope functions would have
the periodicity of the new unit cell, that contains the nanostructure itself (made
from several unit cells) as well as the empty space. Therefore, it follows that en-
velope functions are smoother than Bloch functions which would describe one bulk
unit cell and much smoother than Bloch factors. This is an important assump-
tion that will be relevant in the derivation of the envelope function equations. The
larger the number of unit cells that is contained in the nanostructure the smoother

1Another way of thinking is to imagine a periodic system of non-interacting nanostructures
what are separated by some infinitely space filled with non-interacting material or vacuum.
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the envelope function would be, and for very large nanostrutures all results should
approach the ones found in bulk.

Michael Burt [195, 196] proposed and later Bradley Foreman [197, 198] refined
the idea of exact envelope function theory, now known as Burt-Foreman envelope
function theory that, requires for envelope functions to be continuous and infinitely
differentiable. Even though k is not a good quantum number, bulk Bloch functions
at any k form a complete set, so a set can be chosen at any k0 in 1BZ to form the
total wavefunction Ψ(r) in a nanostructure:

Ψnano ≡ Ψ(r) =
∑

m

ψm(r)Ψ
bulk
k0m

(r) =
∑

m

ψm(r)uk0m(r)e
ik0·r, (5.1)

where ψm(r) are the envelope functions and summation is made over all possible
states of an electron m. It wouldn’t be wrong to write Ψk0(r) in order to distinguish
at which k a set of Bloch functions was used, but because sets are never mixed the
indices referring to k are dropped for simplicity. The following is obtained when
momentum operator p = −iℏ∇ and its square p2 = −ℏ2∇2 act on Ψ(r):

pΨ(r) =
∑

m

[(pψm)um + ψm(pum) + ℏk0ψmum] e
ik0·r,

p2Ψ(r) =
∑

m

[
(p2ψm) + 2(pψm)(ℏk0 + p)

]
ume

ik0·r

+
∑

m

ψm(p
2 + ℏ2k20 + 2ℏk0 · p)umeik0·r.

(5.2)

The one-electron Hamiltonian H(1e) = [p2/(2me) + V ] from Eq. (2.11) (Chapter 2,
Sec. 2.4), can also be adapted for nanostructures using Ψ from Eq. (5.1). The general
equation H(1e)Ψ = EΨ in this case is:

∑

m

[
(p2ψm)

2me

+
(pψ)

me

(ℏk0 + p)

]
ume

ik0·r

+
∑

m

ψm

[
p2 + ℏk20
2me

+
ℏk0 · p
me

+ V (r)

]
ume

ik0·r = E
∑

m

ψmume
ik0·r.

(5.3)

Assuming that ψm(r) is much smoother than um(r), allows for an approximation
that ψm can be brought outside of the integral over dr when limits of that integral are
within the bulk unit cell2 like they are in Eq. (2.17), i.e. ⟨un|ψm |um⟩ ≈ ψm ⟨un|um⟩.
The Eq. (5.3) is first multiplied by e−ik0·r, then multiplied by ⟨un| from the right,
and after integration over one bulk unit cell the following is obtained:

∑

m

[(
ψmEm +

p2ψm
2me

)
δnm + pnm · pψm

me

]
= Eψn, (5.4)

2This statement, of course, should not be true for nanostructures that contain one bulk unit
cell. The size limit of the nanostructure at which this is a good approximation is also not clear,
since it would depend on the size, type and number of atoms inside the unit cell, so comparison
with a more sophisticated method is always necessary in order to claim a valid result.
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where pnm = ℏk0 + ⟨un|p |um⟩ and ⟨un| (p2 + ℏk20)/(2me) + ℏk0 · p/me + V |um⟩ =
Emδnm were used. After applying the Löwdin’s perturbation, the second-order k · p
equation for envelope functions is obtained:

∑

m

[(
ψmEm +

p2ψm
2me

)
δnm + pnm · pψm

me

+H(2)
nm

]
= Eψn,

H(2)
nm =

∑

ij

(p)i
me

Pnm,ij
(pψm)j
me

,

Pnm,ij =
∑

r ̸=[m,n]

(pnm)i(pnm)j
(En + Em)/2− Ek0r

, i, j = x, y, z ,

(5.5)

Eq. (5.5) is rather similar to Eq. (2.32), and would become identical if momentum
operator that acts on envelopes ψm is replaced with electron momentum at some
k−k0 i.e. (pψm) → (k−k0)ψm, or equivalently envelopes are reduced to plane waves

with an amplitude of B
(a)
m with periodicity of a bulk unit cell ψm → B

(a)
m ei(k−k0)·r.

If SOC would be included, the procedure would remain the same, except that Ψ(r)
would be a two component spinor and bulk parameters pnm would become pnm =
ℏk0 + ⟨un|psoc |um⟩.

5.3 Envelopes in plane wave basis

In this section, a solution for one-, two- and three- dimensional confinement will be
presented, which correspond to quantum wells, wires and dots, respectively. In order
to simplify the derivation, it will be assumed that the nanostructure is placed at the
centre of an imaginary box with infinitely thin walls which has a cuboid shape, and
that the dimensions of this box allow for some non-interacting material to fill the
voids of this box only along directions of confinement.

One way to solve Eq. (5.5) is to expand ψm as a set of plane waves and their cor-
responding amplitudes. In the plane wave basis, the problem effectively reduces to
an infinite array of nanostructures centered inside their respected imaginary boxes,
separated by a non-interacting material in the direction of the confinement. To
further simplify the solution, it is assumed that this non-interacting material has
identical properties as the original bulk material i.e. its k · p parameters pnm and
Pnm,ij are the same however, the energy levels EB

m are shifted by some amount ∆E
in order to create a gap large enough to avoid any overlap with states of the exam-
ined nanostructure material EB

m = Em ± ∆E. This is justified when there are no
contacts between different materials and non-interacting material is just supposed to
imitate vacuum where all envelope functions (and by extension, full wave-functions
of electrons that they modulate) vanish. Band energies can be expressed as position
dependent, using a step function χ(r) which returns 0 and 1 when r is inside the
non-interacting material and the nanostructure, respectively:

Em(r) = χ(r)Em + [1− χ(r)]EB
m. (5.6)
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Effectively, the nanostructure of volume VQ is now placed at the center of a box-
shaped unit cell that has a volume of VB and there are infinite amount of identical
neighboring unit cells .This is reminiscent of a boxed particle problem in quantum
mechanics, or rather an infinite 3D well, where solutions are also expressed in the
plane wave basis and EB

m is analogous to the infinite well potential. The envelope
function ψm(r) can be written as a set of plane waves:

ψm(r) =
1

V
1/2
B

∑

q

W (m)
q eikq ·r

=
1

(LxLyLz)1/2

∑

q

W (m)
q ei(k

x
q x+k

y
q y+k

z
qz)

=
∑

q

W (m)
q

∏

α=x,y,z

1

L
1/2
α

eik
α
q α, kαq =

2π

Lα
qα,

(5.7)

where Lα, α = x, y, z is the box unit cell length along direction α, while qα can have
positive and negative integer values: qα = 0,±1,±2,±3 . . . ,±Nα

pw, and N
α
pw is the

necessary value for converging the numerical results along the direction α. This gives
a total number of plane waves N tot

pw =
∏

α=x,y,z(2N
α
pw+1), where Nα

pw is positive non-
zero integer for confined dimensions. Envelope function ψm(r) = ψm(r + RL) will
now be periodic over a set of vectorsRL =

∑
αRαeα, Rα = LαaL. Inserting Eq. (5.7)

into Eq. (5.5) and multiplying with V
−1/2
B e−iks·r from the left, then integrating over

whole box unit cell space
∫
VB

dr the general form of envelope function k · p equation
in plane wave basis is obtained:

∑

m,q

[
ℏ2

2m0

∑

α=x,y,z

kαq k
α
q δsq + J sq(Em)

]
δnmW

(m)
q

+
∑

m,q

[
ℏ
m0

∑

α=x,y,z

kαq eα · pαnm +H(2)
nm(s, q)

]
δsqW

(m)
q = EW (n)

s ,

H(2)
nm(s, q) =

∑

ij=x,y,z

ℏkis
me

Pnm,ij
ℏkjq
me

,

(5.8)

where

J sq(E) = EBδsq + (E − EB)J sq, EB = E ±∆EB,

J sq =
1

VB

∫

VB

χ(r)
∏

α=x,y,z

dα e−i∆k
α
sqα =

1

VB

∫

VQ

∏

α=x,y,z

dα e−i∆k
α
sqα,

δsq =
1

VB

∫

VB

∏

α=x,y,z

dα e−i∆k
α
sqα, ∆kαsq =

2π

Lα
(sα − qα).

(5.9)

The integral J sq (Kronecker delta δsq) from Eq. (5.9), can also be identified as a
Fourier transform of χ(r) function from Eq. (5.6) (f = 1 function) integrated inside
the full volume of the box unit cell VB.
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Quantum dot with cuboid shape

In the case of cuboid geometry, the integral can be separated as a product of three
independent integrals:

J sq =
∏

α=x,y,z

J sq
α =

∏

α=x,y,z

1

Lα

∫ +lα/2

−lα/2
dα e−i∆k

α
sqα,

J sq
α =

lα
Lα
δsq +

1− δsq
iLα∆kαsq

(e+i∆k
α
sqlα/2 − e−i∆k

α
sqlα/2).

(5.10)

Quantum dot with ellipsoid shape

In the case of ellipsoid geometry, the integral J sq can be solved by first transforming
the ellipsoid into a sphere of unit radius by scaling the axes, and then by introducing
spherical coordinates. It is assumed that lα/2 is the length of the semi-axis of
the ellipsoid in direction α = x, y, z, then new coordinates αt = α × (2/lα) and
qαsq = ∆kαsq × (lα/2) are introduced to transform the nanostructure to a spherical
shape, and a new set of spherical coordinates are obtained (xt, yt, zy) → (rt, θt, ϕt).
The J sq integral in the case of ellipsoid geometry is:

J sq =
1

LxLyLz

lx
2

ly
2

lz
2

{
4π

3
δ(qt) + 2π

δ(qt)− 1

iqt
[I(+iqt)− I(−iqt)]

}
,

I(β) =

∫ 1

0

rte
βrt drt =

eβ(β − 1) + 1

β2
,

(5.11)

where qt =
∑

α∆k
α
sqeαlα/2 and I(β) is solved by integrating by parts.

Quantum wire with elliptical base

If the confinement is two-dimensional like in the case of quantum wires, one direction
can be chosen as non-confined one and let it be the z direction. In the non-confined
direction z, that component of the plane wave becomes independent of q as the
non-interacting material vanishes in that direction thus the translational invariance
is restored kzq → (k − k0)z. The integral J sq from Eq. (5.10) will have the non-
confined component equal to unity: Jsqz = 1. In the case of rectangle geometry,
confined components J sq

α are the same as for cuboid shape in Eq. (5.10). In the
case of elliptic geometry, the solution is similar as for the case of ellipsoid, assuming
that lα/2 are the semi-axes of the ellipse in the direction α. First the ellipse is
transformed to a circle by scaling the axes αt = αt × (2/lα), k

α
t = ∆kαsq × (lα/2),

α = x, y, and then polar coordinates are introduced (xt, yt) → (ρ,Φ). The s ̸= q
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term of J sq is then:

J sq(s ̸= q) =
(lx/2)(ly/2)

LxLy

∫ 1

0

dρ ρ

∫ 2π

0

dΦ e−ik
′
ρρ cosΦ

=
(lx/2)(ly/2)

LxLy

∫ kρ

0

d(kρρ)

k′ρ

(kρρ)

kρ
2πJ0(kρρ)

= 2π
(lx/2)(ly/2)

LxLy

J1(kρ)

kρ
,

(5.12)

where kρ =
√

(kxt )
2 + (kyt )

2, J0 and J1 are the spherical Bessel functions of the 0-th
and 1-st order, respectively, which obey the relations:

J0(x) =
1

2π

∫ 2π

0

dΦ e−ix cosΦ, Jn(x) =
1

2πin

∫ 2π

0

dΦ e−ix cosΦeinΦ,

∫ ∞

0

Jn(x) dx = 1,
d

dx
[xmJm(x)] = xmJm−1.

(5.13)

Combining both the s = q and s ̸= q terms, the J sq for quantum wire with an
elliptic base is:

J sq = δ(kρ)
(lx/2)(ly/2)π

LxLy
+ [1− δ(kρ)]

2π(lx/2)(ly/2)

LxLy

J1(kρ)

kρ
. (5.14)

For quantum wires, the envelope function k · p equation Eq. (5.8) will have the form:

∑

m

[
ℏ2

2m0

(k− k0)
2
zδnm +

ℏ
m0

(k− k0)z · pznm
]
δsqW

(m)
q

+
∑

m,q

[
ℏ2

2m0

∑

α=x,y

kαq k
α
q δsq + J sq(Em)

]
δnmW

(m)
q

+
∑

m,q

[
ℏ
m0

∑

α=x,y

kαq eα · pαnm +H(2)
nm(s, q)

]
δsqW

(m)
q = EW (n)

s ,

H(2)
nm(s, q) =

∑

ij

ℏKi
s

me

Pnm,ij
ℏKj

q

me

,

Kq = (k− k0)z +
∑

α=x,y

kαq eα.

(5.15)

Quantum well

For quantum wells, the confinement is present in just one direction. There is only
one possible geometry, which is linear. Assuming that confinement direction is z,
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the J sq integral from Eq. (5.10) reduces to J sq = J sq
z . The envelope function k · p

equation Eq. (5.8) for quantum wells will be:

∑

m

[
ℏ2

2m0

∑

α=x,y

(k− k0)
2
αδnm +

ℏ
m0

∑

α=x,y

(k− k0)α · pαnm

]
δsqW

(m)
q

+
∑

m,q

[
ℏ2

2m0

kzqk
z
qδsq + J sq(Em)

]
δnmW

(m)
q

+
∑

m,q

[
ℏ
m0

kzqex · pznm +H(2)
nm(s, q)

]
δsqW

(m)
q = EW (n)

s ,

H(2)
nm(s, q) =

∑

ij

ℏKi
s

me

Pnm,ij
ℏKj

q

me

, Kq =
∑

α=x,y

(k− k0)α + kzqex.

(5.16)

Convergence tests: size of the box and the number of plane waves

Since the nanostructure is placed inside of a box unit cell with non-interacting
material, the volume of this box VB should theoretically approach infinity. How-
ever, this would also require an infinite amount of plane waves N tot

pw in the expan-
sion in Eq. (5.7) which would not be computationally feasible within a numerical
calculation. The nanostructure k · p Hamiltonian matrix scales with number of
bands Nbands and N

tot
pw , so the square matrix that needs to be diagonalized will have

(N tot
pw × Nband)

2 elements when using envelopes. Because this number can become
very large in some cases, diagonalizing such matrices becomes unfeasible for desktop
computers, it is important to study how much computational resources is needed to
ensure the convergence of the results. This topic is explored in author’s published
work in Ref. [47].

In Ref. [47], this convergence is explored for CsPbBr3 quantum wells using 8×8
and 26×26 bulk Hamiltonians. There, convergence tests show that for quantum
well nanostrucure centered inside of a box with non-interacting material, size of
that box should be at least several bulk unit cells larger than the nanostructure
along the confinement direction. Then, the number of plane waves Npw used should
be equal to the number of bulk unit cells that make up the box, along the direction
of confinement. For example, a quantum well of size l = 6a, should be centered
inside of a box with linear dimension of L = 3l = 18a = NBa, where a is the length
of a unit cell along the direction of the confinement, the number of sufficient plane
waves is Npw = NB = 18 in order to ensure convergence of the numeric results for
the band gap. This gives N tot

pw = 2 × Npw + 1 = 37 total plane waves and a square
matrix with (37×Nband)

2 elements to be diagonalized.

Another result from Ref. [47], is that a divergence for band gaps was observed
for 26×26 Hamiltonian when Npw > NB. This divergence wasn’t observed with 8×8
Hamiltonians that have much less parameters. Therefore in most cases, a fixed value
of Npw = NB should be kept. For large wells, where the band gap is asymptotically
approaching bulk values, convergence is much faster than for smaller or intermediate
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wells, therefore number of plane waves can be smaller than the number of unit cells
that make up the size of the box along the confinement direction Npw < NB. Al-
though this is not very much useful for quantum wells, since available computational
resources are almost always met for modern desktop computers, in the case of wires
and dots this information is important in order to avoid costly calculations for very
large nanostructures3 that can easily exert computational resources with Npw = NB

only to obtain the same result with Npw < NB.

5.4 Comparison of DFT and Burt-Foreman enve-

lope method

This section, combines the symmetry-adapted Hamiltonians from Chapter 3 with
k · p methodology of envelope functions from Sec. 5.2. In Chapter 3, and Ref. [45],
results from k · p using Kane method for band structure were compared to the ones
obtained with DFT in order to benchmark the k · p method and determine how
accurate it is w.r.t. the number of bands included in the Hamiltonian and distance
from the unperturbed point k0 in the case of bulk zinc-blende CdSe. In this section,
a similar approach is taken in order to compare k · p results obtained using Burt-
Foreman method for quantum wells with DFT results. Even though DFT is a
powerful tool for computing electronic structure, it does have limitations regarding
the size of the unit cell which it computes. In the case of nanostructures, these unit
cells can become so large that the computation either becomes unfeasible due to
large memory requirements or feasible only for simplest crystals and low dimensions
of confinement. In the later case, the computational time is much longer than in
the case of bulk. For that reason, k · p is a good method that can drastically reduce
the computational resources and produce reliable results for the electronic structure.
However, reducing computational resources comes with the cost since perturbative
approach is unable to produce the results in same detail as a non-perturbative,
direct DFT calculation. As in the case for bulk, some fair comparison is needed
in order to understand the limitations of the k · p method for nanostructures. For
this comparison, quantum wells made from stacked zinc-blende CdSe layers were
calculated using DFT and k · p envelope method. All these finding were published
in Ref. [46].

Computational details for CdSe quantum wells

Within DFT, calculation of electronic states was performed by considering a slab
whose surfaces are perpendicular to the [001] direction. The slab was terminated
with Cd layer at both surfaces and pseudohydrogen atoms of charge 1.5 were added
in order to passivate the dangling bonds at surfaces. Pseudohydrogen atoms were
positioned at a distance of 1.58 Å from the corresponding Cd atom. For slabs the
width of ≤ 6a (≥ 6a), the vacuum region of the width equal to 3a (half of the

3That is, the ones whose gap is approaching bulk values asymptotically when their size is
increased.
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slab width) was added on both sides of the quantum well, to avoid the interaction
of the quantum well with its images caused by the periodic boundary conditions
in the calculation. The calculations were performed for quantum wells containing
from 1 to 18 CdSe unit cells. The size of the quantum well here is defined as the
distance between the two pseudohydrogen passivating layers. In order to lower the
computational cost and therefore extend the range of well widths, only the case
when SOC is omitted is considered.

Within k · p method, the ∆E for the non-interacting material was set at ∆E =
5 eV, the length of the box was Lz = 20 nm and Npw = 50. These values were chosen
to be sufficiently large so that the further increase would not affect the results.

Band gap comparisons between DFT and k · p

Figure 5.1 shows the dependence of the band gap as a function of well width obtained
from DFT and k · p envelope method. As mentioned, SOC was omitted in DFT
calculations in order to reduce the computational resources, hence only k · p results
without SOC are presented for a fair comparison, both using the standard 4×4 and
extended 13×13 Hamiltonian. The agreement between DFT and k · p results as
well as between regular and extended Hamiltonian within k · p is excellent. For
quantum well widths of three lattice constants and larger the band gap differences
are smaller than 20 meV. The agreement is quite satisfactory even for rather thin
wells of 1 and 2 unit cells, where one might expect for k · p to not perform quite well.
This is even more impressive when taken into consideration that, the calculation of
the quantum well electronic structure in k · p can take only a few seconds on a
single-core desktop computer, regardless of the width of the well. However, DFT
calculations can take minutes or hours depending on the width of the well when
using a high performance computing cluster with several nodes containing multi-
core processors each. For example, the DFT results presented here were obtained
for approximately 3 min using 32 cores and 21 hours using 64 cores for narrowest
and widest well, respectively. When this computational requirement gets scaled
for nanostructures with more than one dimensional confinement such as wires and
dots, and for crystals with more atoms in the unit cell, the advantages of k · p
over DFT become even more pronounced. Since the periodicity is present only in
one direction for quantum wires, or there is none in the case of quantum dots, with
increase in supercell sizes, the number of atoms inside them can become so large that
these problems become computationally intractable for DFT. On the other hand,
k · p is almost routinely used to study quantum dots and wires, see for example
Refs. [199, 200, 201, 202, 203, 204].

Next, the origin of surprisingly good agreement between DFT and k · p for thin
wells is discussed. Within k · p the atomistic wavefunction (shown in Figure 5.2 in
full lines) is represented in terms of the product of slowly varying envelope functions
(shown in Figure 5.2 in dashed lines) and rapidly varying bulk Bloch functions, while
the only additional approximation in k·p with respect to the atomistic method (DFT
in our case) comes from truncation of the wavefunction expansion to a limited set of
bands. For this reason, the excellent agreement between k · p and DFT results for
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Figure 5.1. Dependence of zincblende CdSe quantum well band gap on well width.
The results obtained from DFT without the effects of spin-orbit coupling and from
standard 4×4 and extended 13×13 k ·p models are presented. The inset shows the
zoom of the same dependence to the narrower range in the figure. The horizontal
dashed line denotes the bulk DFT band gap.
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wide wells is expected because basis functions used in k ·p provide a good basis set
in this case. In the case of very thin wells, one could argue that the representation
of the wavefunction in terms of the product of envelope functions and bulk Bloch
functions for a few bands only cannot be a good representation because the system is
rather different from bulk and therefore the basis formed from bulk Bloch functions
cannot be a good basis. The results for CdSe wells confirm that such an argument
is certainly valid to some extent because the agreement between DFT and k · p
becomes somewhat worse for quite thin wells. Nevertheless, the agreement between
DFT and k ·p is quite satisfactory even then. It should be noted as well that the use
of pseudohydrogen surface passivation also contributes in making the wavefunctions
of thin wells closer to wavefunctions of bulk material.

Figure 5.2. The wavefunction moduli squared of quantum well states obtained from
DFT without the effects of spin-orbit coupling and the 4-band k·p model. The DFT
wavefunctions are presented by performing the in-plane average of wavefunction
moduli squared. The k ·p wavefunctions are presented by a sum

∑
n |Ψn (z)|2. The

wavefunctions that are presented in the figure correspond to the following states:
a) VBM-4, b) degenerate VBM-3 and VBM-2, c) degenerate VBM-1 and VBM, d)
CBM, e) CBM+1, f) CBM+2, where VBM (valence band maximum) denotes the
highest energy state in the valence band, while CBM (conduction band minimum)
denotes the lowest energy state in the conduction band.

Band gap obtained from k · p with G0W0 energies

Upon confirming the accuracy of the k · p method when compared to DFT with
PBEsol functional for CdSe quantum wells, one can continue by performing the same
calculations with SOC included and improved gap values using G0W0 self-energy
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corrections to Ek0n. These energies were also used in obtaining the second-order
k · p parameters (all the parameters of these Hamiltonians are given in Sections III-
F and III-H of Supplementary Information in Ref. [46]). Furthermore, to obtain an
accurate quasi-particle band gap, a correction which takes into account the dielectric
mismatch between the quantum well and the vacuum, i.e. the image charge effect
is added to the band gap. This correction was added using the analytical formula
presented in Ref. [205], which was also recently applied in a DFT study of CdSe
nanoplatelets [206]. The results obtained are presented in Figure 5.3 along with
the results obtained from k ·p Hamiltonians parametrized from DFT using PBEsol
functional, which are given for comparison. As expected, a significantly larger band
gaps using k · p Hamiltonians parametrized from G0W0 calculation of bulk are
obtained. Noting that the focus here is on the single particle energies and that the
reported gaps are the quasiparticle band gaps. To obtain the optical gap, one would
additionally need to consider excitonic effects, which was also recently done for CdSe
nanoplatelets in Ref. [206].
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Figure 5.3. Well width dependence of zincblende CdSe quantum well band gap
calculated using the k · p method. The parameters of the k · p Hamiltonian were
extracted from G0W0 calculation of bulk band structure. The results obtained with
and without the effects of spin-orbit interaction are shown respectively in full and
empty squares. The results obtained from k · p Hamiltonians parametrized from
DFT are shown for comparison in full (the case with spin-orbit interaction) and
empty (the case without spin-orbit interaction) circles.
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5.5 Temperature dependent band gaps of perov-

skite nanostructures

Sec. 5.4 served as a check for the present methodology, where DFT results were used
as a benchmark for k · p envelope function method, where band gaps and wave-
function square moduli were compared for CdSe quantum wells. Having performed
necessary checks, the same method can be applied for other materials, like the ones
in Ref. [207].

This section combines the symmetry-adapted Hamiltonians from Chapter 3 with
methodology of k · p that uses envelope functions from Sec. 5.2 with results obtained
for temperature dependent electronic structure from Chapter 4 in order to produce
the final result of this thesis i.e. the temperature dependent band gap of halide-lead
perovskite nanostructures. Results are presented for quantum dots and wires of
different shapes as well as for quantum wells.

Parameters for k · p Hamiltonian, pnm and Pnm,ij are obtained from DFT wave-
functions obtained using PBE (PBEsol) functional for cubic CsPbI3 (CsPbCl3 and
CsPbBr3), while Em parameters are obtained from PBE0 functionals with temper-
ature renormalization self-energies Σ(T ) obtained from self-consistent method, as
described in Chapter 4.

5.5.1 Quantum dot with cubic shape

For cubic halide-lead perovskites, cubic shape quantum dots are consist of cubic
unit cells with lattice constant a =10.6, 11.1 and 12.1 for CsPbX3, X=Cl, Br, and I,
respectively. These unit cells are considered to be stacked together to form a cube
shaped nanostructure that is confined in all three directions.

Figure 5.4 (5.5 and 5.6) shows band energies obtained using 8×8 and 26×26
Hamiltonians for nanostructures at the temperature of phase transition to cubic
structure T = 320 K (T = 400 K and T = 300 K). Comparing the 8×8 and 26×26
results, one can see that for very small dots (l = 2a and l = 6a) band energies are
very distinct between the two, while this difference becomes less pronounced with
intermediate dots (l = 6a and l = 8a). This trend is continued with the increase
of size of the dot, until band energies start to band together and it becomes hard
to distinguish them individually, so one cannot make a fair comparison between the
8×8 and 26×26 results, like for the case of large dots (l = 10a and l = 12a). Even
though gap values are very close between 8×8 and 26×26 results, the rest of the
bands show much discrepancy especially for small and intermediate dots. If one were
to investigate phenomena other than the band gap itself, like absorption, where one
must account on all possible transitions between all valence and conduction states,
the higher resolution of 26×26 over 8×8 Hamiltonian would be very beneficial. In
the following discussion, results will be mostly focused on the band gap itself.

Figure 5.7 (5.8 and 5.9) shows band edges and gaps for CsPbCl3 (CsPbBr3
and CsPbI3) depending on the nanostructure size, obtained at the temperature of
phase transition to cubic structure T = 320 K (T = 400 K and T = 300 K) and
several temperatures above. As previously discussed, k · p results for very small
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nanostructures are not expected to be good, as discussed in Sec. 5.4 and Sec. 5.2, and
are deliberately left out of the plot. Similarly, Figure 5.10(5.11 and 5.12) shows band
edges and gaps for CsPbCl3(CsPbBr3 and CsPbI3) depending on the temperature,
for a few selected sizes of the nanostructure: l = 4a, 6a, 8a, 16a, where l is the length
of one edge of the cube and a is the lattice constant. On both mentioned figures for
CsPbCl3(CsPbBr3 and CsPbI3), one can see that both 8×8 and 26×26 Hamiltonians
produce very similar results: almost identical for VBM, with discrepancy for CBM
(and therefore band gap) not greater than 0.4 meV, 0.2 meV and 0.05 meV in the
case of very small (4a ≤ l < 8a), intermediate (8a ≤ l < 12a) and large (12a ≤ l)
dots, while keeping consistent slopes with across all sizes and temperatures, with
26×26 Hamiltonians producing somewhat smaller values for the band gap in all
cases. The same conclusion can be made for spherical shape quantum dots found in
Appendix D.1.
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Figure 5.4. Comparison of band energies between 8×8 and 26×26 Hamiltonian
for CsPbCl3 cubic quantum dots of different sizes at T = 400 K, where l is the
length of one edge of the cube, and H8(H26) are results obtained from 8×8(26×26)
Hamiltonian.
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Figure 5.5. Comparison of band energies between 8×8 and 26×26 Hamiltonian
for CsPbBr3 cubic quantum dots of different sizes at T = 400 K, where l is the
length of one edge of the cube, and H8(H26) are results obtained from 8×8(26×26)
Hamiltonian.
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Figure 5.6. Comparison of band energies between 8×8 and 26×26 Hamiltonian
for CsPbI3 cubic quantum dots of different sizes at T = 300 K, where l is the
length of one edge of the cube, and H8(H26) are results obtained from 8×8(26×26)
Hamiltonian.
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Figure 5.7. Energies of band edges and gap for CsPbCl3 cubic quantum dots of
different sizes at several selected temperatures, where l is the length of one edge of the
cube, and VBM (CBM) are valence band maximum (conduction band minimum).
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Figure 5.8. Energies of band edges and gap for CsPbBr3 cubic quantum dots of
different sizes at several selected temperatures, where l is the length of one edge of the
cube, and VBM (CBM) are valence band maximum (conduction band minimum).
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Figure 5.9. Energies of band edges and gap for CsPbI3 cubic quantum dots of
different sizes at several selected temperatures, where l is the length of one edge of the
cube, and VBM (CBM) are valence band maximum (conduction band minimum).
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Figure 5.10. Energies of band edges and gap for CsPbCl3 cubic quantum dots
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Figure 5.11. Energies of band edges and gap for CsPbBr3 cubic quantum dots
at different temperatures for several selected sizes, where l is the length of one
edge of the cube, and VBM (CBM) are valence band maximum (conduction band
minimum).
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Figure 5.12. Energies of band edges and gap for CsPbI3 cubic quantum dots
at different temperatures for several selected sizes, where l is the length of one
edge of the cube, and VBM (CBM) are valence band maximum (conduction band
minimum).
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5.5.2 Quantum wire with square base

For cubic halide-lead perovskites, squared shape quantum wires consist of cubic
unit cells with lattice constant a =10.6, 11.1 and 12.1 for CsPbX3, X=Cl, Br, and
I, respectively. Unit cell of the nanostructure is formed by expanding the supercell
to include equal number of unit cells in x and y directions and form a cuboid
of m × a,m × a, a dimensions in x, y, z directions, respectively, where the base of
the cuboid is a square with length l = ma. This way, x and y are directions of
confinement and z is the direction that resembles bulk periodic conditions. The
same discussion for energies of the band gaps and edges as the one for quantum
dots from Sec. 5.5.1 can be made here, except that discrepancies between 8×8 and
26×26 Hamiltonians are less pronounced and curvature slopes are less steep when
decreasing the dimensions of the nanostructure. Both 8×8 and 26×26 Hamiltonians
produce very similar results: almost identical for VBM, with discrepancy for CBM
(and therefore band gap) not greater than 0.2 meV, 0.1 meV and 0.05 meV in the
case of very small (4a ≤ l < 8a), intermediate (8a ≤ l < 12a) and large (12a ≤ l)
dots, while keeping consistent slopes across all sizes and temperatures, with 26×26
Hamiltonians producing somewhat smaller values for the band gap in all cases.
The same conclusion can be made for quantum wires with circular base found in
Appendix D.2.
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Figure 5.13. Energies of band edges and gap for CsPbCl3 squared quantum wires of
different sizes at several selected temperatures, where l is the length of the edge of the
square base of the wire, and VBM (CBM) are valence band maximum (conduction
band minimum).
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Figure 5.14. Energies of band edges and gap for CsPbBr3 squared quantum wires of
different sizes at several selected temperatures,where l is the length of the edge of the
square base of the wire, and VBM (CBM) are valence band maximum (conduction
band minimum).
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Figure 5.15. Energies of band edges and gap for CsPbI3 squared quantum wires of
different sizes at several selected temperatures, where l is the length of the edge of the
square base of the wire, and VBM (CBM) are valence band maximum (conduction
band minimum).
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Figure 5.16. Energies of band edges and gap for CsPbCl3 squared quantum wires
at different temperatures for several selected sizes, where l is the length of the
edge of the square base of the wire, and VBM (CBM) are valence band maximum
(conduction band minimum).
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Figure 5.17. Energies of band edges and gap for CsPbBr3 squared quantum wires
at different temperatures for several selected sizes,where l is the length of the edge
of the square base of the wire, and VBM (CBM) are valence band maximum (con-
duction band minimum).
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Figure 5.18. Energies of band edges and gap for CsPbI3 squared quantum wire
at different temperatures for several selected sizes, where l is the length of the
edge of the square base of the wire, and VBM (CBM) are valence band maximum
(conduction band minimum).

5.5.3 Quantum well

For cubic halide-lead perovskites, quantum wells consist of cubic unit cells with
lattice constant a =10.6, 11.1 and 12.1 for CsPbX3, X=Cl, Br, and I, respectively.
Unit cell of the nanostructure is formed by expanding the supercell to include m
number of unit cells in z direction and form a cuboid of a, a,m × a dimensions in
x, y, z directions, respectively. This way, z is the direction of confinement and x, y
plane resembles bulk periodic conditions. The same discussion for energies of the
band gaps and edges as the one for quantum dots from Sec. 5.5.1 and Sec. 5.5.2
can be made here, except that discrepancies between 8×8 and 26×26 Hamiltonians
are less pronounced and curvature slopes are even less steep when decreasing the
dimensions of the nanostructure. Both 8×8 and 26×26 Hamiltonians produce very
similar results: almost identical for VBM, with discrepancy for CBM (and therefore
band gap) not greater than 0.1 meV, 0.05 meV and 0.001 meV in the case of very
small (4a ≤ l < 8a), intermediate (8a ≤ l < 12a) and large (12a ≤ l) dots,
while keeping consistent slopes with across all sizes and temperatures, with 26×26
Hamiltonians producing somewhat smaller values for the band gap in all cases.

5.6 Conclusion

In conclusion, this chapter started with the derivation of Burt-Foreman envelope
method and proceeded with solution by using plane wave basis. In the plane wave
basis, integrals Jsq(E) have emerged that were dependent on the geometry of the
nanostructure. These integrals were analytically solved for cuboid and ellipsoid
quantum dots, quantum wires with ellipsoid and rectangle shape and for quantum
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Figure 5.19. Energies of band edges and gap for CsPbCl3 quantum wells of different
sizes at several selected temperatures, where l is the size of the well, and VBM
(CBM) are valence band maximum (conduction band minimum).
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Figure 5.20. Energies of band edges and gap for CsPbBr3 quantum wells of differ-
ent sizes at several selected temperatures, where l is the size of the well, and VBM
(CBM) are valence band maximum (conduction band minimum).
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Figure 5.21. Energies of band edges and gap for CsPbI3 quantum wells of different
sizes at several selected temperatures, where l is the size of the well, and VBM
(CBM) are valence band maximum (conduction band minimum).
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Figure 5.22. Energies of band edges and gap for CsPbCl3 quantum wells at differ-
ent temperatures for several selected sizes, where l is the size of the well, and VBM
(CBM) are valence band maximum (conduction band minimum).
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Figure 5.23. Energies of band edges and gap for CsPbBr3 quantum wells at
different temperatures for several selected sizes, where l is the size of the well, and
VBM (CBM) are valence band maximum (conduction band minimum).
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Figure 5.24. Energies of band edges and gap for CsPbI3 quantum wells at different
temperatures for several selected sizes, where l is the size of the well, and VBM
(CBM) are valence band maximum (conduction band minimum).
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wells. Continuing with zincblende CdSe materials, which were used to perform a
precision test between for envelope function method in plane wave basis by using
DFT calculations as a benchmark for quantum wells and obtaining excellent agree-
ment for band gaps and squared moduli of wave-functions. This is an important
result, considering that DFT calculations require far more computational resources
than k · p envelope method. For unit cells that contain more atoms and nanostruc-
tures that are confined in more than one dimension, DFT calculations easily exceed
available computational resources, while k · p envelope method can be applied in
most cases using desktop computers. Considering the computational resources, this
chapter also addresses the numerical convergence tests that have to be performed
when using plane wave basis and provides some insight on how to estimate re-
quired computational resources for k · p envelope method calculations. Band gaps
for zincblende CdSe quantum wells were then calculated using G0W0 energies and
image charge effects were added to account for dielectric mismatch between the well
and the surrounding material. Combining methodology from Chapter 3 with enve-
lope functions in plane wave basis and electronic structure results from Chapter 4,
temperature dependent band gaps for lead-halide perovskite nanostructures were
obtained. These results include band gaps for quantum dots (cubic and spherical
shape), wires (with square and circular base) and wells. Hamiltonians that include
only bands near the gap (8) produce satisfactory results for band gaps at much less
computational cost when compared to the ones that take more bands around the gap
into account (26). Since the temperature band energy renormalization is taken from
bulk calculations, these corrections enter the k · p Hamiltonian at zero-th order.
Therefore, all slopes and trends considering temperature changes for band energies
are conserved when moving from bulk to nanostructure. Comparing the slopes of
energy levels that change with size of the nanostructure, quantum dots had the
steepest slopes, followed by quantum wires and then wells for the same material,
which is consistent with the literature [51]. Finally, the results for halide-perovskites
lack the correction for dielectric mismatch, as this would require a careful analytical
and numerical effort that is planned for future.



Chapter 6

Conclusion

Present chapter concludes the results of this thesis. The main goal of this work was
obtaining the electronic structure of perovskite nanostructures. What seemed as
a straightforward task at first, proved to be challenging as one step after another,
there were some challenges that required deeper understanding or some sort of mod-
ification of standard methods. At this point, a brief summary of the obtained results
in this thesis is shown, followed with suggestions for possible research in the future.

6.1 Summary

The goal of this thesis is to obtain the electronic structure of inorganic halide per-
ovskite nanocrystals. Halide perovskites have been praised as a low-cost, easily
produced materials in laboratory conditions that can range from bulk crystals to
nanocrystals with extremely modular shape and band gap. Their low-cost combined
with promising performance makes them an excellent candidate for semiconductor-
based devices like solar cells, LEDs, photodetectors, lasers and more. Even though
the stability and performance of these devices have seen rapid improvement, their
stability, efficiency and lifetime are the main reason they are sill not used for in-
dustrial and commercial purposes. In order to improve the device performance and
lifetime, obtaining a good picture for electronic properties of these materials is nec-
essary. This study focused on the electronic structure of inorganic variants with
formula CsPbX3 (X=Cl, Br, I) in their cubic phase. Even though DFT is routinely
used for electronic structure calculations for many bulk semiconductors, calculation
of nanostructures would require methods like k · p that can deal with these larger
systems while keeping the computational resources at DFT level. Since k · p is a
perturbative method, it relies on DFT results as a source of unperturbed param-
eters like Kohn-Sham states. Furthermore, in order for k · p to be successful for
nanocrystals, it has to provide accurate results for bulk phase, something which is
directly reliant on DFT results, meaning that DFT error in band gap for halide
perovskites should be addressed first. Finally, once proper band gaps are obtained,
one can proceed to apply k · p method on nanocrystals and obtain their electronic
structure.

First, in order to obtain k · p parameters, one must perform a DFT calculation
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that produces Kohn-Sham wavefunctions and energies. This way, an initial k · p
Hamiltonian was obtained that didn’t have identical analytical form as the ones
found in literature, for crystal structures that share Oh symmetry, obtained using
theory of invariants that relies on crystal symmetry [48, 51]. Namely, the required
number of parameters determined by the symmetry of the crystal was at first glance
much smaller than the ones initially obtained directly from DFT. Although the ini-
tial calculation provides a good result with all symmetries, this is not so obvious
from its analytical form. For this reason, a method for obtaining analytical form
of k · p Hamiltonian identical to the ones found in literature, purely from ab initio
DFT calculations was developed. This method was named symmetry-adaptation,
and was published in Ref. [46] and presented in Chapter 3, where CdSe material
was considered, for which various analytical forms were widely used in literature, as
a check for the methodology. The key of symmetry-adaptation of one Hamiltonian
obtained numerically, into another Hamiltonian found in the literature, was to find a
unitary transform that will perform a rotation on Kohn-Sham states after which the
symmetry-adapted Hamiltonian will be produced. Besides this, Chapter 3 contains
a small benchmark for k · p Hamiltonian performance. This benchmark compared
the maximum deviation of k · p electronic structure from DFT result, when mov-
ing away from the unperturbed point in the 1BZ. This check confirmed that k · p
Hamiltonians with more bands should produce a better dispersion relation. Based
on this, band structures for CdSe and CsPbX3 (X=Cl, Br, I) were produced using
more refined band energies obtained from GW and hybrid-DFT, respectively.

Next topic, was to address the issue of underestimated band gap for cubic halide
perovskites when using DFT with local and semi-local functionals, which was done
in Chapter 4 and published in Ref. [45]. Namely, for lead based halide perovskites,
main contributors to VBM and CBM are 6s and 6p Pb orbitals, respectively, which
makes inclusion of SOC a requirement. However, inclusion of SOC reduces the band
gap around 1eV compared to no-SOC calculation, which gives a reasonable estimate
of the band gap. Therefore, an error in local or semi-local treatment and the error
of omitting the SOC cancel each other to produce a decent band gap for halide
perovskites. However, SOC treatment results in underestimated band gap for local
and semi-local DFT. Furthermore, there is the issue of the cubic structure stability,
which is not at all stable at zero temperatures that ground state calculations pro-
vided by DFT assume. Temperatures at which halide perovskite transition to cubic
structure are rather high (for CsPbX3 they are 320 K, 403K and 300 K for X= Cl,
Br, and I, respectively) and its effects cannot be neglected. Indeed, early DFPT
calculations that are based on the harmonic approximation indicated presence of
imaginary (silent or negative) phonon modes at R and M points in 1BZ, which
points to strong anharmonic effects. Therefore, a combination of more sophisticated
method than semi-local DFT is required for the electronic structure, and the inclu-
sion of temperature and anharmonic effects. For electronic strucure calculations a
hybrid-DFT using PBE0 modified with Koopmans’ conditions for mixing param-
eter α has proven to provide good results for cubic halide perovkites. The most
dominant temperature effect is the electron-phonon interaction that contributes to
significant renormalization and broadening of the electron bands. One widely used
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method for electron band renormalization is the AHC theory that treats phonon
vibrations as a perturbation of the static lattice. Chapter 4 goes through necessary
steps, required to provide an accurate estimate for band gaps. They include: (1)
addressing the strong anharmonicity in lattice vibrations, (2) considering the non-
linearity of temperature effects on bands, and (3) resolving the connection between
band broadening and renormalization.

The strong anharmonicity (1) can be treated using using the SCPH method
that considers many-body effects as opposed to harmonic and independent phonon
treatment of DFPT. In Ref. [38], contribution of soft modes was simply disregarded,
a solution that was also considered here, but proved to greatly underestimate the
renormalization. Furthermore, Ref. [38], was rather ambiguous about whether whole
soft mode should be disregarded or just points where that mode becomes negative.
Performing a check it was shown that only the disregard of the whole soft mode
contributions will provide converged results. Using SCPH, anharmonic frequencies
are produced which correct the error of DFPT phonon structure by not just cor-
recting the silent modes, but providing more accurate results for higher modes as
well. Also, it was shown that the largest contribution to renormalization was indeed
from phonons in the range of intermediate frequencies, where the density of phonon
states is highest. In harmonic approximation, most of these states are lost to the
soft region, further proving that their neglect cannot be justified.

Next, the AHC theory was previously routinely used for structures that are
stable at zero temperature and have phonons that can be treated with harmonic
approximation. This results in equation that uses electron-phonon matrix elements
and phonon frequencies at their zero temperature values, and the only temperature
dependent term in the equation for band renormalization is the Bose-Einstein factor.
This would produce linear trend of band renormalization with temperature, making
renormalization at very high temperature unrealistic. However, the introduction
of temperature dependence in phononic frequencies reduces the growth of Bose-
Einstein factor, to produce a non-linear trend of temperature effects that point
towards saturation with extremely high temperatures.

Until this point, renormalization and broadening effects have been considered
separate within the AHC theory, as it has been done routinely in the literature.
Namely, the AHC theory can be derived using many-body perturbation theory, us-
ing bare electron and phonon Green functions. This way, renormalization has a
small parameter iδ (where δ is purely real) in the denominator that prevents di-
vergence and provides smoothening. Previously in the literature, this parameter
was usually set to 0.1 eV for calculation of both renormalization and broadening
[117]. In Ref. [120], it was established that as δ → 0, the renormalization should
converge as a Lorentzian or linearly with increasing q-grid density. However, due
to anharmonicity, the δ broadening should not be arbitrary small, especially at
high temperatures and there should be an established connection between renor-
malization and broadening (3) of the bands. To resolve this issue, a self-consistent
procedure based on the self-consistent Migdal approximation was developed. In
AHC theory bare electron Green function was replaced with a dressed one, which
coupled the real and imaginary parts of electron-phonon self-energy that represent
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renormalization and broadening, respectively. This way, real and imaginary parts
must be solved self-consistently and the matter was further simplified by consider-
ing only intraband transitions to the first-order, while interband transitions were
considered to be of the higher order. The results show that VBM and CBM renor-
malization have a smaller, non-zero broadening, compared to the rest of the bands
that show greater broadening which results in band diffusion and overlap at high
temperatures. The renormalized band gaps show excellent agreement with exper-
imental data for temperatures where cubic structure is formed. However, due to
limited experimental data on band gap slopes that do not cover a wide range of
temperatures, meaningful for comparison, one cannot draw a full conclusion. The
obtained value of the band gap slope with temperature for CsPbI3 agrees with the
experiment (range from 570K to 620K) while underestimating it for CsPbBr3 (data
range from 380 K to 435 K, which covers around the point of transition to cubic
structure) and having no experimental data for CsPbCl3 for comparison. When
going to even lower temperatures, PBE0 calculations with Koopmans’ condition for
α parameter for orthorhombic structure of halide perovskites indicate a very weak
temperature dependence with the band gap, which is consistent with the literature.

Finally, once good band gaps of bulk perovskite structure are obtained, one can
proceed by using them to calculate the electronic structure of nanostructures which
is done in Chapter 5. For this, a modified k · p Kane method was used, which is
based on Burt-Foreman envelope method, where envelopes were expanded in plane
wave basis. Presented method considers that the surrounding material has the same
properties as the nanostructure, but with a wide enough band gap that prevents
mixing of states. This produces a certain integral that depends only on the shape
and size of the nanostrucure. In general, analytical formula for this integral is given
for quantum wells, wires with rectangular and elliptical cross sections, and dots of
cuboid and ellipsoid shape.

Before using envelope functions on nanostructures it is a good idea to benchmark
this method against a more reliable one. Since cubic perovskite materials would be
too computationally expensive to calculate using DFT, CdSe was again selected as
a test material in order to check the performance of the k · p envelope method.
Also, the symmetry-adaptation method developed in Chapter 3 has shown to be
very useful for envelopes, since it provides the minimum number of k · p parameters
one has to keep track of while constructing the Hamiltonians. Using k · p envelopes,
the computational cost is reduced for several orders of magnitude while showing
excellent agreement with DFT band gap results for quantum wells, in the case for
wide wells, and somewhat worse but satisfactory agreement for very thin wells. After
this check, SOC along with GW corrections were included to produce band gaps of
CdSe quantum wells, which was also published in Ref. [46].

Finally, with great confidence in the test proven k · p envelope method one can
proceed to calculate the electronic structure of halide perovskite nanostructures.
These results are shown for a range of temperatures where the cubic phase is present
as well as for various shapes and sizes of the nanostrucures. These include quantum
wells of various widths, wires with circular and square cross section with different
diameters and edge lengths, respectively, and quantum dots in the shape of a sphere
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and cube with different diameters and edge lengths. The results for quantum wells
were published in Ref. [47], while the rest of the results are first published in this
thesis.

6.2 Future plans

After finishing this work on the electronic structure of perovskite nanocrystals, there
are still some unanswered points that can be a topic of further research. What follows
are some ideas on what the further work can expand on based on the work already
done for this thesis.

In Chapter 3, the symmetry-adaptation procedure was done only for two point
groups Td and Oh. This can easily be extended to include matrix blocks B(Γm,Γn)
for all point groups and their irreducible representations Γα which correspond to
first and second-order k · p parameters formed by Kohn-Sham states that also form
a basis of those irreducible representations Γα. Furthermore, an automated proce-
dure that uses theory of invariants directly to obtain these analytical forms can be
developed as well using some programming language. This two can be combined to
automate the gathering of numerical data, performing a unitary transformations to
symmetry-adapted basis and checking against the result that theory of invariants
would produce. This could be streamlined into some open source library that will be
available to anyone and create a database of k · p parameters for various materials.
Being an open source project, other groups may contribute to its development and
further application. This kind of tool could prove quite useful for any researcher
that needs a quick estimate for an electronic structure of some bulk or nanocrystal
without the need of extensive knowledge in physics or coding.

Chapter 4 produces simple Kohn-Sham band gaps, which although useful doesn’t
provide enough information about optical gap that absorption experiments measure.
Indeed, in order to extend these results to include absorption gaps and capture exci-
ton quasi particles, one would need to solve BSE equation, which is quite challenging
for materials with this many atoms. However, given that photovoltaic devices op-
erate in the high temperature regime, a simpler approach using the perturbation
theory and Fermi golden rule can be used to obtain absorption spectrum.

In pursuit of band renormalization, electron-phonon matrix elements were ob-
tained for dense k,q-grids in order to converge results. However, if one were to
investigate charge carrier transport properties a much finer k,q-grid is required. In-
deed, these calculations are computationally demanding but one option is to perform
an interpolation of electron-phonon matrix elements using Wannier basis, which was
recently done in Ref. [121]. One can also adapt the method from Ref. [122], which is
insensitive to band curvature and can be performed without extremely dense k,q-
grids1 in order to obtain relaxation times and charge carrier mobility. Although these
two methods rely on the assumption that the electron-phonon interaction is weak,
they can be useful for halide perovskites where this is not the case, by developing

1Some studies for Si required up to 85 × 103 and 200 × 103 inequivalent k and q points,
respectively.
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certain modifications.
Chapter 5 provides only Kohn-Sham gaps for halide perovskites without the

dielectric mismatch correction between the nanostructure and the surrounding ma-
terial. This is the first issue that would have to be addressed. Ingredients would
require the dielectric constant for bulk halide perovskites, which can be either ob-
tained from literature or calculated using DFPT, and a good theoretical model that
can be used on provided nanocrystal geometries. In bulk the carrier separation en-
ergy is small at room temperature so charge separation is very likely due to just
lattice vibration. In nanostructures however, this is not always the case due to the
confinement effects.



Appendix A

Analytical Derivations

A.1 Time-independent perturbation theory

In this section, a quick overview of Reyleigh-Schrödinger perturbation theory is
presented. More details on this subject can be found in many standard Quantum
Mechanics textbooks like the ones found in Ref. [208, 209, 210].

Very few problems in quantum mechanics can be solved exactly and for this
reason many approximation strategies were developed from the very start. One such
is the time-independent or stationary or Reyleigh-Schrödinger perturbation theory.
It starts form Hamiltonian that can be solved exactly H(0) with eigenfunctions Ψ

(0)
n

that produce discrete energy levels E(0). Perturbed problem can be written as
H = H(0)

∑
i λ

iH(i), i = 1, 2, 3, . . . where λ is some arbitrary small parameter and
H(n) is the perturbed part of the total Hamiltonian H of the i-th order. Similarly,
the expectation value for some discrete level En and its eigenfunction Ψn will be
equal to En = E

(0)
n +

∑
i λ

iE
(i)
n and Ψn = Ψ

(0)
n +

∑
i λ

iΨ
(i)
n , respectively. Writing

down:
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=
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×
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λiΨ(i)
n

)
,

(A.1)

and performing multiplication by grouping terms to their corresponding order for
λ, for i = 1 one obtains:

λ
(
H(0)Ψ(1)

n +H(1)Ψ(0)
n

)
= λ

(
E(0)
n Ψ(1)

n + E(1)
n Ψ(0)

n

)
. (A.2)

Eq. (A.2) can be multiplied by Ψ
(0)
n from the right and integrated to obtain E

(1)
n :

E(1)
n = H(1)

nn =
〈
Ψ(0)
n

∣∣H(1)
∣∣Ψ(0)

n

〉
, (A.3)

where
〈
Ψ
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n

∣∣∣Ψ(1)
n

〉
= 0 and the fact that H(0) is Hermitian
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〉
= 0 was used.
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Unperturbed functions Ψ(0) can be used as a basis for expressing perturbed
functions Ψ

(i)
n =

∑
sC

(i)
nmΨ

(0)
m , and if inserted in Eq. (A.2), C

(1)
nr coefficients can be

obtained by multiplying from the right by
∣∣∣Ψ(0)

r

〉
, with r ̸= n:

C(1)
nr =

H
(1)
nr

E
(0)
n − E

(0)
r

, r ̸= n, (A.4)

which leads to first-order perturbation in wavefunction Ψ
(1)
n :

Ψ(1)
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nr Ψ
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r

. (A.5)

In order for perturbation approximation to be valid, coefficients C
(i)
nr must satisfy

|C(i)
nr | << 1 for all i and nr.
For energy levels that are degenerate without the perturbation, the same proce-

dure can be performed noting that the state Φ
(0)
n for l-fold degenerate level En will

be represented as a sum of degenerate partners:

Φ(0)
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d

C
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nd , (A.6)

and the first-order correction will be:
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The energy correction in the first-order E
(1)
n will be obtained by solving a system of

l equations:
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From Eq. (A.5), one can conclude that Cnn = 0, which can also be shown using
the condition that ⟨Ψn|Ψn⟩ = 1. Expansion of ⟨Ψn|Ψn⟩ gives:
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Since λ ̸= 0, all the terms in parenthesis must vanish. For the first-order terms:

C(1)
nn + C(1)∗

nn = 2ReC(i)
nn = 0, (A.10)

the condition is that the real part of C
(1)
nn is zero. It is possible to rotate the perturbed

wavefunction Ψn, by multiplying it with some phase eiα (where α will depend on λ),

to make C
(1)
nr coefficients purely real, therefore the imaginary part of C

(1)
nn will also

vanish.
For second-order terms in λ, one can write a similar equation to Eq. (A.2):
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Using the same procedure of multiplying by Ψ
(0)
n from the right and integrating, the

second-order correction of energy is obtained E
(2)
n :
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If there are no perturbations in the Hamiltonian to the second-order, then H(2) = 0.
One can continue and obtain corrections of En to an arbitrary order. What is

important is to notice that that for i-th order of correction for energy levels, the
correction in eigenfunctions is needed to the order of (i− 1).

A.2 Effective-mass equation as a perturbation

Periodic system of non-interacting electrons is described by a simple Hamiltonian
H = p2/(2me) + V which can be solved using Bloch functions Ψkn = eik·rukn where
ukn are unit cell periodic Bloch factors, HΨkn = EknΨkn, to obtain energies Ekn,
where kn is the state of electron (k is a vector in 1BZ and n is the energy level).
For Hk = e−ik·rHeik·r one obtains:

Hkukn = Eknukn,

Hk =
(p2 + ℏk)2

2me

+ V (r).
(A.13)

Suppose that for some k0 that all uk0n and Ek0n can be obtained. For any other k,
Bloch factors can be expressed in the basis of uk0n as:

ukn =
∑

m

B(n)
m uk0m. (A.14)

In Eq. (A.13), Hk can be transformed as:

Hk = Hk0 +
(ℏk − ℏk0)2

2me

+
ℏ(k− k0) · p

me

. (A.15)
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Using the static perturbation theory, where unperturbed Hamiltonian is H(0) =
Hk0 +(ℏk−ℏk0)2/(2me) and perturbation H(1) = ℏ(k−k0) ·p/me, one obtains first
and second-order corrections for level En:
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(A.16)

The total energy in effective-mass approximation for Ekn is:
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In the case that k0n state is l-fold degenerate, there will be l states
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1, 2, . . . , l with same energy Ek0n. Moving away from k0 to point k, the degeneracy

is in general lifted, so E
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where:
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A.3 Displacement of ions as a perturbation

Using stationary perturbation theory, one can introduce the displacement of ions
as a perturbation on energy levels of an electron. In this case, the unperturbed
Hamiltonian is the Kohn-Sham Hamiltonian H(0) ≡ HKS which is diagonalized by
Kohn-Sham wave-functions Ψ

(0)
kn(r) and energies E

(0)
kn ≡ εkn for an electron in state

kn. The perturbation for displacement of ion κ in unit cell p along the direction α
in the i-th order is:

λiF (i) =
λi

i!

(∏

i

∑

κα,p

∆Rκα,p∂κα,p

)
F 0, F = H,Ψkn, (A.20)
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where λ is the strength of the perturbation, and ∆Rκα,p is the displacement itself
in units of length. The expectation value of the energy level Ekn perturbed by ionic
displacement will be:
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Expanding the expectation value in orders of λ:
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(1)
kn +

1

2!
λ2E

(2)
kn +

1

3!
λ3E

(3)
kn + . . . , (A.22)

allows one to obtain the terms individually (to the second-order):

E
(0)
kn =

〈
Ψ

(0)
kn

∣∣∣H(0)
∣∣∣Ψ(0)

kn

〉
,

E
(1)
kn =

〈
Ψ

(0)
kn

∣∣∣H(1)
∣∣∣Ψ(0)

kn

〉
,

E
(2)
kn =

〈
Ψ

(0)
kn

∣∣∣H(2)
∣∣∣Ψ(0)

kn

〉
+ 2Re

〈
Ψ

(0)
kn

∣∣∣H(1)
∣∣∣Ψ(1)

kn

〉
.

(A.23)

The first-order correction to the wave-function is written as:

∣∣∣Ψ(1)
kn

〉
=

∑

k′n′ ̸=kn

∣∣∣Ψ(0)
k′n′

〉〈
Ψ

(0)
k′n′

∣∣∣H(1)
∣∣∣Ψ(0)

kn

〉

E
(0)
kn − E

(0)
k′n′

. (A.24)

In the case where more than one ion is displaced, each λ should match the displace-
ment ∆Rκα,p of ion κ in unit cell p along the direction α. This transforms λ to λκα,p
and H(1) to:

λH(1) →
∑

κα,p

λ
∂HKS

∂Rκα,p

∆Rκα,p =
∑

κα,p

λκα,p
∂HKS

∂Rκα,p

=
∑

κα,p

λκα,p
∂V KS

∂Rκα,p

, (A.25)

where λκα,p = λ∆Rκα,p. One can also define a Fourier transform for the first:

∑

p

λκα,p
∂V KS

∂Rκα,p

=
∑

q

eiq·r

×N−1
uc

∑

p

e−iq·(r−Tp)λκα,p
∂V KS(r−Tp)

∂Rκα,p

=
∑

q

eiq·rλ̃κα(q)
∂vKS

∂Rκα(q)
,

(A.26)
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and the second derivative of V KS:

∑

pp′

λκα,pλκ′α′,p′
∂2V KS

∂Rκα,p∂Rκ′α′,p′
=
∑

qq′

ei(q+q′)·r

×N−2
uc

∑

pp′

e−i(q+q′)·reiq·Tpeiq
′·Tp′

× λκα,pλκα,p
∂2V KS(r−Tp −Tp′)

∂Rκα,p∂Rκ′α′,p′

=
∑

qq′

ei(q+q′)·rλ̃κα(q)λ̃κ′α′(q′)

× ∂2vKS

∂Rκα(q)∂Rκ′α′(q′)
,

(A.27)

where vKS is used to emphasize that all partial derivatives are over ∂/∂Rκα(q)
instead of ∂/∂Rκα,p. Matrix elements that correspond to the perturbation designated
by λ̃κα(q) are:

〈
Ψ

(0)
k′n′

∣∣∣ eiq·r ∂vKS

∂Rκα(q)

∣∣∣Ψ(0)
kn

〉
=

1

NucVuc

∫

sc

dru∗k′n′e−i(k
′−k−q)·r ∂vKS

∂Rκα(q)
ukn

=
1

Vuc

∫

uc

dru∗k′n′e−i(k
′−k−q)·r ∂vKS

∂Rκα(q)
ukn

× 1

Nuc

∑

p

ei(k
′−k−q)·Tp

=
1

Vuc

∫

uc

dru∗k+qn′
∂vKS

∂Rκα(q)
ukn

= ⟨uk+qn′| ∂vKS

∂Rκα(q)
|ukn⟩uc

= ⟨ukn′ | ∂vKS

∂Rκα(q)
|uk−qn⟩uc ,

(A.28)

where integral over the whole volume was reduced to sum of integrals over one
unit cell:

∫
sc
dr → ∑

p

∫
uc
dr and r → r − Tp for every r under the integral and

1/(Nuc)
∑

p e
i(k′−k−q)·Tp = δ(k′ − k − q). Eq. (A.28) can be interpreted also as a

probability of an electron to transition from k′n′ to k′n′ state, induced by phonon
at q, or, that electron loses ℏq portion of its crystal momentum when scattered
from a phonon at q. The sum over κα and q for elements diagonal in kn gives the
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first-order energy correction:

λE
(1)
kn =

∑

κα

∑

q

λ̃κα(q)
〈
Ψ

(0)
kn

∣∣∣ eiq·r ∂vKS

∂Rκα(q)

∣∣∣Ψ(0)
kn

〉

=
∑

κα

∑

q

λ̃κα(q) ⟨uk+Γn|
∂vKS

∂Rκα(q)
|ukn⟩uc δq,Γ

=
∑

κα

λ̃κα(Γ) ⟨uk+Γn|
∂vKS

∂Rκα(Γ)
|ukn⟩uc .

(A.29)

Eq. (A.29) shows that the correction of electronic level to the first-order may contain
only perturbation from Γ phonons1. This result can also be derived using Hellman-
Feynman theorem:

∑

κα,p

∂εkn
∂Rκα,p

=
∑

κα,p

〈
Ψ

(0)
kn

∣∣∣ ∂H
KS

∂Rκα,p

∣∣∣Ψ(0)
kn

〉
=
∑

κα

⟨ukn|
∂vKS

∂Rκα(Γ)
|ukn⟩ . (A.30)

Using Eq. (A.5), the corresponding first-order correction to the wave-function
can be expressed as:

λ̃κα(q)
∣∣∣Ψ(1)

kn(q)
〉
= λ̃κα(q)

∑

k′n′ ̸=kn

∣∣∣Ψ(0)
k′n′

〉〈
Ψ

(0)
k′n′

∣∣∣ eiq·r ∂vKS

∂Rκα(q)

∣∣∣Ψ(0)
kn

〉

E
(0)
kn − E

(0)
k′n′

. (A.31)

Expansion of the left- and right- hand side (LHS and RHS), respectively gives:

LHS = λ̃κα(q)
∣∣∣Ψ(1)

kn

〉
= λ̃κα(q)e

iq·r

∣∣∣∣∣
∂Ψ

(0)
kn

∂Rκα(q)

〉

= λ̃κα(q)e
i(k+q)·r

∣∣∣∣
∂ukn

∂Rκα(q)

〉

RHS = λ̃κα(q)
∑

k′n′ ̸=kn

∣∣∣Ψ(0)
k′n′

〉〈
Ψ

(0)
k′n′

∣∣∣ eiq·r ∂vKS

∂Rκα(q)

∣∣∣Ψ(0)
kn

〉

E
(0)
kn − E

(0)
k′n′

= λ̃κα(q)
∑

n′ ̸=n

ei(k+q)·r
|uk+qn′⟩ ⟨uk+qn′ | ∂vKS

∂Rκα(q)
|ukn⟩

E
(0)
kn − E

(0)
k+qn′

.

(A.32)

Finally, the correction of the lattice periodic function uqkn for components κα is:

|uqkn⟩κα =

∣∣∣∣
∂ukn

∂Rκα(q)

〉
=
∑

n′ ̸=n

|uk+qn′⟩ ⟨uk+qn′ | ∂vKS

∂Rκα(q)
|ukn⟩

E
(0)
kn − E

(0)
k+qn′

. (A.33)

1Calculating first-order corrections may seem redundant because once the time-averages are
taken, averaged displacement in first-order vanishes anyway since ⟨λ̃κα(q)⟩ = λ⟨∆Rκα(q)⟩ = 0 for
all q. Nevertheless this extra step was done for the reason of pedagogical consistency.
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The second-order correction 1
2
λ2E

(2)
kn has two terms. One is λ2

〈
Ψ

(0)
kn

∣∣∣H(2)
∣∣∣Ψ(0)

kn

〉

which transforms as:

1

2

∑

κα

∑

κ′α′

∑

qq′

λ̃κα(q)λ̃κ′α′(q′)
〈
Ψ

(0)
kn

∣∣∣ ei(q+q′)·r ∂2vKS

∂Rκα(q)∂Rκ′α′(q′)

∣∣∣Ψ(0)
kn

〉
=

1

2

∑

κα

∑

κ′α′

∑

qq′

λ̃κα(q)λ̃κ′α′(q′) ⟨ukn|
∂2vKS

∂Rκα(q)∂Rκ′α′(q′)
|ukn⟩uc δq,−q′ =

1

2

∑

κα

∑

κ′α′

∑

q′

λ̃κα(−q′)λ̃κ′α′(q′) ⟨ukn|
∂2vKS

∂Rκα(−q′)∂Rκ′α′(q′)
|ukn⟩uc ,

(A.34)

and the other is 2λ2Re
〈
Ψ

(0)
kn

∣∣∣H(1)
∣∣∣Ψ(1)

kn

〉
which transforms as:

2
∑

κα

∑

κ′α′

∑

qq′

λ̃κα(q)λ̃κ′α′(q′) Re
〈
Ψ

(0)
kn

∣∣∣ eiq·r ∂vKS

∂Rκα(q)

∣∣∣Ψ(1)
kn(q

′)
〉

(A.35)

Matrix element
〈
Ψ

(0)
kn

∣∣∣ eiq·r ∂vKS

∂Rκα(q)

∣∣∣Ψ(1)
kn(q

′)
〉
can be expanded using Eq. (A.31):

〈
Ψ

(0)
kn

∣∣∣ eiq·r ∂vKS

∂Rκα(q)

∣∣∣Ψ(1)
kn(q

′)
〉
=

1

NucVuc

∫

sc

dru∗kn
∂vKS

∂Rκα(q)
ei(q+q′)·r

∑

n′ ̸=n

u∗k+q′n′

⟨uk+q′n′ | ∂vKS

∂Rκ′α′ (q′)
|ukn⟩

E
(0)
kn − E

(0)
k+q′n′

=

1

Vuc

∫

uc

dru∗kn
∂vKS

∂Rκα(q)
ei(q+q′)·rδq,−q′

∑

n′

u∗k+q′n′

⟨uk+q′n′ | ∂vKS

∂Rκ′α′ (q′)
|ukn⟩

E
(0)
kn − E

(0)
k+q′n′

=

∑

n′ ̸=n

⟨ukn| ∂vKS

∂Rκα(−q′)
|uk+q′n′⟩ ⟨uk+q′n′| ∂vKS

∂Rκ′α′ (q′)
|ukn⟩

E
(0)
kn − E

(0)
k+q′n′

. (A.36)

Finally, the second-order correction 1
2
λ2E

(2)
kn will be:

1

2
λ2E

(2)
kn =

1

2
λ2EDW

kn +
1

2
λ2EFan

kn ,

1

2
λ2EDW

kn =
1

2

∑

κκ′αα′

∑

q′

λ̃κα(−q′)λ̃κ′α′(q′) ⟨ukn|
∂2vKS

∂Rκα(−q′)∂Rκ′α′(q′)
|ukn⟩

1

2
λ2EFan

kn = 2Re
∑

κκ′αα′

∑

q′n′ ̸=n

λ̃κα(−q′)λ̃κ′α′(q′),

×
⟨ukn| ∂vKS

∂Rκα(−q′)
|uk+q′n′⟩ ⟨uk+q′n′| ∂vKS

∂Rκ′α′ (q′)
|ukn⟩

E
(0)
kn − E

(0)
k+q′n′

.

(A.37)
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Until this point, the strength of the perturbation has been expressed with λ̃κα(q)
in order to keep track of order of λ in energy corrections. When λ→ 1 they become
∆Rκα(q). Remembering that in the second quantization in real space these terms
are:

∆Rκα,p = N−1/2
uc

∑

qν

eiq·Tpξκα,ν(q)

(2Mκωqν/ℏ)1/2
(
âqν + â†−qν

)
, (A.38)

so ∆Rκα(q) can be obtained with Fourier transform:

∆Rκα(q) =
1

Nuc

∑

p

e−iq·Tp∆Rκα,p

= N−1/2
uc

∑

q′ν

ξκα,ν(q)

(2Mκωqν/ℏ)1/2
(
âq′ν + â†−q′ν

) 1

Nuc

∑

p

e−i(q−q′)·Tp

= N−1/2
uc

∑

q′ν

ξκα,ν(q)

(2Mκωq′ν/ℏ)1/2
(
âq′ν + â†−q′ν

)
δq,q′

= N−1/2
uc

∑

ν

ξκα,ν(q)

(2Mκωqν/ℏ)1/2
(
âqν + â†−qν

)
,

(A.39)

where ξκα,ν(q) and ωqν are polarization vectors and phonon frequencies of mode ν

obtained from phonon structure and âqν(â
†
−qν) are destruction (creation) operators

of phonon qν(−qν).

Electron-phonon matrix elements of the first-order gnn′,ν(k,q) can be defined as
probability of scattering of electron from one state kn to another k′n′ by phonon
qν where k − k′ = q, and expressed as a sum of perturbation for all ions κ and
directions α:

gnn′,ν(k,q) =
∑

κα

ξκα,ν(q)

(2Mκωqν/ℏ)1/2
⟨uk+qn|

∂vKS

∂Rκα(q)
|ukn′⟩ , (A.40)

which is the same as Eq. (2.192) after expansion. For gnn′,νν′(k,q,q
′) second-order

terms, one obtains:

gnn′,νν′(k,q,q
′) =

1

2

∑

κκ′αα′

ξκα,ν(q)

(2Mκωqν/ℏ)1/2
ξκ′α′,ν′(q

′)

(2Mκ′ωq′ν′/ℏ)1/2

× ⟨uk+q+q′n|
∂2vKS

∂Rκα(q)∂Rκ′α′(q′)
|ukn′⟩ .

(A.41)

Expression in Eq. (A.41) is the same as Eq. (2.193) after expansion.

When Kohn-Sham Hamiltonian is expressed using second-quantization H(0) =
HKS =

∑
kn εknĉ

†
knĉkn, the perturbation of electronic states by ionic displacement,
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to the second-order, is expressed as:

H(1) = N−1/2
uc

∑

kmn

∑

qν

gmn,ν(k,q)ĉ
†
k+qmĉkn

(
âqν + â†−qν

)
,

H(2) = N−1
uc

∑

kmn

∑

qν,q′ν′

gmn,νν′(k,q,q
′)ĉ†k+q+q′mĉkn

×
(
âqν + â†−qν

)(
âq′ν′ + â†−q′ν′

)
,

(A.42)

which is the same as Eq. (2.191).

Since ions are moving in time, one should take time-averaged values of λE
(1)
kn and

λ2E
(2)
kn . Time-average of ∆Rκα(q) is zero, since ion will spent the same time any

two opposite directions, therefore
〈
λE

(1)
kn

〉
= 0. For

〈
λ2E

(2)
kn

〉
one makes use of the

following contraction (found in Mahan 2000 [118]):

〈
(â†−qν + âqν)(â

†
−q′ν′ + âq′ν′)

〉
= δ−q,q′δν,ν′(nq′ν′(T ) + nqν(T ) + 1), (A.43)

where nqν(T ) is the Bose-Einstein distribution factor that introduces the tempera-
ture dependence T . Using this contraction, the second-order corrections to Ekn in
Reyleigh-Schrödinger perturbation theory will be:

1

2
λ2EDW

kn (T ) = N−1
uc

∑

q′ν′

2nq′ν′(T ) + 1

2ωq′ν′/ℏ
∑

κκ′αα′

ξκα,ν′(−q′)

(Mκ)1/2
ξκ′α′,ν′(q

′)

(Mκ′)1/2

× 1

2
⟨ukn|

∂2vKS

∂Rκα(−q′)∂Rκ′α′(q′)
|ukn⟩

=
∑

q′ν′

gnn,νν(k,−q′,q′) [2nq′ν′(T ) + 1] ,

(A.44)

and

1

2
λ2EFan

kn (T ) = N−1
uc

∑

q′ν′

2nq′ν′(T ) + 1

2ωq′ν′/ℏ
∑

κκ′αα′

ξκα,ν′(−q′)

(Mκ)1/2
ξκ′α′,ν′(q

′)

(Mκ′)1/2

× 2Re
∑

n′ ̸=n

⟨ukn| ∂vKS

∂Rκα(−q′)
|uk+q′n′⟩ ⟨uk+q′n′| ∂vKS

∂Rκ′α′ (q′)
|ukn⟩

E
(0)
kn − E

(0)
k+q′n′

=
∑

q′ν′

∑

n′ ̸=n

|gnn′(k,q)|2 [2nq′ν′(T ) + 1] ,

(A.45)

where nqν(T ) = n−qν(T ) and ω−qν = ωqν were used.
The first-order electron-phonon matrix elements gnm,ν(k,q) are obtained as a

part of the DFPT routine. The second-order terms gnn,νν(k,q,−q) are more involved
and are not part of the DFPT routine. In order to compute gnn,νν(k,q,−q), Allen
and Heine made use of the rigid-ion approximation [113, 114, 115], which allows one
to express second-order terms gnn,νν(k,q,−q) using first-order terms gnm,ν(k,q).
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A.4 Collective displacement of ions

In the case of collective displacements of all ions by some ∆R along γ-direction,
∆Rκγ,p are constant for all p unit cells. In the reciprocal space, this corresponds
to Γ perturbation ∆Rκα(q) = ∆Rδαγδq,Γ. Moving all ions in γ-direction by ∆R
is equivalent to just moving the system of reference by −∆Reγ, therefore in this

case, by the principle of translation invariance, there is no perturbation so λE
(1)
kn

and λ2E
(2)
kn from Eq. (A.29) and Eq. (A.37), respectively, should vanish.

From λE
(1)
kn = 0:

λE
(1)
kn = ∆R

∑

κ

⟨uk+Γn|
∂vKS

∂Rκγ(Γ)
|ukn⟩ = 0,

⇒
∑

κ

⟨ukn|
∂vKS

∂Rκγ(Γ)
|ukn⟩ = 0.

(A.46)

From 1
2
λ2E

(2)
kn = 0 one obtains:

1

2
λ2E

(2)
kn = (∆R)2

∑

κκ′γ

[
1

2
⟨ukn|

∂2vKS

∂Rκγ(Γ)∂Rκ′γ(Γ)
|ukn⟩

+ 2Re
∑

n′ ̸=n

⟨ukn| ∂vKS

∂Rκγ(Γ)
|uk′n′⟩ ⟨ukn′| ∂vKS

∂Rκ′γ(Γ)
|ukn⟩

E
(0)
kn − E

(0)
kn′

]
= 0,

(A.47)

where κ and κ′ can be decoupled in the sum, or equivalently, one can take a derivative
∂/∂Rκ′β of Eq. (A.46) to obtain:

∑

κ

[
⟨ukn|

∂2vKS

∂Rκγ(Γ)∂Rκ′β(Γ)
|ukn⟩

+ 2Re
∑

n′ ̸=n

⟨ukn| ∂vKS

∂Rκγ(Γ)
|uk+q′n′⟩ ⟨uk+qn′ | ∂vKS

∂Rκ′β(Γ)
|ukn⟩

E
(0)
kn − E

(0)
kn′

]
= 0.

(A.48)

From Eq. (A.48) one can obtain the second-order derivatives of vKS for perturbations
in Γ using only first-order derivatives:

∑

κ

⟨ukn|
∂2vKS

∂Rκγ(Γ)∂Rκ′β(Γ)
|ukn⟩ =

−2Re
∑

κ

∑

n′ ̸=n

⟨ukn| ∂vKS

∂Rκγ(Γ)
|ukn′⟩ ⟨ukn′| ∂vKS

∂Rκ′β(Γ)
|ukn⟩

E
(0)
kn − E

(0)
kn′

.

(A.49)

A.5 Rigid-ion approximation

In order to express electron-phonon matrix of second-order using first-order ele-
ments, Allen and Heine [113, 114, 115] used the rigid-ion approximation for the
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second-order derivatives. Rigid-ion potential is local and expressed as a sum of
individual ion-centered Coulomb potentials:

V ri(r) =
∑

κ,p

Zκvc(Rκ +Tp − r), (A.50)

where κ and p are ion and unit cell indices, respectively. The second-order derivative
of V ri will be:

∂2Vel−ion

∂Rκα,p∂Rκ′α′,p′
= 0, if κ ̸= κ′ and p ̸= p′. (A.51)

For Hamiltonians that consist of rigid-ion potential onlyHri = T+V ri, the dynamical
matrix Dκα

κ′α′(q)ri will be:

Dκα
κ′α′(q)ri =

δκκ′

Nuc

∑

p,p′

δpp′
e−iq·Tp

M
1/2
κ

∂2V ri

∂Rκα,p∂Rκ′α′,p′

eiq·Tp′

M
1/2
κ′

=
δκκ′

M
1/2
κ M

1/2
κ′

∑

p

δp0e
−iq·Tp

∂2V ri

∂Rκα,p∂Rκ′α′,0

=
δκκ′

M
1/2
κ M

1/2
κ′

∂2V ri

∂Rκα,0∂Rκ′α′,0

= δκκ′D
κα
κ′α′(Γ).

(A.52)

Inserting (A.52) into Eq. (A.44), one would obtain the rigid-ion approximation for
1
2
λ2EDW

kn (T ):

1

2
λ2EDW

kn (T )ria = N−1
uc

∑

q′ν′

2nq′ν′(T ) + 1

2ωq′ν′/ℏ
∑

κκ′αα′

ξκα,ν′(−q′)ξκ′α′,ν′(q
′)

× 1

2
⟨ukn|Dκα

κ′α′(q)ri |ukn⟩

= N−1
uc

∑

q′ν′

∑

κκ′αα′

ξκα,ν′(−q′)ξκ′α′,ν′(q
′)

× 1

2
⟨ukn| δκκ′Dκα

κ′α′(Γ)ri |ukn⟩ .

(A.53)

When V ri is used for the second derivative instead of vKS in Eq. (A.49), one obtains:

∑

κ

⟨ukn|Dκγ
κ′β(Γ) |ukn⟩ δκκ′ =

1

Mκ′
⟨ukn|Dκ′γ

κ′β(Γ) |ukn⟩ =

− 2Re
∑

κ

∑

n′ ̸=n

⟨ukn| ∂vKS

∂Rκγ(Γ)
|ukn′⟩ ⟨ukn′ | ∂vKS

∂Rκ′β(Γ)
|ukn⟩

E
(0)
kn − E

(0)
kn′

,

(A.54)
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which can be used to transform Eq. (A.54) to:

1

2
λ2EDW

kn (T )ria = N−1
uc

∑

q′ν′

2nq′ν′(T ) + 1

2ωq′ν′/ℏ
∑

κκ′αα′

ξκα,ν′(−q′)ξκ′α′,ν′(q
′)

× 1

2
⟨ukn|Dκα

κ′α′(Γ)δκκ′ |ukn⟩

= N−1
uc

∑

q′ν′

−1

2ωq′ν′/ℏ
[2nq′ν′(T ) + 1]

×
∑

κκ′αα′

[
ξκα,ν′(−q′)ξκα′,ν′(q

′)

2Mκ

+
ξκ′α,ν′(−q′)ξκ′α′,ν′(q

′)

2Mκ′

]

× 2Re
∑

n′ ̸=n

⟨ukn| ∂vKS

∂Rκα(Γ)
|ukn′⟩ ⟨ukn′| ∂vKS

∂Rκ′α′ (Γ)
|ukn⟩

E
(0)
kn − E

(0)
kn′

.

(A.55)

Using rigid-ion approximation, the total renormalization of energy level Ekn =
E

(0)
kn +∆Ekn(T ) due to ionic movement is:

∆Ekn(T ) =
1

2
λ2EFAN

kn (T ) +
1

2
λ2EDW

kn (T )

= N−1
uc

∑

q′ν′

2nq′ν′(T ) + 1

2ωq′ν′/ℏ

×
{ ∑

κκ′αα′

ξκα,ν′(−q′)

(Mκ)1/2
ξκ′α′,ν′(q

′)

(Mκ′)1/2

× 2Re
∑

n′ ̸=n

⟨ukn| ∂vKS

∂Rκα(−q′)
|uk+q′n′⟩ ⟨uk+q′n′| ∂vKS

∂Rκ′α′ (q′)
|ukn⟩

E
(0)
kn − E

(0)
k+q′n′

−
∑

κκ′αα′

[
ξκα,ν′(−q′)ξκα′,ν′(q

′)

2Mκ

+
ξκ′α,ν′(−q′)ξκ′α′,ν′(q

′)

2Mκ′

]

× 2Re
∑

n′ ̸=n

⟨ukn| ∂vKS

∂Rκα(Γ)
|ukn′⟩ ⟨ukn′| ∂vKS

∂Rκ′α′ (Γ)
|ukn⟩

E
(0)
kn − E

(0)
kn′

}
.

(A.56)

Eq. (A.56) was originally derived by Allen, Heine and Cardona [113, 114, 115], and
is often referred as Allen-Heine-Cardona (AHC) equation. The sum in Eq. (A.56)
assumes that there are as many q′-vectors as unit cells Nuc and that they are con-
mensurable. If one wishes to include non-conmensurable q′-grid, the sum can be
replaced with an integral, N−1

uc

∑
q′ →

∫
dq′.

Eq. (A.56) is also adiabatic, since the difference of energy levels between kn and
k+ q′n′ doesn’t include phononic frequencies:

E
(0)
kn − E

(0)
k+q′n′ ± ℏωq′ν′ ≈ E

(0)
kn − E

(0)
k+q′n′ . (A.57)

Furthermore, all energy levels are treated as sharp excitations without any smearing
caused by ionic movements, which is sometimes also referred as on-the-mass-shell
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(OTMS) approximation. This is a good approximation for low temperatures T → 0
and for materials with weak electron-phonon interaction. For all other cases, a
non-adiabatic formula is preferred.



Appendix B

Blocks found in Kane
Hamiltonians

Using either numerical calculation described in Chapter 3 or analytical approach
from theory of invariants found in Ref. [48, 51], one can obtain the following k · p
Hamiltonians. Irreducible representations follow the notation found in Ref. [124].

B.1 Td point group B(Γa,Γb) blocks
Analytical expressions for all possible blocks B(Γm,Γn) of the k · p Hamiltonian in
the case of single Td group are listed below:

B(Γ1,Γ1) = C1k
2, (B.1)

B(Γ1,Γ2) = B(Γ1,Γ5) = B(Γ2,Γ4) = 0, (B.2)

B(Γ1,Γ3) = C2

[
(k2z + ω2k2x + ωk2y) (k2z + ωk2x + ω2k2y)

]
, ω = ei2π/3, (B.3)

B(Γ1,Γ4) = C3

[
kz kx ky

]
+ C4

[
kxky kykz kzkx

]
, (B.4)

B(Γ2,Γ2) = C5k
2, (B.5)

B(Γ2,Γ3) = C6

[
−(k2z + ω2k2x + ωk2y) (k2z + ωk2x + ω2k2y)

]
, (B.6)

B(Γ2,Γ5) = C7

[
kz kx ky

]
+ C8

[
kxky kykz kzkx

]
, (B.7)

B(Γ3,Γ3) = C9

[
k2 0
0 k2

]

+ C10

[
0 (k2z + ω2k2x + ωk2y)

(k2z + ωk2x + ω2k2y) 0

]
,

(B.8)

179



180 APPENDIX B. BLOCKS FOUND IN KANE HAMILTONIANS

B(Γ3,Γ4) = C11

[
kz ωkx ω2ky
kz ω2kx ωky

]

+ C12

[
kxky ωkykz ω2kzkx
kxky ω2kykz ωkzkx

]
,

(B.9)

B(Γ3,Γ5) = C13

[
kz ωkx ω2ky
−kz −ω2kx −ωky

]

+ C14

[
kxky ωkykz ω2kzkx
−kxky −ω2kykz −ωkzkx

] (B.10)

B(Γ4,Γ4) = C15



0 ky kx
ky 0 kz
kx kz 0




+ C16




0 kzkx kykz
kzkx 0 kxky
kykz kxky 0




+ C17



2k2z − k2x − k2y 0 0

0 2k2x − k2y − k2z 0
0 0 2k2y − k2z − k2x




+ C18



k2 0 0
0 k2 0
0 0 k2


 ,

(B.11)

B(Γ4,Γ5) = C19




0 ky −kx
−ky 0 kz
kx −kz 0




+ C20




0 kzkx −kykz
−kzkx 0 kxky
kykz −kxky 0




+ C21



k2x − k2y 0 0

0 k2y − k2z 0
0 0 k2z − k2x


 ,

(B.12)
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B(Γ5,Γ5) = C22



0 ky kx
ky 0 kz
kx kz 0




+ C23




0 kzkx kykz
kzkx 0 kxky
kykz kxky 0




+ C24



2k2z − k2x − k2y 0 0

0 2k2x − k2y − k2z 0
0 0 2k2y − k2z − k2x




+ C25



k2 0 0
0 k2 0
0 0 k2


 ,

(B.13)

When spin-orbit interaction is included, the states transform according to the
representations of the double point group Td, which means that only the Γ6,Γ7 and
Γ8 states are relevant. The spinor representation corresponds to Γ6 and multiplying
all single irreducible representations gives the following products:

Γ6 ⊗ Γ6 → Γ6,

Γ2 ⊗ Γ6 → Γ7,

Γ3 ⊗ Γ6 → Γ8,

Γ4 ⊗ Γ6 → Γ7 + Γ8,

Γ5 ⊗ Γ6 → Γ6 + Γ8.

(B.14)

Since the matrices that are obtained have some parts that appear more than once,
the following shortened notation is introduced:

Υ = k2z + ωk2x + ω2k2y, ω = ei2π/3, ζ = eiπ/4 (B.15)

Σ(z, x, y) =

[
z x− iy

x+ iy −z

]
, (B.16)

∆(z, x, y) = ζ

[
z ω2x− iωy

ω2x+ iωy −z

]
, (B.17)

Λ(z, x, y) =

[
−iωx− ω2y z

iz ωx+ iω2y

]
, (B.18)

Ξ(z, x, y) = −ζ
[

z ω2x− iωy
ω2x+ iωy −z

]
= −∆(z, x, y), (B.19)
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Ω1(z, x, y) = −i
[
−iω2x− ωy z

iz ω2x+ iωy

]
,

Ω2(z, x, y) = +i

[
−ωx− iω2y z

iz iωx+ ω2y

]
.

(B.20)

Using the notation from equations (B.15) through (B.20) all the relevant blocks
B(Γm,Γn) of the Hamiltonian in case of double point group Td are listed below:

B(Γ6,Γ6) = Cd
1k

2, (B.21)

B(Γ7,Γ7) = Cd
2k

2, (B.22)

B(Γ6,Γ7) = Cd
3Σ(kz, kx, ky) + Cd

4Σ(kxky, kykz, kzkx) (B.23)

B(Γ6,Γ8) =
Cd

5√
2

[
−ζΥ ∗ 0 0 Υ
0 −ζΥ ∗ −iΥ 0

]

+ Cd
6

[
∆(kz, kx, ky) Λ(kz, kx, ky)

]

+ Cd
7

[
∆(kxky, kykz, kzkx) Λ(kxky, kykz, kzkx)

]
(B.24)

B(Γ7,Γ8) = +
Cd

8√
2

[
ζΥ ∗ 0 0 Υ
0 ζΥ ∗ −iΥ 0

]

+ Cd
9

[
−∆(kz, kx, ky) Λ(kz, kx, ky)

]

+ Cd
10

[
−∆(kxky, kykz, kzkx) Λ(kxky, kykz, kzkx)

]
, (B.25)

B(Γ8,Γ8) = Cd
11k

2

+ Cd
12




0 0 0 −Υ ∗

0 0 iΥ ∗ 0
0 Υ 0 0

−iΥ 0 0 0




+ Cd
13

[
Σ(kz, kx, ky) 0

0 Σ(kz, ky, kx)

]

+ Cd
14

[
0 Ω1(kz, kx, ky)

Ω2(kz, kx, ky) 0

]

+ Cd
15

[
Σ(kxky, kykz, kzkx) 0

0 Σ(kxky, kzkx, kykz)

]

+ Cd
16

[
0 Ω1(kxky, kykz, kzkx)

Ω2(kxky, kykz, kzkx) 0

]

, (B.26)
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B.2 Oh point group B(Γa,Γb) blocks
The spinor representation in Oh corresponds to Γ+

6 and multiplying all single irre-
ducible representations gives the following products:

Γ±
6 ⊗ Γ+

6 → Γ±
6 ,

Γ±
2 ⊗ Γ+

6 → Γ±
7 ,

Γ±
3 ⊗ Γ+

6 → Γ±
8 ,

Γ±
4 ⊗ Γ+

6 → Γ±
7 + Γ±

8 ,

Γ±
5 ⊗ Γ+

6 → Γ±
6 + Γ±

8 .

(B.27)

One can introduce short notations:

Υ = k2z + ωk2x + ω2k2y, ω = ei2π/3, ζ = eiπ/4, (B.28)

and

Σ(z, x, y) =

[
z x− iy

x+ iy −z

]
= zσz + xσx + yσy, (B.29)

to write all possible blocks B(Γm,Γn) of the k · p Hamiltonian for double Oh group:

B(Γ±
6 ,Γ

±
6 ) = k2 C, (B.30)

B(Γ±
6 ,Γ

∓
6 ) = 0, (B.31)

B(Γ±
7 ,Γ

±
7 ) = k2 C, (B.32)

B(Γ±
7 ,Γ

∓
7 ) = Σ(kz, kx, ky) C, (B.33)

B(Γ±
6 ,Γ

±
7 ) = Σ(kxky, kykz, kzkx) C (B.34)

B(Γ±
6 ,Γ

∓
7 ) = 0 (B.35)

B(Γ±
6 ,Γ

∓
8 ) = kz

[
1 0 0 −ζ
0 −1 iζ 0

]
Cz

+ kx

[
0 ω2 −iωζ 0
ω2 0 0 −ωζ

]
Cx

+ ky

[
0 −iω −ω2ζ 0
iω 0 0 −iω2ζ

]
Cy

(B.36)

B(Γ±
7 ,Γ

±
8 ) =

[
−iζΥ ∗ 0 0 Υ

0 −iζΥ ∗ iΥ 0

]
CΥ

+ kxky

[
1 0 0 −ζ
0 −1 iζ 0

]
Cxy

+ kykz

[
0 ω2 −iωζ 0
ω2 0 0 −ωζ

]
Cyz

+ kzkx

[
0 −iω −ω2ζ 0
iω 0 0 −iω2ζ

]
Czx

(B.37)
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B(Γ±
7 ,Γ

∓
8 ) = kz

[
1 0 0 ζ
0 −1 −iζ 0

]
Cz

+ kx

[
0 ω2 iωζ 0
ω2 0 0 ωζ

]
Cx

+ ky

[
0 −iω ω2ζ 0
iω 0 0 iω2ζ

]
Cy

(B.38)

B(Γ±
6 ,Γ

±
8 ) =

[
iζΥ ∗ 0 0 Υ
0 iζΥ ∗ iΥ 0

]
CΥ

kxky

[
1 0 0 ζ
0 −1 −iζ 0

]
Cxy

+ kykz

[
0 ω2 iωζ 0
ω2 0 0 ωζ

]
Cyz

+ kzkx

[
0 −iω ω2ζ 0
iω 0 0 iω2ζ

]
Czx

(B.39)

B(Γ±
8 ,Γ

∓
8 ) = kz




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1


Cz

+ kx




0 1 0 0
1 0 0 0
0 0 0 −i
0 0 i 0


Cx

+ ky




0 −i 0 0
i 0 0 0
0 0 0 1
0 0 1 0


Cy

+ kz




0 0 0 1
0 0 −i 0
0 1 0 0
−i 0 0 0


C

′

z

+ kx




0 0 iω2 0
0 0 0 ω2

−ω 0 0 0
0 −iω 0 0


C

′

x

+ ky




0 0 ω 0
0 0 0 iω

−iω2 0 0 0
0 −ω2 0 0


C

′

y

(B.40)
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B(Γ±
8 ,Γ

±
8 ) = k2 C

+




0 0 0 −Υ ∗

0 0 −iΥ ∗ 0
0 Υ 0 0
iΥ 0 0 0


CΥ

+ kxky




1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1


Cxy

+ kykz




0 1 0 0
1 0 0 0
0 0 0 i
0 0 −i 0


Cyz

+ kzkx




0 −i 0 0
i 0 0 0
0 0 0 −1
0 0 −1 0


Czx

+ kxky




0 0 0 1
0 0 −i 0
0 −1 0 0
i 0 0 0


C

′

xy

+ kykz




0 0 iω2 0
0 0 0 ω2

ω 0 0 0
0 iω 0 0


C

′

yz

+ kzkx




0 0 ω 0
0 0 0 iω
iω2 0 0 0
0 ω2 0 0


C

′

zx

(B.41)

B.3 Comparison of DFT-obtained and symmetry-

adapted 4× 4 Hamiltonian

Two analytical forms of the 4 × 4 Hamiltonian, made from degenerate states cor-
responding to Γ4 and Γ1 irreps that lie below and above the gap respectively, in
the case of CdSe, are presented here. Both Hamiltonians give the same physics,
overall, and they are connected by an unitary transformation U , that is used to
transform initial DFT basis |ϕi⟩ to the symmetry-adapted basis |ψj⟩. To give more
clarity and justify the whole procedure of transforming the initial DFT basis, we will
compare inital DFT-form H init

DFT, obtained from groups of degenerate states |ϕi⟩ and
symmetry-adapted formHsym

adap, that is made out of transformed groups of degenerate
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states |ψj⟩.

Initial DFT-form H init
DFT of the 4× 4 Hamiltonian is given as:

H init
DFT =

k2

2m0

+




EΓ1 0 0 0
0 EΓ4 0 0
0 0 EΓ4 0
0 0 0 EΓ4




+
ℏ
m0




0 P
(1)
01 P

(1)
02 P

(1)
03

P
(1)∗
01 0 0 0

P
(1)∗
02 0 0 0

P
(1)∗
03 0 0 0




+
ℏ2

m2
0




P
(2)
00 P

(2)
01 P

(2)
02 P

(2)
03

P
(2)∗
01 P

(2)
11 P

(2)
12 P

(2)
13

P
(2)∗
02 P

(2)∗
12 P

(2)
22 P

(2)
23

P
(2)∗
03 P

(2)∗
13 P

(2)∗
23 P

(2)
33


 ,

where:

P
(1)
0i = C

x(1)
0i kx + C

y(1)
0i ky + C

z(1)
0i kz, i = 1, 2, 3;

P
(2)
0i = C

xy(2)
0i kxky + C

yz(2)
0i kykz + C

zx(2)
0i kzkx, i = 1, 2, 3;

P
(2)
ij = C

xx(2)
ij k2x + C

yy(2)
ij k2y + C

zz(2)
ij k2z

+ C
xy(2)
ij kxky + C

yz(2)
ij kykz + C

zx(2)
ij kzkx, i, j = 1, 2, 3;

P
(2)
00 = C

zz(2)
33 k2.

If we count the number of parameters C
m(1)
0i for 1st order and C

mn(2)
ij for 2nd order

terms (m,n = x, y, z) in the last four expressions, we can tell that H init
DFT has a total

number of 3× 3+ 3× 3+ 6× 6+ 1 = 55 parameters. Of course, this number can be
reduced but the procedure could be rather cumbersome especially if a great number
of materials with different symmetries is to be processed.
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Symmetry-adapted form Hsym
adap of the 4× 4 Hamiltonian is given as:

Hsym
adap =

k2

2m0

+




EΓ1 0 0 0
0 EΓ4 0 0
0 0 EΓ4 0
0 0 0 EΓ4


+

ℏ
m0




0 C3kz C3kx C3ky
C∗

3kz C15ky C15kx
C∗

3kx C15ky 0 C15kz
C∗

3ky C15kx C15kz 0




+
ℏ2

m0

C18




0 0 0 0
0 k2 0 0
0 0 k2 0
0 0 0 k2




+
ℏ2

m0

C17




0 0 0 0
0 2k2z − k2x − k2y 0 0
0 0 2k2x − k2y − k2z 0
0 00 2k2y − k2z − k2x




+
ℏ2

m0




C4kxky C4kykz C4kzkx C1k
2

C∗
4kxky 0 C16kzkx C16kykz

C∗
4kykz C16kzkx 0 C16kxky

C∗
4kzkx C16kykz C16kxky 0


 ,

where C15 = 0 if the block is formed from two same Γ4 irreps as it is in the 4 × 4
case. This gives for Hsym

adap, a total number of 1 + 5 = 6 parameters, for 1st and 2nd
order k · p terms. This way, if we were to process a large number of crystals, we
could group them according to their symmetry group, and compare the individual
parameters.

Unlike symmetry-adapted form Hsym
adap, initial DFT-form H init

DFT clearly demon-
strates much more parameters than symmetry of the crystal CdSe would suggest,
even for the simplest 4 × 4 case. We note also, that this procedure can be used to
generate standardized analytical forms of k · p Hamiltonians for crystals of any kind
of symmetry, at any point k0 in Brillouin zone. Of course, benefits of this method
will be greater if the symmetry point group Gk0 at k0 is of the higher order.

Having a symmetry-adapted Hamiltonian form also gives great advantage when
it comes to calculation of nanostructures. Numerical codes for calculating nanos-
tructures using k · p Hamiltonians of a certain point group could be easily adapted
to another material of the same point group by just changing numerical values of the
parameters, that can be easily obtained using ab inito calculation for bulk material
and the procedure described in Sec. 3.2 and Ref. [46].
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Appendix C

Point group tables

irrep. basis function E 3C2 6S4 6σd 8C3

Γ1 (A1) x2 + y2 + z2 1 1 1 1 1
Γ2 (A2) xyz 1 1 -1 -1 1
Γ3 (E) (x2 − y2, 3z2 − r2) 2 2 0 0 -1
Γ4 (T2) (z, x, y) 3 -1 -1 1 0
Γ5 (T1) (xy, yz, zx) 3 -1 1 -1 0

Table C.1: Character table for the Td point group [50, 211].

irrep. basis function E
3C2

3C2
6S4

6σd
6σd

8C3 E 6S4 8C3

Γ1 (A1) x2 + y2 + z2 1 1 1 1 1 1 1 1
Γ2 (A2) xyz 1 1 -1 -1 1 1 -1 1
Γ3 (E) (x2 − y2, 3z2 − r2) 2 2 0 0 -1 2 0 -1
Γ4 (T2) (z, x, y) 3 -1 -1 1 0 3 -1 0
Γ5 (T1) (xy, yz, zx) 3 -1 1 -1 0 3 1 0

Γ6 (E1) ϕ1/2,−1/2, ϕ1/2,+1/2 2 0
√
2 0 1 -2 −

√
2 -1

Γ7 (E2) Γ2 × Γ6 2 0 −
√
2 0 1 -2

√
2 -1

Γ8 (F )
ϕ3/2,−3/2, ϕ3/2,−1/2

ϕ3/2,+1/2, ϕ3/2,+3/2
4 0 0 0 -1 -4 0 1

Table C.2: Character table for the double Td point group [211]. Wave functions
ϕ1/2,±1/2 and ϕ3/2,±1/2, ϕ3/2,±3/2 are the basis functions for the square of total angular
momentum J2 and its z-component Jz: ϕJ,mJ

(mJ = −J,−J + 1, . . . , J − 1, J), for
J = 1/2 and J = 3/2, respectively.

189
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Ir
re
p
.

B
as
is
fu
n
ct
io
n

E
3C

2 4
6C

′ 2
8C

3
6C

4
i

3i
C

2 4
6i
C

′ 2
8i
C

3
6i
C

4

Γ
+ 1
(Γ

1
,A

1
g
)

1
1

1
1

1
1

1
1

1
1

1

Γ
− 1
(Γ

′ 1
,A

1
u
)

x
y
z[
x
4
(y

2
−
z2
)

+
y
4
(z

2
−
x
2
)

+
z4
(x

2
−
y
2
)]

1
1

1
1

1
-1

-1
-1

-1
-1
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Table C.3: Character table for the Oh point group [211, 50].
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Table C.4: Character table for the double Oh point group [211, 50].
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Appendix D

CsPbX3 nanostructure gaps for
different geometries

D.1 Quantum dot with spherical shape
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Figure D.1. Comparison of band energies between 8×8 and 26×26 Hamiltonian
for CsPbCl3 spherical quantum dots of different sizes at T = 400 K, where l is the
length of one edge of the cube, and H8(H26) are results obtained from 8×8(26×26)
Hamiltonian.
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Figure D.2. Comparison of band energies between 8×8 and 26×26 Hamiltonian
for CsPbBr3 spherical quantum dots of different sizes at T = 400 K, where l is the
length of one edge of the cube, and H8(H26) are results obtained from 8×8(26×26)
Hamiltonian.
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Figure D.3. Comparison of band energies between 8×8 and 26×26 Hamiltonian
for CsPbI3 spherical quantum dots of different sizes at T = 300 K, where l is the
length of one edge of the cube, and H8(H26) are results obtained from 8×8(26×26)
Hamiltonian.
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Figure D.4. Energies of band edges and gap for spherical CsPbCl3 quantum dots
of different sizes at several selected temperatures, where l is the diameter of the
sphere, and VBM (CBM) are valence band maximum (conduction band minimum).
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Figure D.5. Energies of band edges and gap for spherical CsPbBr3 quantum dots
of different sizes at several selected temperatures, where l is the diameter of the
sphere, and VBM (CBM) are valence band maximum (conduction band minimum).
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Figure D.6. Energies of band edges and gap for spherical CsPbI3 quantum dots of
different sizes at several selected temperatures, where l is the diameter of the sphere,
and VBM (CBM) are valence band maximum (conduction band minimum).
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Figure D.7. Energies of band edges and gap for CsPbCl3 spherical quantum dots
at different temperatures for several selected sizes, where l is the length of one
edge of the cube, and VBM (CBM) are valence band maximum (conduction band
minimum).
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Figure D.8. Energies of band edges and gap for CsPbBr3 spherical quantum dots
at different temperatures for several selected sizes, where l is the length of one
edge of the cube, and VBM (CBM) are valence band maximum (conduction band
minimum).
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Figure D.9. Energies of band edges and gap for CsPbI3 spherical quantum dots
at different temperatures for several selected sizes, where l is the length of one
edge of the cube, and VBM (CBM) are valence band maximum (conduction band
minimum).
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D.2 Quantum wire with circular base
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Figure D.10. Energies of band edges and gap for CsPbCl3 quantum wires of differ-
ent cross section sizes at several selected temperatures, where l is the diameter of the
circular base of the wire, and VBM (CBM) are valence band maximum (conduction
band minimum).
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Figure D.11. Energies of band edges and gap for CsPbBr3 circular quantum wire
of different sizes at several selected temperatures, where l is the diameter of the
circular base of the wire, and VBM (CBM) are valence band maximum (conduction
band minimum).
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Figure D.12. Energies of band edges and gap for CsPbI3 circular quantum wire
of different sizes at several selected temperatures, where l is the diameter of the
circular base of the wire, and VBM (CBM) are valence band maximum (conduction
band minimum).



200 APPENDIX D. NANOSTRUCTURE GAPS: DIFFERENT GEOMETRIES

300 400 500 600 700
−1.0

−0.8

−0.6

−0.4

E
[e

V
]

VBM

300 400 500 600 700

T [K]

2.6

2.7

2.8

CBM

H26 l= 4 a = 2.24 nm

H26 l= 8 a = 4.49 nm

H26 l=12 a = 6.73 nm

H26 l=16 a = 8.97 nm

H8

H8

H8

H8
300 400 500 600 700

T [K]

3.2

3.6

4.0

E
[e

V
]

GAP

Figure D.13. Energies of band edges and gap for CsPbCl3 circular quantum wire
at different temperatures for several selected sizes, where l is the diameter of the
circular base of the wire, and VBM (CBM) are valence band maximum (conduction
band minimum).
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Figure D.14. Energies of band edges and gap for CsPbBr3 circular quantum wire
at different temperatures for several selected sizes, where l is the diameter of the
circular base of the wire, and VBM (CBM) are valence band maximum (conduction
band minimum).
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Figure D.15. Energies of band edges and gap for CsPbI3 circular quantum wire
at different temperatures for several selected sizes, where l is the diameter of the
circular base of the wire, and VBM (CBM) are valence band maximum (conduction
band minimum).
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