Dr Vladimir R. Rakočević

Redovni profesor
Departman za matematiku

  1. Pant, R. P., Rakočević, V., Gopal, D., Pant, A., & Ram, M. (2021). A General Fixed Point Theorem. Filomat, 35(12), 4061–4072. https://doi.org/10.2298/FIL2112061P
  2. Chanda, A., Garai, H., Dey, K. L., Rakočević, V., & Senapati, T. (2021). Ψ,Φ-Wardowski contraction pairs and some applications. Computational and Applied Mathematics, 40(294), 1–22. https://doi.org/10.1007/s40314-021-01679-0
  3. Haddadi, M. R., Parvaneh, V., Mursaleen, M., & Rakočević, V. (2021). New Classes of Contractions in Banach Algebras with Applications. MATHEMATICAL NOTES, 110(4), 522–531. https://doi.org/10.1134/S0001434621090224
  4. Tuǧ, O., Rakočević, V., & Malkowsky, E. (2021). Domain of generalized difference operator Δi3 Δ of order three on the hahn sequence space h and matrix transformations. Linear and Multilinear Algebra, 23 Oct(2021).
  5. Mursaleen, M., & Rakočević, V. (2022). A survey on measures of noncompactness with some applications in infinite systems of differential equations. Aequationes Mathematicae, 96(2021), 489–514. https://doi.org/10.1007/s00010-021-00848-0
  6. Rakočević, V., Roy, M. K., & Saha, M. (2021). Wardowski and Ćirić type fixed point theorems over non-triangular metric spaces. Quaestiones Mathematicae, 6. Sep(2021).
  7. Dhivya, P., Marudai, M., Rakočević, V., & Fulga, A. (2021). A solution to nonlinear Fredholm integral equations in the context of w-distances. Advances in Difference Equations, 398(2021), 1–23. https://doi.org/10.1186/s13662-021-03549-9
  8. Malkowsky, E., Milovanović, G. V., Rakočević, V., & Tuğ, O. (2021). The roots of polynomials and the operator 13 i on the Hahn sequence space h. Computational and Applied Mathematics, 40(222), 1–18. https://doi.org/10.1007/s40314-021-01611-6
  9. Malkowsky, E., Rakočević, V., & Tuğ, O. (2021). Compact operators on the Hahn space. Monatshefte Für Mathematik, 196(2021), 519–551. https://doi.org/10.1007/s00605-021-01588-8
  10. Baliarsingh, P., Mursaleen, M., Rakočević, V., & Zoran, Z. (2021). A survey on the spectra of the difference operators over the Banach space c. Revista de La Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 115(2021), 57. https://doi.org/10.1007/s13398-020-00997-y
  11. Karapınar, E., Öztürk, A., & Rakočević, V. (2021). A fixed point theorem for a system of Pachpatte operator equations. Aequationes Mathematicae, 95(2021), 245–254. https://doi.org/10.1007/s00010-020-00724-3
  12. Karapınar, E., Fulga, A., & Rakočević, V. (2020). A Discussion on a Pata Type Contraction via Iterate at a Point. Filomat, 34(4 2020), 1061–1066. https://doi.org/10.2298/FIL2004061K
  13. Pant, R., Shukla, R., & Rakočević, V. (2020). Approximating best proximity points for Reich type non-self nonexpansive mappings. Revista de La Real Academia de Ciencias Exactas, Fisicas y Naturales - Serie A: Matematicas, 114(4), 1–14. https://doi.org/10.1007/S13398-020-00931-2/FIGURES/2
  14. Tiwari, R., Khan, M. S., Rani, S., & Rakocević, V. R. (2020). On 〖(ψ,ξ)〗^2 - contractive maps. CARPATHIAN JOURNAL OF MATHEMATICS, 36(2), 302–311.
  15. Tuğ, O., Rakočević, V., & Malkowsky, E. (2020). On the Domain of the Four-Dimensional Sequential Band Matrix in Some Double Sequence Spaces. Mathematics, 8(5), 789. https://doi.org/10.3390/MATH8050789
  16. Karapinar, E., Fulga, A., & Rakocević, V. (2020). A Result on a Pata-Ćirić Type Contraction at a Point. Mathematics 2020, Vol. 8, Page 393, 8(3), 393. https://doi.org/10.3390/MATH8030393
  17. Abbas, M., Rakočević, V., & Hussain, A. (2020). Best proximity point of zamfirescu contractions of perov type on regular cone metric spaces. Fixed Point Theory, 21(1), 3–18. https://doi.org/10.24193/FPT-RO.2020.1.01
  18. Petrović, M. J., Rakočević, V., Valjarević, D., & Ilić, D. (2020). A note on hybridization process applied on transformed double step size model. Numerical Algorithms, 85(2020), 449–465. https://doi.org/10.1007/s11075-019-00821-8
  19. Karapınar, E., Taş, K., & Rakočević, V. (2019). Advances on Fixed Point Results on Partial Metric Spaces. 2019, 3–66. https://doi.org/10.1007/978-3-319-91065-9_1
  20. Uddin, I., Ali, J., & Rakočević, V. (2019). Some convergence theorems for new iteration scheme in cat(0) spaces. Miskolc Mathematical Notes, 20(2), 1285–1297. https://doi.org/10.18514/MMN.2019.2792
  21. Pant, A., Pant, R. P., Rakočević, V., & Bisht, R. K. (2019). Generalized Meir-Keeler type contractions and discontinuity at fixed point II. Mathematica Slovaca, 69(6), 1501–1507. https://doi.org/10.1515/MS-2017-0325/MACHINEREADABLECITATION/RIS
  22. Pant, A., Pant, R. P., & Rakočević, V. (2019). Meir-Keeler type and Caristi type fixed point theorems. Applicable Analysis and Discrete Mathematics, 13(3), 849–858. https://doi.org/10.2298/AADM181224037P
  23. Lakzian, H., Rakočević, V., & Aydi, H. (2019). Extensions of Kannan contraction via w-distances. Aequationes Mathematicae 2019 93:6, 93(6), 1231–1244. https://doi.org/10.1007/S00010-019-00673-6
  24. Alqahtani, B., Fulga, A., Karapınar, E., & Rakočević, V. (2019). Contractions with rational inequalities in the extended b-metric space. J Inequal Appl, 2019(1), 220. https://doi.org/10.1186/s13660-019-2176-6
  25. Alqahtani, B., Aydi, H., Karapınar, E., & Rakočević, V. (2019). A Solution for Volterra Fractional Integral Equations by Hybrid Contractions. 7(8), 1–10. https://doi.org/10.3390/math7080694
  26. Bisht, R. K., Pant, R. P., & Rakočević, V. (2019). Proinov contractions and discontinuity at fixed point. Miskolc Mathematical Notes, 20(1), 131–137. https://doi.org/10.18514/MMN.2019.2277
  27. Kostić, A. S., Karapinar, E., & Rakocević, V. R. (2019). Best Proximity Points and Fixed Points with R-Functions in the Framework of W-Distances. BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 99(3), 497–507. https://doi.org/10.1017/S0004972718001193
  28. Kostić, A., Rakočević, V., & Radenović, S. (2019). Best proximity points involving simulation functions with w 0-distance. REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 113(2), 715–727. https://doi.org/10.1007/s13398-018-0512-1
  29. Darko, K., Karapınar, E., & Rakočević, V. (2019). On quasi-contraction mappings of Ćirić and Fisher type via ω-distance. QUAESTIONES MATHEMATICAE, 42(1), 1–14. https://doi.org/10.2989/16073606.2018.1436614
  30. Pandey, R., Pant, R., Rakočević, V., & Shukla, R. (2019). Approximating Fixed Points of a General Class of Nonexpansive Mappings in Banach Spaces with Applications. Results in Mathematics, 74(7), 1–24. https://doi.org/10.1007/S00025-018-0930-6
  31. Aksoy, Ü., Karapınar, E., Erhan, İ. M., & Rakocevič, V. (2018). Meir-Keeler type contractions on modular metric spaces. Filomat, 32(10), 3697–3707. https://doi.org/10.2298/FIL1810697A
  32. Petrović, M., Rakočević, V., Kontrec, N., Panić, S., & Ilić, D. (2017). Hybridization of accelerated gradient descent method. Numerical Algorithms, 79(3), 769–786. https://doi.org/10.1007/S11075-017-0460-4
  33. Cvetković, M., Karapinar, E., & Rakočević, V. (2018). Fixed Point Results for Admissible Z-Contractions. Fixed Point Theory, 19(2), 515–526.
  34. Bisht, R. K., & Rakočević, V. (2018). Generalized Meir-Keeler type contractions and discontinuity at fixed point. Fixed Point Theory, 19(1), 57–64. https://doi.org/10.24193/FPT-RO.2018.1.06
  35. Abbas, M., Rakočević, V. R., & Iqbal, A. (2018). Fixed points of Perov type contractive mappings on the set endowed with a graphic structure. RACSAM, 112(2018), 209–228. https://doi.org/10.1007/S13398-016-0373-4
  36. Kocev, D., & Rakočević, V. (2017). On a theorem of Brian Fisher in the framework of w-distance. JOURNAL ARTICLE, 33(2), 199–205.
  37. Abbas, M., Rakočević, V., & Leyew, B. T. (2017). Common Fixed Points of (α-ψ)- Generalized Rational Multivalued Contractions in Dislocated Quasi b-Metric Spaces and Applications. Filomat, 31(11), 3263–3284. https://doi.org/10.2298/FIL1711263A
  38. Rakočević, V., & Samet, B. (2017). A Fixed Point Problem Under a Finite Number of Equality Constraints Involving a Ćirić operator. Filomat, 31(11), 3193–3202. https://doi.org/10.2298/FIL1711193R
  39. Alsulami, H. H., Karapınar, E., & Rakočević, V. (2017). Ćirić Type Nonunique Fixed Point Theorems on b-Metric Spaces. Filomat, 31(11), 3147–3156. https://doi.org/10.2298/FIL1711147A
  40. de Malafosse, B., Mursaleen, M., & Rakočević, V. R. (2017). The λ(+r) (µ) – Statistical Convergence. ANNALS OF FUNCTIONAL ANALYSIS, 8(1), 1–15.
  41. Kamran, T., Rakočević, V. R., Waheed, M., & Ali, M. U. (2016). Fixed Points of Multivalued Maps Via (G,φ)- Contraction. UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 78(4), 189–196.
  42. Ilić, D., Cvetković, M., Gajić, L., & Rakočević, V. R. (2016). Fixed Points of Sequence of A dagger iriAc Generalized Contractions of Perov Type. Mediterranean Journal of Mathematics, 13(6), 3921– 3937.
  43. Abbas, M., Rakočević, V., & Iqbal, A. (2016). Coincidence and Common Fixed Points of Perov Type Generalized Ćirić-Contraction Mappings. Mediterranean Journal of Mathematics, 13(5), 3537–3555.
  44. Alikhani, H., Rakočević, V., Shahram, R., & Shahzad, N. (2015). Fixed points of proximinal valued β-ψ-contractive multifunctions. Journal of Nonlinear and Convex Analysis, 16(12), 2491–2497.
  45. Pavlović, V., Ilić, D., & Rakočević, V. (2015). An extension of two fixed point theorems of Fisher to partial metric spaces. Filomat, 29(10), 2339–2345. https://doi.org/10.2298/FIL1510339P
  46. Cvetković, M., Karapınar, E., & Rakocević, V. (2015). Some fixed point results on quasi-b-metric-like spaces. Journal of Inequalities and Applications, 1(12), 1–17. https://doi.org/10.1186/S13660-015-0897-8/METRICS
  47. Cvetkovic, M. S., Rakočević, V. R., & Rhoades, B. (2015). Fixed Point Theorems for Contractive Mappings of Perov Type. JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 16(10), 2117–2127.
  48. Cvetković, M., & Rakočević, V. (2015). Common fixed point results for mappings of Perov type. Mathematische Nachrichten, 288(16), 1873–1890. https://doi.org/10.1002/MANA.201400098
  49. Cvetković, M., & Rakočević, V. (2015). Extensions of Perov theorem. Carpathian Journal of Mathematics, 31(2), 181–188.
  50. Benitez, J., Boasso, E., & Rakocević, V. R. (2015). Co-Ep Banach Algebra Elements. BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 9(1), 27–41.
  51. Cvetković, M. S., & Rakočević, V. R. (2015). Fisher Quasi-Contraction of Perov Type. JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 16(2), 339–352.
  52. Chi-Ming, C., Karapinar, E., & Rakočević, V. (2014). Existence of Periodic Fixed Point Theorems in the Setting of Generalized Quasi-Metric Spaces. Journal of Applied Mathematic, 2014(2014), 8 pages.
  53. Al-Mezel, S. A., Chen, C. M., Karapnar, E., & Rakočević, V. (2014). Fixed point results for various α -admissible contractive mappings on metric-like spaces. Abstract and Applied Analysis, 2014(2014), 15 pages. https://doi.org/10.1155/2014/379358
  54. Cvetković, M., & Rakočević, V. (2014). Quasi-contraction of Perov type. Applied Mathematics and Computation, 237(15), 712–722. https://doi.org/10.1016/J.AMC.2014.02.065
  55. Ilić, D., Pavlović, V., & Rakočević, V. (2013). Three extensions of Ćirić quasicontraction on partial metric spaces. Fixed Point Theory and Applications, 2013(1), 1–13. https://doi.org/10.1186/1687-1812-2013-303/METRICS
  56. Gülyaz, S., Karapinar, E., Rakocević, V., & Salimi, P. (2013). Existence of a solution of integral equations via fixed point theorem. Journal of Inequalities and Applications, 2013(1), 1–16. https://doi.org/10.1186/1029-242X-2013-529/METRICS
  57. Bisht, R. K., & Rakočević, V. (2013). Some notes on PD-operator pairs. Mathematical Communications,2013(18), 441–445. https://www.researchgate.net/publication/268548926_Some_notes_on_PD-operator pairs
  58. Karapinar, E., & Rakočević, V. (2013). On Cyclic Generalized Weakly C-Contractions on Partial Metric Spaces. Journal of Applied Mathematics, 2013(2013), 7 pages.
  59. Bruno, de Malafosse Rakočević, V. R. (2013). Matrix Transformations and Sequence Spaces Equations. BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 7(2), 1–14.
  60. Ilić, D., Pavlović, V. D., & Rakočević, V. R. (2013). Fixed points of mappings with a contractive iterate at a point in partial metric spaces. FIXED POINT THEORY AND APPLICATIONS, 335(2013).
  61. Ćrić, L., Lakzian, H., & Rakočević, V. (2012). Fixed point theorems for w-cone distance contraction mappings in tvs-cone metric spaces. Fixed Point Theory and Applications, 2012(1), 1–9. https://doi.org/10.1186/1687-1812-2012-3/METRICS
  62. de Malafosse, B., & Rakočević, V. (2012). Series summable (C, λ, μ) and applications. Linear Algebra and Its Applications, 436(11), 4089–4100. https://doi.org/10.1016/J.LAA.2011.11.006
  63. Benítez, J., & Rakočević, V. (2012). Canonical angles and limits of sequences of EP and co-EP matrices. Applied Mathematics and Computation, 218(17), 8503–8512. https://doi.org/10.1016/J.AMC.2012.02.011
  64. Benítez, J., Liu, X., & Rakočević, V. (2012). Invertibility in rings of the commutator ab – ba, where aba=a and bab=b. FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 60(4), 449–463. https://doi.org/10.1080/03081087.2011.605064
  65. Gajić, L., & Rakočević, V. (2012). Quasi-contractions on a nonnormal cone metric space. Functional Analysis and Its Applications, 46(1), 62–65. https://doi.org/10.1007/S10688-012-0008-2
  66. Ilić, D., Pavlović, V., & Rakočević, V. (2012). Extensions of the Zamfirescu theorem to partial metric spaces. Mathematical and Computer Modelling, 55(3–4), 801–809. https://doi.org/10.1016/J.MCM.2011.09.005
  67. Khojasteh, F., & Rakočević, V. (2012). Some new common fixed point results for generalized contractive multi-valued non-self-mappings. Applied Mathematics Letters, 25(3), 287–293. https://doi.org/10.1016/J.AML.2011.07.021
  68. Radenović, S., Rakočević, V., & Resapour, S. (2011). Common fixed points for (g, f) type maps in cone metric spaces. Applied Mathematics and Computation, 218(2), 480–491. https://doi.org/10.1016/J.AMC.2011.05.088
  69. Asadi, M., Mansour, V. S., Rakočević, V. R., & Rhoades, B. E. (2011). Fixed point theorems for contractive mapping in cone metric spaces. MATHEMATICAL COMMUNICATIONS, 16(1), 147–155.
  70. Ilić, D., Pavlović, V., & Rakočević, V. (2011). Some new extensions of Banach’s contraction principle to partial metric space. Applied Mathematics Letters, 24(8), 1326–1330. https://doi.org/10.1016/J.AML.2011.02.025
  71. Razani, A., Rakočević, V., & Goodarzi, Z. (2011). Generalized φ-contraction for a pair of mappings on cone metric spaces. Applied Mathematics and Computation, 217(22), 8899–8906. https://doi.org/10.1016/J.AMC.2011.02.039
  72. Boasso, E., & Rakočević, V. (2011). Characterizations of EP and normal Banach algebra elements and Banach space operators. Linear Algebra and Its Applications, 435(2), 342–353. https://doi.org/10.1016/J.LAA.2011.01.031
  73. Alimohammady, M., Balooee, J., Radojević, S., Rakočević, V., & Roohi, M. (2011). Conditions of regularity in cone metric spaces. Applied Mathematics and Computation, 217(13), 6359–6363. https://doi.org/10.1016/J.AMC.2011.01.010
  74. Kadelburg, Z., Radenović, S., & Rakočević, V. (2011). A note on the equivalence of some metric and cone metric fixed point results. Applied Mathematics Letters, 24(3), 370–374. https://doi.org/10.1016/J.AML.2010.10.030
  75. Benítez, J., & Rakočević, V. (2010). Invertibility of the commutator of an element in a C*-algebra and its Moore-Penrose inverse. Studia Mathematica, 200(2), 163–174. https://doi.org/10.4064/SM200-2-4
  76. Benítez, J., & Rakočević, V. (2010). Matrices A such that 〖AA〗^+- 〖AA〗^+ are nonsingular. Applied Mathematics and Computation, 217(7), 3493–3503. https://doi.org/10.1016/J.AMC.2010.09.022
  77. Radenović, S., Kadelburg, Z., & Rakoević, V. (2010). Topological Vector Space-Valued Cone Metric Spaces and Fixed Point Theorems. Fixed Point Theory and Applications 2010 2010:1, 1(8), 1–17. https://doi.org/10.1155/2010/170253
  78. Altun, I., & Rakočević, V. (2010). Ordered cone metric spaces and fixed point results. Computers & Mathematics with Applications, 60(5), 1145–1151. https://doi.org/10.1016/J.CAMWA.2010.05.038
  79. Benítez, J., & Rakočević, V. (2010). On the spectrum of linear combinations of two projections in C*-algebras. Linear and Multilinear Algebra , Latest Articles, 58(6), 673–679. https://doi.org/10.1080/03081080802517522
  80. Gajić, L., Ilić, D., & Rakočević, V. (2010). On Ćirić maps with a generalized contractive iterate at a point and Fisher’s quasi-contractions in cone metric spaces. Applied Mathematics and Computation, 216(8), 2240–2247. https://doi.org/10.1016/J.AMC.2010.03.010
  81. Razani, A., Rakočević, V., & Goodarzi, Z. (2010). Non-self mappings in modular spaces and common fixed point theorems. Central European Journal of Mathematics, 8(2), 357–366. https://doi.org/10.2478/S11533-010-0012-9
  82. Ćirić, L., Rakočević, V., Radenović, S., Rajović, M., & Lazović, R. (2010). Common fixed point theorems for non-self-mappings in metric spaces of hyperbolic type. Journal of Computational and Applied Mathematics, 233(11), 2966–2974. https://doi.org/10.1016/J.CAM.2009.11.042
  83. Kadelburg, Z., Radenović, S., & Rakočević, V. (2009). Remarks on “Quasi-contraction on a cone metric space.” Applied Mathematics Letters, 22(11), 1674–1679.
  84. Jungck, G., Radenovic, S. N., Radojevic, S., & Rakocevic, V. (2009). Common Fixed Point Theorems for Weakly Compatible Pairs on Cone Metric Spaces. FIXED POINT THEORY AND APPLICATIONS, 2009, 13 pages.
  85. Dejan, I., & Rakocevic, V. R. (2009). Quasi-contraction on a cone metric space. APPLIED MATHEMATICS LETTERS, 22(5), 728–731.
  86. Benítez, J., & Rakočević, V. R. (2008). Applications of CS decomposition in linear combinations of two orthogonal projectors. APPLIED MATHEMATICS AND COMPUTATION, 203(2), 761–769.
  87. Ilić, D., & Rakočević, V. R. (2008). Common fixed points for maps on metric space with w-distance. Applied Mathematics and Computation, 199(2), 599–610.
  88. Ilić, D., & Rakočević, V. (2008). Common fixed points for maps on cone metric space. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 341(2), 876–882.
  89. Koliha, J. J., & Rakočević, V. (2007). Stability theorems for linear combinations of idempotents. Integral Equations and Operator Theory, 58(4), 597–601.
  90. Gajić, L. M., & Rakočević, V. R. (2007). Pair of non-self-mappings and common fixed points. APPLIED MATHEMATICS AND COMPUTATION, 187(2), 999–1006.
  91. Malkowsky, E., & Rakočević, V. R. (2007). On matrix domains of triangles. APPLIED MATHEMATICS AND COMPUTATION, 189(2), 1146–1163.
  92. Rakočević, V. (2007). Perturbations of direct complements in Hilbert spaces. Applied Mathematics Letters, 20(4), 450–454.
  93. de Malafosse, B., & Rakočević, V. (2007). A generalization of a Hardy theorem. Linear Algebra and Its Applications, 421(2–3), 306–314. https://doi.org/10.1016/J.LAA.2006.07.022
  94. de Malafosse, B., & Rakočević, V. R. (2007). Matrix transformation and statistical convergence. Linear Algebra and Its Applications, 420(2–3), 377–387.
  95. Koliha, J. J., & Rakočević, V. R. (2007). Range projections and the Moore-Penrose inverse in rings with involution. LINEAR & MULTILINEAR ALGEBRA, 55(2), 103–112.
  96. Koliha, J. J., & Rakočević, V. R. (2006). The nullity and rank of linear combinations of idempotent matrices. Linear Algebra and Its Applications, 418(1), 11–14.
  97. de Malafosse, B., & Rakočević, V. R. (2006). Applications of measure of noncompactness in operators on the spaces s_(α,) s_α^0, s_α^((c)),l_(α )^p. Journal of Mathematical Analysis and Applications, 323(1), 131–145.
  98. Gajić, L. M., & Rakočević, V. R. (2005). Quasicontraction nonself-mappings on convex metric spaces and common fixed point theorems. FIXED POINT THEORY AND APPLICATIONS, 3(3), 365–375.
  99. Dirr, G., Rakočević, V., & Wimmer, H. K. (2005). Estimates for projections in Banach spaces and existence of direct complements. Studia Mathematica, 170(2), 211–216. https://doi.org/10.4064/SM170-2-6
  100. Koliha, J. J., & Rakočević, V. R. (2005). Differentiability of the g-Drazin inverse. Studia Mathematica, 168(3), 193–201.
  101. Cvetković-IIić, D. S., Djordjević, D. S., & Rakočević, V. (2005). Schur complements in C*-algebras. Mathematische Nachrichten, 278(7–8), 808–814. https://doi.org/10.1002/MANA.200310273
  102. Koliha, J. J., & Rakočević, V. (2005). Fredholm Properties of the Difference of Orthogonal Projections in a Hilbert Space. Integral Equations and Operator Theory 2005 52:1, 52(1), 125–134. https://doi.org/10.1007/S00020-003-1274-4
  103. Koliha, J. J., Rakočević, V., & Straškraba, I. (2004). The difference and sum of projectors. Linear Algebra and Its Applications, 388(1-3 SPEC. ISS.), 279–288. https://doi.org/10.1016/J.LAA.2004.03.008
  104. Koliha, J. J., & Rakočević, V. (2004). On the Norm of Idempotents in C*-Algebras. ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 34(2), 685–697. https://doi.org/10.1216/RMJM/1181069874
  105. Malkowsky, E., Rakočević, V., & Živković, S. (2004). Matrix transformations between the sequence spaces w_0^p (λ),ν_0^p (λ),c_0^p (λ),1
  106. Rakočević, V., & Wei, Y. (2003). The representation and approximation of the W-weighted Drazin inverse of linear operators in Hilbert space. Applied Mathematics and Computation, 141(2–3), 455–470. https://doi.org/10.1016/S0096-3003(02)00267-9
  107. Koliha, J. J., & Rakočević, V. (2003). Invertibility of the Difference of Idempotents. Linear and Multilinear Algebra, 51(1), 97–110. https://doi.org/10.1080/030810802100023499
  108. Koliha, J. J., & RakoCevic, V. (2002). Invertibility of the Sum of Idempotents. Linear and Multilinear Algebra, 50(4), 285–292. https://doi.org/10.1080/03081080290004960
  109. Rakočević, V., & Wei, Y. (2002). A weighted Drazin inverse and applications. Linear Algebra and Its Applications, 350(1–3), 25–39. https://doi.org/10.1016/S0024-3795(02)00297-5
  110. Malkowsky, E., & Rakočević, V. (2001). Measure of Noncompactness of Linear Operators between Spaces of Sequences That Are (Ň,q) Summable or Bounded. Czechoslovak Mathematical Journal 2001 51:3, 51(3), 505–522. https://doi.org/10.1023/A:1013727821173
  111. Rakočević, V. R. (2001). Quasi contraction nonself mappings on Banach spaces and common fixed point theorems. PUBLICATIONES MATHEMATICAE-DEBRECEN, 58(3), 451–460.
  112. Rakočević, V. R., & YM, W. (2001). The perturbation theory for the Drazin inverse and its applications II. JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 70(2001), 189–197.
  113. Malkowsky, E., & Rakočević, V. (2000). The Measure of Noncompactness of Linear Operators between Spaces of Strongly C_1 Summable and Bounded Sequences. Acta Mathematica Hungarica 2000 89:1, 89(1), 29–45. https://doi.org/10.1023/A:1026721323997
  114. Rakočević, V. R. (2000). On the norm of idempotent operators in a Hilbert space. AMERICAN MATHEMATICAL MONTHLY, 107(8), 748–750.
  115. Malkowsky, E., & Rakočević, V. R. (1999). The measure of noncompactness of linear operators between spaces of M^th-order difference sequences. STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 35(3–4), 381–395.